mbed library for slider v2

Dependents:   kl46z_slider_v2

Committer:
mturner5
Date:
Wed Sep 14 07:04:27 2016 +0000
Revision:
0:b7116bd48af6
Tried to use the timer.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mturner5 0:b7116bd48af6 1 /* ----------------------------------------------------------------------
mturner5 0:b7116bd48af6 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
mturner5 0:b7116bd48af6 3 *
mturner5 0:b7116bd48af6 4 * $Date: 19. March 2015
mturner5 0:b7116bd48af6 5 * $Revision: V.1.4.5
mturner5 0:b7116bd48af6 6 *
mturner5 0:b7116bd48af6 7 * Project: CMSIS DSP Library
mturner5 0:b7116bd48af6 8 * Title: arm_math.h
mturner5 0:b7116bd48af6 9 *
mturner5 0:b7116bd48af6 10 * Description: Public header file for CMSIS DSP Library
mturner5 0:b7116bd48af6 11 *
mturner5 0:b7116bd48af6 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
mturner5 0:b7116bd48af6 13 *
mturner5 0:b7116bd48af6 14 * Redistribution and use in source and binary forms, with or without
mturner5 0:b7116bd48af6 15 * modification, are permitted provided that the following conditions
mturner5 0:b7116bd48af6 16 * are met:
mturner5 0:b7116bd48af6 17 * - Redistributions of source code must retain the above copyright
mturner5 0:b7116bd48af6 18 * notice, this list of conditions and the following disclaimer.
mturner5 0:b7116bd48af6 19 * - Redistributions in binary form must reproduce the above copyright
mturner5 0:b7116bd48af6 20 * notice, this list of conditions and the following disclaimer in
mturner5 0:b7116bd48af6 21 * the documentation and/or other materials provided with the
mturner5 0:b7116bd48af6 22 * distribution.
mturner5 0:b7116bd48af6 23 * - Neither the name of ARM LIMITED nor the names of its contributors
mturner5 0:b7116bd48af6 24 * may be used to endorse or promote products derived from this
mturner5 0:b7116bd48af6 25 * software without specific prior written permission.
mturner5 0:b7116bd48af6 26 *
mturner5 0:b7116bd48af6 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mturner5 0:b7116bd48af6 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mturner5 0:b7116bd48af6 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mturner5 0:b7116bd48af6 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mturner5 0:b7116bd48af6 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mturner5 0:b7116bd48af6 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mturner5 0:b7116bd48af6 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mturner5 0:b7116bd48af6 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mturner5 0:b7116bd48af6 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mturner5 0:b7116bd48af6 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mturner5 0:b7116bd48af6 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mturner5 0:b7116bd48af6 38 * POSSIBILITY OF SUCH DAMAGE.
mturner5 0:b7116bd48af6 39 * -------------------------------------------------------------------- */
mturner5 0:b7116bd48af6 40
mturner5 0:b7116bd48af6 41 /**
mturner5 0:b7116bd48af6 42 \mainpage CMSIS DSP Software Library
mturner5 0:b7116bd48af6 43 *
mturner5 0:b7116bd48af6 44 * Introduction
mturner5 0:b7116bd48af6 45 * ------------
mturner5 0:b7116bd48af6 46 *
mturner5 0:b7116bd48af6 47 * This user manual describes the CMSIS DSP software library,
mturner5 0:b7116bd48af6 48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
mturner5 0:b7116bd48af6 49 *
mturner5 0:b7116bd48af6 50 * The library is divided into a number of functions each covering a specific category:
mturner5 0:b7116bd48af6 51 * - Basic math functions
mturner5 0:b7116bd48af6 52 * - Fast math functions
mturner5 0:b7116bd48af6 53 * - Complex math functions
mturner5 0:b7116bd48af6 54 * - Filters
mturner5 0:b7116bd48af6 55 * - Matrix functions
mturner5 0:b7116bd48af6 56 * - Transforms
mturner5 0:b7116bd48af6 57 * - Motor control functions
mturner5 0:b7116bd48af6 58 * - Statistical functions
mturner5 0:b7116bd48af6 59 * - Support functions
mturner5 0:b7116bd48af6 60 * - Interpolation functions
mturner5 0:b7116bd48af6 61 *
mturner5 0:b7116bd48af6 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
mturner5 0:b7116bd48af6 63 * 32-bit integer and 32-bit floating-point values.
mturner5 0:b7116bd48af6 64 *
mturner5 0:b7116bd48af6 65 * Using the Library
mturner5 0:b7116bd48af6 66 * ------------
mturner5 0:b7116bd48af6 67 *
mturner5 0:b7116bd48af6 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
mturner5 0:b7116bd48af6 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
mturner5 0:b7116bd48af6 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
mturner5 0:b7116bd48af6 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
mturner5 0:b7116bd48af6 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
mturner5 0:b7116bd48af6 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
mturner5 0:b7116bd48af6 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
mturner5 0:b7116bd48af6 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
mturner5 0:b7116bd48af6 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
mturner5 0:b7116bd48af6 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
mturner5 0:b7116bd48af6 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
mturner5 0:b7116bd48af6 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
mturner5 0:b7116bd48af6 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
mturner5 0:b7116bd48af6 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
mturner5 0:b7116bd48af6 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
mturner5 0:b7116bd48af6 83 *
mturner5 0:b7116bd48af6 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
mturner5 0:b7116bd48af6 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
mturner5 0:b7116bd48af6 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
mturner5 0:b7116bd48af6 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
mturner5 0:b7116bd48af6 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
mturner5 0:b7116bd48af6 89 *
mturner5 0:b7116bd48af6 90 * Examples
mturner5 0:b7116bd48af6 91 * --------
mturner5 0:b7116bd48af6 92 *
mturner5 0:b7116bd48af6 93 * The library ships with a number of examples which demonstrate how to use the library functions.
mturner5 0:b7116bd48af6 94 *
mturner5 0:b7116bd48af6 95 * Toolchain Support
mturner5 0:b7116bd48af6 96 * ------------
mturner5 0:b7116bd48af6 97 *
mturner5 0:b7116bd48af6 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
mturner5 0:b7116bd48af6 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
mturner5 0:b7116bd48af6 100 *
mturner5 0:b7116bd48af6 101 * Building the Library
mturner5 0:b7116bd48af6 102 * ------------
mturner5 0:b7116bd48af6 103 *
mturner5 0:b7116bd48af6 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
mturner5 0:b7116bd48af6 105 * - arm_cortexM_math.uvprojx
mturner5 0:b7116bd48af6 106 *
mturner5 0:b7116bd48af6 107 *
mturner5 0:b7116bd48af6 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
mturner5 0:b7116bd48af6 109 *
mturner5 0:b7116bd48af6 110 * Pre-processor Macros
mturner5 0:b7116bd48af6 111 * ------------
mturner5 0:b7116bd48af6 112 *
mturner5 0:b7116bd48af6 113 * Each library project have differant pre-processor macros.
mturner5 0:b7116bd48af6 114 *
mturner5 0:b7116bd48af6 115 * - UNALIGNED_SUPPORT_DISABLE:
mturner5 0:b7116bd48af6 116 *
mturner5 0:b7116bd48af6 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
mturner5 0:b7116bd48af6 118 *
mturner5 0:b7116bd48af6 119 * - ARM_MATH_BIG_ENDIAN:
mturner5 0:b7116bd48af6 120 *
mturner5 0:b7116bd48af6 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
mturner5 0:b7116bd48af6 122 *
mturner5 0:b7116bd48af6 123 * - ARM_MATH_MATRIX_CHECK:
mturner5 0:b7116bd48af6 124 *
mturner5 0:b7116bd48af6 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
mturner5 0:b7116bd48af6 126 *
mturner5 0:b7116bd48af6 127 * - ARM_MATH_ROUNDING:
mturner5 0:b7116bd48af6 128 *
mturner5 0:b7116bd48af6 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
mturner5 0:b7116bd48af6 130 *
mturner5 0:b7116bd48af6 131 * - ARM_MATH_CMx:
mturner5 0:b7116bd48af6 132 *
mturner5 0:b7116bd48af6 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
mturner5 0:b7116bd48af6 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
mturner5 0:b7116bd48af6 135 * ARM_MATH_CM7 for building the library on cortex-M7.
mturner5 0:b7116bd48af6 136 *
mturner5 0:b7116bd48af6 137 * - __FPU_PRESENT:
mturner5 0:b7116bd48af6 138 *
mturner5 0:b7116bd48af6 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
mturner5 0:b7116bd48af6 140 *
mturner5 0:b7116bd48af6 141 * <hr>
mturner5 0:b7116bd48af6 142 * CMSIS-DSP in ARM::CMSIS Pack
mturner5 0:b7116bd48af6 143 * -----------------------------
mturner5 0:b7116bd48af6 144 *
mturner5 0:b7116bd48af6 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
mturner5 0:b7116bd48af6 146 * |File/Folder |Content |
mturner5 0:b7116bd48af6 147 * |------------------------------|------------------------------------------------------------------------|
mturner5 0:b7116bd48af6 148 * |\b CMSIS\\Documentation\\DSP | This documentation |
mturner5 0:b7116bd48af6 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
mturner5 0:b7116bd48af6 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
mturner5 0:b7116bd48af6 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
mturner5 0:b7116bd48af6 152 *
mturner5 0:b7116bd48af6 153 * <hr>
mturner5 0:b7116bd48af6 154 * Revision History of CMSIS-DSP
mturner5 0:b7116bd48af6 155 * ------------
mturner5 0:b7116bd48af6 156 * Please refer to \ref ChangeLog_pg.
mturner5 0:b7116bd48af6 157 *
mturner5 0:b7116bd48af6 158 * Copyright Notice
mturner5 0:b7116bd48af6 159 * ------------
mturner5 0:b7116bd48af6 160 *
mturner5 0:b7116bd48af6 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
mturner5 0:b7116bd48af6 162 */
mturner5 0:b7116bd48af6 163
mturner5 0:b7116bd48af6 164
mturner5 0:b7116bd48af6 165 /**
mturner5 0:b7116bd48af6 166 * @defgroup groupMath Basic Math Functions
mturner5 0:b7116bd48af6 167 */
mturner5 0:b7116bd48af6 168
mturner5 0:b7116bd48af6 169 /**
mturner5 0:b7116bd48af6 170 * @defgroup groupFastMath Fast Math Functions
mturner5 0:b7116bd48af6 171 * This set of functions provides a fast approximation to sine, cosine, and square root.
mturner5 0:b7116bd48af6 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
mturner5 0:b7116bd48af6 173 * operate on individual values and not arrays.
mturner5 0:b7116bd48af6 174 * There are separate functions for Q15, Q31, and floating-point data.
mturner5 0:b7116bd48af6 175 *
mturner5 0:b7116bd48af6 176 */
mturner5 0:b7116bd48af6 177
mturner5 0:b7116bd48af6 178 /**
mturner5 0:b7116bd48af6 179 * @defgroup groupCmplxMath Complex Math Functions
mturner5 0:b7116bd48af6 180 * This set of functions operates on complex data vectors.
mturner5 0:b7116bd48af6 181 * The data in the complex arrays is stored in an interleaved fashion
mturner5 0:b7116bd48af6 182 * (real, imag, real, imag, ...).
mturner5 0:b7116bd48af6 183 * In the API functions, the number of samples in a complex array refers
mturner5 0:b7116bd48af6 184 * to the number of complex values; the array contains twice this number of
mturner5 0:b7116bd48af6 185 * real values.
mturner5 0:b7116bd48af6 186 */
mturner5 0:b7116bd48af6 187
mturner5 0:b7116bd48af6 188 /**
mturner5 0:b7116bd48af6 189 * @defgroup groupFilters Filtering Functions
mturner5 0:b7116bd48af6 190 */
mturner5 0:b7116bd48af6 191
mturner5 0:b7116bd48af6 192 /**
mturner5 0:b7116bd48af6 193 * @defgroup groupMatrix Matrix Functions
mturner5 0:b7116bd48af6 194 *
mturner5 0:b7116bd48af6 195 * This set of functions provides basic matrix math operations.
mturner5 0:b7116bd48af6 196 * The functions operate on matrix data structures. For example,
mturner5 0:b7116bd48af6 197 * the type
mturner5 0:b7116bd48af6 198 * definition for the floating-point matrix structure is shown
mturner5 0:b7116bd48af6 199 * below:
mturner5 0:b7116bd48af6 200 * <pre>
mturner5 0:b7116bd48af6 201 * typedef struct
mturner5 0:b7116bd48af6 202 * {
mturner5 0:b7116bd48af6 203 * uint16_t numRows; // number of rows of the matrix.
mturner5 0:b7116bd48af6 204 * uint16_t numCols; // number of columns of the matrix.
mturner5 0:b7116bd48af6 205 * float32_t *pData; // points to the data of the matrix.
mturner5 0:b7116bd48af6 206 * } arm_matrix_instance_f32;
mturner5 0:b7116bd48af6 207 * </pre>
mturner5 0:b7116bd48af6 208 * There are similar definitions for Q15 and Q31 data types.
mturner5 0:b7116bd48af6 209 *
mturner5 0:b7116bd48af6 210 * The structure specifies the size of the matrix and then points to
mturner5 0:b7116bd48af6 211 * an array of data. The array is of size <code>numRows X numCols</code>
mturner5 0:b7116bd48af6 212 * and the values are arranged in row order. That is, the
mturner5 0:b7116bd48af6 213 * matrix element (i, j) is stored at:
mturner5 0:b7116bd48af6 214 * <pre>
mturner5 0:b7116bd48af6 215 * pData[i*numCols + j]
mturner5 0:b7116bd48af6 216 * </pre>
mturner5 0:b7116bd48af6 217 *
mturner5 0:b7116bd48af6 218 * \par Init Functions
mturner5 0:b7116bd48af6 219 * There is an associated initialization function for each type of matrix
mturner5 0:b7116bd48af6 220 * data structure.
mturner5 0:b7116bd48af6 221 * The initialization function sets the values of the internal structure fields.
mturner5 0:b7116bd48af6 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
mturner5 0:b7116bd48af6 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
mturner5 0:b7116bd48af6 224 *
mturner5 0:b7116bd48af6 225 * \par
mturner5 0:b7116bd48af6 226 * Use of the initialization function is optional. However, if initialization function is used
mturner5 0:b7116bd48af6 227 * then the instance structure cannot be placed into a const data section.
mturner5 0:b7116bd48af6 228 * To place the instance structure in a const data
mturner5 0:b7116bd48af6 229 * section, manually initialize the data structure. For example:
mturner5 0:b7116bd48af6 230 * <pre>
mturner5 0:b7116bd48af6 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
mturner5 0:b7116bd48af6 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
mturner5 0:b7116bd48af6 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
mturner5 0:b7116bd48af6 234 * </pre>
mturner5 0:b7116bd48af6 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
mturner5 0:b7116bd48af6 236 * specifies the number of columns, and <code>pData</code> points to the
mturner5 0:b7116bd48af6 237 * data array.
mturner5 0:b7116bd48af6 238 *
mturner5 0:b7116bd48af6 239 * \par Size Checking
mturner5 0:b7116bd48af6 240 * By default all of the matrix functions perform size checking on the input and
mturner5 0:b7116bd48af6 241 * output matrices. For example, the matrix addition function verifies that the
mturner5 0:b7116bd48af6 242 * two input matrices and the output matrix all have the same number of rows and
mturner5 0:b7116bd48af6 243 * columns. If the size check fails the functions return:
mturner5 0:b7116bd48af6 244 * <pre>
mturner5 0:b7116bd48af6 245 * ARM_MATH_SIZE_MISMATCH
mturner5 0:b7116bd48af6 246 * </pre>
mturner5 0:b7116bd48af6 247 * Otherwise the functions return
mturner5 0:b7116bd48af6 248 * <pre>
mturner5 0:b7116bd48af6 249 * ARM_MATH_SUCCESS
mturner5 0:b7116bd48af6 250 * </pre>
mturner5 0:b7116bd48af6 251 * There is some overhead associated with this matrix size checking.
mturner5 0:b7116bd48af6 252 * The matrix size checking is enabled via the \#define
mturner5 0:b7116bd48af6 253 * <pre>
mturner5 0:b7116bd48af6 254 * ARM_MATH_MATRIX_CHECK
mturner5 0:b7116bd48af6 255 * </pre>
mturner5 0:b7116bd48af6 256 * within the library project settings. By default this macro is defined
mturner5 0:b7116bd48af6 257 * and size checking is enabled. By changing the project settings and
mturner5 0:b7116bd48af6 258 * undefining this macro size checking is eliminated and the functions
mturner5 0:b7116bd48af6 259 * run a bit faster. With size checking disabled the functions always
mturner5 0:b7116bd48af6 260 * return <code>ARM_MATH_SUCCESS</code>.
mturner5 0:b7116bd48af6 261 */
mturner5 0:b7116bd48af6 262
mturner5 0:b7116bd48af6 263 /**
mturner5 0:b7116bd48af6 264 * @defgroup groupTransforms Transform Functions
mturner5 0:b7116bd48af6 265 */
mturner5 0:b7116bd48af6 266
mturner5 0:b7116bd48af6 267 /**
mturner5 0:b7116bd48af6 268 * @defgroup groupController Controller Functions
mturner5 0:b7116bd48af6 269 */
mturner5 0:b7116bd48af6 270
mturner5 0:b7116bd48af6 271 /**
mturner5 0:b7116bd48af6 272 * @defgroup groupStats Statistics Functions
mturner5 0:b7116bd48af6 273 */
mturner5 0:b7116bd48af6 274 /**
mturner5 0:b7116bd48af6 275 * @defgroup groupSupport Support Functions
mturner5 0:b7116bd48af6 276 */
mturner5 0:b7116bd48af6 277
mturner5 0:b7116bd48af6 278 /**
mturner5 0:b7116bd48af6 279 * @defgroup groupInterpolation Interpolation Functions
mturner5 0:b7116bd48af6 280 * These functions perform 1- and 2-dimensional interpolation of data.
mturner5 0:b7116bd48af6 281 * Linear interpolation is used for 1-dimensional data and
mturner5 0:b7116bd48af6 282 * bilinear interpolation is used for 2-dimensional data.
mturner5 0:b7116bd48af6 283 */
mturner5 0:b7116bd48af6 284
mturner5 0:b7116bd48af6 285 /**
mturner5 0:b7116bd48af6 286 * @defgroup groupExamples Examples
mturner5 0:b7116bd48af6 287 */
mturner5 0:b7116bd48af6 288 #ifndef _ARM_MATH_H
mturner5 0:b7116bd48af6 289 #define _ARM_MATH_H
mturner5 0:b7116bd48af6 290
mturner5 0:b7116bd48af6 291 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
mturner5 0:b7116bd48af6 292
mturner5 0:b7116bd48af6 293 #if defined(ARM_MATH_CM7)
mturner5 0:b7116bd48af6 294 #include "core_cm7.h"
mturner5 0:b7116bd48af6 295 #elif defined (ARM_MATH_CM4)
mturner5 0:b7116bd48af6 296 #include "core_cm4.h"
mturner5 0:b7116bd48af6 297 #elif defined (ARM_MATH_CM3)
mturner5 0:b7116bd48af6 298 #include "core_cm3.h"
mturner5 0:b7116bd48af6 299 #elif defined (ARM_MATH_CM0)
mturner5 0:b7116bd48af6 300 #include "core_cm0.h"
mturner5 0:b7116bd48af6 301 #define ARM_MATH_CM0_FAMILY
mturner5 0:b7116bd48af6 302 #elif defined (ARM_MATH_CM0PLUS)
mturner5 0:b7116bd48af6 303 #include "core_cm0plus.h"
mturner5 0:b7116bd48af6 304 #define ARM_MATH_CM0_FAMILY
mturner5 0:b7116bd48af6 305 #else
mturner5 0:b7116bd48af6 306 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
mturner5 0:b7116bd48af6 307 #endif
mturner5 0:b7116bd48af6 308
mturner5 0:b7116bd48af6 309 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
mturner5 0:b7116bd48af6 310 #include "string.h"
mturner5 0:b7116bd48af6 311 #include "math.h"
mturner5 0:b7116bd48af6 312 #ifdef __cplusplus
mturner5 0:b7116bd48af6 313 extern "C"
mturner5 0:b7116bd48af6 314 {
mturner5 0:b7116bd48af6 315 #endif
mturner5 0:b7116bd48af6 316
mturner5 0:b7116bd48af6 317
mturner5 0:b7116bd48af6 318 /**
mturner5 0:b7116bd48af6 319 * @brief Macros required for reciprocal calculation in Normalized LMS
mturner5 0:b7116bd48af6 320 */
mturner5 0:b7116bd48af6 321
mturner5 0:b7116bd48af6 322 #define DELTA_Q31 (0x100)
mturner5 0:b7116bd48af6 323 #define DELTA_Q15 0x5
mturner5 0:b7116bd48af6 324 #define INDEX_MASK 0x0000003F
mturner5 0:b7116bd48af6 325 #ifndef PI
mturner5 0:b7116bd48af6 326 #define PI 3.14159265358979f
mturner5 0:b7116bd48af6 327 #endif
mturner5 0:b7116bd48af6 328
mturner5 0:b7116bd48af6 329 /**
mturner5 0:b7116bd48af6 330 * @brief Macros required for SINE and COSINE Fast math approximations
mturner5 0:b7116bd48af6 331 */
mturner5 0:b7116bd48af6 332
mturner5 0:b7116bd48af6 333 #define FAST_MATH_TABLE_SIZE 512
mturner5 0:b7116bd48af6 334 #define FAST_MATH_Q31_SHIFT (32 - 10)
mturner5 0:b7116bd48af6 335 #define FAST_MATH_Q15_SHIFT (16 - 10)
mturner5 0:b7116bd48af6 336 #define CONTROLLER_Q31_SHIFT (32 - 9)
mturner5 0:b7116bd48af6 337 #define TABLE_SIZE 256
mturner5 0:b7116bd48af6 338 #define TABLE_SPACING_Q31 0x400000
mturner5 0:b7116bd48af6 339 #define TABLE_SPACING_Q15 0x80
mturner5 0:b7116bd48af6 340
mturner5 0:b7116bd48af6 341 /**
mturner5 0:b7116bd48af6 342 * @brief Macros required for SINE and COSINE Controller functions
mturner5 0:b7116bd48af6 343 */
mturner5 0:b7116bd48af6 344 /* 1.31(q31) Fixed value of 2/360 */
mturner5 0:b7116bd48af6 345 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
mturner5 0:b7116bd48af6 346 #define INPUT_SPACING 0xB60B61
mturner5 0:b7116bd48af6 347
mturner5 0:b7116bd48af6 348 /**
mturner5 0:b7116bd48af6 349 * @brief Macro for Unaligned Support
mturner5 0:b7116bd48af6 350 */
mturner5 0:b7116bd48af6 351 #ifndef UNALIGNED_SUPPORT_DISABLE
mturner5 0:b7116bd48af6 352 #define ALIGN4
mturner5 0:b7116bd48af6 353 #else
mturner5 0:b7116bd48af6 354 #if defined (__GNUC__)
mturner5 0:b7116bd48af6 355 #define ALIGN4 __attribute__((aligned(4)))
mturner5 0:b7116bd48af6 356 #else
mturner5 0:b7116bd48af6 357 #define ALIGN4 __align(4)
mturner5 0:b7116bd48af6 358 #endif
mturner5 0:b7116bd48af6 359 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
mturner5 0:b7116bd48af6 360
mturner5 0:b7116bd48af6 361 /**
mturner5 0:b7116bd48af6 362 * @brief Error status returned by some functions in the library.
mturner5 0:b7116bd48af6 363 */
mturner5 0:b7116bd48af6 364
mturner5 0:b7116bd48af6 365 typedef enum
mturner5 0:b7116bd48af6 366 {
mturner5 0:b7116bd48af6 367 ARM_MATH_SUCCESS = 0, /**< No error */
mturner5 0:b7116bd48af6 368 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
mturner5 0:b7116bd48af6 369 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
mturner5 0:b7116bd48af6 370 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
mturner5 0:b7116bd48af6 371 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
mturner5 0:b7116bd48af6 372 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
mturner5 0:b7116bd48af6 373 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
mturner5 0:b7116bd48af6 374 } arm_status;
mturner5 0:b7116bd48af6 375
mturner5 0:b7116bd48af6 376 /**
mturner5 0:b7116bd48af6 377 * @brief 8-bit fractional data type in 1.7 format.
mturner5 0:b7116bd48af6 378 */
mturner5 0:b7116bd48af6 379 typedef int8_t q7_t;
mturner5 0:b7116bd48af6 380
mturner5 0:b7116bd48af6 381 /**
mturner5 0:b7116bd48af6 382 * @brief 16-bit fractional data type in 1.15 format.
mturner5 0:b7116bd48af6 383 */
mturner5 0:b7116bd48af6 384 typedef int16_t q15_t;
mturner5 0:b7116bd48af6 385
mturner5 0:b7116bd48af6 386 /**
mturner5 0:b7116bd48af6 387 * @brief 32-bit fractional data type in 1.31 format.
mturner5 0:b7116bd48af6 388 */
mturner5 0:b7116bd48af6 389 typedef int32_t q31_t;
mturner5 0:b7116bd48af6 390
mturner5 0:b7116bd48af6 391 /**
mturner5 0:b7116bd48af6 392 * @brief 64-bit fractional data type in 1.63 format.
mturner5 0:b7116bd48af6 393 */
mturner5 0:b7116bd48af6 394 typedef int64_t q63_t;
mturner5 0:b7116bd48af6 395
mturner5 0:b7116bd48af6 396 /**
mturner5 0:b7116bd48af6 397 * @brief 32-bit floating-point type definition.
mturner5 0:b7116bd48af6 398 */
mturner5 0:b7116bd48af6 399 typedef float float32_t;
mturner5 0:b7116bd48af6 400
mturner5 0:b7116bd48af6 401 /**
mturner5 0:b7116bd48af6 402 * @brief 64-bit floating-point type definition.
mturner5 0:b7116bd48af6 403 */
mturner5 0:b7116bd48af6 404 typedef double float64_t;
mturner5 0:b7116bd48af6 405
mturner5 0:b7116bd48af6 406 /**
mturner5 0:b7116bd48af6 407 * @brief definition to read/write two 16 bit values.
mturner5 0:b7116bd48af6 408 */
mturner5 0:b7116bd48af6 409 #if defined __CC_ARM
mturner5 0:b7116bd48af6 410 #define __SIMD32_TYPE int32_t __packed
mturner5 0:b7116bd48af6 411 #define CMSIS_UNUSED __attribute__((unused))
mturner5 0:b7116bd48af6 412 #elif defined __ICCARM__
mturner5 0:b7116bd48af6 413 #define __SIMD32_TYPE int32_t __packed
mturner5 0:b7116bd48af6 414 #define CMSIS_UNUSED
mturner5 0:b7116bd48af6 415 #elif defined __GNUC__
mturner5 0:b7116bd48af6 416 #define __SIMD32_TYPE int32_t
mturner5 0:b7116bd48af6 417 #define CMSIS_UNUSED __attribute__((unused))
mturner5 0:b7116bd48af6 418 #elif defined __CSMC__ /* Cosmic */
mturner5 0:b7116bd48af6 419 #define __SIMD32_TYPE int32_t
mturner5 0:b7116bd48af6 420 #define CMSIS_UNUSED
mturner5 0:b7116bd48af6 421 #elif defined __TASKING__
mturner5 0:b7116bd48af6 422 #define __SIMD32_TYPE __unaligned int32_t
mturner5 0:b7116bd48af6 423 #define CMSIS_UNUSED
mturner5 0:b7116bd48af6 424 #else
mturner5 0:b7116bd48af6 425 #error Unknown compiler
mturner5 0:b7116bd48af6 426 #endif
mturner5 0:b7116bd48af6 427
mturner5 0:b7116bd48af6 428 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
mturner5 0:b7116bd48af6 429 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
mturner5 0:b7116bd48af6 430
mturner5 0:b7116bd48af6 431 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
mturner5 0:b7116bd48af6 432
mturner5 0:b7116bd48af6 433 #define __SIMD64(addr) (*(int64_t **) & (addr))
mturner5 0:b7116bd48af6 434
mturner5 0:b7116bd48af6 435 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
mturner5 0:b7116bd48af6 436 /**
mturner5 0:b7116bd48af6 437 * @brief definition to pack two 16 bit values.
