Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
N5110.cpp
- Committer:
- eencae
- Date:
- 2017-11-06
- Revision:
- 45:97e54ea40dac
- Parent:
- 44:57f9d32fb521
- Child:
- 46:6de3ebf5b195
File content as of revision 45:97e54ea40dac:
#include "mbed.h"
#include "N5110.h"
// overloaded constructor includes power pin - LCD Vcc connected to GPIO pin
// this constructor works fine with LPC1768 - enough current sourced from GPIO
// to power LCD. Doesn't work well with K64F.
N5110::N5110(PinName const pwrPin,
PinName const scePin,
PinName const rstPin,
PinName const dcPin,
PinName const mosiPin,
PinName const sclkPin,
PinName const ledPin)
:
_spi(new SPI(mosiPin,NC,sclkPin)), // create new SPI instance and initialise
_led(new PwmOut(ledPin)),
_pwr(new DigitalOut(pwrPin)),
_sce(new DigitalOut(scePin)),
_rst(new DigitalOut(rstPin)),
_dc(new DigitalOut(dcPin))
{}
// overloaded constructor does not include power pin - LCD Vcc must be tied to +3V3
// Best to use this with K64F as the GPIO hasn't sufficient output current to reliably
// drive the LCD.
N5110::N5110(PinName const scePin,
PinName const rstPin,
PinName const dcPin,
PinName const mosiPin,
PinName const sclkPin,
PinName const ledPin)
:
_spi(new SPI(mosiPin,NC,sclkPin)), // create new SPI instance and initialise
_led(new PwmOut(ledPin)),
_pwr(NULL), // pwr not needed so null it to be safe
_sce(new DigitalOut(scePin)),
_rst(new DigitalOut(rstPin)),
_dc(new DigitalOut(dcPin))
{}
N5110::~N5110()
{
delete _spi;
if(_pwr) {
delete _pwr;
}
delete _led;
delete _sce;
delete _rst;
delete _dc;
}
// initialise function - powers up and sends the initialisation commands
void N5110::init()
{
turnOn(); // power up
reset(); // reset LCD - must be done within 100 ms
initSPI();
setContrast(0.40); // this may need tuning (say 0.4 to 0.6)
setBias(3); // datasheet - 48:1 mux - don't mess with if you don't know what you're doing! (0 to 7)
setTempCoefficient(0); // datasheet - may need increasing (range 0 to 3) at very low temperatures
normalMode(); // normal video mode by default
clearRAM(); // RAM is undefined at power-up so clear to be sure
clear(); // clear buffer
setBrightness(0.5);
}
// sets normal video mode (black on white)
void N5110::normalMode()
{
sendCommand(0b00100000); // basic instruction
sendCommand(0b00001100); // normal video mode- datasheet
}
// sets normal video mode (white on black)
void N5110::inverseMode()
{
sendCommand(0b00100000); // basic instruction
sendCommand(0b00001101); // inverse video mode - datasheet
}
// function to power up the LCD and backlight - only works when using GPIO to power
void N5110::turnOn()
{
if (_pwr != NULL) {
_pwr->write(1); // apply power
}
}
// function to power down LCD
void N5110::turnOff()
{
clear(); // clear buffer
refresh();
setBrightness(0.0); // turn backlight off
clearRAM(); // clear RAM to ensure specified current consumption
// send command to ensure we are in basic mode
sendCommand(0b00100000); // basic mode
sendCommand(0b00001000); // clear display
sendCommand(0b00100001); // extended mode
sendCommand(0b00100100); // power down
// if we are powering the LCD using the GPIO then make it low to turn off
if (_pwr != NULL) {
wait_ms(10); // small delay and then turn off the power pin
_pwr->write(0); // turn off power
}
}
// function to change LED backlight brightness
void N5110::setBrightness(float brightness)
{
// check whether brightness is within range
if (brightness < 0.0f)
brightness = 0.0f;
if (brightness > 1.0f)
brightness = 1.0f;
// set PWM duty cycle
_led->write(brightness);
}
void N5110::setContrast(float contrast) {
// enforce limits
if (contrast > 1.0)
contrast = 1.0;
else if (contrast < 0.0)
contrast = 0.0;
// convert to char in range 0 to 127 (i.e. 6 bits)
char ic = char(contrast*127.0);
sendCommand(0b00100001); // extended instruction set
sendCommand(0b10000000 | ic); // set Vop (which controls contrast)
sendCommand(0b00100000); // back to basic instruction set
}
void N5110::setTempCoefficient(char tc) {
// enforce limits
if (tc>3) {
tc=3;
}
// temperature coefficient may need increasing at low temperatures
sendCommand(0b00100001); // extended instruction set
sendCommand(0b00000100 | tc);
sendCommand(0b00100000); // back to basic instruction set
}
void N5110::setBias(char bias) {
// from data sheet
// bias mux rate
// 0 1:100
// 1 1:80
// 2 1:65
// 3 1:48 (default)
// 4 1:40/1:34
// 5 1:24
// 6 1:18/1:16
// 7 1:10/1:9/1:8
// enforce limits
if (bias>7) {
bias=7;
}
sendCommand(0b00100001); // extended mode instruction
sendCommand(0b00010000 | bias);
sendCommand(0b00100000); // end of extended mode instruction
}
// pulse the active low reset line
void N5110::reset()
{
_rst->write(0); // reset the LCD
_rst->write(1);
}
// function to initialise SPI peripheral
void N5110::initSPI()
{
_spi->format(8,1); // 8 bits, Mode 1 - polarity 0, phase 1 - base value of clock is 0, data captured on falling edge/propagated on rising edge
_spi->frequency(4000000); // maximum of screen is 4 MHz
}
// send a command to the display
void N5110::sendCommand(unsigned char command)
{
_dc->write(0); // set DC low for command
_sce->write(0); // set CE low to begin frame
_spi->write(command); // send command
_dc->write(1); // turn back to data by default
_sce->write(1); // set CE high to end frame (expected for transmission of single byte)
}
// send data to the display at the current XY address
// dc is set to 1 (i.e. data) after sending a command and so should
// be the default mode.
