Tobi's ubw test branch
Dependencies: mavlink_bridge mbed
Fork of AIT_UWB_Range by
DW1000/DW1000.cpp
- Committer:
- manumaet
- Date:
- 2014-11-23
- Revision:
- 12:985aa9843c3c
- Parent:
- 11:c87d37db2c6f
- Child:
- 13:b4d27bf7062a
File content as of revision 12:985aa9843c3c:
#include "DW1000.h" DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ) : spi(MOSI, MISO, SCLK), cs(CS), irq(IRQ) { deselect(); // Chip must be deselected first spi.format(8,0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000) spi.frequency(1000000); // with a 1MHz clock rate (worked up to 49MHz in our Test) //resetAll(); // we can do a soft reset if we want to (only needed for debugging) loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned of or there's receiving malfunction see User Manual LDELOAD on p22 & p158 writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error irq.rise(this, &DW1000::ISR); // attach Interrupt handler to rising edge } uint32_t DW1000::getDeviceID() { uint32_t result; readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4); return result; } uint64_t DW1000::getEUI() { uint64_t result; readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8); return result; } void DW1000::setEUI(uint64_t EUI) { writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8); } float DW1000::getVoltage() { uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57 writeRegister(DW1000_RF_CONF, 0x11, buffer, 2); writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1); writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1); writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1); readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature float Voltage = buffer[5] * 0.0057 + 2.3; float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration see instance_common.c row 391 return Voltage; } void DW1000::sendString(char* message) { sendFrame((uint8_t*)message, strlen(message)+1); } char* DW1000::receiveString() { uint16_t framelength = 0; // get framelength readRegister(DW1000_RX_FINFO, 0, (uint8_t*)&framelength, 2); framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes char* receive = new char[framelength]; // get data from buffer readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)receive, framelength); return receive; } void DW1000::sendFrame(uint8_t* message, uint16_t length) { writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); length += 2; // put length of frame including 2 CRC Bytes length = ((backup & 0xFC) << 8) | (length & 0x03FF); writeRegister(DW1000_TX_FCTRL, 0, (uint8_t*)&length, 2); // TODO: make that bigger frames than 256 can be sent writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit } void DW1000::receiveFrame() { writeRegister8(DW1000_SYS_CTRL, 1, 0x01); // start listening for preamble by setting the RXENAB bit } void DW1000::ISR() { uint64_t status; // get the entire system status readRegister(DW1000_SYS_STATUS, 0, (uint8_t*)&status, 5); status &= 0xFFFFFFFFFF; // only 40-Bit if (status & 0x4000) callbackRX(); if (status & 0x80) ;//callbackTX(); // TODO: mask TX done interrupt make TX handler } void DW1000::loadLDE() { uint16_t ldeload[] = {0x0301, 0x8000, 0x0200}; // initialise LDE algorithm LDELOAD User Manual p22 writeRegister(DW1000_PMSC, 0, (uint8_t*)&ldeload[0], 2); // set clock to XTAL so OTP is reliable writeRegister(DW1000_OTP_IF, 0x06, (uint8_t*)&ldeload[1], 2); // set LDELOAD bit in OTP wait_us(150); writeRegister(DW1000_PMSC, 0, (uint8_t*)&ldeload[2], 2); // recover to PLL clock } void DW1000::resetRX() { writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset } void DW1000::resetAll() { writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset wait_us(10); // wait for PLL to lock writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset } // SPI Interface ------------------------------------------------------------------------------------ uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) { uint8_t result; readRegister(reg, subaddress, &result, 1); return result; } void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) { writeRegister(reg, subaddress, &buffer, 1); } void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { setupTransaction(reg, subaddress, false); for(int i=0; i<length; i++) // get data buffer[i] = spi.write(0x00); deselect(); } void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { setupTransaction(reg, subaddress, true); for(int i=0; i<length; i++) // put data spi.write(buffer[i]); deselect(); } void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) { reg |= (write * DW1000_WRITE_FLAG); select(); if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte spi.write(reg | DW1000_SUBADDRESS_FLAG); if (subaddress > 127) { // sub address too long, we need to set flag and send third header byte spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); spi.write((uint8_t)(subaddress >> 7)); } else { spi.write((uint8_t)subaddress); } } else { spi.write(reg); } } void DW1000::select() { cs = 0; } // set CS low to start transmission void DW1000::deselect() { cs = 1; } // set CS high to stop transmission