mturner5 0:b7116bd48af6 438 */
mturner5 0:b7116bd48af6 439 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
mturner5 0:b7116bd48af6 440 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
mturner5 0:b7116bd48af6 441 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
mturner5 0:b7116bd48af6 442 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
mturner5 0:b7116bd48af6 443
mturner5 0:b7116bd48af6 444 #endif
mturner5 0:b7116bd48af6 445
mturner5 0:b7116bd48af6 446
mturner5 0:b7116bd48af6 447 /**
mturner5 0:b7116bd48af6 448 * @brief definition to pack four 8 bit values.
mturner5 0:b7116bd48af6 449 */
mturner5 0:b7116bd48af6 450 #ifndef ARM_MATH_BIG_ENDIAN
mturner5 0:b7116bd48af6 451
mturner5 0:b7116bd48af6 452 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
mturner5 0:b7116bd48af6 453 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
mturner5 0:b7116bd48af6 454 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
mturner5 0:b7116bd48af6 455 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
mturner5 0:b7116bd48af6 456 #else
mturner5 0:b7116bd48af6 457
mturner5 0:b7116bd48af6 458 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
mturner5 0:b7116bd48af6 459 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
mturner5 0:b7116bd48af6 460 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
mturner5 0:b7116bd48af6 461 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
mturner5 0:b7116bd48af6 462
mturner5 0:b7116bd48af6 463 #endif
mturner5 0:b7116bd48af6 464
mturner5 0:b7116bd48af6 465
mturner5 0:b7116bd48af6 466 /**
mturner5 0:b7116bd48af6 467 * @brief Clips Q63 to Q31 values.
mturner5 0:b7116bd48af6 468 */
mturner5 0:b7116bd48af6 469 static __INLINE q31_t clip_q63_to_q31(
mturner5 0:b7116bd48af6 470 q63_t x)
mturner5 0:b7116bd48af6 471 {
mturner5 0:b7116bd48af6 472 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
mturner5 0:b7116bd48af6 473 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
mturner5 0:b7116bd48af6 474 }
mturner5 0:b7116bd48af6 475
mturner5 0:b7116bd48af6 476 /**
mturner5 0:b7116bd48af6 477 * @brief Clips Q63 to Q15 values.
mturner5 0:b7116bd48af6 478 */
mturner5 0:b7116bd48af6 479 static __INLINE q15_t clip_q63_to_q15(
mturner5 0:b7116bd48af6 480 q63_t x)
mturner5 0:b7116bd48af6 481 {
mturner5 0:b7116bd48af6 482 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
mturner5 0:b7116bd48af6 483 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
mturner5 0:b7116bd48af6 484 }
mturner5 0:b7116bd48af6 485
mturner5 0:b7116bd48af6 486 /**
mturner5 0:b7116bd48af6 487 * @brief Clips Q31 to Q7 values.
mturner5 0:b7116bd48af6 488 */
mturner5 0:b7116bd48af6 489 static __INLINE q7_t clip_q31_to_q7(
mturner5 0:b7116bd48af6 490 q31_t x)
mturner5 0:b7116bd48af6 491 {
mturner5 0:b7116bd48af6 492 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
mturner5 0:b7116bd48af6 493 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
mturner5 0:b7116bd48af6 494 }
mturner5 0:b7116bd48af6 495
mturner5 0:b7116bd48af6 496 /**
mturner5 0:b7116bd48af6 497 * @brief Clips Q31 to Q15 values.
mturner5 0:b7116bd48af6 498 */
mturner5 0:b7116bd48af6 499 static __INLINE q15_t clip_q31_to_q15(
mturner5 0:b7116bd48af6 500 q31_t x)
mturner5 0:b7116bd48af6 501 {
mturner5 0:b7116bd48af6 502 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
mturner5 0:b7116bd48af6 503 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
mturner5 0:b7116bd48af6 504 }
mturner5 0:b7116bd48af6 505
mturner5 0:b7116bd48af6 506 /**
mturner5 0:b7116bd48af6 507 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
mturner5 0:b7116bd48af6 508 */
mturner5 0:b7116bd48af6 509
mturner5 0:b7116bd48af6 510 static __INLINE q63_t mult32x64(
mturner5 0:b7116bd48af6 511 q63_t x,
mturner5 0:b7116bd48af6 512 q31_t y)
mturner5 0:b7116bd48af6 513 {
mturner5 0:b7116bd48af6 514 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
mturner5 0:b7116bd48af6 515 (((q63_t) (x >> 32) * y)));
mturner5 0:b7116bd48af6 516 }
mturner5 0:b7116bd48af6 517
mturner5 0:b7116bd48af6 518
mturner5 0:b7116bd48af6 519 //#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
mturner5 0:b7116bd48af6 520 //#define __CLZ __clz
mturner5 0:b7116bd48af6 521 //#endif
mturner5 0:b7116bd48af6 522
mturner5 0:b7116bd48af6 523 //note: function can be removed when all toolchain support __CLZ for Cortex-M0
mturner5 0:b7116bd48af6 524 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
mturner5 0:b7116bd48af6 525
mturner5 0:b7116bd48af6 526 static __INLINE uint32_t __CLZ(
mturner5 0:b7116bd48af6 527 q31_t data);
mturner5 0:b7116bd48af6 528
mturner5 0:b7116bd48af6 529
mturner5 0:b7116bd48af6 530 static __INLINE uint32_t __CLZ(
mturner5 0:b7116bd48af6 531 q31_t data)
mturner5 0:b7116bd48af6 532 {
mturner5 0:b7116bd48af6 533 uint32_t count = 0;
mturner5 0:b7116bd48af6 534 uint32_t mask = 0x80000000;
mturner5 0:b7116bd48af6 535
mturner5 0:b7116bd48af6 536 while((data & mask) == 0)
mturner5 0:b7116bd48af6 537 {
mturner5 0:b7116bd48af6 538 count += 1u;
mturner5 0:b7116bd48af6 539 mask = mask >> 1u;
mturner5 0:b7116bd48af6 540 }
mturner5 0:b7116bd48af6 541
mturner5 0:b7116bd48af6 542 return (count);
mturner5 0:b7116bd48af6 543
mturner5 0:b7116bd48af6 544 }
mturner5 0:b7116bd48af6 545
mturner5 0:b7116bd48af6 546 #endif
mturner5 0:b7116bd48af6 547
mturner5 0:b7116bd48af6 548 /**
mturner5 0:b7116bd48af6 549 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
mturner5 0:b7116bd48af6 550 */
mturner5 0:b7116bd48af6 551
mturner5 0:b7116bd48af6 552 static __INLINE uint32_t arm_recip_q31(
mturner5 0:b7116bd48af6 553 q31_t in,
mturner5 0:b7116bd48af6 554 q31_t * dst,
mturner5 0:b7116bd48af6 555 q31_t * pRecipTable)
mturner5 0:b7116bd48af6 556 {
mturner5 0:b7116bd48af6 557
mturner5 0:b7116bd48af6 558 uint32_t out, tempVal;
mturner5 0:b7116bd48af6 559 uint32_t index, i;
mturner5 0:b7116bd48af6 560 uint32_t signBits;
mturner5 0:b7116bd48af6 561
mturner5 0:b7116bd48af6 562 if(in > 0)
mturner5 0:b7116bd48af6 563 {
mturner5 0:b7116bd48af6 564 signBits = __CLZ(in) - 1;
mturner5 0:b7116bd48af6 565 }
mturner5 0:b7116bd48af6 566 else
mturner5 0:b7116bd48af6 567 {
mturner5 0:b7116bd48af6 568 signBits = __CLZ(-in) - 1;
mturner5 0:b7116bd48af6 569 }
mturner5 0:b7116bd48af6 570
mturner5 0:b7116bd48af6 571 /* Convert input sample to 1.31 format */
mturner5 0:b7116bd48af6 572 in = in << signBits;
mturner5 0:b7116bd48af6 573
mturner5 0:b7116bd48af6 574 /* calculation of index for initial approximated Val */
mturner5 0:b7116bd48af6 575 index = (uint32_t) (in >> 24u);
mturner5 0:b7116bd48af6 576 index = (index & INDEX_MASK);
mturner5 0:b7116bd48af6 577
mturner5 0:b7116bd48af6 578 /* 1.31 with exp 1 */
mturner5 0:b7116bd48af6 579 out = pRecipTable[index];
mturner5 0:b7116bd48af6 580
mturner5 0:b7116bd48af6 581 /* calculation of reciprocal value */
mturner5 0:b7116bd48af6 582 /* running approximation for two iterations */
mturner5 0:b7116bd48af6 583 for (i = 0u; i < 2u; i++)
mturner5 0:b7116bd48af6 584 {
mturner5 0:b7116bd48af6 585 tempVal = (q31_t) (((q63_t) in * out) >> 31u);
mturner5 0:b7116bd48af6 586 tempVal = 0x7FFFFFFF - tempVal;
mturner5 0:b7116bd48af6 587 /* 1.31 with exp 1 */
mturner5 0:b7116bd48af6 588 //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
mturner5 0:b7116bd48af6 589 out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
mturner5 0:b7116bd48af6 590 }
mturner5 0:b7116bd48af6 591
mturner5 0:b7116bd48af6 592 /* write output */
mturner5 0:b7116bd48af6 593 *dst = out;
mturner5 0:b7116bd48af6 594
mturner5 0:b7116bd48af6 595 /* return num of signbits of out = 1/in value */
mturner5 0:b7116bd48af6 596 return (signBits + 1u);
mturner5 0:b7116bd48af6 597
mturner5 0:b7116bd48af6 598 }
mturner5 0:b7116bd48af6 599
mturner5 0:b7116bd48af6 600 /**
mturner5 0:b7116bd48af6 601 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
mturner5 0:b7116bd48af6 602 */
mturner5 0:b7116bd48af6 603 static __INLINE uint32_t arm_recip_q15(
mturner5 0:b7116bd48af6 604 q15_t in,
mturner5 0:b7116bd48af6 605 q15_t * dst,
mturner5 0:b7116bd48af6 606 q15_t * pRecipTable)
mturner5 0:b7116bd48af6 607 {
mturner5 0:b7116bd48af6 608
mturner5 0:b7116bd48af6 609 uint32_t out = 0, tempVal = 0;
mturner5 0:b7116bd48af6 610 uint32_t index = 0, i = 0;
mturner5 0:b7116bd48af6 611 uint32_t signBits = 0;
mturner5 0:b7116bd48af6 612
mturner5 0:b7116bd48af6 613 if(in > 0)
mturner5 0:b7116bd48af6 614 {
mturner5 0:b7116bd48af6 615 signBits = __CLZ(in) - 17;
mturner5 0:b7116bd48af6 616 }
mturner5 0:b7116bd48af6 617 else
mturner5 0:b7116bd48af6 618 {
mturner5 0:b7116bd48af6 619 signBits = __CLZ(-in) - 17;
mturner5 0:b7116bd48af6 620 }
mturner5 0:b7116bd48af6 621
mturner5 0:b7116bd48af6 622 /* Convert input sample to 1.15 format */
mturner5 0:b7116bd48af6 623 in = in << signBits;
mturner5 0:b7116bd48af6 624
mturner5 0:b7116bd48af6 625 /* calculation of index for initial approximated Val */
mturner5 0:b7116bd48af6 626 index = in >> 8;
mturner5 0:b7116bd48af6 627 index = (index & INDEX_MASK);
mturner5 0:b7116bd48af6 628
mturner5 0:b7116bd48af6 629 /* 1.15 with exp 1 */
mturner5 0:b7116bd48af6 630 out = pRecipTable[index];
mturner5 0:b7116bd48af6 631
mturner5 0:b7116bd48af6 632 /* calculation of reciprocal value */
mturner5 0:b7116bd48af6 633 /* running approximation for two iterations */
mturner5 0:b7116bd48af6 634 for (i = 0; i < 2; i++)
mturner5 0:b7116bd48af6 635 {
mturner5 0:b7116bd48af6 636 tempVal = (q15_t) (((q31_t) in * out) >> 15);
mturner5 0:b7116bd48af6 637 tempVal = 0x7FFF - tempVal;
mturner5 0:b7116bd48af6 638 /* 1.15 with exp 1 */
mturner5 0:b7116bd48af6 639 out = (q15_t) (((q31_t) out * tempVal) >> 14);
mturner5 0:b7116bd48af6 640 }
mturner5 0:b7116bd48af6 641
mturner5 0:b7116bd48af6 642 /* write output */
mturner5 0:b7116bd48af6 643 *dst = out;
mturner5 0:b7116bd48af6 644
mturner5 0:b7116bd48af6 645 /* return num of signbits of out = 1/in value */
mturner5 0:b7116bd48af6 646 return (signBits + 1);
mturner5 0:b7116bd48af6 647
mturner5 0:b7116bd48af6 648 }
mturner5 0:b7116bd48af6 649
mturner5 0:b7116bd48af6 650
mturner5 0:b7116bd48af6 651 /*
mturner5 0:b7116bd48af6 652 * @brief C custom defined intrinisic function for only M0 processors
mturner5 0:b7116bd48af6 653 */
mturner5 0:b7116bd48af6 654 #if defined(ARM_MATH_CM0_FAMILY)
mturner5 0:b7116bd48af6 655
mturner5 0:b7116bd48af6 656 static __INLINE q31_t __SSAT(
mturner5 0:b7116bd48af6 657 q31_t x,
mturner5 0:b7116bd48af6 658 uint32_t y)
mturner5 0:b7116bd48af6 659 {
mturner5 0:b7116bd48af6 660 int32_t posMax, negMin;
mturner5 0:b7116bd48af6 661 uint32_t i;
mturner5 0:b7116bd48af6 662
mturner5 0:b7116bd48af6 663 posMax = 1;
mturner5 0:b7116bd48af6 664 for (i = 0; i < (y - 1); i++)
mturner5 0:b7116bd48af6 665 {
mturner5 0:b7116bd48af6 666 posMax = posMax * 2;
mturner5 0:b7116bd48af6 667 }
mturner5 0:b7116bd48af6 668
mturner5 0:b7116bd48af6 669 if(x > 0)
mturner5 0:b7116bd48af6 670 {
mturner5 0:b7116bd48af6 671 posMax = (posMax - 1);
mturner5 0:b7116bd48af6 672
mturner5 0:b7116bd48af6 673 if(x > posMax)
mturner5 0:b7116bd48af6 674 {
mturner5 0:b7116bd48af6 675 x = posMax;
mturner5 0:b7116bd48af6 676 }
mturner5 0:b7116bd48af6 677 }
mturner5 0:b7116bd48af6 678 else
mturner5 0:b7116bd48af6 679 {
mturner5 0:b7116bd48af6 680 negMin = -posMax;
mturner5 0:b7116bd48af6 681
mturner5 0:b7116bd48af6 682 if(x < negMin)
mturner5 0:b7116bd48af6 683 {
mturner5 0:b7116bd48af6 684 x = negMin;
mturner5 0:b7116bd48af6 685 }
mturner5 0:b7116bd48af6 686 }
mturner5 0:b7116bd48af6 687 return (x);
mturner5 0:b7116bd48af6 688
mturner5 0:b7116bd48af6 689
mturner5 0:b7116bd48af6 690 }
mturner5 0:b7116bd48af6 691
mturner5 0:b7116bd48af6 692 #endif /* end of ARM_MATH_CM0_FAMILY */
mturner5 0:b7116bd48af6 693
mturner5 0:b7116bd48af6 694
mturner5 0:b7116bd48af6 695
mturner5 0:b7116bd48af6 696 /*
mturner5 0:b7116bd48af6 697 * @brief C custom defined intrinsic function for M3 and M0 processors
mturner5 0:b7116bd48af6 698 */
mturner5 0:b7116bd48af6 699 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
mturner5 0:b7116bd48af6 700
mturner5 0:b7116bd48af6 701 /*
mturner5 0:b7116bd48af6 702 * @brief C custom defined QADD8 for M3 and M0 processors
mturner5 0:b7116bd48af6 703 */
mturner5 0:b7116bd48af6 704 static __INLINE q31_t __QADD8(
mturner5 0:b7116bd48af6 705 q31_t x,
mturner5 0:b7116bd48af6 706 q31_t y)
mturner5 0:b7116bd48af6 707 {
mturner5 0:b7116bd48af6 708
mturner5 0:b7116bd48af6 709 q31_t sum;
mturner5 0:b7116bd48af6 710 q7_t r, s, t, u;
mturner5 0:b7116bd48af6 711
mturner5 0:b7116bd48af6 712 r = (q7_t) x;
mturner5 0:b7116bd48af6 713 s = (q7_t) y;
mturner5 0:b7116bd48af6 714
mturner5 0:b7116bd48af6 715 r = __SSAT((q31_t) (r + s), 8);
mturner5 0:b7116bd48af6 716 s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
mturner5 0:b7116bd48af6 717 t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
mturner5 0:b7116bd48af6 718 u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
mturner5 0:b7116bd48af6 719
mturner5 0:b7116bd48af6 720 sum =
mturner5 0:b7116bd48af6 721 (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
mturner5 0:b7116bd48af6 722 (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
mturner5 0:b7116bd48af6 723
mturner5 0:b7116bd48af6 724 return sum;
mturner5 0:b7116bd48af6 725
mturner5 0:b7116bd48af6 726 }
mturner5 0:b7116bd48af6 727
mturner5 0:b7116bd48af6 728 /*
mturner5 0:b7116bd48af6 729 * @brief C custom defined QSUB8 for M3 and M0 processors
mturner5 0:b7116bd48af6 730 */
mturner5 0:b7116bd48af6 731 static __INLINE q31_t __QSUB8(
mturner5 0:b7116bd48af6 732 q31_t x,
mturner5 0:b7116bd48af6 733 q31_t y)
mturner5 0:b7116bd48af6 734 {
mturner5 0:b7116bd48af6 735
mturner5 0:b7116bd48af6 736 q31_t sum;
mturner5 0:b7116bd48af6 737 q31_t r, s, t, u;
mturner5 0:b7116bd48af6 738
mturner5 0:b7116bd48af6 739 r = (q7_t) x;
mturner5 0:b7116bd48af6 740 s = (q7_t) y;
mturner5 0:b7116bd48af6 741
mturner5 0:b7116bd48af6 742 r = __SSAT((r - s), 8);
mturner5 0:b7116bd48af6 743 s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
mturner5 0:b7116bd48af6 744 t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
mturner5 0:b7116bd48af6 745 u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
mturner5 0:b7116bd48af6 746
mturner5 0:b7116bd48af6 747 sum =
mturner5 0:b7116bd48af6 748 (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
mturner5 0:b7116bd48af6 749 0x000000FF);
mturner5 0:b7116bd48af6 750
mturner5 0:b7116bd48af6 751 return sum;
mturner5 0:b7116bd48af6 752 }
mturner5 0:b7116bd48af6 753
mturner5 0:b7116bd48af6 754 /*
mturner5 0:b7116bd48af6 755 * @brief C custom defined QADD16 for M3 and M0 processors
mturner5 0:b7116bd48af6 756 */
mturner5 0:b7116bd48af6 757
mturner5 0:b7116bd48af6 758 /*
mturner5 0:b7116bd48af6 759 * @brief C custom defined QADD16 for M3 and M0 processors
mturner5 0:b7116bd48af6 760 */
mturner5 0:b7116bd48af6 761 static __INLINE q31_t __QADD16(
mturner5 0:b7116bd48af6 762 q31_t x,
mturner5 0:b7116bd48af6 763 q31_t y)
mturner5 0:b7116bd48af6 764 {
mturner5 0:b7116bd48af6 765
mturner5 0:b7116bd48af6 766 q31_t sum;
mturner5 0:b7116bd48af6 767 q31_t r, s;
mturner5 0:b7116bd48af6 768
mturner5 0:b7116bd48af6 769 r = (q15_t) x;
mturner5 0:b7116bd48af6 770 s = (q15_t) y;
mturner5 0:b7116bd48af6 771
mturner5 0:b7116bd48af6 772 r = __SSAT(r + s, 16);
mturner5 0:b7116bd48af6 773 s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
mturner5 0:b7116bd48af6 774
mturner5 0:b7116bd48af6 775 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
mturner5 0:b7116bd48af6 776
mturner5 0:b7116bd48af6 777 return sum;
mturner5 0:b7116bd48af6 778
mturner5 0:b7116bd48af6 779 }
mturner5 0:b7116bd48af6 780
mturner5 0:b7116bd48af6 781 /*
mturner5 0:b7116bd48af6 782 * @brief C custom defined SHADD16 for M3 and M0 processors
mturner5 0:b7116bd48af6 783 */
mturner5 0:b7116bd48af6 784 static __INLINE q31_t __SHADD16(
mturner5 0:b7116bd48af6 785 q31_t x,
mturner5 0:b7116bd48af6 786 q31_t y)
mturner5 0:b7116bd48af6 787 {
mturner5 0:b7116bd48af6 788
mturner5 0:b7116bd48af6 789 q31_t sum;
mturner5 0:b7116bd48af6 790 q31_t r, s;
mturner5 0:b7116bd48af6 791
mturner5 0:b7116bd48af6 792 r = (q15_t) x;
mturner5 0:b7116bd48af6 793 s = (q15_t) y;
mturner5 0:b7116bd48af6 794
mturner5 0:b7116bd48af6 795 r = ((r >> 1) + (s >> 1));
mturner5 0:b7116bd48af6 796 s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
mturner5 0:b7116bd48af6 797
mturner5 0:b7116bd48af6 798 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
mturner5 0:b7116bd48af6 799
mturner5 0:b7116bd48af6 800 return sum;
mturner5 0:b7116bd48af6 801
mturner5 0:b7116bd48af6 802 }
mturner5 0:b7116bd48af6 803
mturner5 0:b7116bd48af6 804 /*
mturner5 0:b7116bd48af6 805 * @brief C custom defined QSUB16 for M3 and M0 processors
mturner5 0:b7116bd48af6 806 */
mturner5 0:b7116bd48af6 807 static __INLINE q31_t __QSUB16(
mturner5 0:b7116bd48af6 808 q31_t x,
mturner5 0:b7116bd48af6 809 q31_t y)
mturner5 0:b7116bd48af6 810 {
mturner5 0:b7116bd48af6 811
mturner5 0:b7116bd48af6 812 q31_t sum;
mturner5 0:b7116bd48af6 813 q31_t r, s;
mturner5 0:b7116bd48af6 814
mturner5 0:b7116bd48af6 815 r = (q15_t) x;
mturner5 0:b7116bd48af6 816 s = (q15_t) y;
mturner5 0:b7116bd48af6 817
mturner5 0:b7116bd48af6 818 r = __SSAT(r - s, 16);
mturner5 0:b7116bd48af6 819 s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
mturner5 0:b7116bd48af6 820
mturner5 0:b7116bd48af6 821 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
mturner5 0:b7116bd48af6 822
mturner5 0:b7116bd48af6 823 return sum;
mturner5 0:b7116bd48af6 824 }
mturner5 0:b7116bd48af6 825
mturner5 0:b7116bd48af6 826 /*
mturner5 0:b7116bd48af6 827 * @brief C custom defined SHSUB16 for M3 and M0 processors
mturner5 0:b7116bd48af6 828 */
mturner5 0:b7116bd48af6 829 static __INLINE q31_t __SHSUB16(
mturner5 0:b7116bd48af6 830 q31_t x,
mturner5 0:b7116bd48af6 831 q31_t y)
mturner5 0:b7116bd48af6 832 {
mturner5 0:b7116bd48af6 833
mturner5 0:b7116bd48af6 834 q31_t diff;
mturner5 0:b7116bd48af6 835 q31_t r, s;
mturner5 0:b7116bd48af6 836
mturner5 0:b7116bd48af6 837 r = (q15_t) x;
mturner5 0:b7116bd48af6 838 s = (q15_t) y;
mturner5 0:b7116bd48af6 839
mturner5 0:b7116bd48af6 840 r = ((r >> 1) - (s >> 1));
mturner5 0:b7116bd48af6 841 s = (((x >> 17) - (y >> 17)) << 16);
mturner5 0:b7116bd48af6 842
mturner5 0:b7116bd48af6 843 diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
mturner5 0:b7116bd48af6 844
mturner5 0:b7116bd48af6 845 return diff;
mturner5 0:b7116bd48af6 846 }
mturner5 0:b7116bd48af6 847
mturner5 0:b7116bd48af6 848 /*
mturner5 0:b7116bd48af6 849 * @brief C custom defined QASX for M3 and M0 processors
mturner5 0:b7116bd48af6 850 */
mturner5 0:b7116bd48af6 851 static __INLINE q31_t __QASX(
mturner5 0:b7116bd48af6 852 q31_t x,
mturner5 0:b7116bd48af6 853 q31_t y)
mturner5 0:b7116bd48af6 854 {
mturner5 0:b7116bd48af6 855
mturner5 0:b7116bd48af6 856 q31_t sum = 0;
mturner5 0:b7116bd48af6 857
mturner5 0:b7116bd48af6 858 sum =
mturner5 0:b7116bd48af6 859 ((sum +
mturner5 0:b7116bd48af6 860 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
mturner5 0:b7116bd48af6 861 clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
mturner5 0:b7116bd48af6 862
mturner5 0:b7116bd48af6 863 return sum;
mturner5 0:b7116bd48af6 864 }
mturner5 0:b7116bd48af6 865
mturner5 0:b7116bd48af6 866 /*
mturner5 0:b7116bd48af6 867 * @brief C custom defined SHASX for M3 and M0 processors
mturner5 0:b7116bd48af6 868 */
mturner5 0:b7116bd48af6 869 static __INLINE q31_t __SHASX(
mturner5 0:b7116bd48af6 870 q31_t x,
mturner5 0:b7116bd48af6 871 q31_t y)
mturner5 0:b7116bd48af6 872 {
mturner5 0:b7116bd48af6 873
mturner5 0:b7116bd48af6 874 q31_t sum;
mturner5 0:b7116bd48af6 875 q31_t r, s;
mturner5 0:b7116bd48af6 876
mturner5 0:b7116bd48af6 877 r = (q15_t) x;
mturner5 0:b7116bd48af6 878 s = (q15_t) y;
mturner5 0:b7116bd48af6 879
mturner5 0:b7116bd48af6 880 r = ((r >> 1) - (y >> 17));
mturner5 0:b7116bd48af6 881 s = (((x >> 17) + (s >> 1)) << 16);
mturner5 0:b7116bd48af6 882
mturner5 0:b7116bd48af6 883 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
mturner5 0:b7116bd48af6 884
mturner5 0:b7116bd48af6 885 return sum;
mturner5 0:b7116bd48af6 886 }
mturner5 0:b7116bd48af6 887
mturner5 0:b7116bd48af6 888
mturner5 0:b7116bd48af6 889 /*
mturner5 0:b7116bd48af6 890 * @brief C custom defined QSAX for M3 and M0 processors
mturner5 0:b7116bd48af6 891 */
mturner5 0:b7116bd48af6 892 static __INLINE q31_t __QSAX(
mturner5 0:b7116bd48af6 893 q31_t x,
mturner5 0:b7116bd48af6 894 q31_t y)
mturner5 0:b7116bd48af6 895 {
mturner5 0:b7116bd48af6 896
mturner5 0:b7116bd48af6 897 q31_t sum = 0;
mturner5 0:b7116bd48af6 898
mturner5 0:b7116bd48af6 899 sum =
mturner5 0:b7116bd48af6 900 ((sum +
mturner5 0:b7116bd48af6 901 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
mturner5 0:b7116bd48af6 902 clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
mturner5 0:b7116bd48af6 903
mturner5 0:b7116bd48af6 904 return sum;
mturner5 0:b7116bd48af6 905 }
mturner5 0:b7116bd48af6 906
mturner5 0:b7116bd48af6 907 /*
mturner5 0:b7116bd48af6 908 * @brief C custom defined SHSAX for M3 and M0 processors
mturner5 0:b7116bd48af6 909 */
mturner5 0:b7116bd48af6 910 static __INLINE q31_t __SHSAX(
mturner5 0:b7116bd48af6 911 q31_t x,
mturner5 0:b7116bd48af6 912 q31_t y)
mturner5 0:b7116bd48af6 913 {
mturner5 0:b7116bd48af6 914
mturner5 0:b7116bd48af6 915 q31_t sum;
mturner5 0:b7116bd48af6 916 q31_t r, s;
mturner5 0:b7116bd48af6 917
mturner5 0:b7116bd48af6 918 r = (q15_t) x;
mturner5 0:b7116bd48af6 919 s = (q15_t) y;
mturner5 0:b7116bd48af6 920
mturner5 0:b7116bd48af6 921 r = ((r >> 1) + (y >> 17));
mturner5 0:b7116bd48af6 922 s = (((x >> 17) - (s >> 1)) << 16);
mturner5 0:b7116bd48af6 923
mturner5 0:b7116bd48af6 924 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
mturner5 0:b7116bd48af6 925
mturner5 0:b7116bd48af6 926 return sum;
mturner5 0:b7116bd48af6 927 }
mturner5 0:b7116bd48af6 928
mturner5 0:b7116bd48af6 929 /*
mturner5 0:b7116bd48af6 930 * @brief C custom defined SMUSDX for M3 and M0 processors
mturner5 0:b7116bd48af6 931 */
mturner5 0:b7116bd48af6 932 static __INLINE q31_t __SMUSDX(
mturner5 0:b7116bd48af6 933 q31_t x,
mturner5 0:b7116bd48af6 934 q31_t y)
mturner5 0:b7116bd48af6 935 {