void N5110::sendData(unsigned char data)
{
_sce->write(0); // set CE low to begin frame
_spi->write(data);
_sce->write(1); // set CE high to end frame (expected for transmission of single byte)
}
// this function writes 0 to the 504 bytes to clear the RAM
void N5110::clearRAM()
{
_sce->write(0); //set CE low to begin frame
for(int i = 0; i < WIDTH * HEIGHT; i++) { // 48 x 84 bits = 504 bytes
_spi->write(0x00); // send 0's
}
_sce->write(1); // set CE high to end frame
}
// function to set the XY address in RAM for subsequenct data write
void N5110::setXYAddress(unsigned int const x,
unsigned int const y)
{
if (x<WIDTH && y<HEIGHT) { // check within range
sendCommand(0b00100000); // basic instruction
sendCommand(0b10000000 | x); // send addresses to display with relevant mask
sendCommand(0b01000000 | y);
}
}
// These functions are used to set, clear and get the value of pixels in the display
// Pixels are addressed in the range of 0 to 47 (y) and 0 to 83 (x). The refresh()
// function must be called after set and clear in order to update the display
void N5110::setPixel(unsigned int const x,
unsigned int const y,
bool const state)
{
if (x<WIDTH && y<HEIGHT) { // check within range
// calculate bank and shift 1 to required position in the data byte
if(state) buffer[x][y/8] |= (1 << y%8);
else buffer[x][y/8] &= ~(1 << y%8);
}
}
void N5110::clearPixel(unsigned int const x,
unsigned int const y)
{
if (x<WIDTH && y<HEIGHT) { // check within range
// calculate bank and shift 1 to required position (using bit clear)
buffer[x][y/8] &= ~(1 << y%8);
}
}
int N5110::getPixel(unsigned int const x,
unsigned int const y) const
{
if (x<WIDTH && y<HEIGHT) { // check within range
// return relevant bank and mask required bit
int pixel = (int) buffer[x][y/8] & (1 << y%8);
if (pixel)
return 1;
else
return 0;
}
return 0;
}
// function to refresh the display
void N5110::refresh()
{
setXYAddress(0,0); // important to set address back to 0,0 before refreshing display
// address auto increments after printing string, so buffer[0][0] will not coincide
// with top-left pixel after priting string
_sce->write(0); //set CE low to begin frame
for(int j = 0; j < BANKS; j++) { // be careful to use correct order (j,i) for horizontal addressing
for(int i = 0; i < WIDTH; i++) {
_spi->write(buffer[i][j]); // send buffer
}
}
_sce->write(1); // set CE high to end frame
}
// fills the buffer with random bytes. Can be used to test the display.