mturner5 0:b7116bd48af6 936
mturner5 0:b7116bd48af6 937 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
mturner5 0:b7116bd48af6 938 ((q15_t) (x >> 16) * (q15_t) y)));
mturner5 0:b7116bd48af6 939 }
mturner5 0:b7116bd48af6 940
mturner5 0:b7116bd48af6 941 /*
mturner5 0:b7116bd48af6 942 * @brief C custom defined SMUADX for M3 and M0 processors
mturner5 0:b7116bd48af6 943 */
mturner5 0:b7116bd48af6 944 static __INLINE q31_t __SMUADX(
mturner5 0:b7116bd48af6 945 q31_t x,
mturner5 0:b7116bd48af6 946 q31_t y)
mturner5 0:b7116bd48af6 947 {
mturner5 0:b7116bd48af6 948
mturner5 0:b7116bd48af6 949 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
mturner5 0:b7116bd48af6 950 ((q15_t) (x >> 16) * (q15_t) y)));
mturner5 0:b7116bd48af6 951 }
mturner5 0:b7116bd48af6 952
mturner5 0:b7116bd48af6 953 /*
mturner5 0:b7116bd48af6 954 * @brief C custom defined QADD for M3 and M0 processors
mturner5 0:b7116bd48af6 955 */
mturner5 0:b7116bd48af6 956 static __INLINE q31_t __QADD(
mturner5 0:b7116bd48af6 957 q31_t x,
mturner5 0:b7116bd48af6 958 q31_t y)
mturner5 0:b7116bd48af6 959 {
mturner5 0:b7116bd48af6 960 return clip_q63_to_q31((q63_t) x + y);
mturner5 0:b7116bd48af6 961 }
mturner5 0:b7116bd48af6 962
mturner5 0:b7116bd48af6 963 /*
mturner5 0:b7116bd48af6 964 * @brief C custom defined QSUB for M3 and M0 processors
mturner5 0:b7116bd48af6 965 */
mturner5 0:b7116bd48af6 966 static __INLINE q31_t __QSUB(
mturner5 0:b7116bd48af6 967 q31_t x,
mturner5 0:b7116bd48af6 968 q31_t y)
mturner5 0:b7116bd48af6 969 {
mturner5 0:b7116bd48af6 970 return clip_q63_to_q31((q63_t) x - y);
mturner5 0:b7116bd48af6 971 }
mturner5 0:b7116bd48af6 972
mturner5 0:b7116bd48af6 973 /*
mturner5 0:b7116bd48af6 974 * @brief C custom defined SMLAD for M3 and M0 processors
mturner5 0:b7116bd48af6 975 */
mturner5 0:b7116bd48af6 976 static __INLINE q31_t __SMLAD(
mturner5 0:b7116bd48af6 977 q31_t x,
mturner5 0:b7116bd48af6 978 q31_t y,
mturner5 0:b7116bd48af6 979 q31_t sum)
mturner5 0:b7116bd48af6 980 {
mturner5 0:b7116bd48af6 981
mturner5 0:b7116bd48af6 982 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
mturner5 0:b7116bd48af6 983 ((q15_t) x * (q15_t) y));
mturner5 0:b7116bd48af6 984 }
mturner5 0:b7116bd48af6 985
mturner5 0:b7116bd48af6 986 /*
mturner5 0:b7116bd48af6 987 * @brief C custom defined SMLADX for M3 and M0 processors
mturner5 0:b7116bd48af6 988 */
mturner5 0:b7116bd48af6 989 static __INLINE q31_t __SMLADX(
mturner5 0:b7116bd48af6 990 q31_t x,
mturner5 0:b7116bd48af6 991 q31_t y,
mturner5 0:b7116bd48af6 992 q31_t sum)
mturner5 0:b7116bd48af6 993 {
mturner5 0:b7116bd48af6 994
mturner5 0:b7116bd48af6 995 return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
mturner5 0:b7116bd48af6 996 ((q15_t) x * (q15_t) (y >> 16)));
mturner5 0:b7116bd48af6 997 }
mturner5 0:b7116bd48af6 998
mturner5 0:b7116bd48af6 999 /*
mturner5 0:b7116bd48af6 1000 * @brief C custom defined SMLSDX for M3 and M0 processors
mturner5 0:b7116bd48af6 1001 */
mturner5 0:b7116bd48af6 1002 static __INLINE q31_t __SMLSDX(
mturner5 0:b7116bd48af6 1003 q31_t x,
mturner5 0:b7116bd48af6 1004 q31_t y,
mturner5 0:b7116bd48af6 1005 q31_t sum)
mturner5 0:b7116bd48af6 1006 {
mturner5 0:b7116bd48af6 1007
mturner5 0:b7116bd48af6 1008 return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
mturner5 0:b7116bd48af6 1009 ((q15_t) x * (q15_t) (y >> 16)));
mturner5 0:b7116bd48af6 1010 }
mturner5 0:b7116bd48af6 1011
mturner5 0:b7116bd48af6 1012 /*
mturner5 0:b7116bd48af6 1013 * @brief C custom defined SMLALD for M3 and M0 processors
mturner5 0:b7116bd48af6 1014 */
mturner5 0:b7116bd48af6 1015 static __INLINE q63_t __SMLALD(
mturner5 0:b7116bd48af6 1016 q31_t x,
mturner5 0:b7116bd48af6 1017 q31_t y,
mturner5 0:b7116bd48af6 1018 q63_t sum)
mturner5 0:b7116bd48af6 1019 {
mturner5 0:b7116bd48af6 1020
mturner5 0:b7116bd48af6 1021 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
mturner5 0:b7116bd48af6 1022 ((q15_t) x * (q15_t) y));
mturner5 0:b7116bd48af6 1023 }
mturner5 0:b7116bd48af6 1024
mturner5 0:b7116bd48af6 1025 /*
mturner5 0:b7116bd48af6 1026 * @brief C custom defined SMLALDX for M3 and M0 processors
mturner5 0:b7116bd48af6 1027 */
mturner5 0:b7116bd48af6 1028 static __INLINE q63_t __SMLALDX(
mturner5 0:b7116bd48af6 1029 q31_t x,
mturner5 0:b7116bd48af6 1030 q31_t y,
mturner5 0:b7116bd48af6 1031 q63_t sum)
mturner5 0:b7116bd48af6 1032 {
mturner5 0:b7116bd48af6 1033
mturner5 0:b7116bd48af6 1034 return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
mturner5 0:b7116bd48af6 1035 ((q15_t) x * (q15_t) (y >> 16));
mturner5 0:b7116bd48af6 1036 }
mturner5 0:b7116bd48af6 1037
mturner5 0:b7116bd48af6 1038 /*
mturner5 0:b7116bd48af6 1039 * @brief C custom defined SMUAD for M3 and M0 processors
mturner5 0:b7116bd48af6 1040 */
mturner5 0:b7116bd48af6 1041 static __INLINE q31_t __SMUAD(
mturner5 0:b7116bd48af6 1042 q31_t x,
mturner5 0:b7116bd48af6 1043 q31_t y)
mturner5 0:b7116bd48af6 1044 {
mturner5 0:b7116bd48af6 1045
mturner5 0:b7116bd48af6 1046 return (((x >> 16) * (y >> 16)) +
mturner5 0:b7116bd48af6 1047 (((x << 16) >> 16) * ((y << 16) >> 16)));
mturner5 0:b7116bd48af6 1048 }
mturner5 0:b7116bd48af6 1049
mturner5 0:b7116bd48af6 1050 /*
mturner5 0:b7116bd48af6 1051 * @brief C custom defined SMUSD for M3 and M0 processors
mturner5 0:b7116bd48af6 1052 */
mturner5 0:b7116bd48af6 1053 static __INLINE q31_t __SMUSD(
mturner5 0:b7116bd48af6 1054 q31_t x,
mturner5 0:b7116bd48af6 1055 q31_t y)
mturner5 0:b7116bd48af6 1056 {
mturner5 0:b7116bd48af6 1057
mturner5 0:b7116bd48af6 1058 return (-((x >> 16) * (y >> 16)) +
mturner5 0:b7116bd48af6 1059 (((x << 16) >> 16) * ((y << 16) >> 16)));
mturner5 0:b7116bd48af6 1060 }
mturner5 0:b7116bd48af6 1061
mturner5 0:b7116bd48af6 1062
mturner5 0:b7116bd48af6 1063 /*
mturner5 0:b7116bd48af6 1064 * @brief C custom defined SXTB16 for M3 and M0 processors
mturner5 0:b7116bd48af6 1065 */
mturner5 0:b7116bd48af6 1066 static __INLINE q31_t __SXTB16(
mturner5 0:b7116bd48af6 1067 q31_t x)
mturner5 0:b7116bd48af6 1068 {
mturner5 0:b7116bd48af6 1069
mturner5 0:b7116bd48af6 1070 return ((((x << 24) >> 24) & 0x0000FFFF) |
mturner5 0:b7116bd48af6 1071 (((x << 8) >> 8) & 0xFFFF0000));
mturner5 0:b7116bd48af6 1072 }
mturner5 0:b7116bd48af6 1073
mturner5 0:b7116bd48af6 1074
mturner5 0:b7116bd48af6 1075 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
mturner5 0:b7116bd48af6 1076
mturner5 0:b7116bd48af6 1077
mturner5 0:b7116bd48af6 1078 /**
mturner5 0:b7116bd48af6 1079 * @brief Instance structure for the Q7 FIR filter.
mturner5 0:b7116bd48af6 1080 */
mturner5 0:b7116bd48af6 1081 typedef struct
mturner5 0:b7116bd48af6 1082 {
mturner5 0:b7116bd48af6 1083 uint16_t numTaps; /**< number of filter coefficients in the filter. */
mturner5 0:b7116bd48af6 1084 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 1085 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
mturner5 0:b7116bd48af6 1086 } arm_fir_instance_q7;
mturner5 0:b7116bd48af6 1087
mturner5 0:b7116bd48af6 1088 /**
mturner5 0:b7116bd48af6 1089 * @brief Instance structure for the Q15 FIR filter.
mturner5 0:b7116bd48af6 1090 */
mturner5 0:b7116bd48af6 1091 typedef struct
mturner5 0:b7116bd48af6 1092 {
mturner5 0:b7116bd48af6 1093 uint16_t numTaps; /**< number of filter coefficients in the filter. */
mturner5 0:b7116bd48af6 1094 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 1095 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
mturner5 0:b7116bd48af6 1096 } arm_fir_instance_q15;
mturner5 0:b7116bd48af6 1097
mturner5 0:b7116bd48af6 1098 /**
mturner5 0:b7116bd48af6 1099 * @brief Instance structure for the Q31 FIR filter.
mturner5 0:b7116bd48af6 1100 */
mturner5 0:b7116bd48af6 1101 typedef struct
mturner5 0:b7116bd48af6 1102 {
mturner5 0:b7116bd48af6 1103 uint16_t numTaps; /**< number of filter coefficients in the filter. */
mturner5 0:b7116bd48af6 1104 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 1105 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
mturner5 0:b7116bd48af6 1106 } arm_fir_instance_q31;
mturner5 0:b7116bd48af6 1107
mturner5 0:b7116bd48af6 1108 /**
mturner5 0:b7116bd48af6 1109 * @brief Instance structure for the floating-point FIR filter.
mturner5 0:b7116bd48af6 1110 */
mturner5 0:b7116bd48af6 1111 typedef struct
mturner5 0:b7116bd48af6 1112 {
mturner5 0:b7116bd48af6 1113 uint16_t numTaps; /**< number of filter coefficients in the filter. */
mturner5 0:b7116bd48af6 1114 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 1115 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
mturner5 0:b7116bd48af6 1116 } arm_fir_instance_f32;
mturner5 0:b7116bd48af6 1117
mturner5 0:b7116bd48af6 1118
mturner5 0:b7116bd48af6 1119 /**
mturner5 0:b7116bd48af6 1120 * @brief Processing function for the Q7 FIR filter.
mturner5 0:b7116bd48af6 1121 * @param[in] *S points to an instance of the Q7 FIR filter structure.
mturner5 0:b7116bd48af6 1122 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1123 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1124 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1125 * @return none.
mturner5 0:b7116bd48af6 1126 */
mturner5 0:b7116bd48af6 1127 void arm_fir_q7(
mturner5 0:b7116bd48af6 1128 const arm_fir_instance_q7 * S,
mturner5 0:b7116bd48af6 1129 q7_t * pSrc,
mturner5 0:b7116bd48af6 1130 q7_t * pDst,
mturner5 0:b7116bd48af6 1131 uint32_t blockSize);
mturner5 0:b7116bd48af6 1132
mturner5 0:b7116bd48af6 1133
mturner5 0:b7116bd48af6 1134 /**
mturner5 0:b7116bd48af6 1135 * @brief Initialization function for the Q7 FIR filter.
mturner5 0:b7116bd48af6 1136 * @param[in,out] *S points to an instance of the Q7 FIR structure.
mturner5 0:b7116bd48af6 1137 * @param[in] numTaps Number of filter coefficients in the filter.
mturner5 0:b7116bd48af6 1138 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 1139 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 1140 * @param[in] blockSize number of samples that are processed.
mturner5 0:b7116bd48af6 1141 * @return none
mturner5 0:b7116bd48af6 1142 */
mturner5 0:b7116bd48af6 1143 void arm_fir_init_q7(
mturner5 0:b7116bd48af6 1144 arm_fir_instance_q7 * S,
mturner5 0:b7116bd48af6 1145 uint16_t numTaps,
mturner5 0:b7116bd48af6 1146 q7_t * pCoeffs,
mturner5 0:b7116bd48af6 1147 q7_t * pState,
mturner5 0:b7116bd48af6 1148 uint32_t blockSize);
mturner5 0:b7116bd48af6 1149
mturner5 0:b7116bd48af6 1150
mturner5 0:b7116bd48af6 1151 /**
mturner5 0:b7116bd48af6 1152 * @brief Processing function for the Q15 FIR filter.
mturner5 0:b7116bd48af6 1153 * @param[in] *S points to an instance of the Q15 FIR structure.
mturner5 0:b7116bd48af6 1154 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1155 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1156 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1157 * @return none.
mturner5 0:b7116bd48af6 1158 */
mturner5 0:b7116bd48af6 1159 void arm_fir_q15(
mturner5 0:b7116bd48af6 1160 const arm_fir_instance_q15 * S,
mturner5 0:b7116bd48af6 1161 q15_t * pSrc,
mturner5 0:b7116bd48af6 1162 q15_t * pDst,
mturner5 0:b7116bd48af6 1163 uint32_t blockSize);
mturner5 0:b7116bd48af6 1164
mturner5 0:b7116bd48af6 1165 /**
mturner5 0:b7116bd48af6 1166 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
mturner5 0:b7116bd48af6 1167 * @param[in] *S points to an instance of the Q15 FIR filter structure.
mturner5 0:b7116bd48af6 1168 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1169 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1170 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1171 * @return none.
mturner5 0:b7116bd48af6 1172 */
mturner5 0:b7116bd48af6 1173 void arm_fir_fast_q15(
mturner5 0:b7116bd48af6 1174 const arm_fir_instance_q15 * S,
mturner5 0:b7116bd48af6 1175 q15_t * pSrc,
mturner5 0:b7116bd48af6 1176 q15_t * pDst,
mturner5 0:b7116bd48af6 1177 uint32_t blockSize);
mturner5 0:b7116bd48af6 1178
mturner5 0:b7116bd48af6 1179 /**
mturner5 0:b7116bd48af6 1180 * @brief Initialization function for the Q15 FIR filter.
mturner5 0:b7116bd48af6 1181 * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
mturner5 0:b7116bd48af6 1182 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
mturner5 0:b7116bd48af6 1183 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 1184 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 1185 * @param[in] blockSize number of samples that are processed at a time.
mturner5 0:b7116bd48af6 1186 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
mturner5 0:b7116bd48af6 1187 * <code>numTaps</code> is not a supported value.
mturner5 0:b7116bd48af6 1188 */
mturner5 0:b7116bd48af6 1189
mturner5 0:b7116bd48af6 1190 arm_status arm_fir_init_q15(
mturner5 0:b7116bd48af6 1191 arm_fir_instance_q15 * S,
mturner5 0:b7116bd48af6 1192 uint16_t numTaps,
mturner5 0:b7116bd48af6 1193 q15_t * pCoeffs,
mturner5 0:b7116bd48af6 1194 q15_t * pState,
mturner5 0:b7116bd48af6 1195 uint32_t blockSize);
mturner5 0:b7116bd48af6 1196
mturner5 0:b7116bd48af6 1197 /**
mturner5 0:b7116bd48af6 1198 * @brief Processing function for the Q31 FIR filter.
mturner5 0:b7116bd48af6 1199 * @param[in] *S points to an instance of the Q31 FIR filter structure.
mturner5 0:b7116bd48af6 1200 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1201 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1202 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1203 * @return none.
mturner5 0:b7116bd48af6 1204 */
mturner5 0:b7116bd48af6 1205 void arm_fir_q31(
mturner5 0:b7116bd48af6 1206 const arm_fir_instance_q31 * S,
mturner5 0:b7116bd48af6 1207 q31_t * pSrc,
mturner5 0:b7116bd48af6 1208 q31_t * pDst,
mturner5 0:b7116bd48af6 1209 uint32_t blockSize);
mturner5 0:b7116bd48af6 1210
mturner5 0:b7116bd48af6 1211 /**
mturner5 0:b7116bd48af6 1212 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
mturner5 0:b7116bd48af6 1213 * @param[in] *S points to an instance of the Q31 FIR structure.
mturner5 0:b7116bd48af6 1214 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1215 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1216 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1217 * @return none.
mturner5 0:b7116bd48af6 1218 */
mturner5 0:b7116bd48af6 1219 void arm_fir_fast_q31(
mturner5 0:b7116bd48af6 1220 const arm_fir_instance_q31 * S,
mturner5 0:b7116bd48af6 1221 q31_t * pSrc,
mturner5 0:b7116bd48af6 1222 q31_t * pDst,
mturner5 0:b7116bd48af6 1223 uint32_t blockSize);
mturner5 0:b7116bd48af6 1224
mturner5 0:b7116bd48af6 1225 /**
mturner5 0:b7116bd48af6 1226 * @brief Initialization function for the Q31 FIR filter.
mturner5 0:b7116bd48af6 1227 * @param[in,out] *S points to an instance of the Q31 FIR structure.
mturner5 0:b7116bd48af6 1228 * @param[in] numTaps Number of filter coefficients in the filter.
mturner5 0:b7116bd48af6 1229 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 1230 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 1231 * @param[in] blockSize number of samples that are processed at a time.
mturner5 0:b7116bd48af6 1232 * @return none.
mturner5 0:b7116bd48af6 1233 */
mturner5 0:b7116bd48af6 1234 void arm_fir_init_q31(
mturner5 0:b7116bd48af6 1235 arm_fir_instance_q31 * S,
mturner5 0:b7116bd48af6 1236 uint16_t numTaps,
mturner5 0:b7116bd48af6 1237 q31_t * pCoeffs,
mturner5 0:b7116bd48af6 1238 q31_t * pState,
mturner5 0:b7116bd48af6 1239 uint32_t blockSize);
mturner5 0:b7116bd48af6 1240
mturner5 0:b7116bd48af6 1241 /**
mturner5 0:b7116bd48af6 1242 * @brief Processing function for the floating-point FIR filter.
mturner5 0:b7116bd48af6 1243 * @param[in] *S points to an instance of the floating-point FIR structure.
mturner5 0:b7116bd48af6 1244 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1245 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1246 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1247 * @return none.
mturner5 0:b7116bd48af6 1248 */
mturner5 0:b7116bd48af6 1249 void arm_fir_f32(
mturner5 0:b7116bd48af6 1250 const arm_fir_instance_f32 * S,
mturner5 0:b7116bd48af6 1251 float32_t * pSrc,
mturner5 0:b7116bd48af6 1252 float32_t * pDst,
mturner5 0:b7116bd48af6 1253 uint32_t blockSize);
mturner5 0:b7116bd48af6 1254
mturner5 0:b7116bd48af6 1255 /**
mturner5 0:b7116bd48af6 1256 * @brief Initialization function for the floating-point FIR filter.
mturner5 0:b7116bd48af6 1257 * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
mturner5 0:b7116bd48af6 1258 * @param[in] numTaps Number of filter coefficients in the filter.
mturner5 0:b7116bd48af6 1259 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 1260 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 1261 * @param[in] blockSize number of samples that are processed at a time.
mturner5 0:b7116bd48af6 1262 * @return none.
mturner5 0:b7116bd48af6 1263 */
mturner5 0:b7116bd48af6 1264 void arm_fir_init_f32(
mturner5 0:b7116bd48af6 1265 arm_fir_instance_f32 * S,
mturner5 0:b7116bd48af6 1266 uint16_t numTaps,
mturner5 0:b7116bd48af6 1267 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 1268 float32_t * pState,
mturner5 0:b7116bd48af6 1269 uint32_t blockSize);
mturner5 0:b7116bd48af6 1270
mturner5 0:b7116bd48af6 1271
mturner5 0:b7116bd48af6 1272 /**
mturner5 0:b7116bd48af6 1273 * @brief Instance structure for the Q15 Biquad cascade filter.
mturner5 0:b7116bd48af6 1274 */
mturner5 0:b7116bd48af6 1275 typedef struct
mturner5 0:b7116bd48af6 1276 {
mturner5 0:b7116bd48af6 1277 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
mturner5 0:b7116bd48af6 1278 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
mturner5 0:b7116bd48af6 1279 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
mturner5 0:b7116bd48af6 1280 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
mturner5 0:b7116bd48af6 1281
mturner5 0:b7116bd48af6 1282 } arm_biquad_casd_df1_inst_q15;
mturner5 0:b7116bd48af6 1283
mturner5 0:b7116bd48af6 1284
mturner5 0:b7116bd48af6 1285 /**
mturner5 0:b7116bd48af6 1286 * @brief Instance structure for the Q31 Biquad cascade filter.
mturner5 0:b7116bd48af6 1287 */
mturner5 0:b7116bd48af6 1288 typedef struct
mturner5 0:b7116bd48af6 1289 {
mturner5 0:b7116bd48af6 1290 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
mturner5 0:b7116bd48af6 1291 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
mturner5 0:b7116bd48af6 1292 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
mturner5 0:b7116bd48af6 1293 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
mturner5 0:b7116bd48af6 1294
mturner5 0:b7116bd48af6 1295 } arm_biquad_casd_df1_inst_q31;
mturner5 0:b7116bd48af6 1296
mturner5 0:b7116bd48af6 1297 /**
mturner5 0:b7116bd48af6 1298 * @brief Instance structure for the floating-point Biquad cascade filter.
mturner5 0:b7116bd48af6 1299 */
mturner5 0:b7116bd48af6 1300 typedef struct
mturner5 0:b7116bd48af6 1301 {
mturner5 0:b7116bd48af6 1302 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
mturner5 0:b7116bd48af6 1303 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
mturner5 0:b7116bd48af6 1304 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
mturner5 0:b7116bd48af6 1305
mturner5 0:b7116bd48af6 1306
mturner5 0:b7116bd48af6 1307 } arm_biquad_casd_df1_inst_f32;
mturner5 0:b7116bd48af6 1308
mturner5 0:b7116bd48af6 1309
mturner5 0:b7116bd48af6 1310
mturner5 0:b7116bd48af6 1311 /**
mturner5 0:b7116bd48af6 1312 * @brief Processing function for the Q15 Biquad cascade filter.
mturner5 0:b7116bd48af6 1313 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
mturner5 0:b7116bd48af6 1314 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1315 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1316 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1317 * @return none.
mturner5 0:b7116bd48af6 1318 */
mturner5 0:b7116bd48af6 1319
mturner5 0:b7116bd48af6 1320 void arm_biquad_cascade_df1_q15(
mturner5 0:b7116bd48af6 1321 const arm_biquad_casd_df1_inst_q15 * S,
mturner5 0:b7116bd48af6 1322 q15_t * pSrc,
mturner5 0:b7116bd48af6 1323 q15_t * pDst,
mturner5 0:b7116bd48af6 1324 uint32_t blockSize);
mturner5 0:b7116bd48af6 1325
mturner5 0:b7116bd48af6 1326 /**
mturner5 0:b7116bd48af6 1327 * @brief Initialization function for the Q15 Biquad cascade filter.
mturner5 0:b7116bd48af6 1328 * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
mturner5 0:b7116bd48af6 1329 * @param[in] numStages number of 2nd order stages in the filter.
mturner5 0:b7116bd48af6 1330 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 1331 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 1332 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
mturner5 0:b7116bd48af6 1333 * @return none
mturner5 0:b7116bd48af6 1334 */
mturner5 0:b7116bd48af6 1335
mturner5 0:b7116bd48af6 1336 void arm_biquad_cascade_df1_init_q15(
mturner5 0:b7116bd48af6 1337 arm_biquad_casd_df1_inst_q15 * S,
mturner5 0:b7116bd48af6 1338 uint8_t numStages,
mturner5 0:b7116bd48af6 1339 q15_t * pCoeffs,
mturner5 0:b7116bd48af6 1340 q15_t * pState,
mturner5 0:b7116bd48af6 1341 int8_t postShift);
mturner5 0:b7116bd48af6 1342
mturner5 0:b7116bd48af6 1343
mturner5 0:b7116bd48af6 1344 /**
mturner5 0:b7116bd48af6 1345 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
mturner5 0:b7116bd48af6 1346 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
mturner5 0:b7116bd48af6 1347 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1348 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1349 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1350 * @return none.
mturner5 0:b7116bd48af6 1351 */
mturner5 0:b7116bd48af6 1352
mturner5 0:b7116bd48af6 1353 void arm_biquad_cascade_df1_fast_q15(
mturner5 0:b7116bd48af6 1354 const arm_biquad_casd_df1_inst_q15 * S,
mturner5 0:b7116bd48af6 1355 q15_t * pSrc,
mturner5 0:b7116bd48af6 1356 q15_t * pDst,
mturner5 0:b7116bd48af6 1357 uint32_t blockSize);
mturner5 0:b7116bd48af6 1358
mturner5 0:b7116bd48af6 1359
mturner5 0:b7116bd48af6 1360 /**
mturner5 0:b7116bd48af6 1361 * @brief Processing function for the Q31 Biquad cascade filter
mturner5 0:b7116bd48af6 1362 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
mturner5 0:b7116bd48af6 1363 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1364 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1365 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1366 * @return none.
mturner5 0:b7116bd48af6 1367 */
mturner5 0:b7116bd48af6 1368
mturner5 0:b7116bd48af6 1369 void arm_biquad_cascade_df1_q31(
mturner5 0:b7116bd48af6 1370 const arm_biquad_casd_df1_inst_q31 * S,
mturner5 0:b7116bd48af6 1371 q31_t * pSrc,
mturner5 0:b7116bd48af6 1372 q31_t * pDst,
mturner5 0:b7116bd48af6 1373 uint32_t blockSize);
mturner5 0:b7116bd48af6 1374
mturner5 0:b7116bd48af6 1375 /**
mturner5 0:b7116bd48af6 1376 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
mturner5 0:b7116bd48af6 1377 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
mturner5 0:b7116bd48af6 1378 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1379 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1380 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1381 * @return none.
mturner5 0:b7116bd48af6 1382 */
mturner5 0:b7116bd48af6 1383
mturner5 0:b7116bd48af6 1384 void arm_biquad_cascade_df1_fast_q31(
mturner5 0:b7116bd48af6 1385 const arm_biquad_casd_df1_inst_q31 * S,
mturner5 0:b7116bd48af6 1386 q31_t * pSrc,
mturner5 0:b7116bd48af6 1387 q31_t * pDst,
mturner5 0:b7116bd48af6 1388 uint32_t blockSize);
mturner5 0:b7116bd48af6 1389
mturner5 0:b7116bd48af6 1390 /**
mturner5 0:b7116bd48af6 1391 * @brief Initialization function for the Q31 Biquad cascade filter.
mturner5 0:b7116bd48af6 1392 * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
mturner5 0:b7116bd48af6 1393 * @param[in] numStages number of 2nd order stages in the filter.
mturner5 0:b7116bd48af6 1394 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 1395 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 1396 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
mturner5 0:b7116bd48af6 1397 * @return none
mturner5 0:b7116bd48af6 1398 */
mturner5 0:b7116bd48af6 1399
mturner5 0:b7116bd48af6 1400 void arm_biquad_cascade_df1_init_q31(
mturner5 0:b7116bd48af6 1401 arm_biquad_casd_df1_inst_q31 * S,
mturner5 0:b7116bd48af6 1402 uint8_t numStages,
mturner5 0:b7116bd48af6 1403 q31_t * pCoeffs,
mturner5 0:b7116bd48af6 1404 q31_t * pState,
mturner5 0:b7116bd48af6 1405 int8_t postShift);
mturner5 0:b7116bd48af6 1406
mturner5 0:b7116bd48af6 1407 /**
mturner5 0:b7116bd48af6 1408 * @brief Processing function for the floating-point Biquad cascade filter.
mturner5 0:b7116bd48af6 1409 * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
mturner5 0:b7116bd48af6 1410 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 1411 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 1412 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 1413 * @return none.
mturner5 0:b7116bd48af6 1414 */
mturner5 0:b7116bd48af6 1415
mturner5 0:b7116bd48af6 1416 void arm_biquad_cascade_df1_f32(
mturner5 0:b7116bd48af6 1417 const arm_biquad_casd_df1_inst_f32 * S,
mturner5 0:b7116bd48af6 1418 float32_t * pSrc,
mturner5 0:b7116bd48af6 1419 float32_t * pDst,
mturner5 0:b7116bd48af6 1420 uint32_t blockSize);
mturner5 0:b7116bd48af6 1421
mturner5 0:b7116bd48af6 1422 /**
mturner5 0:b7116bd48af6 1423 * @brief Initialization function for the floating-point Biquad cascade filter.
mturner5 0:b7116bd48af6 1424 * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
mturner5 0:b7116bd48af6 1425 * @param[in] numStages number of 2nd order stages in the filter.
mturner5 0:b7116bd48af6 1426 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 1427 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 1428 * @return none
mturner5 0:b7116bd48af6 1429 */
mturner5 0:b7116bd48af6 1430
mturner5 0:b7116bd48af6 1431 void arm_biquad_cascade_df1_init_f32(
mturner5 0:b7116bd48af6 1432 arm_biquad_casd_df1_inst_f32 * S,
mturner5 0:b7116bd48af6 1433 uint8_t numStages,
mturner5 0:b7116bd48af6 1434 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 1435 float32_t * pState);
mturner5 0:b7116bd48af6 1436
mturner5 0:b7116bd48af6 1437
mturner5 0:b7116bd48af6 1438 /**
mturner5 0:b7116bd48af6 1439 * @brief Instance structure for the floating-point matrix structure.
mturner5 0:b7116bd48af6 1440 */
mturner5 0:b7116bd48af6 1441
mturner5 0:b7116bd48af6 1442 typedef struct
mturner5 0:b7116bd48af6 1443 {
mturner5 0:b7116bd48af6 1444 uint16_t numRows; /**< number of rows of the matrix. */
mturner5 0:b7116bd48af6 1445 uint16_t numCols; /**< number of columns of the matrix. */
mturner5 0:b7116bd48af6 1446 float32_t *pData; /**< points to the data of the matrix. */
mturner5 0:b7116bd48af6 1447 } arm_matrix_instance_f32;
mturner5 0:b7116bd48af6 1448
mturner5 0:b7116bd48af6 1449
mturner5 0:b7116bd48af6 1450 /**
mturner5 0:b7116bd48af6 1451 * @brief Instance structure for the floating-point matrix structure.
mturner5 0:b7116bd48af6 1452 */
mturner5 0:b7116bd48af6 1453
mturner5 0:b7116bd48af6 1454 typedef struct
mturner5 0:b7116bd48af6 1455 {
mturner5 0:b7116bd48af6 1456 uint16_t numRows; /**< number of rows of the matrix. */
mturner5 0:b7116bd48af6 1457 uint16_t numCols; /**< number of columns of the matrix. */
mturner5 0:b7116bd48af6 1458 float64_t *pData; /**< points to the data of the matrix. */
mturner5 0:b7116bd48af6 1459 } arm_matrix_instance_f64;
mturner5 0:b7116bd48af6 1460
mturner5 0:b7116bd48af6 1461 /**
mturner5 0:b7116bd48af6 1462 * @brief Instance structure for the Q15 matrix structure.
mturner5 0:b7116bd48af6 1463 */
mturner5 0:b7116bd48af6 1464
mturner5 0:b7116bd48af6 1465 typedef struct
mturner5 0:b7116bd48af6 1466 {
mturner5 0:b7116bd48af6 1467 uint16_t numRows; /**< number of rows of the matrix. */
mturner5 0:b7116bd48af6 1468 uint16_t numCols; /**< number of columns of the matrix. */
mturner5 0:b7116bd48af6 1469 q15_t *pData; /**< points to the data of the matrix. */
mturner5 0:b7116bd48af6 1470
mturner5 0:b7116bd48af6 1471 } arm_matrix_instance_q15;
mturner5 0:b7116bd48af6 1472
mturner5 0:b7116bd48af6 1473 /**
mturner5 0:b7116bd48af6 1474 * @brief Instance structure for the Q31 matrix structure.
mturner5 0:b7116bd48af6 1475 */
mturner5 0:b7116bd48af6 1476
mturner5 0:b7116bd48af6 1477 typedef struct
mturner5 0:b7116bd48af6 1478 {
mturner5 0:b7116bd48af6 1479 uint16_t numRows; /**< number of rows of the matrix. */
mturner5 0:b7116bd48af6 1480 uint16_t numCols; /**< number of columns of the matrix. */
mturner5 0:b7116bd48af6 1481 q31_t *pData; /**< points to the data of the matrix. */
mturner5 0:b7116bd48af6 1482
mturner5 0:b7116bd48af6 1483 } arm_matrix_instance_q31;
mturner5 0:b7116bd48af6 1484
mturner5 0:b7116bd48af6 1485
mturner5 0:b7116bd48af6 1486
mturner5 0:b7116bd48af6 1487 /**
mturner5 0:b7116bd48af6 1488 * @brief Floating-point matrix addition.
mturner5 0:b7116bd48af6 1489 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1490 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1491 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1492 * @return The function returns either
mturner5 0:b7116bd48af6 1493 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1494 */
mturner5 0:b7116bd48af6 1495
mturner5 0:b7116bd48af6 1496 arm_status arm_mat_add_f32(
mturner5 0:b7116bd48af6 1497 const arm_matrix_instance_f32 * pSrcA,
mturner5 0:b7116bd48af6 1498 const arm_matrix_instance_f32 * pSrcB,
mturner5 0:b7116bd48af6 1499 arm_matrix_instance_f32 * pDst);
mturner5 0:b7116bd48af6 1500
mturner5 0:b7116bd48af6 1501 /**
mturner5 0:b7116bd48af6 1502 * @brief Q15 matrix addition.
mturner5 0:b7116bd48af6 1503 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1504 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1505 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1506 * @return The function returns either
mturner5 0:b7116bd48af6 1507 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1508 */
mturner5 0:b7116bd48af6 1509
mturner5 0:b7116bd48af6 1510 arm_status arm_mat_add_q15(
mturner5 0:b7116bd48af6 1511 const arm_matrix_instance_q15 * pSrcA,
mturner5 0:b7116bd48af6 1512 const arm_matrix_instance_q15 * pSrcB,
mturner5 0:b7116bd48af6 1513 arm_matrix_instance_q15 * pDst);
mturner5 0:b7116bd48af6 1514
mturner5 0:b7116bd48af6 1515 /**
mturner5 0:b7116bd48af6 1516 * @brief Q31 matrix addition.
mturner5 0:b7116bd48af6 1517 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1518 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1519 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1520 * @return The function returns either
mturner5 0:b7116bd48af6 1521 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1522 */
mturner5 0:b7116bd48af6 1523
mturner5 0:b7116bd48af6 1524 arm_status arm_mat_add_q31(
mturner5 0:b7116bd48af6 1525 const arm_matrix_instance_q31 * pSrcA,
mturner5 0:b7116bd48af6 1526 const arm_matrix_instance_q31 * pSrcB,
mturner5 0:b7116bd48af6 1527 arm_matrix_instance_q31 * pDst);
mturner5 0:b7116bd48af6 1528
mturner5 0:b7116bd48af6 1529 /**
mturner5 0:b7116bd48af6 1530 * @brief Floating-point, complex, matrix multiplication.
mturner5 0:b7116bd48af6 1531 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1532 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1533 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1534 * @return The function returns either
mturner5 0:b7116bd48af6 1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1536 */
mturner5 0:b7116bd48af6 1537
mturner5 0:b7116bd48af6 1538 arm_status arm_mat_cmplx_mult_f32(
mturner5 0:b7116bd48af6 1539 const arm_matrix_instance_f32 * pSrcA,
mturner5 0:b7116bd48af6 1540 const arm_matrix_instance_f32 * pSrcB,
mturner5 0:b7116bd48af6 1541 arm_matrix_instance_f32 * pDst);
mturner5 0:b7116bd48af6 1542
mturner5 0:b7116bd48af6 1543 /**
mturner5 0:b7116bd48af6 1544 * @brief Q15, complex, matrix multiplication.
mturner5 0:b7116bd48af6 1545 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1546 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1547 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1548 * @return The function returns either
mturner5 0:b7116bd48af6 1549 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1550 */
mturner5 0:b7116bd48af6 1551
mturner5 0:b7116bd48af6 1552 arm_status arm_mat_cmplx_mult_q15(
mturner5 0:b7116bd48af6 1553 const arm_matrix_instance_q15 * pSrcA,
mturner5 0:b7116bd48af6 1554 const arm_matrix_instance_q15 * pSrcB,
mturner5 0:b7116bd48af6 1555 arm_matrix_instance_q15 * pDst,
mturner5 0:b7116bd48af6 1556 q15_t * pScratch);
mturner5 0:b7116bd48af6 1557
mturner5 0:b7116bd48af6 1558 /**
mturner5 0:b7116bd48af6 1559 * @brief Q31, complex, matrix multiplication.
mturner5 0:b7116bd48af6 1560 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1561 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1562 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1563 * @return The function returns either
mturner5 0:b7116bd48af6 1564 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1565 */
mturner5 0:b7116bd48af6 1566
mturner5 0:b7116bd48af6 1567 arm_status arm_mat_cmplx_mult_q31(
mturner5 0:b7116bd48af6 1568 const arm_matrix_instance_q31 * pSrcA,
mturner5 0:b7116bd48af6 1569 const arm_matrix_instance_q31 * pSrcB,
mturner5 0:b7116bd48af6 1570 arm_matrix_instance_q31 * pDst);
mturner5 0:b7116bd48af6 1571
mturner5 0:b7116bd48af6 1572
mturner5 0:b7116bd48af6 1573 /**
mturner5 0:b7116bd48af6 1574 * @brief Floating-point matrix transpose.
mturner5 0:b7116bd48af6 1575 * @param[in] *pSrc points to the input matrix
mturner5 0:b7116bd48af6 1576 * @param[out] *pDst points to the output matrix
mturner5 0:b7116bd48af6 1577 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
mturner5 0:b7116bd48af6 1578 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1579 */
mturner5 0:b7116bd48af6 1580
mturner5 0:b7116bd48af6 1581 arm_status arm_mat_trans_f32(
mturner5 0:b7116bd48af6 1582 const arm_matrix_instance_f32 * pSrc,
mturner5 0:b7116bd48af6 1583 arm_matrix_instance_f32 * pDst);
mturner5 0:b7116bd48af6 1584
mturner5 0:b7116bd48af6 1585
mturner5 0:b7116bd48af6 1586 /**
mturner5 0:b7116bd48af6 1587 * @brief Q15 matrix transpose.
mturner5 0:b7116bd48af6 1588 * @param[in] *pSrc points to the input matrix
mturner5 0:b7116bd48af6 1589 * @param[out] *pDst points to the output matrix
mturner5 0:b7116bd48af6 1590 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
mturner5 0:b7116bd48af6 1591 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1592 */
mturner5 0:b7116bd48af6 1593
mturner5 0:b7116bd48af6 1594 arm_status arm_mat_trans_q15(
mturner5 0:b7116bd48af6 1595 const arm_matrix_instance_q15 * pSrc,
mturner5 0:b7116bd48af6 1596 arm_matrix_instance_q15 * pDst);
mturner5 0:b7116bd48af6 1597
mturner5 0:b7116bd48af6 1598 /**
mturner5 0:b7116bd48af6 1599 * @brief Q31 matrix transpose.
mturner5 0:b7116bd48af6 1600 * @param[in] *pSrc points to the input matrix
mturner5 0:b7116bd48af6 1601 * @param[out] *pDst points to the output matrix
mturner5 0:b7116bd48af6 1602 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
mturner5 0:b7116bd48af6 1603 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1604 */
mturner5 0:b7116bd48af6 1605
mturner5 0:b7116bd48af6 1606 arm_status arm_mat_trans_q31(
mturner5 0:b7116bd48af6 1607 const arm_matrix_instance_q31 * pSrc,
mturner5 0:b7116bd48af6 1608 arm_matrix_instance_q31 * pDst);
mturner5 0:b7116bd48af6 1609
mturner5 0:b7116bd48af6 1610
mturner5 0:b7116bd48af6 1611 /**
mturner5 0:b7116bd48af6 1612 * @brief Floating-point matrix multiplication
mturner5 0:b7116bd48af6 1613 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1614 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1615 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1616 * @return The function returns either
mturner5 0:b7116bd48af6 1617 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1618 */
mturner5 0:b7116bd48af6 1619
mturner5 0:b7116bd48af6 1620 arm_status arm_mat_mult_f32(
mturner5 0:b7116bd48af6 1621 const arm_matrix_instance_f32 * pSrcA,
mturner5 0:b7116bd48af6 1622 const arm_matrix_instance_f32 * pSrcB,
mturner5 0:b7116bd48af6 1623 arm_matrix_instance_f32 * pDst);
mturner5 0:b7116bd48af6 1624
mturner5 0:b7116bd48af6 1625 /**
mturner5 0:b7116bd48af6 1626 * @brief Q15 matrix multiplication
mturner5 0:b7116bd48af6 1627 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1628 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1629 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1630 * @param[in] *pState points to the array for storing intermediate results
mturner5 0:b7116bd48af6 1631 * @return The function returns either
mturner5 0:b7116bd48af6 1632 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1633 */
mturner5 0:b7116bd48af6 1634
mturner5 0:b7116bd48af6 1635 arm_status arm_mat_mult_q15(
mturner5 0:b7116bd48af6 1636 const arm_matrix_instance_q15 * pSrcA,
mturner5 0:b7116bd48af6 1637 const arm_matrix_instance_q15 * pSrcB,
mturner5 0:b7116bd48af6 1638 arm_matrix_instance_q15 * pDst,
mturner5 0:b7116bd48af6 1639 q15_t * pState);
mturner5 0:b7116bd48af6 1640
mturner5 0:b7116bd48af6 1641 /**
mturner5 0:b7116bd48af6 1642 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
mturner5 0:b7116bd48af6 1643 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1644 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1645 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1646 * @param[in] *pState points to the array for storing intermediate results
mturner5 0:b7116bd48af6 1647 * @return The function returns either
mturner5 0:b7116bd48af6 1648 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1649 */
mturner5 0:b7116bd48af6 1650
mturner5 0:b7116bd48af6 1651 arm_status arm_mat_mult_fast_q15(
mturner5 0:b7116bd48af6 1652 const arm_matrix_instance_q15 * pSrcA,
mturner5 0:b7116bd48af6 1653 const arm_matrix_instance_q15 * pSrcB,
mturner5 0:b7116bd48af6 1654 arm_matrix_instance_q15 * pDst,
mturner5 0:b7116bd48af6 1655 q15_t * pState);
mturner5 0:b7116bd48af6 1656
mturner5 0:b7116bd48af6 1657 /**
mturner5 0:b7116bd48af6 1658 * @brief Q31 matrix multiplication
mturner5 0:b7116bd48af6 1659 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1660 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1661 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1662 * @return The function returns either
mturner5 0:b7116bd48af6 1663 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1664 */
mturner5 0:b7116bd48af6 1665
mturner5 0:b7116bd48af6 1666 arm_status arm_mat_mult_q31(
mturner5 0:b7116bd48af6 1667 const arm_matrix_instance_q31 * pSrcA,
mturner5 0:b7116bd48af6 1668 const arm_matrix_instance_q31 * pSrcB,
mturner5 0:b7116bd48af6 1669 arm_matrix_instance_q31 * pDst);
mturner5 0:b7116bd48af6 1670
mturner5 0:b7116bd48af6 1671 /**
mturner5 0:b7116bd48af6 1672 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
mturner5 0:b7116bd48af6 1673 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1674 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1675 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1676 * @return The function returns either
mturner5 0:b7116bd48af6 1677 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1678 */
mturner5 0:b7116bd48af6 1679
mturner5 0:b7116bd48af6 1680 arm_status arm_mat_mult_fast_q31(
mturner5 0:b7116bd48af6 1681 const arm_matrix_instance_q31 * pSrcA,
mturner5 0:b7116bd48af6 1682 const arm_matrix_instance_q31 * pSrcB,
mturner5 0:b7116bd48af6 1683 arm_matrix_instance_q31 * pDst);
mturner5 0:b7116bd48af6 1684
mturner5 0:b7116bd48af6 1685
mturner5 0:b7116bd48af6 1686 /**
mturner5 0:b7116bd48af6 1687 * @brief Floating-point matrix subtraction
mturner5 0:b7116bd48af6 1688 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1689 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1690 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1691 * @return The function returns either
mturner5 0:b7116bd48af6 1692 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1693 */
mturner5 0:b7116bd48af6 1694
mturner5 0:b7116bd48af6 1695 arm_status arm_mat_sub_f32(
mturner5 0:b7116bd48af6 1696 const arm_matrix_instance_f32 * pSrcA,
mturner5 0:b7116bd48af6 1697 const arm_matrix_instance_f32 * pSrcB,
mturner5 0:b7116bd48af6 1698 arm_matrix_instance_f32 * pDst);
mturner5 0:b7116bd48af6 1699
mturner5 0:b7116bd48af6 1700 /**
mturner5 0:b7116bd48af6 1701 * @brief Q15 matrix subtraction
mturner5 0:b7116bd48af6 1702 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1703 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1704 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1705 * @return The function returns either
mturner5 0:b7116bd48af6 1706 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1707 */
mturner5 0:b7116bd48af6 1708
mturner5 0:b7116bd48af6 1709 arm_status arm_mat_sub_q15(
mturner5 0:b7116bd48af6 1710 const arm_matrix_instance_q15 * pSrcA,
mturner5 0:b7116bd48af6 1711 const arm_matrix_instance_q15 * pSrcB,
mturner5 0:b7116bd48af6 1712 arm_matrix_instance_q15 * pDst);
mturner5 0:b7116bd48af6 1713
mturner5 0:b7116bd48af6 1714 /**
mturner5 0:b7116bd48af6 1715 * @brief Q31 matrix subtraction
mturner5 0:b7116bd48af6 1716 * @param[in] *pSrcA points to the first input matrix structure
mturner5 0:b7116bd48af6 1717 * @param[in] *pSrcB points to the second input matrix structure
mturner5 0:b7116bd48af6 1718 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1719 * @return The function returns either
mturner5 0:b7116bd48af6 1720 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1721 */
mturner5 0:b7116bd48af6 1722
mturner5 0:b7116bd48af6 1723 arm_status arm_mat_sub_q31(
mturner5 0:b7116bd48af6 1724 const arm_matrix_instance_q31 * pSrcA,
mturner5 0:b7116bd48af6 1725 const arm_matrix_instance_q31 * pSrcB,
mturner5 0:b7116bd48af6 1726 arm_matrix_instance_q31 * pDst);
mturner5 0:b7116bd48af6 1727
mturner5 0:b7116bd48af6 1728 /**
mturner5 0:b7116bd48af6 1729 * @brief Floating-point matrix scaling.
mturner5 0:b7116bd48af6 1730 * @param[in] *pSrc points to the input matrix
mturner5 0:b7116bd48af6 1731 * @param[in] scale scale factor
mturner5 0:b7116bd48af6 1732 * @param[out] *pDst points to the output matrix
mturner5 0:b7116bd48af6 1733 * @return The function returns either
mturner5 0:b7116bd48af6 1734 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1735 */
mturner5 0:b7116bd48af6 1736
mturner5 0:b7116bd48af6 1737 arm_status arm_mat_scale_f32(
mturner5 0:b7116bd48af6 1738 const arm_matrix_instance_f32 * pSrc,
mturner5 0:b7116bd48af6 1739 float32_t scale,
mturner5 0:b7116bd48af6 1740 arm_matrix_instance_f32 * pDst);
mturner5 0:b7116bd48af6 1741
mturner5 0:b7116bd48af6 1742 /**
mturner5 0:b7116bd48af6 1743 * @brief Q15 matrix scaling.
mturner5 0:b7116bd48af6 1744 * @param[in] *pSrc points to input matrix
mturner5 0:b7116bd48af6 1745 * @param[in] scaleFract fractional portion of the scale factor
mturner5 0:b7116bd48af6 1746 * @param[in] shift number of bits to shift the result by
mturner5 0:b7116bd48af6 1747 * @param[out] *pDst points to output matrix
mturner5 0:b7116bd48af6 1748 * @return The function returns either
mturner5 0:b7116bd48af6 1749 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1750 */
mturner5 0:b7116bd48af6 1751
mturner5 0:b7116bd48af6 1752 arm_status arm_mat_scale_q15(
mturner5 0:b7116bd48af6 1753 const arm_matrix_instance_q15 * pSrc,
mturner5 0:b7116bd48af6 1754 q15_t scaleFract,
mturner5 0:b7116bd48af6 1755 int32_t shift,
mturner5 0:b7116bd48af6 1756 arm_matrix_instance_q15 * pDst);
mturner5 0:b7116bd48af6 1757
mturner5 0:b7116bd48af6 1758 /**
mturner5 0:b7116bd48af6 1759 * @brief Q31 matrix scaling.
mturner5 0:b7116bd48af6 1760 * @param[in] *pSrc points to input matrix
mturner5 0:b7116bd48af6 1761 * @param[in] scaleFract fractional portion of the scale factor
mturner5 0:b7116bd48af6 1762 * @param[in] shift number of bits to shift the result by
mturner5 0:b7116bd48af6 1763 * @param[out] *pDst points to output matrix structure
mturner5 0:b7116bd48af6 1764 * @return The function returns either
mturner5 0:b7116bd48af6 1765 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
mturner5 0:b7116bd48af6 1766 */
mturner5 0:b7116bd48af6 1767
mturner5 0:b7116bd48af6 1768 arm_status arm_mat_scale_q31(
mturner5 0:b7116bd48af6 1769 const arm_matrix_instance_q31 * pSrc,
mturner5 0:b7116bd48af6 1770 q31_t scaleFract,
mturner5 0:b7116bd48af6 1771 int32_t shift,
mturner5 0:b7116bd48af6 1772 arm_matrix_instance_q31 * pDst);
mturner5 0:b7116bd48af6 1773
mturner5 0:b7116bd48af6 1774
mturner5 0:b7116bd48af6 1775 /**
mturner5 0:b7116bd48af6 1776 * @brief Q31 matrix initialization.
mturner5 0:b7116bd48af6 1777 * @param[in,out] *S points to an instance of the floating-point matrix structure.
mturner5 0:b7116bd48af6 1778 * @param[in] nRows number of rows in the matrix.
mturner5 0:b7116bd48af6 1779 * @param[in] nColumns number of columns in the matrix.
mturner5 0:b7116bd48af6 1780 * @param[in] *pData points to the matrix data array.
mturner5 0:b7116bd48af6 1781 * @return none
mturner5 0:b7116bd48af6 1782 */
mturner5 0:b7116bd48af6 1783
mturner5 0:b7116bd48af6 1784 void arm_mat_init_q31(
mturner5 0:b7116bd48af6 1785 arm_matrix_instance_q31 * S,
mturner5 0:b7116bd48af6 1786 uint16_t nRows,
mturner5 0:b7116bd48af6 1787 uint16_t nColumns,
mturner5 0:b7116bd48af6 1788 q31_t * pData);
mturner5 0:b7116bd48af6 1789
mturner5 0:b7116bd48af6 1790 /**
mturner5 0:b7116bd48af6 1791 * @brief Q15 matrix initialization.
mturner5 0:b7116bd48af6 1792 * @param[in,out] *S points to an instance of the floating-point matrix structure.
mturner5 0:b7116bd48af6 1793 * @param[in] nRows number of rows in the matrix.
mturner5 0:b7116bd48af6 1794 * @param[in] nColumns number of columns in the matrix.
mturner5 0:b7116bd48af6 1795 * @param[in] *pData points to the matrix data array.
mturner5 0:b7116bd48af6 1796 * @return none
mturner5 0:b7116bd48af6 1797 */
mturner5 0:b7116bd48af6 1798
mturner5 0:b7116bd48af6 1799 void arm_mat_init_q15(
mturner5 0:b7116bd48af6 1800 arm_matrix_instance_q15 * S,
mturner5 0:b7116bd48af6 1801 uint16_t nRows,
mturner5 0:b7116bd48af6 1802 uint16_t nColumns,
mturner5 0:b7116bd48af6 1803 q15_t * pData);
mturner5 0:b7116bd48af6 1804
mturner5 0:b7116bd48af6 1805 /**
mturner5 0:b7116bd48af6 1806 * @brief Floating-point matrix initialization.
mturner5 0:b7116bd48af6 1807 * @param[in,out] *S points to an instance of the floating-point matrix structure.
mturner5 0:b7116bd48af6 1808 * @param[in] nRows number of rows in the matrix.
mturner5 0:b7116bd48af6 1809 * @param[in] nColumns number of columns in the matrix.
mturner5 0:b7116bd48af6 1810 * @param[in] *pData points to the matrix data array.
mturner5 0:b7116bd48af6 1811 * @return none
mturner5 0:b7116bd48af6 1812 */
mturner5 0:b7116bd48af6 1813
mturner5 0:b7116bd48af6 1814 void arm_mat_init_f32(
mturner5 0:b7116bd48af6 1815 arm_matrix_instance_f32 * S,
mturner5 0:b7116bd48af6 1816 uint16_t nRows,
mturner5 0:b7116bd48af6 1817 uint16_t nColumns,
mturner5 0:b7116bd48af6 1818 float32_t * pData);
mturner5 0:b7116bd48af6 1819
mturner5 0:b7116bd48af6 1820
mturner5 0:b7116bd48af6 1821
mturner5 0:b7116bd48af6 1822 /**
mturner5 0:b7116bd48af6 1823 * @brief Instance structure for the Q15 PID Control.