// The rand() function isn't seeded so it probably creates the same pattern everytime
void N5110::randomiseBuffer()
{
int i,j;
for(j = 0; j < BANKS; j++) { // be careful to use correct order (j,i) for horizontal addressing
for(i = 0; i < WIDTH; i++) {
buffer[i][j] = rand()%256; // generate random byte
}
}
}
// function to print 5x7 font
void N5110::printChar(char const c,
unsigned int const x,
unsigned int const y)
{
if (y<BANKS) { // check if printing in range of y banks
for (int i = 0; i < 5 ; i++ ) {
int pixel_x = x+i;
if (pixel_x > WIDTH-1) // ensure pixel isn't outside the buffer size (0 - 83)
break;
buffer[pixel_x][y] = font5x7[(c - 32)*5 + i];
// array is offset by 32 relative to ASCII, each character is 5 pixels wide
}
}
}
// function to print string at specified position
void N5110::printString(const char *str,
unsigned int const x,
unsigned int const y)
{
if (y<BANKS) { // check if printing in range of y banks
int n = 0 ; // counter for number of characters in string
// loop through string and print character
while(*str) {
// writes the character bitmap data to the buffer, so that
// text and pixels can be displayed at the same time
for (int i = 0; i < 5 ; i++ ) {
int pixel_x = x+i+n*6;
if (pixel_x > WIDTH-1) // ensure pixel isn't outside the buffer size (0 - 83)
break;
buffer[pixel_x][y] = font5x7[(*str - 32)*5 + i];
}
str++; // go to next character in string
n++; // increment index
}
}
}
// function to clear the screen buffer
void N5110::clear()
{
memset(buffer,0,sizeof(buffer));
}
// function to plot array on display
void N5110::plotArray(float const array[])
{
for (int i=0; i<WIDTH; i++) { // loop through array
// elements are normalised from 0.0 to 1.0, so multiply
// by 47 to convert to pixel range, and subtract from 47
// since top-left is 0,0 in the display geometry
setPixel(i,47 - int(array[i]*47.0f));
}
}
// function to draw circle
void N5110:: drawCircle(unsigned int const x0,
unsigned int const y0,
unsigned int const radius,
FillType const fill)
{
// from http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
int x = radius;
int y = 0;
int radiusError = 1-x;
while(x >= y) {
// if transparent, just draw outline
if (fill == FILL_TRANSPARENT) {
setPixel( x + x0, y + y0);
setPixel(-x + x0, y + y0);
setPixel( y + x0, x + y0);
setPixel(-y + x0, x + y0);
setPixel(-y + x0, -x + y0);
setPixel( y + x0, -x + y0);
setPixel( x + x0, -y + y0);
setPixel(-x + x0, -y + y0);
} else { // drawing filled circle, so draw lines between points at same y value
int type = (fill==FILL_BLACK) ? 1:0; // black or white fill
drawLine(x+x0,y+y0,-x+x0,y+y0,type);
drawLine(y+x0,x+y0,-y+x0,x+y0,type);
drawLine(y+x0,-x+y0,-y+x0,-x+y0,type);
drawLine(x+x0,-y+y0,-x+x0,-y+y0,type);
}
y++;
if (radiusError<0) {
radiusError += 2 * y + 1;
} else {
x--;
radiusError += 2 * (y - x) + 1;
}
}
}
void N5110::drawLine(unsigned int const x0,
unsigned int const y0,
unsigned int const x1,
unsigned int const y1,
unsigned int const type)
{
// Note that the ranges can be negative so we have to turn the input values
// into signed integers first
int const y_range = static_cast<int>(y1) - static_cast<int>(y0);
int const x_range = static_cast<int>(x1) - static_cast<int>(x0);
// if dotted line, set step to 2, else step is 1
unsigned int const step = (type==2) ? 2:1;
// make sure we loop over the largest range to get the most pixels on the display
// for instance, if drawing a vertical line (x_range = 0), we need to loop down the y pixels
// or else we'll only end up with 1 pixel in the x column
if ( abs(x_range) > abs(y_range) ) {
// ensure we loop from smallest to largest or else for-loop won't run as expected
unsigned int const start = x_range > 0 ? x0:x1;
unsigned int const stop = x_range > 0 ? x1:x0;
// loop between x pixels
for (unsigned int x = start; x<= stop ; x+=step) {
// do linear interpolation
int const dx = static_cast<int>(x)-static_cast<int>(x0);
unsigned int const y = y0 + y_range * dx / x_range;
// If the line type is '0', this will clear the pixel
// If it is '1' or '2', the pixel will be set
setPixel(x,y, type);
}
} else {
// ensure we loop from smallest to largest or else for-loop won't run as expected
unsigned int const start = y_range > 0 ? y0:y1;
unsigned int const stop = y_range > 0 ? y1:y0;
for (unsigned int y = start; y<= stop ; y+=step) {
// do linear interpolation
int const dy = static_cast<int>(y)-static_cast<int>(y0);
unsigned int const x = x0 + x_range * dy / y_range;
// If the line type is '0', this will clear the pixel
// If it is '1' or '2', the pixel will be set
setPixel(x,y, type);
}
}
}
void N5110::drawRect(unsigned int const x0,
unsigned int const y0,
unsigned int const width,
unsigned int const height,
FillType const fill)
{
if (fill == FILL_TRANSPARENT) { // transparent, just outline
drawLine(x0,y0,x0+(width-1),y0,1); // top
drawLine(x0,y0+(height-1),x0+(width-1),y0+(height-1),1); // bottom
drawLine(x0,y0,x0,y0+(height-1),1); // left
drawLine(x0+(width-1),y0,x0+(width-1),y0+(height-1),1); // right
} else { // filled rectangle
int type = (fill==FILL_BLACK) ? 1:0; // black or white fill
for (int y = y0; y<y0+height; y++) { // loop through rows of rectangle
drawLine(x0,y,x0+(width-1),y,type); // draw line across screen
}
}
}
void N5110::drawSprite(int x0,
int y0,
int nrows,
int ncols,
int *sprite)
{
for (int i = 0; i < nrows; i++) {
for (int j = 0 ; j < ncols ; j++) {
int pixel = *((sprite+i*ncols)+j);
setPixel(x0+j,y0+i, pixel);
}
}
}