mturner5 0:b7116bd48af6 1824 */
mturner5 0:b7116bd48af6 1825 typedef struct
mturner5 0:b7116bd48af6 1826 {
mturner5 0:b7116bd48af6 1827 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
mturner5 0:b7116bd48af6 1828 #ifdef ARM_MATH_CM0_FAMILY
mturner5 0:b7116bd48af6 1829 q15_t A1;
mturner5 0:b7116bd48af6 1830 q15_t A2;
mturner5 0:b7116bd48af6 1831 #else
mturner5 0:b7116bd48af6 1832 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
mturner5 0:b7116bd48af6 1833 #endif
mturner5 0:b7116bd48af6 1834 q15_t state[3]; /**< The state array of length 3. */
mturner5 0:b7116bd48af6 1835 q15_t Kp; /**< The proportional gain. */
mturner5 0:b7116bd48af6 1836 q15_t Ki; /**< The integral gain. */
mturner5 0:b7116bd48af6 1837 q15_t Kd; /**< The derivative gain. */
mturner5 0:b7116bd48af6 1838 } arm_pid_instance_q15;
mturner5 0:b7116bd48af6 1839
mturner5 0:b7116bd48af6 1840 /**
mturner5 0:b7116bd48af6 1841 * @brief Instance structure for the Q31 PID Control.
mturner5 0:b7116bd48af6 1842 */
mturner5 0:b7116bd48af6 1843 typedef struct
mturner5 0:b7116bd48af6 1844 {
mturner5 0:b7116bd48af6 1845 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
mturner5 0:b7116bd48af6 1846 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
mturner5 0:b7116bd48af6 1847 q31_t A2; /**< The derived gain, A2 = Kd . */
mturner5 0:b7116bd48af6 1848 q31_t state[3]; /**< The state array of length 3. */
mturner5 0:b7116bd48af6 1849 q31_t Kp; /**< The proportional gain. */
mturner5 0:b7116bd48af6 1850 q31_t Ki; /**< The integral gain. */
mturner5 0:b7116bd48af6 1851 q31_t Kd; /**< The derivative gain. */
mturner5 0:b7116bd48af6 1852
mturner5 0:b7116bd48af6 1853 } arm_pid_instance_q31;
mturner5 0:b7116bd48af6 1854
mturner5 0:b7116bd48af6 1855 /**
mturner5 0:b7116bd48af6 1856 * @brief Instance structure for the floating-point PID Control.
mturner5 0:b7116bd48af6 1857 */
mturner5 0:b7116bd48af6 1858 typedef struct
mturner5 0:b7116bd48af6 1859 {
mturner5 0:b7116bd48af6 1860 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
mturner5 0:b7116bd48af6 1861 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
mturner5 0:b7116bd48af6 1862 float32_t A2; /**< The derived gain, A2 = Kd . */
mturner5 0:b7116bd48af6 1863 float32_t state[3]; /**< The state array of length 3. */
mturner5 0:b7116bd48af6 1864 float32_t Kp; /**< The proportional gain. */
mturner5 0:b7116bd48af6 1865 float32_t Ki; /**< The integral gain. */
mturner5 0:b7116bd48af6 1866 float32_t Kd; /**< The derivative gain. */
mturner5 0:b7116bd48af6 1867 } arm_pid_instance_f32;
mturner5 0:b7116bd48af6 1868
mturner5 0:b7116bd48af6 1869
mturner5 0:b7116bd48af6 1870
mturner5 0:b7116bd48af6 1871 /**
mturner5 0:b7116bd48af6 1872 * @brief Initialization function for the floating-point PID Control.
mturner5 0:b7116bd48af6 1873 * @param[in,out] *S points to an instance of the PID structure.
mturner5 0:b7116bd48af6 1874 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
mturner5 0:b7116bd48af6 1875 * @return none.
mturner5 0:b7116bd48af6 1876 */
mturner5 0:b7116bd48af6 1877 void arm_pid_init_f32(
mturner5 0:b7116bd48af6 1878 arm_pid_instance_f32 * S,
mturner5 0:b7116bd48af6 1879 int32_t resetStateFlag);
mturner5 0:b7116bd48af6 1880
mturner5 0:b7116bd48af6 1881 /**
mturner5 0:b7116bd48af6 1882 * @brief Reset function for the floating-point PID Control.
mturner5 0:b7116bd48af6 1883 * @param[in,out] *S is an instance of the floating-point PID Control structure
mturner5 0:b7116bd48af6 1884 * @return none
mturner5 0:b7116bd48af6 1885 */
mturner5 0:b7116bd48af6 1886 void arm_pid_reset_f32(
mturner5 0:b7116bd48af6 1887 arm_pid_instance_f32 * S);
mturner5 0:b7116bd48af6 1888
mturner5 0:b7116bd48af6 1889
mturner5 0:b7116bd48af6 1890 /**
mturner5 0:b7116bd48af6 1891 * @brief Initialization function for the Q31 PID Control.
mturner5 0:b7116bd48af6 1892 * @param[in,out] *S points to an instance of the Q15 PID structure.
mturner5 0:b7116bd48af6 1893 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
mturner5 0:b7116bd48af6 1894 * @return none.
mturner5 0:b7116bd48af6 1895 */
mturner5 0:b7116bd48af6 1896 void arm_pid_init_q31(
mturner5 0:b7116bd48af6 1897 arm_pid_instance_q31 * S,
mturner5 0:b7116bd48af6 1898 int32_t resetStateFlag);
mturner5 0:b7116bd48af6 1899
mturner5 0:b7116bd48af6 1900
mturner5 0:b7116bd48af6 1901 /**
mturner5 0:b7116bd48af6 1902 * @brief Reset function for the Q31 PID Control.
mturner5 0:b7116bd48af6 1903 * @param[in,out] *S points to an instance of the Q31 PID Control structure
mturner5 0:b7116bd48af6 1904 * @return none
mturner5 0:b7116bd48af6 1905 */
mturner5 0:b7116bd48af6 1906
mturner5 0:b7116bd48af6 1907 void arm_pid_reset_q31(
mturner5 0:b7116bd48af6 1908 arm_pid_instance_q31 * S);
mturner5 0:b7116bd48af6 1909
mturner5 0:b7116bd48af6 1910 /**
mturner5 0:b7116bd48af6 1911 * @brief Initialization function for the Q15 PID Control.
mturner5 0:b7116bd48af6 1912 * @param[in,out] *S points to an instance of the Q15 PID structure.
mturner5 0:b7116bd48af6 1913 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
mturner5 0:b7116bd48af6 1914 * @return none.
mturner5 0:b7116bd48af6 1915 */
mturner5 0:b7116bd48af6 1916 void arm_pid_init_q15(
mturner5 0:b7116bd48af6 1917 arm_pid_instance_q15 * S,
mturner5 0:b7116bd48af6 1918 int32_t resetStateFlag);
mturner5 0:b7116bd48af6 1919
mturner5 0:b7116bd48af6 1920 /**
mturner5 0:b7116bd48af6 1921 * @brief Reset function for the Q15 PID Control.
mturner5 0:b7116bd48af6 1922 * @param[in,out] *S points to an instance of the q15 PID Control structure
mturner5 0:b7116bd48af6 1923 * @return none
mturner5 0:b7116bd48af6 1924 */
mturner5 0:b7116bd48af6 1925 void arm_pid_reset_q15(
mturner5 0:b7116bd48af6 1926 arm_pid_instance_q15 * S);
mturner5 0:b7116bd48af6 1927
mturner5 0:b7116bd48af6 1928
mturner5 0:b7116bd48af6 1929 /**
mturner5 0:b7116bd48af6 1930 * @brief Instance structure for the floating-point Linear Interpolate function.
mturner5 0:b7116bd48af6 1931 */
mturner5 0:b7116bd48af6 1932 typedef struct
mturner5 0:b7116bd48af6 1933 {
mturner5 0:b7116bd48af6 1934 uint32_t nValues; /**< nValues */
mturner5 0:b7116bd48af6 1935 float32_t x1; /**< x1 */
mturner5 0:b7116bd48af6 1936 float32_t xSpacing; /**< xSpacing */
mturner5 0:b7116bd48af6 1937 float32_t *pYData; /**< pointer to the table of Y values */
mturner5 0:b7116bd48af6 1938 } arm_linear_interp_instance_f32;
mturner5 0:b7116bd48af6 1939
mturner5 0:b7116bd48af6 1940 /**
mturner5 0:b7116bd48af6 1941 * @brief Instance structure for the floating-point bilinear interpolation function.
mturner5 0:b7116bd48af6 1942 */
mturner5 0:b7116bd48af6 1943
mturner5 0:b7116bd48af6 1944 typedef struct
mturner5 0:b7116bd48af6 1945 {
mturner5 0:b7116bd48af6 1946 uint16_t numRows; /**< number of rows in the data table. */
mturner5 0:b7116bd48af6 1947 uint16_t numCols; /**< number of columns in the data table. */
mturner5 0:b7116bd48af6 1948 float32_t *pData; /**< points to the data table. */
mturner5 0:b7116bd48af6 1949 } arm_bilinear_interp_instance_f32;
mturner5 0:b7116bd48af6 1950
mturner5 0:b7116bd48af6 1951 /**
mturner5 0:b7116bd48af6 1952 * @brief Instance structure for the Q31 bilinear interpolation function.
mturner5 0:b7116bd48af6 1953 */
mturner5 0:b7116bd48af6 1954
mturner5 0:b7116bd48af6 1955 typedef struct
mturner5 0:b7116bd48af6 1956 {
mturner5 0:b7116bd48af6 1957 uint16_t numRows; /**< number of rows in the data table. */
mturner5 0:b7116bd48af6 1958 uint16_t numCols; /**< number of columns in the data table. */
mturner5 0:b7116bd48af6 1959 q31_t *pData; /**< points to the data table. */
mturner5 0:b7116bd48af6 1960 } arm_bilinear_interp_instance_q31;
mturner5 0:b7116bd48af6 1961
mturner5 0:b7116bd48af6 1962 /**
mturner5 0:b7116bd48af6 1963 * @brief Instance structure for the Q15 bilinear interpolation function.
mturner5 0:b7116bd48af6 1964 */
mturner5 0:b7116bd48af6 1965
mturner5 0:b7116bd48af6 1966 typedef struct
mturner5 0:b7116bd48af6 1967 {
mturner5 0:b7116bd48af6 1968 uint16_t numRows; /**< number of rows in the data table. */
mturner5 0:b7116bd48af6 1969 uint16_t numCols; /**< number of columns in the data table. */
mturner5 0:b7116bd48af6 1970 q15_t *pData; /**< points to the data table. */
mturner5 0:b7116bd48af6 1971 } arm_bilinear_interp_instance_q15;
mturner5 0:b7116bd48af6 1972
mturner5 0:b7116bd48af6 1973 /**
mturner5 0:b7116bd48af6 1974 * @brief Instance structure for the Q15 bilinear interpolation function.
mturner5 0:b7116bd48af6 1975 */
mturner5 0:b7116bd48af6 1976
mturner5 0:b7116bd48af6 1977 typedef struct
mturner5 0:b7116bd48af6 1978 {
mturner5 0:b7116bd48af6 1979 uint16_t numRows; /**< number of rows in the data table. */
mturner5 0:b7116bd48af6 1980 uint16_t numCols; /**< number of columns in the data table. */
mturner5 0:b7116bd48af6 1981 q7_t *pData; /**< points to the data table. */
mturner5 0:b7116bd48af6 1982 } arm_bilinear_interp_instance_q7;
mturner5 0:b7116bd48af6 1983
mturner5 0:b7116bd48af6 1984
mturner5 0:b7116bd48af6 1985 /**
mturner5 0:b7116bd48af6 1986 * @brief Q7 vector multiplication.
mturner5 0:b7116bd48af6 1987 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 1988 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 1989 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 1990 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 1991 * @return none.
mturner5 0:b7116bd48af6 1992 */
mturner5 0:b7116bd48af6 1993
mturner5 0:b7116bd48af6 1994 void arm_mult_q7(
mturner5 0:b7116bd48af6 1995 q7_t * pSrcA,
mturner5 0:b7116bd48af6 1996 q7_t * pSrcB,
mturner5 0:b7116bd48af6 1997 q7_t * pDst,
mturner5 0:b7116bd48af6 1998 uint32_t blockSize);
mturner5 0:b7116bd48af6 1999
mturner5 0:b7116bd48af6 2000 /**
mturner5 0:b7116bd48af6 2001 * @brief Q15 vector multiplication.
mturner5 0:b7116bd48af6 2002 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2003 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2004 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2005 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2006 * @return none.
mturner5 0:b7116bd48af6 2007 */
mturner5 0:b7116bd48af6 2008
mturner5 0:b7116bd48af6 2009 void arm_mult_q15(
mturner5 0:b7116bd48af6 2010 q15_t * pSrcA,
mturner5 0:b7116bd48af6 2011 q15_t * pSrcB,
mturner5 0:b7116bd48af6 2012 q15_t * pDst,
mturner5 0:b7116bd48af6 2013 uint32_t blockSize);
mturner5 0:b7116bd48af6 2014
mturner5 0:b7116bd48af6 2015 /**
mturner5 0:b7116bd48af6 2016 * @brief Q31 vector multiplication.
mturner5 0:b7116bd48af6 2017 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2018 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2019 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2020 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2021 * @return none.
mturner5 0:b7116bd48af6 2022 */
mturner5 0:b7116bd48af6 2023
mturner5 0:b7116bd48af6 2024 void arm_mult_q31(
mturner5 0:b7116bd48af6 2025 q31_t * pSrcA,
mturner5 0:b7116bd48af6 2026 q31_t * pSrcB,
mturner5 0:b7116bd48af6 2027 q31_t * pDst,
mturner5 0:b7116bd48af6 2028 uint32_t blockSize);
mturner5 0:b7116bd48af6 2029
mturner5 0:b7116bd48af6 2030 /**
mturner5 0:b7116bd48af6 2031 * @brief Floating-point vector multiplication.
mturner5 0:b7116bd48af6 2032 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2033 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2034 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2035 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2036 * @return none.
mturner5 0:b7116bd48af6 2037 */
mturner5 0:b7116bd48af6 2038
mturner5 0:b7116bd48af6 2039 void arm_mult_f32(
mturner5 0:b7116bd48af6 2040 float32_t * pSrcA,
mturner5 0:b7116bd48af6 2041 float32_t * pSrcB,
mturner5 0:b7116bd48af6 2042 float32_t * pDst,
mturner5 0:b7116bd48af6 2043 uint32_t blockSize);
mturner5 0:b7116bd48af6 2044
mturner5 0:b7116bd48af6 2045
mturner5 0:b7116bd48af6 2046
mturner5 0:b7116bd48af6 2047
mturner5 0:b7116bd48af6 2048
mturner5 0:b7116bd48af6 2049
mturner5 0:b7116bd48af6 2050 /**
mturner5 0:b7116bd48af6 2051 * @brief Instance structure for the Q15 CFFT/CIFFT function.
mturner5 0:b7116bd48af6 2052 */
mturner5 0:b7116bd48af6 2053
mturner5 0:b7116bd48af6 2054 typedef struct
mturner5 0:b7116bd48af6 2055 {
mturner5 0:b7116bd48af6 2056 uint16_t fftLen; /**< length of the FFT. */
mturner5 0:b7116bd48af6 2057 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
mturner5 0:b7116bd48af6 2058 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
mturner5 0:b7116bd48af6 2059 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
mturner5 0:b7116bd48af6 2060 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
mturner5 0:b7116bd48af6 2061 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
mturner5 0:b7116bd48af6 2062 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
mturner5 0:b7116bd48af6 2063 } arm_cfft_radix2_instance_q15;
mturner5 0:b7116bd48af6 2064
mturner5 0:b7116bd48af6 2065 /* Deprecated */
mturner5 0:b7116bd48af6 2066 arm_status arm_cfft_radix2_init_q15(
mturner5 0:b7116bd48af6 2067 arm_cfft_radix2_instance_q15 * S,
mturner5 0:b7116bd48af6 2068 uint16_t fftLen,
mturner5 0:b7116bd48af6 2069 uint8_t ifftFlag,
mturner5 0:b7116bd48af6 2070 uint8_t bitReverseFlag);
mturner5 0:b7116bd48af6 2071
mturner5 0:b7116bd48af6 2072 /* Deprecated */
mturner5 0:b7116bd48af6 2073 void arm_cfft_radix2_q15(
mturner5 0:b7116bd48af6 2074 const arm_cfft_radix2_instance_q15 * S,
mturner5 0:b7116bd48af6 2075 q15_t * pSrc);
mturner5 0:b7116bd48af6 2076
mturner5 0:b7116bd48af6 2077
mturner5 0:b7116bd48af6 2078
mturner5 0:b7116bd48af6 2079 /**
mturner5 0:b7116bd48af6 2080 * @brief Instance structure for the Q15 CFFT/CIFFT function.
mturner5 0:b7116bd48af6 2081 */
mturner5 0:b7116bd48af6 2082
mturner5 0:b7116bd48af6 2083 typedef struct
mturner5 0:b7116bd48af6 2084 {
mturner5 0:b7116bd48af6 2085 uint16_t fftLen; /**< length of the FFT. */
mturner5 0:b7116bd48af6 2086 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
mturner5 0:b7116bd48af6 2087 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
mturner5 0:b7116bd48af6 2088 q15_t *pTwiddle; /**< points to the twiddle factor table. */
mturner5 0:b7116bd48af6 2089 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
mturner5 0:b7116bd48af6 2090 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
mturner5 0:b7116bd48af6 2091 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
mturner5 0:b7116bd48af6 2092 } arm_cfft_radix4_instance_q15;
mturner5 0:b7116bd48af6 2093
mturner5 0:b7116bd48af6 2094 /* Deprecated */
mturner5 0:b7116bd48af6 2095 arm_status arm_cfft_radix4_init_q15(
mturner5 0:b7116bd48af6 2096 arm_cfft_radix4_instance_q15 * S,
mturner5 0:b7116bd48af6 2097 uint16_t fftLen,
mturner5 0:b7116bd48af6 2098 uint8_t ifftFlag,
mturner5 0:b7116bd48af6 2099 uint8_t bitReverseFlag);
mturner5 0:b7116bd48af6 2100
mturner5 0:b7116bd48af6 2101 /* Deprecated */
mturner5 0:b7116bd48af6 2102 void arm_cfft_radix4_q15(
mturner5 0:b7116bd48af6 2103 const arm_cfft_radix4_instance_q15 * S,
mturner5 0:b7116bd48af6 2104 q15_t * pSrc);
mturner5 0:b7116bd48af6 2105
mturner5 0:b7116bd48af6 2106 /**
mturner5 0:b7116bd48af6 2107 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
mturner5 0:b7116bd48af6 2108 */
mturner5 0:b7116bd48af6 2109
mturner5 0:b7116bd48af6 2110 typedef struct
mturner5 0:b7116bd48af6 2111 {
mturner5 0:b7116bd48af6 2112 uint16_t fftLen; /**< length of the FFT. */
mturner5 0:b7116bd48af6 2113 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
mturner5 0:b7116bd48af6 2114 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
mturner5 0:b7116bd48af6 2115 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
mturner5 0:b7116bd48af6 2116 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
mturner5 0:b7116bd48af6 2117 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
mturner5 0:b7116bd48af6 2118 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
mturner5 0:b7116bd48af6 2119 } arm_cfft_radix2_instance_q31;
mturner5 0:b7116bd48af6 2120
mturner5 0:b7116bd48af6 2121 /* Deprecated */
mturner5 0:b7116bd48af6 2122 arm_status arm_cfft_radix2_init_q31(
mturner5 0:b7116bd48af6 2123 arm_cfft_radix2_instance_q31 * S,
mturner5 0:b7116bd48af6 2124 uint16_t fftLen,
mturner5 0:b7116bd48af6 2125 uint8_t ifftFlag,
mturner5 0:b7116bd48af6 2126 uint8_t bitReverseFlag);
mturner5 0:b7116bd48af6 2127
mturner5 0:b7116bd48af6 2128 /* Deprecated */
mturner5 0:b7116bd48af6 2129 void arm_cfft_radix2_q31(
mturner5 0:b7116bd48af6 2130 const arm_cfft_radix2_instance_q31 * S,
mturner5 0:b7116bd48af6 2131 q31_t * pSrc);
mturner5 0:b7116bd48af6 2132
mturner5 0:b7116bd48af6 2133 /**
mturner5 0:b7116bd48af6 2134 * @brief Instance structure for the Q31 CFFT/CIFFT function.
mturner5 0:b7116bd48af6 2135 */
mturner5 0:b7116bd48af6 2136
mturner5 0:b7116bd48af6 2137 typedef struct
mturner5 0:b7116bd48af6 2138 {
mturner5 0:b7116bd48af6 2139 uint16_t fftLen; /**< length of the FFT. */
mturner5 0:b7116bd48af6 2140 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
mturner5 0:b7116bd48af6 2141 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
mturner5 0:b7116bd48af6 2142 q31_t *pTwiddle; /**< points to the twiddle factor table. */
mturner5 0:b7116bd48af6 2143 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
mturner5 0:b7116bd48af6 2144 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
mturner5 0:b7116bd48af6 2145 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
mturner5 0:b7116bd48af6 2146 } arm_cfft_radix4_instance_q31;
mturner5 0:b7116bd48af6 2147
mturner5 0:b7116bd48af6 2148 /* Deprecated */
mturner5 0:b7116bd48af6 2149 void arm_cfft_radix4_q31(
mturner5 0:b7116bd48af6 2150 const arm_cfft_radix4_instance_q31 * S,
mturner5 0:b7116bd48af6 2151 q31_t * pSrc);
mturner5 0:b7116bd48af6 2152
mturner5 0:b7116bd48af6 2153 /* Deprecated */
mturner5 0:b7116bd48af6 2154 arm_status arm_cfft_radix4_init_q31(
mturner5 0:b7116bd48af6 2155 arm_cfft_radix4_instance_q31 * S,
mturner5 0:b7116bd48af6 2156 uint16_t fftLen,
mturner5 0:b7116bd48af6 2157 uint8_t ifftFlag,
mturner5 0:b7116bd48af6 2158 uint8_t bitReverseFlag);
mturner5 0:b7116bd48af6 2159
mturner5 0:b7116bd48af6 2160 /**
mturner5 0:b7116bd48af6 2161 * @brief Instance structure for the floating-point CFFT/CIFFT function.
mturner5 0:b7116bd48af6 2162 */
mturner5 0:b7116bd48af6 2163
mturner5 0:b7116bd48af6 2164 typedef struct
mturner5 0:b7116bd48af6 2165 {
mturner5 0:b7116bd48af6 2166 uint16_t fftLen; /**< length of the FFT. */
mturner5 0:b7116bd48af6 2167 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
mturner5 0:b7116bd48af6 2168 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
mturner5 0:b7116bd48af6 2169 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
mturner5 0:b7116bd48af6 2170 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
mturner5 0:b7116bd48af6 2171 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
mturner5 0:b7116bd48af6 2172 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
mturner5 0:b7116bd48af6 2173 float32_t onebyfftLen; /**< value of 1/fftLen. */
mturner5 0:b7116bd48af6 2174 } arm_cfft_radix2_instance_f32;
mturner5 0:b7116bd48af6 2175
mturner5 0:b7116bd48af6 2176 /* Deprecated */
mturner5 0:b7116bd48af6 2177 arm_status arm_cfft_radix2_init_f32(
mturner5 0:b7116bd48af6 2178 arm_cfft_radix2_instance_f32 * S,
mturner5 0:b7116bd48af6 2179 uint16_t fftLen,
mturner5 0:b7116bd48af6 2180 uint8_t ifftFlag,
mturner5 0:b7116bd48af6 2181 uint8_t bitReverseFlag);
mturner5 0:b7116bd48af6 2182
mturner5 0:b7116bd48af6 2183 /* Deprecated */
mturner5 0:b7116bd48af6 2184 void arm_cfft_radix2_f32(
mturner5 0:b7116bd48af6 2185 const arm_cfft_radix2_instance_f32 * S,
mturner5 0:b7116bd48af6 2186 float32_t * pSrc);
mturner5 0:b7116bd48af6 2187
mturner5 0:b7116bd48af6 2188 /**
mturner5 0:b7116bd48af6 2189 * @brief Instance structure for the floating-point CFFT/CIFFT function.
mturner5 0:b7116bd48af6 2190 */
mturner5 0:b7116bd48af6 2191
mturner5 0:b7116bd48af6 2192 typedef struct
mturner5 0:b7116bd48af6 2193 {
mturner5 0:b7116bd48af6 2194 uint16_t fftLen; /**< length of the FFT. */
mturner5 0:b7116bd48af6 2195 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
mturner5 0:b7116bd48af6 2196 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
mturner5 0:b7116bd48af6 2197 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
mturner5 0:b7116bd48af6 2198 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
mturner5 0:b7116bd48af6 2199 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
mturner5 0:b7116bd48af6 2200 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
mturner5 0:b7116bd48af6 2201 float32_t onebyfftLen; /**< value of 1/fftLen. */
mturner5 0:b7116bd48af6 2202 } arm_cfft_radix4_instance_f32;
mturner5 0:b7116bd48af6 2203
mturner5 0:b7116bd48af6 2204 /* Deprecated */
mturner5 0:b7116bd48af6 2205 arm_status arm_cfft_radix4_init_f32(
mturner5 0:b7116bd48af6 2206 arm_cfft_radix4_instance_f32 * S,
mturner5 0:b7116bd48af6 2207 uint16_t fftLen,
mturner5 0:b7116bd48af6 2208 uint8_t ifftFlag,
mturner5 0:b7116bd48af6 2209 uint8_t bitReverseFlag);
mturner5 0:b7116bd48af6 2210
mturner5 0:b7116bd48af6 2211 /* Deprecated */
mturner5 0:b7116bd48af6 2212 void arm_cfft_radix4_f32(
mturner5 0:b7116bd48af6 2213 const arm_cfft_radix4_instance_f32 * S,
mturner5 0:b7116bd48af6 2214 float32_t * pSrc);
mturner5 0:b7116bd48af6 2215
mturner5 0:b7116bd48af6 2216 /**
mturner5 0:b7116bd48af6 2217 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
mturner5 0:b7116bd48af6 2218 */
mturner5 0:b7116bd48af6 2219
mturner5 0:b7116bd48af6 2220 typedef struct
mturner5 0:b7116bd48af6 2221 {
mturner5 0:b7116bd48af6 2222 uint16_t fftLen; /**< length of the FFT. */
mturner5 0:b7116bd48af6 2223 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
mturner5 0:b7116bd48af6 2224 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
mturner5 0:b7116bd48af6 2225 uint16_t bitRevLength; /**< bit reversal table length. */
mturner5 0:b7116bd48af6 2226 } arm_cfft_instance_q15;
mturner5 0:b7116bd48af6 2227
mturner5 0:b7116bd48af6 2228 void arm_cfft_q15(
mturner5 0:b7116bd48af6 2229 const arm_cfft_instance_q15 * S,
mturner5 0:b7116bd48af6 2230 q15_t * p1,
mturner5 0:b7116bd48af6 2231 uint8_t ifftFlag,
mturner5 0:b7116bd48af6 2232 uint8_t bitReverseFlag);
mturner5 0:b7116bd48af6 2233
mturner5 0:b7116bd48af6 2234 /**
mturner5 0:b7116bd48af6 2235 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
mturner5 0:b7116bd48af6 2236 */
mturner5 0:b7116bd48af6 2237
mturner5 0:b7116bd48af6 2238 typedef struct
mturner5 0:b7116bd48af6 2239 {
mturner5 0:b7116bd48af6 2240 uint16_t fftLen; /**< length of the FFT. */
mturner5 0:b7116bd48af6 2241 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
mturner5 0:b7116bd48af6 2242 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
mturner5 0:b7116bd48af6 2243 uint16_t bitRevLength; /**< bit reversal table length. */
mturner5 0:b7116bd48af6 2244 } arm_cfft_instance_q31;
mturner5 0:b7116bd48af6 2245
mturner5 0:b7116bd48af6 2246 void arm_cfft_q31(
mturner5 0:b7116bd48af6 2247 const arm_cfft_instance_q31 * S,
mturner5 0:b7116bd48af6 2248 q31_t * p1,
mturner5 0:b7116bd48af6 2249 uint8_t ifftFlag,
mturner5 0:b7116bd48af6 2250 uint8_t bitReverseFlag);
mturner5 0:b7116bd48af6 2251
mturner5 0:b7116bd48af6 2252 /**
mturner5 0:b7116bd48af6 2253 * @brief Instance structure for the floating-point CFFT/CIFFT function.
mturner5 0:b7116bd48af6 2254 */
mturner5 0:b7116bd48af6 2255
mturner5 0:b7116bd48af6 2256 typedef struct
mturner5 0:b7116bd48af6 2257 {
mturner5 0:b7116bd48af6 2258 uint16_t fftLen; /**< length of the FFT. */
mturner5 0:b7116bd48af6 2259 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
mturner5 0:b7116bd48af6 2260 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
mturner5 0:b7116bd48af6 2261 uint16_t bitRevLength; /**< bit reversal table length. */
mturner5 0:b7116bd48af6 2262 } arm_cfft_instance_f32;
mturner5 0:b7116bd48af6 2263
mturner5 0:b7116bd48af6 2264 void arm_cfft_f32(
mturner5 0:b7116bd48af6 2265 const arm_cfft_instance_f32 * S,
mturner5 0:b7116bd48af6 2266 float32_t * p1,
mturner5 0:b7116bd48af6 2267 uint8_t ifftFlag,
mturner5 0:b7116bd48af6 2268 uint8_t bitReverseFlag);
mturner5 0:b7116bd48af6 2269
mturner5 0:b7116bd48af6 2270 /**
mturner5 0:b7116bd48af6 2271 * @brief Instance structure for the Q15 RFFT/RIFFT function.
mturner5 0:b7116bd48af6 2272 */
mturner5 0:b7116bd48af6 2273
mturner5 0:b7116bd48af6 2274 typedef struct
mturner5 0:b7116bd48af6 2275 {
mturner5 0:b7116bd48af6 2276 uint32_t fftLenReal; /**< length of the real FFT. */
mturner5 0:b7116bd48af6 2277 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
mturner5 0:b7116bd48af6 2278 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
mturner5 0:b7116bd48af6 2279 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
mturner5 0:b7116bd48af6 2280 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
mturner5 0:b7116bd48af6 2281 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
mturner5 0:b7116bd48af6 2282 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
mturner5 0:b7116bd48af6 2283 } arm_rfft_instance_q15;
mturner5 0:b7116bd48af6 2284
mturner5 0:b7116bd48af6 2285 arm_status arm_rfft_init_q15(
mturner5 0:b7116bd48af6 2286 arm_rfft_instance_q15 * S,
mturner5 0:b7116bd48af6 2287 uint32_t fftLenReal,
mturner5 0:b7116bd48af6 2288 uint32_t ifftFlagR,
mturner5 0:b7116bd48af6 2289 uint32_t bitReverseFlag);
mturner5 0:b7116bd48af6 2290
mturner5 0:b7116bd48af6 2291 void arm_rfft_q15(
mturner5 0:b7116bd48af6 2292 const arm_rfft_instance_q15 * S,
mturner5 0:b7116bd48af6 2293 q15_t * pSrc,
mturner5 0:b7116bd48af6 2294 q15_t * pDst);
mturner5 0:b7116bd48af6 2295
mturner5 0:b7116bd48af6 2296 /**
mturner5 0:b7116bd48af6 2297 * @brief Instance structure for the Q31 RFFT/RIFFT function.
mturner5 0:b7116bd48af6 2298 */
mturner5 0:b7116bd48af6 2299
mturner5 0:b7116bd48af6 2300 typedef struct
mturner5 0:b7116bd48af6 2301 {
mturner5 0:b7116bd48af6 2302 uint32_t fftLenReal; /**< length of the real FFT. */
mturner5 0:b7116bd48af6 2303 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
mturner5 0:b7116bd48af6 2304 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
mturner5 0:b7116bd48af6 2305 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
mturner5 0:b7116bd48af6 2306 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
mturner5 0:b7116bd48af6 2307 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
mturner5 0:b7116bd48af6 2308 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
mturner5 0:b7116bd48af6 2309 } arm_rfft_instance_q31;
mturner5 0:b7116bd48af6 2310
mturner5 0:b7116bd48af6 2311 arm_status arm_rfft_init_q31(
mturner5 0:b7116bd48af6 2312 arm_rfft_instance_q31 * S,
mturner5 0:b7116bd48af6 2313 uint32_t fftLenReal,
mturner5 0:b7116bd48af6 2314 uint32_t ifftFlagR,
mturner5 0:b7116bd48af6 2315 uint32_t bitReverseFlag);
mturner5 0:b7116bd48af6 2316
mturner5 0:b7116bd48af6 2317 void arm_rfft_q31(
mturner5 0:b7116bd48af6 2318 const arm_rfft_instance_q31 * S,
mturner5 0:b7116bd48af6 2319 q31_t * pSrc,
mturner5 0:b7116bd48af6 2320 q31_t * pDst);
mturner5 0:b7116bd48af6 2321
mturner5 0:b7116bd48af6 2322 /**
mturner5 0:b7116bd48af6 2323 * @brief Instance structure for the floating-point RFFT/RIFFT function.
mturner5 0:b7116bd48af6 2324 */
mturner5 0:b7116bd48af6 2325
mturner5 0:b7116bd48af6 2326 typedef struct
mturner5 0:b7116bd48af6 2327 {
mturner5 0:b7116bd48af6 2328 uint32_t fftLenReal; /**< length of the real FFT. */
mturner5 0:b7116bd48af6 2329 uint16_t fftLenBy2; /**< length of the complex FFT. */
mturner5 0:b7116bd48af6 2330 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
mturner5 0:b7116bd48af6 2331 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
mturner5 0:b7116bd48af6 2332 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
mturner5 0:b7116bd48af6 2333 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
mturner5 0:b7116bd48af6 2334 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
mturner5 0:b7116bd48af6 2335 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
mturner5 0:b7116bd48af6 2336 } arm_rfft_instance_f32;
mturner5 0:b7116bd48af6 2337
mturner5 0:b7116bd48af6 2338 arm_status arm_rfft_init_f32(
mturner5 0:b7116bd48af6 2339 arm_rfft_instance_f32 * S,
mturner5 0:b7116bd48af6 2340 arm_cfft_radix4_instance_f32 * S_CFFT,
mturner5 0:b7116bd48af6 2341 uint32_t fftLenReal,
mturner5 0:b7116bd48af6 2342 uint32_t ifftFlagR,
mturner5 0:b7116bd48af6 2343 uint32_t bitReverseFlag);
mturner5 0:b7116bd48af6 2344
mturner5 0:b7116bd48af6 2345 void arm_rfft_f32(
mturner5 0:b7116bd48af6 2346 const arm_rfft_instance_f32 * S,
mturner5 0:b7116bd48af6 2347 float32_t * pSrc,
mturner5 0:b7116bd48af6 2348 float32_t * pDst);
mturner5 0:b7116bd48af6 2349
mturner5 0:b7116bd48af6 2350 /**
mturner5 0:b7116bd48af6 2351 * @brief Instance structure for the floating-point RFFT/RIFFT function.
mturner5 0:b7116bd48af6 2352 */
mturner5 0:b7116bd48af6 2353
mturner5 0:b7116bd48af6 2354 typedef struct
mturner5 0:b7116bd48af6 2355 {
mturner5 0:b7116bd48af6 2356 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
mturner5 0:b7116bd48af6 2357 uint16_t fftLenRFFT; /**< length of the real sequence */
mturner5 0:b7116bd48af6 2358 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
mturner5 0:b7116bd48af6 2359 } arm_rfft_fast_instance_f32 ;
mturner5 0:b7116bd48af6 2360
mturner5 0:b7116bd48af6 2361 arm_status arm_rfft_fast_init_f32 (
mturner5 0:b7116bd48af6 2362 arm_rfft_fast_instance_f32 * S,
mturner5 0:b7116bd48af6 2363 uint16_t fftLen);
mturner5 0:b7116bd48af6 2364
mturner5 0:b7116bd48af6 2365 void arm_rfft_fast_f32(
mturner5 0:b7116bd48af6 2366 arm_rfft_fast_instance_f32 * S,
mturner5 0:b7116bd48af6 2367 float32_t * p, float32_t * pOut,
mturner5 0:b7116bd48af6 2368 uint8_t ifftFlag);
mturner5 0:b7116bd48af6 2369
mturner5 0:b7116bd48af6 2370 /**
mturner5 0:b7116bd48af6 2371 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
mturner5 0:b7116bd48af6 2372 */
mturner5 0:b7116bd48af6 2373
mturner5 0:b7116bd48af6 2374 typedef struct
mturner5 0:b7116bd48af6 2375 {
mturner5 0:b7116bd48af6 2376 uint16_t N; /**< length of the DCT4. */
mturner5 0:b7116bd48af6 2377 uint16_t Nby2; /**< half of the length of the DCT4. */
mturner5 0:b7116bd48af6 2378 float32_t normalize; /**< normalizing factor. */
mturner5 0:b7116bd48af6 2379 float32_t *pTwiddle; /**< points to the twiddle factor table. */
mturner5 0:b7116bd48af6 2380 float32_t *pCosFactor; /**< points to the cosFactor table. */
mturner5 0:b7116bd48af6 2381 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
mturner5 0:b7116bd48af6 2382 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
mturner5 0:b7116bd48af6 2383 } arm_dct4_instance_f32;
mturner5 0:b7116bd48af6 2384
mturner5 0:b7116bd48af6 2385 /**
mturner5 0:b7116bd48af6 2386 * @brief Initialization function for the floating-point DCT4/IDCT4.
mturner5 0:b7116bd48af6 2387 * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
mturner5 0:b7116bd48af6 2388 * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
mturner5 0:b7116bd48af6 2389 * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
mturner5 0:b7116bd48af6 2390 * @param[in] N length of the DCT4.
mturner5 0:b7116bd48af6 2391 * @param[in] Nby2 half of the length of the DCT4.
mturner5 0:b7116bd48af6 2392 * @param[in] normalize normalizing factor.
mturner5 0:b7116bd48af6 2393 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
mturner5 0:b7116bd48af6 2394 */
mturner5 0:b7116bd48af6 2395
mturner5 0:b7116bd48af6 2396 arm_status arm_dct4_init_f32(
mturner5 0:b7116bd48af6 2397 arm_dct4_instance_f32 * S,
mturner5 0:b7116bd48af6 2398 arm_rfft_instance_f32 * S_RFFT,
mturner5 0:b7116bd48af6 2399 arm_cfft_radix4_instance_f32 * S_CFFT,
mturner5 0:b7116bd48af6 2400 uint16_t N,
mturner5 0:b7116bd48af6 2401 uint16_t Nby2,
mturner5 0:b7116bd48af6 2402 float32_t normalize);
mturner5 0:b7116bd48af6 2403
mturner5 0:b7116bd48af6 2404 /**
mturner5 0:b7116bd48af6 2405 * @brief Processing function for the floating-point DCT4/IDCT4.
mturner5 0:b7116bd48af6 2406 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
mturner5 0:b7116bd48af6 2407 * @param[in] *pState points to state buffer.
mturner5 0:b7116bd48af6 2408 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
mturner5 0:b7116bd48af6 2409 * @return none.
mturner5 0:b7116bd48af6 2410 */
mturner5 0:b7116bd48af6 2411
mturner5 0:b7116bd48af6 2412 void arm_dct4_f32(
mturner5 0:b7116bd48af6 2413 const arm_dct4_instance_f32 * S,
mturner5 0:b7116bd48af6 2414 float32_t * pState,
mturner5 0:b7116bd48af6 2415 float32_t * pInlineBuffer);
mturner5 0:b7116bd48af6 2416
mturner5 0:b7116bd48af6 2417 /**
mturner5 0:b7116bd48af6 2418 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
mturner5 0:b7116bd48af6 2419 */
mturner5 0:b7116bd48af6 2420
mturner5 0:b7116bd48af6 2421 typedef struct
mturner5 0:b7116bd48af6 2422 {
mturner5 0:b7116bd48af6 2423 uint16_t N; /**< length of the DCT4. */
mturner5 0:b7116bd48af6 2424 uint16_t Nby2; /**< half of the length of the DCT4. */
mturner5 0:b7116bd48af6 2425 q31_t normalize; /**< normalizing factor. */
mturner5 0:b7116bd48af6 2426 q31_t *pTwiddle; /**< points to the twiddle factor table. */
mturner5 0:b7116bd48af6 2427 q31_t *pCosFactor; /**< points to the cosFactor table. */
mturner5 0:b7116bd48af6 2428 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
mturner5 0:b7116bd48af6 2429 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
mturner5 0:b7116bd48af6 2430 } arm_dct4_instance_q31;
mturner5 0:b7116bd48af6 2431
mturner5 0:b7116bd48af6 2432 /**
mturner5 0:b7116bd48af6 2433 * @brief Initialization function for the Q31 DCT4/IDCT4.
mturner5 0:b7116bd48af6 2434 * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
mturner5 0:b7116bd48af6 2435 * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
mturner5 0:b7116bd48af6 2436 * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
mturner5 0:b7116bd48af6 2437 * @param[in] N length of the DCT4.
mturner5 0:b7116bd48af6 2438 * @param[in] Nby2 half of the length of the DCT4.
mturner5 0:b7116bd48af6 2439 * @param[in] normalize normalizing factor.
mturner5 0:b7116bd48af6 2440 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
mturner5 0:b7116bd48af6 2441 */
mturner5 0:b7116bd48af6 2442
mturner5 0:b7116bd48af6 2443 arm_status arm_dct4_init_q31(
mturner5 0:b7116bd48af6 2444 arm_dct4_instance_q31 * S,
mturner5 0:b7116bd48af6 2445 arm_rfft_instance_q31 * S_RFFT,
mturner5 0:b7116bd48af6 2446 arm_cfft_radix4_instance_q31 * S_CFFT,
mturner5 0:b7116bd48af6 2447 uint16_t N,
mturner5 0:b7116bd48af6 2448 uint16_t Nby2,
mturner5 0:b7116bd48af6 2449 q31_t normalize);
mturner5 0:b7116bd48af6 2450
mturner5 0:b7116bd48af6 2451 /**
mturner5 0:b7116bd48af6 2452 * @brief Processing function for the Q31 DCT4/IDCT4.
mturner5 0:b7116bd48af6 2453 * @param[in] *S points to an instance of the Q31 DCT4 structure.
mturner5 0:b7116bd48af6 2454 * @param[in] *pState points to state buffer.
mturner5 0:b7116bd48af6 2455 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
mturner5 0:b7116bd48af6 2456 * @return none.
mturner5 0:b7116bd48af6 2457 */
mturner5 0:b7116bd48af6 2458
mturner5 0:b7116bd48af6 2459 void arm_dct4_q31(
mturner5 0:b7116bd48af6 2460 const arm_dct4_instance_q31 * S,
mturner5 0:b7116bd48af6 2461 q31_t * pState,
mturner5 0:b7116bd48af6 2462 q31_t * pInlineBuffer);
mturner5 0:b7116bd48af6 2463
mturner5 0:b7116bd48af6 2464 /**
mturner5 0:b7116bd48af6 2465 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
mturner5 0:b7116bd48af6 2466 */
mturner5 0:b7116bd48af6 2467
mturner5 0:b7116bd48af6 2468 typedef struct
mturner5 0:b7116bd48af6 2469 {
mturner5 0:b7116bd48af6 2470 uint16_t N; /**< length of the DCT4. */
mturner5 0:b7116bd48af6 2471 uint16_t Nby2; /**< half of the length of the DCT4. */
mturner5 0:b7116bd48af6 2472 q15_t normalize; /**< normalizing factor. */
mturner5 0:b7116bd48af6 2473 q15_t *pTwiddle; /**< points to the twiddle factor table. */
mturner5 0:b7116bd48af6 2474 q15_t *pCosFactor; /**< points to the cosFactor table. */
mturner5 0:b7116bd48af6 2475 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
mturner5 0:b7116bd48af6 2476 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
mturner5 0:b7116bd48af6 2477 } arm_dct4_instance_q15;
mturner5 0:b7116bd48af6 2478
mturner5 0:b7116bd48af6 2479 /**
mturner5 0:b7116bd48af6 2480 * @brief Initialization function for the Q15 DCT4/IDCT4.
mturner5 0:b7116bd48af6 2481 * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
mturner5 0:b7116bd48af6 2482 * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
mturner5 0:b7116bd48af6 2483 * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
mturner5 0:b7116bd48af6 2484 * @param[in] N length of the DCT4.
mturner5 0:b7116bd48af6 2485 * @param[in] Nby2 half of the length of the DCT4.
mturner5 0:b7116bd48af6 2486 * @param[in] normalize normalizing factor.
mturner5 0:b7116bd48af6 2487 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
mturner5 0:b7116bd48af6 2488 */
mturner5 0:b7116bd48af6 2489
mturner5 0:b7116bd48af6 2490 arm_status arm_dct4_init_q15(
mturner5 0:b7116bd48af6 2491 arm_dct4_instance_q15 * S,
mturner5 0:b7116bd48af6 2492 arm_rfft_instance_q15 * S_RFFT,
mturner5 0:b7116bd48af6 2493 arm_cfft_radix4_instance_q15 * S_CFFT,
mturner5 0:b7116bd48af6 2494 uint16_t N,
mturner5 0:b7116bd48af6 2495 uint16_t Nby2,
mturner5 0:b7116bd48af6 2496 q15_t normalize);
mturner5 0:b7116bd48af6 2497
mturner5 0:b7116bd48af6 2498 /**
mturner5 0:b7116bd48af6 2499 * @brief Processing function for the Q15 DCT4/IDCT4.
mturner5 0:b7116bd48af6 2500 * @param[in] *S points to an instance of the Q15 DCT4 structure.
mturner5 0:b7116bd48af6 2501 * @param[in] *pState points to state buffer.
mturner5 0:b7116bd48af6 2502 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
mturner5 0:b7116bd48af6 2503 * @return none.
mturner5 0:b7116bd48af6 2504 */
mturner5 0:b7116bd48af6 2505
mturner5 0:b7116bd48af6 2506 void arm_dct4_q15(
mturner5 0:b7116bd48af6 2507 const arm_dct4_instance_q15 * S,
mturner5 0:b7116bd48af6 2508 q15_t * pState,
mturner5 0:b7116bd48af6 2509 q15_t * pInlineBuffer);
mturner5 0:b7116bd48af6 2510
mturner5 0:b7116bd48af6 2511 /**
mturner5 0:b7116bd48af6 2512 * @brief Floating-point vector addition.
mturner5 0:b7116bd48af6 2513 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2514 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2515 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2516 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2517 * @return none.
mturner5 0:b7116bd48af6 2518 */
mturner5 0:b7116bd48af6 2519
mturner5 0:b7116bd48af6 2520 void arm_add_f32(
mturner5 0:b7116bd48af6 2521 float32_t * pSrcA,
mturner5 0:b7116bd48af6 2522 float32_t * pSrcB,
mturner5 0:b7116bd48af6 2523 float32_t * pDst,
mturner5 0:b7116bd48af6 2524 uint32_t blockSize);
mturner5 0:b7116bd48af6 2525
mturner5 0:b7116bd48af6 2526 /**
mturner5 0:b7116bd48af6 2527 * @brief Q7 vector addition.
mturner5 0:b7116bd48af6 2528 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2529 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2530 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2531 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2532 * @return none.
mturner5 0:b7116bd48af6 2533 */
mturner5 0:b7116bd48af6 2534
mturner5 0:b7116bd48af6 2535 void arm_add_q7(
mturner5 0:b7116bd48af6 2536 q7_t * pSrcA,
mturner5 0:b7116bd48af6 2537 q7_t * pSrcB,
mturner5 0:b7116bd48af6 2538 q7_t * pDst,
mturner5 0:b7116bd48af6 2539 uint32_t blockSize);
mturner5 0:b7116bd48af6 2540
mturner5 0:b7116bd48af6 2541 /**
mturner5 0:b7116bd48af6 2542 * @brief Q15 vector addition.
mturner5 0:b7116bd48af6 2543 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2544 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2545 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2546 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2547 * @return none.
mturner5 0:b7116bd48af6 2548 */
mturner5 0:b7116bd48af6 2549
mturner5 0:b7116bd48af6 2550 void arm_add_q15(
mturner5 0:b7116bd48af6 2551 q15_t * pSrcA,
mturner5 0:b7116bd48af6 2552 q15_t * pSrcB,
mturner5 0:b7116bd48af6 2553 q15_t * pDst,
mturner5 0:b7116bd48af6 2554 uint32_t blockSize);
mturner5 0:b7116bd48af6 2555
mturner5 0:b7116bd48af6 2556 /**
mturner5 0:b7116bd48af6 2557 * @brief Q31 vector addition.
mturner5 0:b7116bd48af6 2558 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2559 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2560 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2561 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2562 * @return none.
mturner5 0:b7116bd48af6 2563 */
mturner5 0:b7116bd48af6 2564
mturner5 0:b7116bd48af6 2565 void arm_add_q31(
mturner5 0:b7116bd48af6 2566 q31_t * pSrcA,
mturner5 0:b7116bd48af6 2567 q31_t * pSrcB,
mturner5 0:b7116bd48af6 2568 q31_t * pDst,
mturner5 0:b7116bd48af6 2569 uint32_t blockSize);
mturner5 0:b7116bd48af6 2570
mturner5 0:b7116bd48af6 2571 /**
mturner5 0:b7116bd48af6 2572 * @brief Floating-point vector subtraction.
mturner5 0:b7116bd48af6 2573 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2574 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2575 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2576 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2577 * @return none.
mturner5 0:b7116bd48af6 2578 */
mturner5 0:b7116bd48af6 2579
mturner5 0:b7116bd48af6 2580 void arm_sub_f32(
mturner5 0:b7116bd48af6 2581 float32_t * pSrcA,
mturner5 0:b7116bd48af6 2582 float32_t * pSrcB,
mturner5 0:b7116bd48af6 2583 float32_t * pDst,
mturner5 0:b7116bd48af6 2584 uint32_t blockSize);
mturner5 0:b7116bd48af6 2585
mturner5 0:b7116bd48af6 2586 /**
mturner5 0:b7116bd48af6 2587 * @brief Q7 vector subtraction.
mturner5 0:b7116bd48af6 2588 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2589 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2590 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2591 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2592 * @return none.
mturner5 0:b7116bd48af6 2593 */
mturner5 0:b7116bd48af6 2594
mturner5 0:b7116bd48af6 2595 void arm_sub_q7(
mturner5 0:b7116bd48af6 2596 q7_t * pSrcA,
mturner5 0:b7116bd48af6 2597 q7_t * pSrcB,
mturner5 0:b7116bd48af6 2598 q7_t * pDst,
mturner5 0:b7116bd48af6 2599 uint32_t blockSize);
mturner5 0:b7116bd48af6 2600
mturner5 0:b7116bd48af6 2601 /**
mturner5 0:b7116bd48af6 2602 * @brief Q15 vector subtraction.
mturner5 0:b7116bd48af6 2603 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2604 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2605 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2606 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2607 * @return none.
mturner5 0:b7116bd48af6 2608 */
mturner5 0:b7116bd48af6 2609
mturner5 0:b7116bd48af6 2610 void arm_sub_q15(
mturner5 0:b7116bd48af6 2611 q15_t * pSrcA,
mturner5 0:b7116bd48af6 2612 q15_t * pSrcB,
mturner5 0:b7116bd48af6 2613 q15_t * pDst,
mturner5 0:b7116bd48af6 2614 uint32_t blockSize);
mturner5 0:b7116bd48af6 2615
mturner5 0:b7116bd48af6 2616 /**
mturner5 0:b7116bd48af6 2617 * @brief Q31 vector subtraction.
mturner5 0:b7116bd48af6 2618 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2619 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2620 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2621 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2622 * @return none.
mturner5 0:b7116bd48af6 2623 */
mturner5 0:b7116bd48af6 2624
mturner5 0:b7116bd48af6 2625 void arm_sub_q31(
mturner5 0:b7116bd48af6 2626 q31_t * pSrcA,
mturner5 0:b7116bd48af6 2627 q31_t * pSrcB,
mturner5 0:b7116bd48af6 2628 q31_t * pDst,
mturner5 0:b7116bd48af6 2629 uint32_t blockSize);
mturner5 0:b7116bd48af6 2630
mturner5 0:b7116bd48af6 2631 /**
mturner5 0:b7116bd48af6 2632 * @brief Multiplies a floating-point vector by a scalar.
mturner5 0:b7116bd48af6 2633 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2634 * @param[in] scale scale factor to be applied
mturner5 0:b7116bd48af6 2635 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2636 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2637 * @return none.
mturner5 0:b7116bd48af6 2638 */
mturner5 0:b7116bd48af6 2639
mturner5 0:b7116bd48af6 2640 void arm_scale_f32(
mturner5 0:b7116bd48af6 2641 float32_t * pSrc,
mturner5 0:b7116bd48af6 2642 float32_t scale,
mturner5 0:b7116bd48af6 2643 float32_t * pDst,
mturner5 0:b7116bd48af6 2644 uint32_t blockSize);
mturner5 0:b7116bd48af6 2645
mturner5 0:b7116bd48af6 2646 /**
mturner5 0:b7116bd48af6 2647 * @brief Multiplies a Q7 vector by a scalar.
mturner5 0:b7116bd48af6 2648 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2649 * @param[in] scaleFract fractional portion of the scale value
mturner5 0:b7116bd48af6 2650 * @param[in] shift number of bits to shift the result by
mturner5 0:b7116bd48af6 2651 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2652 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2653 * @return none.
mturner5 0:b7116bd48af6 2654 */
mturner5 0:b7116bd48af6 2655
mturner5 0:b7116bd48af6 2656 void arm_scale_q7(
mturner5 0:b7116bd48af6 2657 q7_t * pSrc,
mturner5 0:b7116bd48af6 2658 q7_t scaleFract,
mturner5 0:b7116bd48af6 2659 int8_t shift,
mturner5 0:b7116bd48af6 2660 q7_t * pDst,
mturner5 0:b7116bd48af6 2661 uint32_t blockSize);
mturner5 0:b7116bd48af6 2662
mturner5 0:b7116bd48af6 2663 /**
mturner5 0:b7116bd48af6 2664 * @brief Multiplies a Q15 vector by a scalar.
mturner5 0:b7116bd48af6 2665 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2666 * @param[in] scaleFract fractional portion of the scale value
mturner5 0:b7116bd48af6 2667 * @param[in] shift number of bits to shift the result by
mturner5 0:b7116bd48af6 2668 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2669 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2670 * @return none.
mturner5 0:b7116bd48af6 2671 */
mturner5 0:b7116bd48af6 2672
mturner5 0:b7116bd48af6 2673 void arm_scale_q15(
mturner5 0:b7116bd48af6 2674 q15_t * pSrc,
mturner5 0:b7116bd48af6 2675 q15_t scaleFract,
mturner5 0:b7116bd48af6 2676 int8_t shift,
mturner5 0:b7116bd48af6 2677 q15_t * pDst,
mturner5 0:b7116bd48af6 2678 uint32_t blockSize);
mturner5 0:b7116bd48af6 2679
mturner5 0:b7116bd48af6 2680 /**
mturner5 0:b7116bd48af6 2681 * @brief Multiplies a Q31 vector by a scalar.
mturner5 0:b7116bd48af6 2682 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2683 * @param[in] scaleFract fractional portion of the scale value
mturner5 0:b7116bd48af6 2684 * @param[in] shift number of bits to shift the result by
mturner5 0:b7116bd48af6 2685 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2686 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2687 * @return none.
mturner5 0:b7116bd48af6 2688 */
mturner5 0:b7116bd48af6 2689
mturner5 0:b7116bd48af6 2690 void arm_scale_q31(
mturner5 0:b7116bd48af6 2691 q31_t * pSrc,
mturner5 0:b7116bd48af6 2692 q31_t scaleFract,
mturner5 0:b7116bd48af6 2693 int8_t shift,
mturner5 0:b7116bd48af6 2694 q31_t * pDst,
mturner5 0:b7116bd48af6 2695 uint32_t blockSize);
mturner5 0:b7116bd48af6 2696
mturner5 0:b7116bd48af6 2697 /**
mturner5 0:b7116bd48af6 2698 * @brief Q7 vector absolute value.
mturner5 0:b7116bd48af6 2699 * @param[in] *pSrc points to the input buffer
mturner5 0:b7116bd48af6 2700 * @param[out] *pDst points to the output buffer
mturner5 0:b7116bd48af6 2701 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2702 * @return none.
mturner5 0:b7116bd48af6 2703 */
mturner5 0:b7116bd48af6 2704
mturner5 0:b7116bd48af6 2705 void arm_abs_q7(
mturner5 0:b7116bd48af6 2706 q7_t * pSrc,
mturner5 0:b7116bd48af6 2707 q7_t * pDst,
mturner5 0:b7116bd48af6 2708 uint32_t blockSize);
mturner5 0:b7116bd48af6 2709
mturner5 0:b7116bd48af6 2710 /**
mturner5 0:b7116bd48af6 2711 * @brief Floating-point vector absolute value.
mturner5 0:b7116bd48af6 2712 * @param[in] *pSrc points to the input buffer
mturner5 0:b7116bd48af6 2713 * @param[out] *pDst points to the output buffer
mturner5 0:b7116bd48af6 2714 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2715 * @return none.
mturner5 0:b7116bd48af6 2716 */
mturner5 0:b7116bd48af6 2717
mturner5 0:b7116bd48af6 2718 void arm_abs_f32(
mturner5 0:b7116bd48af6 2719 float32_t * pSrc,
mturner5 0:b7116bd48af6 2720 float32_t * pDst,
mturner5 0:b7116bd48af6 2721 uint32_t blockSize);
mturner5 0:b7116bd48af6 2722
mturner5 0:b7116bd48af6 2723 /**
mturner5 0:b7116bd48af6 2724 * @brief Q15 vector absolute value.
mturner5 0:b7116bd48af6 2725 * @param[in] *pSrc points to the input buffer
mturner5 0:b7116bd48af6 2726 * @param[out] *pDst points to the output buffer
mturner5 0:b7116bd48af6 2727 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2728 * @return none.
mturner5 0:b7116bd48af6 2729 */
mturner5 0:b7116bd48af6 2730
mturner5 0:b7116bd48af6 2731 void arm_abs_q15(
mturner5 0:b7116bd48af6 2732 q15_t * pSrc,
mturner5 0:b7116bd48af6 2733 q15_t * pDst,
mturner5 0:b7116bd48af6 2734 uint32_t blockSize);
mturner5 0:b7116bd48af6 2735
mturner5 0:b7116bd48af6 2736 /**
mturner5 0:b7116bd48af6 2737 * @brief Q31 vector absolute value.
mturner5 0:b7116bd48af6 2738 * @param[in] *pSrc points to the input buffer
mturner5 0:b7116bd48af6 2739 * @param[out] *pDst points to the output buffer
mturner5 0:b7116bd48af6 2740 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2741 * @return none.
mturner5 0:b7116bd48af6 2742 */
mturner5 0:b7116bd48af6 2743
mturner5 0:b7116bd48af6 2744 void arm_abs_q31(
mturner5 0:b7116bd48af6 2745 q31_t * pSrc,
mturner5 0:b7116bd48af6 2746 q31_t * pDst,
mturner5 0:b7116bd48af6 2747 uint32_t blockSize);
mturner5 0:b7116bd48af6 2748
mturner5 0:b7116bd48af6 2749 /**
mturner5 0:b7116bd48af6 2750 * @brief Dot product of floating-point vectors.
mturner5 0:b7116bd48af6 2751 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2752 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2753 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2754 * @param[out] *result output result returned here
mturner5 0:b7116bd48af6 2755 * @return none.
mturner5 0:b7116bd48af6 2756 */
mturner5 0:b7116bd48af6 2757
mturner5 0:b7116bd48af6 2758 void arm_dot_prod_f32(
mturner5 0:b7116bd48af6 2759 float32_t * pSrcA,
mturner5 0:b7116bd48af6 2760 float32_t * pSrcB,
mturner5 0:b7116bd48af6 2761 uint32_t blockSize,
mturner5 0:b7116bd48af6 2762 float32_t * result);
mturner5 0:b7116bd48af6 2763
mturner5 0:b7116bd48af6 2764 /**
mturner5 0:b7116bd48af6 2765 * @brief Dot product of Q7 vectors.
mturner5 0:b7116bd48af6 2766 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2767 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2768 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2769 * @param[out] *result output result returned here
mturner5 0:b7116bd48af6 2770 * @return none.
mturner5 0:b7116bd48af6 2771 */
mturner5 0:b7116bd48af6 2772
mturner5 0:b7116bd48af6 2773 void arm_dot_prod_q7(
mturner5 0:b7116bd48af6 2774 q7_t * pSrcA,
mturner5 0:b7116bd48af6 2775 q7_t * pSrcB,
mturner5 0:b7116bd48af6 2776 uint32_t blockSize,
mturner5 0:b7116bd48af6 2777 q31_t * result);
mturner5 0:b7116bd48af6 2778
mturner5 0:b7116bd48af6 2779 /**
mturner5 0:b7116bd48af6 2780 * @brief Dot product of Q15 vectors.
mturner5 0:b7116bd48af6 2781 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2782 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2783 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2784 * @param[out] *result output result returned here
mturner5 0:b7116bd48af6 2785 * @return none.
mturner5 0:b7116bd48af6 2786 */
mturner5 0:b7116bd48af6 2787
mturner5 0:b7116bd48af6 2788 void arm_dot_prod_q15(
mturner5 0:b7116bd48af6 2789 q15_t * pSrcA,
mturner5 0:b7116bd48af6 2790 q15_t * pSrcB,
mturner5 0:b7116bd48af6 2791 uint32_t blockSize,
mturner5 0:b7116bd48af6 2792 q63_t * result);
mturner5 0:b7116bd48af6 2793
mturner5 0:b7116bd48af6 2794 /**
mturner5 0:b7116bd48af6 2795 * @brief Dot product of Q31 vectors.
mturner5 0:b7116bd48af6 2796 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 2797 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 2798 * @param[in] blockSize number of samples in each vector
mturner5 0:b7116bd48af6 2799 * @param[out] *result output result returned here
mturner5 0:b7116bd48af6 2800 * @return none.
mturner5 0:b7116bd48af6 2801 */
mturner5 0:b7116bd48af6 2802
mturner5 0:b7116bd48af6 2803 void arm_dot_prod_q31(
mturner5 0:b7116bd48af6 2804 q31_t * pSrcA,
mturner5 0:b7116bd48af6 2805 q31_t * pSrcB,
mturner5 0:b7116bd48af6 2806 uint32_t blockSize,
mturner5 0:b7116bd48af6 2807 q63_t * result);
mturner5 0:b7116bd48af6 2808
mturner5 0:b7116bd48af6 2809 /**
mturner5 0:b7116bd48af6 2810 * @brief Shifts the elements of a Q7 vector a specified number of bits.
mturner5 0:b7116bd48af6 2811 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2812 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
mturner5 0:b7116bd48af6 2813 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2814 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2815 * @return none.
mturner5 0:b7116bd48af6 2816 */
mturner5 0:b7116bd48af6 2817
mturner5 0:b7116bd48af6 2818 void arm_shift_q7(
mturner5 0:b7116bd48af6 2819 q7_t * pSrc,
mturner5 0:b7116bd48af6 2820 int8_t shiftBits,
mturner5 0:b7116bd48af6 2821 q7_t * pDst,
mturner5 0:b7116bd48af6 2822 uint32_t blockSize);
mturner5 0:b7116bd48af6 2823
mturner5 0:b7116bd48af6 2824 /**
mturner5 0:b7116bd48af6 2825 * @brief Shifts the elements of a Q15 vector a specified number of bits.
mturner5 0:b7116bd48af6 2826 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2827 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
mturner5 0:b7116bd48af6 2828 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2829 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2830 * @return none.
mturner5 0:b7116bd48af6 2831 */
mturner5 0:b7116bd48af6 2832
mturner5 0:b7116bd48af6 2833 void arm_shift_q15(
mturner5 0:b7116bd48af6 2834 q15_t * pSrc,
mturner5 0:b7116bd48af6 2835 int8_t shiftBits,
mturner5 0:b7116bd48af6 2836 q15_t * pDst,
mturner5 0:b7116bd48af6 2837 uint32_t blockSize);
mturner5 0:b7116bd48af6 2838
mturner5 0:b7116bd48af6 2839 /**
mturner5 0:b7116bd48af6 2840 * @brief Shifts the elements of a Q31 vector a specified number of bits.
mturner5 0:b7116bd48af6 2841 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2842 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
mturner5 0:b7116bd48af6 2843 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2844 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2845 * @return none.
mturner5 0:b7116bd48af6 2846 */
mturner5 0:b7116bd48af6 2847
mturner5 0:b7116bd48af6 2848 void arm_shift_q31(
mturner5 0:b7116bd48af6 2849 q31_t * pSrc,
mturner5 0:b7116bd48af6 2850 int8_t shiftBits,
mturner5 0:b7116bd48af6 2851 q31_t * pDst,
mturner5 0:b7116bd48af6 2852 uint32_t blockSize);
mturner5 0:b7116bd48af6 2853
mturner5 0:b7116bd48af6 2854 /**
mturner5 0:b7116bd48af6 2855 * @brief Adds a constant offset to a floating-point vector.
mturner5 0:b7116bd48af6 2856 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2857 * @param[in] offset is the offset to be added
mturner5 0:b7116bd48af6 2858 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2859 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2860 * @return none.
mturner5 0:b7116bd48af6 2861 */
mturner5 0:b7116bd48af6 2862
mturner5 0:b7116bd48af6 2863 void arm_offset_f32(
mturner5 0:b7116bd48af6 2864 float32_t * pSrc,
mturner5 0:b7116bd48af6 2865 float32_t offset,
mturner5 0:b7116bd48af6 2866 float32_t * pDst,
mturner5 0:b7116bd48af6 2867 uint32_t blockSize);
mturner5 0:b7116bd48af6 2868
mturner5 0:b7116bd48af6 2869 /**
mturner5 0:b7116bd48af6 2870 * @brief Adds a constant offset to a Q7 vector.
mturner5 0:b7116bd48af6 2871 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2872 * @param[in] offset is the offset to be added
mturner5 0:b7116bd48af6 2873 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2874 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2875 * @return none.
mturner5 0:b7116bd48af6 2876 */
mturner5 0:b7116bd48af6 2877
mturner5 0:b7116bd48af6 2878 void arm_offset_q7(
mturner5 0:b7116bd48af6 2879 q7_t * pSrc,
mturner5 0:b7116bd48af6 2880 q7_t offset,
mturner5 0:b7116bd48af6 2881 q7_t * pDst,
mturner5 0:b7116bd48af6 2882 uint32_t blockSize);
mturner5 0:b7116bd48af6 2883
mturner5 0:b7116bd48af6 2884 /**
mturner5 0:b7116bd48af6 2885 * @brief Adds a constant offset to a Q15 vector.
mturner5 0:b7116bd48af6 2886 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2887 * @param[in] offset is the offset to be added
mturner5 0:b7116bd48af6 2888 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2889 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2890 * @return none.
mturner5 0:b7116bd48af6 2891 */
mturner5 0:b7116bd48af6 2892
mturner5 0:b7116bd48af6 2893 void arm_offset_q15(
mturner5 0:b7116bd48af6 2894 q15_t * pSrc,
mturner5 0:b7116bd48af6 2895 q15_t offset,
mturner5 0:b7116bd48af6 2896 q15_t * pDst,
mturner5 0:b7116bd48af6 2897 uint32_t blockSize);
mturner5 0:b7116bd48af6 2898
mturner5 0:b7116bd48af6 2899 /**
mturner5 0:b7116bd48af6 2900 * @brief Adds a constant offset to a Q31 vector.
mturner5 0:b7116bd48af6 2901 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2902 * @param[in] offset is the offset to be added
mturner5 0:b7116bd48af6 2903 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2904 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2905 * @return none.
mturner5 0:b7116bd48af6 2906 */
mturner5 0:b7116bd48af6 2907
mturner5 0:b7116bd48af6 2908 void arm_offset_q31(
mturner5 0:b7116bd48af6 2909 q31_t * pSrc,
mturner5 0:b7116bd48af6 2910 q31_t offset,
mturner5 0:b7116bd48af6 2911 q31_t * pDst,
mturner5 0:b7116bd48af6 2912 uint32_t blockSize);
mturner5 0:b7116bd48af6 2913
mturner5 0:b7116bd48af6 2914 /**
mturner5 0:b7116bd48af6 2915 * @brief Negates the elements of a floating-point vector.
mturner5 0:b7116bd48af6 2916 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2917 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2918 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2919 * @return none.
mturner5 0:b7116bd48af6 2920 */
mturner5 0:b7116bd48af6 2921
mturner5 0:b7116bd48af6 2922 void arm_negate_f32(
mturner5 0:b7116bd48af6 2923 float32_t * pSrc,
mturner5 0:b7116bd48af6 2924 float32_t * pDst,
mturner5 0:b7116bd48af6 2925 uint32_t blockSize);
mturner5 0:b7116bd48af6 2926
mturner5 0:b7116bd48af6 2927 /**
mturner5 0:b7116bd48af6 2928 * @brief Negates the elements of a Q7 vector.
mturner5 0:b7116bd48af6 2929 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2930 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2931 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2932 * @return none.
mturner5 0:b7116bd48af6 2933 */
mturner5 0:b7116bd48af6 2934
mturner5 0:b7116bd48af6 2935 void arm_negate_q7(
mturner5 0:b7116bd48af6 2936 q7_t * pSrc,
mturner5 0:b7116bd48af6 2937 q7_t * pDst,
mturner5 0:b7116bd48af6 2938 uint32_t blockSize);
mturner5 0:b7116bd48af6 2939
mturner5 0:b7116bd48af6 2940 /**
mturner5 0:b7116bd48af6 2941 * @brief Negates the elements of a Q15 vector.
mturner5 0:b7116bd48af6 2942 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2943 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2944 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2945 * @return none.
mturner5 0:b7116bd48af6 2946 */
mturner5 0:b7116bd48af6 2947
mturner5 0:b7116bd48af6 2948 void arm_negate_q15(
mturner5 0:b7116bd48af6 2949 q15_t * pSrc,
mturner5 0:b7116bd48af6 2950 q15_t * pDst,
mturner5 0:b7116bd48af6 2951 uint32_t blockSize);
mturner5 0:b7116bd48af6 2952
mturner5 0:b7116bd48af6 2953 /**
mturner5 0:b7116bd48af6 2954 * @brief Negates the elements of a Q31 vector.
mturner5 0:b7116bd48af6 2955 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 2956 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 2957 * @param[in] blockSize number of samples in the vector
mturner5 0:b7116bd48af6 2958 * @return none.
mturner5 0:b7116bd48af6 2959 */
mturner5 0:b7116bd48af6 2960
mturner5 0:b7116bd48af6 2961 void arm_negate_q31(
mturner5 0:b7116bd48af6 2962 q31_t * pSrc,
mturner5 0:b7116bd48af6 2963 q31_t * pDst,
mturner5 0:b7116bd48af6 2964 uint32_t blockSize);
mturner5 0:b7116bd48af6 2965 /**
mturner5 0:b7116bd48af6 2966 * @brief Copies the elements of a floating-point vector.
mturner5 0:b7116bd48af6 2967 * @param[in] *pSrc input pointer
mturner5 0:b7116bd48af6 2968 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 2969 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 2970 * @return none.
mturner5 0:b7116bd48af6 2971 */
mturner5 0:b7116bd48af6 2972 void arm_copy_f32(
mturner5 0:b7116bd48af6 2973 float32_t * pSrc,
mturner5 0:b7116bd48af6 2974 float32_t * pDst,
mturner5 0:b7116bd48af6 2975 uint32_t blockSize);
mturner5 0:b7116bd48af6 2976
mturner5 0:b7116bd48af6 2977 /**
mturner5 0:b7116bd48af6 2978 * @brief Copies the elements of a Q7 vector.
mturner5 0:b7116bd48af6 2979 * @param[in] *pSrc input pointer
mturner5 0:b7116bd48af6 2980 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 2981 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 2982 * @return none.
mturner5 0:b7116bd48af6 2983 */
mturner5 0:b7116bd48af6 2984 void arm_copy_q7(
mturner5 0:b7116bd48af6 2985 q7_t * pSrc,
mturner5 0:b7116bd48af6 2986 q7_t * pDst,
mturner5 0:b7116bd48af6 2987 uint32_t blockSize);
mturner5 0:b7116bd48af6 2988
mturner5 0:b7116bd48af6 2989 /**
mturner5 0:b7116bd48af6 2990 * @brief Copies the elements of a Q15 vector.
mturner5 0:b7116bd48af6 2991 * @param[in] *pSrc input pointer
mturner5 0:b7116bd48af6 2992 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 2993 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 2994 * @return none.
mturner5 0:b7116bd48af6 2995 */
mturner5 0:b7116bd48af6 2996 void arm_copy_q15(
mturner5 0:b7116bd48af6 2997 q15_t * pSrc,
mturner5 0:b7116bd48af6 2998 q15_t * pDst,
mturner5 0:b7116bd48af6 2999 uint32_t blockSize);
mturner5 0:b7116bd48af6 3000
mturner5 0:b7116bd48af6 3001 /**
mturner5 0:b7116bd48af6 3002 * @brief Copies the elements of a Q31 vector.
mturner5 0:b7116bd48af6 3003 * @param[in] *pSrc input pointer
mturner5 0:b7116bd48af6 3004 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 3005 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 3006 * @return none.
mturner5 0:b7116bd48af6 3007 */
mturner5 0:b7116bd48af6 3008 void arm_copy_q31(
mturner5 0:b7116bd48af6 3009 q31_t * pSrc,
mturner5 0:b7116bd48af6 3010 q31_t * pDst,
mturner5 0:b7116bd48af6 3011 uint32_t blockSize);
mturner5 0:b7116bd48af6 3012 /**
mturner5 0:b7116bd48af6 3013 * @brief Fills a constant value into a floating-point vector.
mturner5 0:b7116bd48af6 3014 * @param[in] value input value to be filled
mturner5 0:b7116bd48af6 3015 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 3016 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 3017 * @return none.
mturner5 0:b7116bd48af6 3018 */
mturner5 0:b7116bd48af6 3019 void arm_fill_f32(
mturner5 0:b7116bd48af6 3020 float32_t value,
mturner5 0:b7116bd48af6 3021 float32_t * pDst,
mturner5 0:b7116bd48af6 3022 uint32_t blockSize);
mturner5 0:b7116bd48af6 3023
mturner5 0:b7116bd48af6 3024 /**
mturner5 0:b7116bd48af6 3025 * @brief Fills a constant value into a Q7 vector.
mturner5 0:b7116bd48af6 3026 * @param[in] value input value to be filled
mturner5 0:b7116bd48af6 3027 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 3028 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 3029 * @return none.
mturner5 0:b7116bd48af6 3030 */
mturner5 0:b7116bd48af6 3031 void arm_fill_q7(
mturner5 0:b7116bd48af6 3032 q7_t value,
mturner5 0:b7116bd48af6 3033 q7_t * pDst,
mturner5 0:b7116bd48af6 3034 uint32_t blockSize);
mturner5 0:b7116bd48af6 3035
mturner5 0:b7116bd48af6 3036 /**
mturner5 0:b7116bd48af6 3037 * @brief Fills a constant value into a Q15 vector.
mturner5 0:b7116bd48af6 3038 * @param[in] value input value to be filled
mturner5 0:b7116bd48af6 3039 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 3040 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 3041 * @return none.
mturner5 0:b7116bd48af6 3042 */
mturner5 0:b7116bd48af6 3043 void arm_fill_q15(
mturner5 0:b7116bd48af6 3044 q15_t value,
mturner5 0:b7116bd48af6 3045 q15_t * pDst,
mturner5 0:b7116bd48af6 3046 uint32_t blockSize);
mturner5 0:b7116bd48af6 3047
mturner5 0:b7116bd48af6 3048 /**
mturner5 0:b7116bd48af6 3049 * @brief Fills a constant value into a Q31 vector.
mturner5 0:b7116bd48af6 3050 * @param[in] value input value to be filled
mturner5 0:b7116bd48af6 3051 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 3052 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 3053 * @return none.
mturner5 0:b7116bd48af6 3054 */
mturner5 0:b7116bd48af6 3055 void arm_fill_q31(
mturner5 0:b7116bd48af6 3056 q31_t value,
mturner5 0:b7116bd48af6 3057 q31_t * pDst,
mturner5 0:b7116bd48af6 3058 uint32_t blockSize);
mturner5 0:b7116bd48af6 3059
mturner5 0:b7116bd48af6 3060 /**
mturner5 0:b7116bd48af6 3061 * @brief Convolution of floating-point sequences.
mturner5 0:b7116bd48af6 3062 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3063 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3064 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3065 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3066 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
mturner5 0:b7116bd48af6 3067 * @return none.
mturner5 0:b7116bd48af6 3068 */
mturner5 0:b7116bd48af6 3069
mturner5 0:b7116bd48af6 3070 void arm_conv_f32(
mturner5 0:b7116bd48af6 3071 float32_t * pSrcA,
mturner5 0:b7116bd48af6 3072 uint32_t srcALen,
mturner5 0:b7116bd48af6 3073 float32_t * pSrcB,
mturner5 0:b7116bd48af6 3074 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3075 float32_t * pDst);
mturner5 0:b7116bd48af6 3076
mturner5 0:b7116bd48af6 3077
mturner5 0:b7116bd48af6 3078 /**
mturner5 0:b7116bd48af6 3079 * @brief Convolution of Q15 sequences.
mturner5 0:b7116bd48af6 3080 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3081 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3082 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3083 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3084 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
mturner5 0:b7116bd48af6 3085 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
mturner5 0:b7116bd48af6 3086 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
mturner5 0:b7116bd48af6 3087 * @return none.
mturner5 0:b7116bd48af6 3088 */
mturner5 0:b7116bd48af6 3089
mturner5 0:b7116bd48af6 3090
mturner5 0:b7116bd48af6 3091 void arm_conv_opt_q15(
mturner5 0:b7116bd48af6 3092 q15_t * pSrcA,
mturner5 0:b7116bd48af6 3093 uint32_t srcALen,
mturner5 0:b7116bd48af6 3094 q15_t * pSrcB,
mturner5 0:b7116bd48af6 3095 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3096 q15_t * pDst,
mturner5 0:b7116bd48af6 3097 q15_t * pScratch1,
mturner5 0:b7116bd48af6 3098 q15_t * pScratch2);
mturner5 0:b7116bd48af6 3099
mturner5 0:b7116bd48af6 3100
mturner5 0:b7116bd48af6 3101 /**
mturner5 0:b7116bd48af6 3102 * @brief Convolution of Q15 sequences.
mturner5 0:b7116bd48af6 3103 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3104 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3105 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3106 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3107 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
mturner5 0:b7116bd48af6 3108 * @return none.
mturner5 0:b7116bd48af6 3109 */
mturner5 0:b7116bd48af6 3110
mturner5 0:b7116bd48af6 3111 void arm_conv_q15(
mturner5 0:b7116bd48af6 3112 q15_t * pSrcA,
mturner5 0:b7116bd48af6 3113 uint32_t srcALen,
mturner5 0:b7116bd48af6 3114 q15_t * pSrcB,
mturner5 0:b7116bd48af6 3115 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3116 q15_t * pDst);
mturner5 0:b7116bd48af6 3117
mturner5 0:b7116bd48af6 3118 /**
mturner5 0:b7116bd48af6 3119 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
mturner5 0:b7116bd48af6 3120 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3121 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3122 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3123 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3124 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
mturner5 0:b7116bd48af6 3125 * @return none.
mturner5 0:b7116bd48af6 3126 */
mturner5 0:b7116bd48af6 3127
mturner5 0:b7116bd48af6 3128 void arm_conv_fast_q15(
mturner5 0:b7116bd48af6 3129 q15_t * pSrcA,
mturner5 0:b7116bd48af6 3130 uint32_t srcALen,
mturner5 0:b7116bd48af6 3131 q15_t * pSrcB,
mturner5 0:b7116bd48af6 3132 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3133 q15_t * pDst);
mturner5 0:b7116bd48af6 3134
mturner5 0:b7116bd48af6 3135 /**
mturner5 0:b7116bd48af6 3136 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
mturner5 0:b7116bd48af6 3137 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3138 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3139 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3140 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3141 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
mturner5 0:b7116bd48af6 3142 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
mturner5 0:b7116bd48af6 3143 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
mturner5 0:b7116bd48af6 3144 * @return none.
mturner5 0:b7116bd48af6 3145 */
mturner5 0:b7116bd48af6 3146
mturner5 0:b7116bd48af6 3147 void arm_conv_fast_opt_q15(
mturner5 0:b7116bd48af6 3148 q15_t * pSrcA,
mturner5 0:b7116bd48af6 3149 uint32_t srcALen,
mturner5 0:b7116bd48af6 3150 q15_t * pSrcB,
mturner5 0:b7116bd48af6 3151 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3152 q15_t * pDst,
mturner5 0:b7116bd48af6 3153 q15_t * pScratch1,
mturner5 0:b7116bd48af6 3154 q15_t * pScratch2);
mturner5 0:b7116bd48af6 3155
mturner5 0:b7116bd48af6 3156
mturner5 0:b7116bd48af6 3157
mturner5 0:b7116bd48af6 3158 /**
mturner5 0:b7116bd48af6 3159 * @brief Convolution of Q31 sequences.
mturner5 0:b7116bd48af6 3160 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3161 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3162 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3163 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3164 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
mturner5 0:b7116bd48af6 3165 * @return none.
mturner5 0:b7116bd48af6 3166 */
mturner5 0:b7116bd48af6 3167
mturner5 0:b7116bd48af6 3168 void arm_conv_q31(
mturner5 0:b7116bd48af6 3169 q31_t * pSrcA,
mturner5 0:b7116bd48af6 3170 uint32_t srcALen,
mturner5 0:b7116bd48af6 3171 q31_t * pSrcB,
mturner5 0:b7116bd48af6 3172 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3173 q31_t * pDst);
mturner5 0:b7116bd48af6 3174
mturner5 0:b7116bd48af6 3175 /**
mturner5 0:b7116bd48af6 3176 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
mturner5 0:b7116bd48af6 3177 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3178 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3179 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3180 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3181 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
mturner5 0:b7116bd48af6 3182 * @return none.
mturner5 0:b7116bd48af6 3183 */
mturner5 0:b7116bd48af6 3184
mturner5 0:b7116bd48af6 3185 void arm_conv_fast_q31(
mturner5 0:b7116bd48af6 3186 q31_t * pSrcA,
mturner5 0:b7116bd48af6 3187 uint32_t srcALen,
mturner5 0:b7116bd48af6 3188 q31_t * pSrcB,
mturner5 0:b7116bd48af6 3189 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3190 q31_t * pDst);
mturner5 0:b7116bd48af6 3191
mturner5 0:b7116bd48af6 3192
mturner5 0:b7116bd48af6 3193 /**
mturner5 0:b7116bd48af6 3194 * @brief Convolution of Q7 sequences.
mturner5 0:b7116bd48af6 3195 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3196 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3197 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3198 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3199 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
mturner5 0:b7116bd48af6 3200 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
mturner5 0:b7116bd48af6 3201 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
mturner5 0:b7116bd48af6 3202 * @return none.
mturner5 0:b7116bd48af6 3203 */
mturner5 0:b7116bd48af6 3204
mturner5 0:b7116bd48af6 3205 void arm_conv_opt_q7(
mturner5 0:b7116bd48af6 3206 q7_t * pSrcA,
mturner5 0:b7116bd48af6 3207 uint32_t srcALen,
mturner5 0:b7116bd48af6 3208 q7_t * pSrcB,
mturner5 0:b7116bd48af6 3209 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3210 q7_t * pDst,
mturner5 0:b7116bd48af6 3211 q15_t * pScratch1,
mturner5 0:b7116bd48af6 3212 q15_t * pScratch2);
mturner5 0:b7116bd48af6 3213
mturner5 0:b7116bd48af6 3214
mturner5 0:b7116bd48af6 3215
mturner5 0:b7116bd48af6 3216 /**
mturner5 0:b7116bd48af6 3217 * @brief Convolution of Q7 sequences.
mturner5 0:b7116bd48af6 3218 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3219 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3220 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3221 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3222 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
mturner5 0:b7116bd48af6 3223 * @return none.
mturner5 0:b7116bd48af6 3224 */
mturner5 0:b7116bd48af6 3225
mturner5 0:b7116bd48af6 3226 void arm_conv_q7(
mturner5 0:b7116bd48af6 3227 q7_t * pSrcA,
mturner5 0:b7116bd48af6 3228 uint32_t srcALen,
mturner5 0:b7116bd48af6 3229 q7_t * pSrcB,
mturner5 0:b7116bd48af6 3230 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3231 q7_t * pDst);
mturner5 0:b7116bd48af6 3232
mturner5 0:b7116bd48af6 3233
mturner5 0:b7116bd48af6 3234 /**
mturner5 0:b7116bd48af6 3235 * @brief Partial convolution of floating-point sequences.
mturner5 0:b7116bd48af6 3236 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3237 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3238 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3239 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3240 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3241 * @param[in] firstIndex is the first output sample to start with.
mturner5 0:b7116bd48af6 3242 * @param[in] numPoints is the number of output points to be computed.
mturner5 0:b7116bd48af6 3243 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
mturner5 0:b7116bd48af6 3244 */
mturner5 0:b7116bd48af6 3245
mturner5 0:b7116bd48af6 3246 arm_status arm_conv_partial_f32(
mturner5 0:b7116bd48af6 3247 float32_t * pSrcA,
mturner5 0:b7116bd48af6 3248 uint32_t srcALen,
mturner5 0:b7116bd48af6 3249 float32_t * pSrcB,
mturner5 0:b7116bd48af6 3250 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3251 float32_t * pDst,
mturner5 0:b7116bd48af6 3252 uint32_t firstIndex,
mturner5 0:b7116bd48af6 3253 uint32_t numPoints);
mturner5 0:b7116bd48af6 3254
mturner5 0:b7116bd48af6 3255 /**
mturner5 0:b7116bd48af6 3256 * @brief Partial convolution of Q15 sequences.
mturner5 0:b7116bd48af6 3257 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3258 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3259 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3260 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3261 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3262 * @param[in] firstIndex is the first output sample to start with.
mturner5 0:b7116bd48af6 3263 * @param[in] numPoints is the number of output points to be computed.
mturner5 0:b7116bd48af6 3264 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
mturner5 0:b7116bd48af6 3265 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
mturner5 0:b7116bd48af6 3266 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
mturner5 0:b7116bd48af6 3267 */
mturner5 0:b7116bd48af6 3268
mturner5 0:b7116bd48af6 3269 arm_status arm_conv_partial_opt_q15(
mturner5 0:b7116bd48af6 3270 q15_t * pSrcA,
mturner5 0:b7116bd48af6 3271 uint32_t srcALen,
mturner5 0:b7116bd48af6 3272 q15_t * pSrcB,
mturner5 0:b7116bd48af6 3273 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3274 q15_t * pDst,
mturner5 0:b7116bd48af6 3275 uint32_t firstIndex,
mturner5 0:b7116bd48af6 3276 uint32_t numPoints,
mturner5 0:b7116bd48af6 3277 q15_t * pScratch1,
mturner5 0:b7116bd48af6 3278 q15_t * pScratch2);
mturner5 0:b7116bd48af6 3279
mturner5 0:b7116bd48af6 3280
mturner5 0:b7116bd48af6 3281 /**
mturner5 0:b7116bd48af6 3282 * @brief Partial convolution of Q15 sequences.
mturner5 0:b7116bd48af6 3283 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3284 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3285 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3286 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3287 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3288 * @param[in] firstIndex is the first output sample to start with.
mturner5 0:b7116bd48af6 3289 * @param[in] numPoints is the number of output points to be computed.
mturner5 0:b7116bd48af6 3290 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
mturner5 0:b7116bd48af6 3291 */
mturner5 0:b7116bd48af6 3292
mturner5 0:b7116bd48af6 3293 arm_status arm_conv_partial_q15(
mturner5 0:b7116bd48af6 3294 q15_t * pSrcA,
mturner5 0:b7116bd48af6 3295 uint32_t srcALen,
mturner5 0:b7116bd48af6 3296 q15_t * pSrcB,
mturner5 0:b7116bd48af6 3297 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3298 q15_t * pDst,
mturner5 0:b7116bd48af6 3299 uint32_t firstIndex,
mturner5 0:b7116bd48af6 3300 uint32_t numPoints);
mturner5 0:b7116bd48af6 3301
mturner5 0:b7116bd48af6 3302 /**
mturner5 0:b7116bd48af6 3303 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
mturner5 0:b7116bd48af6 3304 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3305 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3306 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3307 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3308 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3309 * @param[in] firstIndex is the first output sample to start with.
mturner5 0:b7116bd48af6 3310 * @param[in] numPoints is the number of output points to be computed.
mturner5 0:b7116bd48af6 3311 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
mturner5 0:b7116bd48af6 3312 */
mturner5 0:b7116bd48af6 3313
mturner5 0:b7116bd48af6 3314 arm_status arm_conv_partial_fast_q15(
mturner5 0:b7116bd48af6 3315 q15_t * pSrcA,
mturner5 0:b7116bd48af6 3316 uint32_t srcALen,
mturner5 0:b7116bd48af6 3317 q15_t * pSrcB,
mturner5 0:b7116bd48af6 3318 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3319 q15_t * pDst,
mturner5 0:b7116bd48af6 3320 uint32_t firstIndex,
mturner5 0:b7116bd48af6 3321 uint32_t numPoints);
mturner5 0:b7116bd48af6 3322
mturner5 0:b7116bd48af6 3323
mturner5 0:b7116bd48af6 3324 /**
mturner5 0:b7116bd48af6 3325 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
mturner5 0:b7116bd48af6 3326 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3327 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3328 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3329 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3330 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3331 * @param[in] firstIndex is the first output sample to start with.
mturner5 0:b7116bd48af6 3332 * @param[in] numPoints is the number of output points to be computed.
mturner5 0:b7116bd48af6 3333 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
mturner5 0:b7116bd48af6 3334 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
mturner5 0:b7116bd48af6 3335 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
mturner5 0:b7116bd48af6 3336 */
mturner5 0:b7116bd48af6 3337
mturner5 0:b7116bd48af6 3338 arm_status arm_conv_partial_fast_opt_q15(
mturner5 0:b7116bd48af6 3339 q15_t * pSrcA,
mturner5 0:b7116bd48af6 3340 uint32_t srcALen,
mturner5 0:b7116bd48af6 3341 q15_t * pSrcB,
mturner5 0:b7116bd48af6 3342 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3343 q15_t * pDst,
mturner5 0:b7116bd48af6 3344 uint32_t firstIndex,
mturner5 0:b7116bd48af6 3345 uint32_t numPoints,
mturner5 0:b7116bd48af6 3346 q15_t * pScratch1,
mturner5 0:b7116bd48af6 3347 q15_t * pScratch2);
mturner5 0:b7116bd48af6 3348
mturner5 0:b7116bd48af6 3349
mturner5 0:b7116bd48af6 3350 /**
mturner5 0:b7116bd48af6 3351 * @brief Partial convolution of Q31 sequences.
mturner5 0:b7116bd48af6 3352 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3353 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3354 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3355 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3356 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3357 * @param[in] firstIndex is the first output sample to start with.
mturner5 0:b7116bd48af6 3358 * @param[in] numPoints is the number of output points to be computed.
mturner5 0:b7116bd48af6 3359 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
mturner5 0:b7116bd48af6 3360 */
mturner5 0:b7116bd48af6 3361
mturner5 0:b7116bd48af6 3362 arm_status arm_conv_partial_q31(
mturner5 0:b7116bd48af6 3363 q31_t * pSrcA,
mturner5 0:b7116bd48af6 3364 uint32_t srcALen,
mturner5 0:b7116bd48af6 3365 q31_t * pSrcB,
mturner5 0:b7116bd48af6 3366 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3367 q31_t * pDst,
mturner5 0:b7116bd48af6 3368 uint32_t firstIndex,
mturner5 0:b7116bd48af6 3369 uint32_t numPoints);
mturner5 0:b7116bd48af6 3370
mturner5 0:b7116bd48af6 3371
mturner5 0:b7116bd48af6 3372 /**
mturner5 0:b7116bd48af6 3373 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
mturner5 0:b7116bd48af6 3374 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3375 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3376 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3377 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3378 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3379 * @param[in] firstIndex is the first output sample to start with.
mturner5 0:b7116bd48af6 3380 * @param[in] numPoints is the number of output points to be computed.
mturner5 0:b7116bd48af6 3381 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
mturner5 0:b7116bd48af6 3382 */
mturner5 0:b7116bd48af6 3383
mturner5 0:b7116bd48af6 3384 arm_status arm_conv_partial_fast_q31(
mturner5 0:b7116bd48af6 3385 q31_t * pSrcA,
mturner5 0:b7116bd48af6 3386 uint32_t srcALen,
mturner5 0:b7116bd48af6 3387 q31_t * pSrcB,
mturner5 0:b7116bd48af6 3388 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3389 q31_t * pDst,
mturner5 0:b7116bd48af6 3390 uint32_t firstIndex,
mturner5 0:b7116bd48af6 3391 uint32_t numPoints);
mturner5 0:b7116bd48af6 3392
mturner5 0:b7116bd48af6 3393
mturner5 0:b7116bd48af6 3394 /**
mturner5 0:b7116bd48af6 3395 * @brief Partial convolution of Q7 sequences
mturner5 0:b7116bd48af6 3396 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3397 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3398 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3399 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3400 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3401 * @param[in] firstIndex is the first output sample to start with.
mturner5 0:b7116bd48af6 3402 * @param[in] numPoints is the number of output points to be computed.
mturner5 0:b7116bd48af6 3403 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
mturner5 0:b7116bd48af6 3404 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
mturner5 0:b7116bd48af6 3405 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
mturner5 0:b7116bd48af6 3406 */
mturner5 0:b7116bd48af6 3407
mturner5 0:b7116bd48af6 3408 arm_status arm_conv_partial_opt_q7(
mturner5 0:b7116bd48af6 3409 q7_t * pSrcA,
mturner5 0:b7116bd48af6 3410 uint32_t srcALen,
mturner5 0:b7116bd48af6 3411 q7_t * pSrcB,
mturner5 0:b7116bd48af6 3412 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3413 q7_t * pDst,
mturner5 0:b7116bd48af6 3414 uint32_t firstIndex,
mturner5 0:b7116bd48af6 3415 uint32_t numPoints,
mturner5 0:b7116bd48af6 3416 q15_t * pScratch1,
mturner5 0:b7116bd48af6 3417 q15_t * pScratch2);
mturner5 0:b7116bd48af6 3418
mturner5 0:b7116bd48af6 3419
mturner5 0:b7116bd48af6 3420 /**
mturner5 0:b7116bd48af6 3421 * @brief Partial convolution of Q7 sequences.
mturner5 0:b7116bd48af6 3422 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 3423 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 3424 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 3425 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 3426 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3427 * @param[in] firstIndex is the first output sample to start with.
mturner5 0:b7116bd48af6 3428 * @param[in] numPoints is the number of output points to be computed.
mturner5 0:b7116bd48af6 3429 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
mturner5 0:b7116bd48af6 3430 */
mturner5 0:b7116bd48af6 3431
mturner5 0:b7116bd48af6 3432 arm_status arm_conv_partial_q7(
mturner5 0:b7116bd48af6 3433 q7_t * pSrcA,
mturner5 0:b7116bd48af6 3434 uint32_t srcALen,
mturner5 0:b7116bd48af6 3435 q7_t * pSrcB,
mturner5 0:b7116bd48af6 3436 uint32_t srcBLen,
mturner5 0:b7116bd48af6 3437 q7_t * pDst,
mturner5 0:b7116bd48af6 3438 uint32_t firstIndex,
mturner5 0:b7116bd48af6 3439 uint32_t numPoints);
mturner5 0:b7116bd48af6 3440
mturner5 0:b7116bd48af6 3441
mturner5 0:b7116bd48af6 3442
mturner5 0:b7116bd48af6 3443 /**
mturner5 0:b7116bd48af6 3444 * @brief Instance structure for the Q15 FIR decimator.
mturner5 0:b7116bd48af6 3445 */
mturner5 0:b7116bd48af6 3446
mturner5 0:b7116bd48af6 3447 typedef struct
mturner5 0:b7116bd48af6 3448 {
mturner5 0:b7116bd48af6 3449 uint8_t M; /**< decimation factor. */
mturner5 0:b7116bd48af6 3450 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 3451 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
mturner5 0:b7116bd48af6 3452 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 3453 } arm_fir_decimate_instance_q15;
mturner5 0:b7116bd48af6 3454
mturner5 0:b7116bd48af6 3455 /**
mturner5 0:b7116bd48af6 3456 * @brief Instance structure for the Q31 FIR decimator.
mturner5 0:b7116bd48af6 3457 */
mturner5 0:b7116bd48af6 3458
mturner5 0:b7116bd48af6 3459 typedef struct
mturner5 0:b7116bd48af6 3460 {
mturner5 0:b7116bd48af6 3461 uint8_t M; /**< decimation factor. */
mturner5 0:b7116bd48af6 3462 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 3463 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
mturner5 0:b7116bd48af6 3464 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 3465
mturner5 0:b7116bd48af6 3466 } arm_fir_decimate_instance_q31;
mturner5 0:b7116bd48af6 3467
mturner5 0:b7116bd48af6 3468 /**
mturner5 0:b7116bd48af6 3469 * @brief Instance structure for the floating-point FIR decimator.
mturner5 0:b7116bd48af6 3470 */
mturner5 0:b7116bd48af6 3471
mturner5 0:b7116bd48af6 3472 typedef struct
mturner5 0:b7116bd48af6 3473 {
mturner5 0:b7116bd48af6 3474 uint8_t M; /**< decimation factor. */
mturner5 0:b7116bd48af6 3475 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 3476 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
mturner5 0:b7116bd48af6 3477 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 3478
mturner5 0:b7116bd48af6 3479 } arm_fir_decimate_instance_f32;
mturner5 0:b7116bd48af6 3480
mturner5 0:b7116bd48af6 3481
mturner5 0:b7116bd48af6 3482
mturner5 0:b7116bd48af6 3483 /**
mturner5 0:b7116bd48af6 3484 * @brief Processing function for the floating-point FIR decimator.
mturner5 0:b7116bd48af6 3485 * @param[in] *S points to an instance of the floating-point FIR decimator structure.
mturner5 0:b7116bd48af6 3486 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3487 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3488 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3489 * @return none
mturner5 0:b7116bd48af6 3490 */
mturner5 0:b7116bd48af6 3491
mturner5 0:b7116bd48af6 3492 void arm_fir_decimate_f32(
mturner5 0:b7116bd48af6 3493 const arm_fir_decimate_instance_f32 * S,
mturner5 0:b7116bd48af6 3494 float32_t * pSrc,
mturner5 0:b7116bd48af6 3495 float32_t * pDst,
mturner5 0:b7116bd48af6 3496 uint32_t blockSize);
mturner5 0:b7116bd48af6 3497
mturner5 0:b7116bd48af6 3498
mturner5 0:b7116bd48af6 3499 /**
mturner5 0:b7116bd48af6 3500 * @brief Initialization function for the floating-point FIR decimator.
mturner5 0:b7116bd48af6 3501 * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
mturner5 0:b7116bd48af6 3502 * @param[in] numTaps number of coefficients in the filter.
mturner5 0:b7116bd48af6 3503 * @param[in] M decimation factor.
mturner5 0:b7116bd48af6 3504 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 3505 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3506 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3507 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
mturner5 0:b7116bd48af6 3508 * <code>blockSize</code> is not a multiple of <code>M</code>.
mturner5 0:b7116bd48af6 3509 */
mturner5 0:b7116bd48af6 3510
mturner5 0:b7116bd48af6 3511 arm_status arm_fir_decimate_init_f32(
mturner5 0:b7116bd48af6 3512 arm_fir_decimate_instance_f32 * S,
mturner5 0:b7116bd48af6 3513 uint16_t numTaps,
mturner5 0:b7116bd48af6 3514 uint8_t M,
mturner5 0:b7116bd48af6 3515 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 3516 float32_t * pState,
mturner5 0:b7116bd48af6 3517 uint32_t blockSize);
mturner5 0:b7116bd48af6 3518
mturner5 0:b7116bd48af6 3519 /**
mturner5 0:b7116bd48af6 3520 * @brief Processing function for the Q15 FIR decimator.
mturner5 0:b7116bd48af6 3521 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
mturner5 0:b7116bd48af6 3522 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3523 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3524 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3525 * @return none
mturner5 0:b7116bd48af6 3526 */
mturner5 0:b7116bd48af6 3527
mturner5 0:b7116bd48af6 3528 void arm_fir_decimate_q15(
mturner5 0:b7116bd48af6 3529 const arm_fir_decimate_instance_q15 * S,
mturner5 0:b7116bd48af6 3530 q15_t * pSrc,
mturner5 0:b7116bd48af6 3531 q15_t * pDst,
mturner5 0:b7116bd48af6 3532 uint32_t blockSize);
mturner5 0:b7116bd48af6 3533
mturner5 0:b7116bd48af6 3534 /**
mturner5 0:b7116bd48af6 3535 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
mturner5 0:b7116bd48af6 3536 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
mturner5 0:b7116bd48af6 3537 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3538 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3539 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3540 * @return none
mturner5 0:b7116bd48af6 3541 */
mturner5 0:b7116bd48af6 3542
mturner5 0:b7116bd48af6 3543 void arm_fir_decimate_fast_q15(
mturner5 0:b7116bd48af6 3544 const arm_fir_decimate_instance_q15 * S,
mturner5 0:b7116bd48af6 3545 q15_t * pSrc,
mturner5 0:b7116bd48af6 3546 q15_t * pDst,
mturner5 0:b7116bd48af6 3547 uint32_t blockSize);
mturner5 0:b7116bd48af6 3548
mturner5 0:b7116bd48af6 3549
mturner5 0:b7116bd48af6 3550
mturner5 0:b7116bd48af6 3551 /**
mturner5 0:b7116bd48af6 3552 * @brief Initialization function for the Q15 FIR decimator.
mturner5 0:b7116bd48af6 3553 * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
mturner5 0:b7116bd48af6 3554 * @param[in] numTaps number of coefficients in the filter.
mturner5 0:b7116bd48af6 3555 * @param[in] M decimation factor.
mturner5 0:b7116bd48af6 3556 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 3557 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3558 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3559 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
mturner5 0:b7116bd48af6 3560 * <code>blockSize</code> is not a multiple of <code>M</code>.
mturner5 0:b7116bd48af6 3561 */
mturner5 0:b7116bd48af6 3562
mturner5 0:b7116bd48af6 3563 arm_status arm_fir_decimate_init_q15(
mturner5 0:b7116bd48af6 3564 arm_fir_decimate_instance_q15 * S,
mturner5 0:b7116bd48af6 3565 uint16_t numTaps,
mturner5 0:b7116bd48af6 3566 uint8_t M,
mturner5 0:b7116bd48af6 3567 q15_t * pCoeffs,
mturner5 0:b7116bd48af6 3568 q15_t * pState,
mturner5 0:b7116bd48af6 3569 uint32_t blockSize);
mturner5 0:b7116bd48af6 3570
mturner5 0:b7116bd48af6 3571 /**
mturner5 0:b7116bd48af6 3572 * @brief Processing function for the Q31 FIR decimator.
mturner5 0:b7116bd48af6 3573 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
mturner5 0:b7116bd48af6 3574 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3575 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3576 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3577 * @return none
mturner5 0:b7116bd48af6 3578 */
mturner5 0:b7116bd48af6 3579
mturner5 0:b7116bd48af6 3580 void arm_fir_decimate_q31(
mturner5 0:b7116bd48af6 3581 const arm_fir_decimate_instance_q31 * S,
mturner5 0:b7116bd48af6 3582 q31_t * pSrc,
mturner5 0:b7116bd48af6 3583 q31_t * pDst,
mturner5 0:b7116bd48af6 3584 uint32_t blockSize);
mturner5 0:b7116bd48af6 3585
mturner5 0:b7116bd48af6 3586 /**
mturner5 0:b7116bd48af6 3587 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
mturner5 0:b7116bd48af6 3588 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
mturner5 0:b7116bd48af6 3589 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3590 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3591 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3592 * @return none
mturner5 0:b7116bd48af6 3593 */
mturner5 0:b7116bd48af6 3594
mturner5 0:b7116bd48af6 3595 void arm_fir_decimate_fast_q31(
mturner5 0:b7116bd48af6 3596 arm_fir_decimate_instance_q31 * S,
mturner5 0:b7116bd48af6 3597 q31_t * pSrc,
mturner5 0:b7116bd48af6 3598 q31_t * pDst,
mturner5 0:b7116bd48af6 3599 uint32_t blockSize);
mturner5 0:b7116bd48af6 3600
mturner5 0:b7116bd48af6 3601
mturner5 0:b7116bd48af6 3602 /**
mturner5 0:b7116bd48af6 3603 * @brief Initialization function for the Q31 FIR decimator.
mturner5 0:b7116bd48af6 3604 * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
mturner5 0:b7116bd48af6 3605 * @param[in] numTaps number of coefficients in the filter.
mturner5 0:b7116bd48af6 3606 * @param[in] M decimation factor.
mturner5 0:b7116bd48af6 3607 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 3608 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3609 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3610 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
mturner5 0:b7116bd48af6 3611 * <code>blockSize</code> is not a multiple of <code>M</code>.
mturner5 0:b7116bd48af6 3612 */
mturner5 0:b7116bd48af6 3613
mturner5 0:b7116bd48af6 3614 arm_status arm_fir_decimate_init_q31(
mturner5 0:b7116bd48af6 3615 arm_fir_decimate_instance_q31 * S,
mturner5 0:b7116bd48af6 3616 uint16_t numTaps,
mturner5 0:b7116bd48af6 3617 uint8_t M,
mturner5 0:b7116bd48af6 3618 q31_t * pCoeffs,
mturner5 0:b7116bd48af6 3619 q31_t * pState,
mturner5 0:b7116bd48af6 3620 uint32_t blockSize);
mturner5 0:b7116bd48af6 3621
mturner5 0:b7116bd48af6 3622
mturner5 0:b7116bd48af6 3623
mturner5 0:b7116bd48af6 3624 /**
mturner5 0:b7116bd48af6 3625 * @brief Instance structure for the Q15 FIR interpolator.
mturner5 0:b7116bd48af6 3626 */
mturner5 0:b7116bd48af6 3627
mturner5 0:b7116bd48af6 3628 typedef struct
mturner5 0:b7116bd48af6 3629 {
mturner5 0:b7116bd48af6 3630 uint8_t L; /**< upsample factor. */
mturner5 0:b7116bd48af6 3631 uint16_t phaseLength; /**< length of each polyphase filter component. */
mturner5 0:b7116bd48af6 3632 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
mturner5 0:b7116bd48af6 3633 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
mturner5 0:b7116bd48af6 3634 } arm_fir_interpolate_instance_q15;
mturner5 0:b7116bd48af6 3635
mturner5 0:b7116bd48af6 3636 /**
mturner5 0:b7116bd48af6 3637 * @brief Instance structure for the Q31 FIR interpolator.
mturner5 0:b7116bd48af6 3638 */
mturner5 0:b7116bd48af6 3639
mturner5 0:b7116bd48af6 3640 typedef struct
mturner5 0:b7116bd48af6 3641 {
mturner5 0:b7116bd48af6 3642 uint8_t L; /**< upsample factor. */
mturner5 0:b7116bd48af6 3643 uint16_t phaseLength; /**< length of each polyphase filter component. */
mturner5 0:b7116bd48af6 3644 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
mturner5 0:b7116bd48af6 3645 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
mturner5 0:b7116bd48af6 3646 } arm_fir_interpolate_instance_q31;
mturner5 0:b7116bd48af6 3647
mturner5 0:b7116bd48af6 3648 /**
mturner5 0:b7116bd48af6 3649 * @brief Instance structure for the floating-point FIR interpolator.
mturner5 0:b7116bd48af6 3650 */
mturner5 0:b7116bd48af6 3651
mturner5 0:b7116bd48af6 3652 typedef struct
mturner5 0:b7116bd48af6 3653 {
mturner5 0:b7116bd48af6 3654 uint8_t L; /**< upsample factor. */
mturner5 0:b7116bd48af6 3655 uint16_t phaseLength; /**< length of each polyphase filter component. */
mturner5 0:b7116bd48af6 3656 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
mturner5 0:b7116bd48af6 3657 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
mturner5 0:b7116bd48af6 3658 } arm_fir_interpolate_instance_f32;
mturner5 0:b7116bd48af6 3659
mturner5 0:b7116bd48af6 3660
mturner5 0:b7116bd48af6 3661 /**
mturner5 0:b7116bd48af6 3662 * @brief Processing function for the Q15 FIR interpolator.
mturner5 0:b7116bd48af6 3663 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
mturner5 0:b7116bd48af6 3664 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3665 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 3666 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3667 * @return none.
mturner5 0:b7116bd48af6 3668 */
mturner5 0:b7116bd48af6 3669
mturner5 0:b7116bd48af6 3670 void arm_fir_interpolate_q15(
mturner5 0:b7116bd48af6 3671 const arm_fir_interpolate_instance_q15 * S,
mturner5 0:b7116bd48af6 3672 q15_t * pSrc,
mturner5 0:b7116bd48af6 3673 q15_t * pDst,
mturner5 0:b7116bd48af6 3674 uint32_t blockSize);
mturner5 0:b7116bd48af6 3675
mturner5 0:b7116bd48af6 3676
mturner5 0:b7116bd48af6 3677 /**
mturner5 0:b7116bd48af6 3678 * @brief Initialization function for the Q15 FIR interpolator.
mturner5 0:b7116bd48af6 3679 * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
mturner5 0:b7116bd48af6 3680 * @param[in] L upsample factor.
mturner5 0:b7116bd48af6 3681 * @param[in] numTaps number of filter coefficients in the filter.
mturner5 0:b7116bd48af6 3682 * @param[in] *pCoeffs points to the filter coefficient buffer.
mturner5 0:b7116bd48af6 3683 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3684 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3685 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
mturner5 0:b7116bd48af6 3686 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
mturner5 0:b7116bd48af6 3687 */
mturner5 0:b7116bd48af6 3688
mturner5 0:b7116bd48af6 3689 arm_status arm_fir_interpolate_init_q15(
mturner5 0:b7116bd48af6 3690 arm_fir_interpolate_instance_q15 * S,
mturner5 0:b7116bd48af6 3691 uint8_t L,
mturner5 0:b7116bd48af6 3692 uint16_t numTaps,
mturner5 0:b7116bd48af6 3693 q15_t * pCoeffs,
mturner5 0:b7116bd48af6 3694 q15_t * pState,
mturner5 0:b7116bd48af6 3695 uint32_t blockSize);
mturner5 0:b7116bd48af6 3696
mturner5 0:b7116bd48af6 3697 /**
mturner5 0:b7116bd48af6 3698 * @brief Processing function for the Q31 FIR interpolator.
mturner5 0:b7116bd48af6 3699 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
mturner5 0:b7116bd48af6 3700 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3701 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 3702 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3703 * @return none.
mturner5 0:b7116bd48af6 3704 */
mturner5 0:b7116bd48af6 3705
mturner5 0:b7116bd48af6 3706 void arm_fir_interpolate_q31(
mturner5 0:b7116bd48af6 3707 const arm_fir_interpolate_instance_q31 * S,
mturner5 0:b7116bd48af6 3708 q31_t * pSrc,
mturner5 0:b7116bd48af6 3709 q31_t * pDst,
mturner5 0:b7116bd48af6 3710 uint32_t blockSize);
mturner5 0:b7116bd48af6 3711
mturner5 0:b7116bd48af6 3712 /**
mturner5 0:b7116bd48af6 3713 * @brief Initialization function for the Q31 FIR interpolator.
mturner5 0:b7116bd48af6 3714 * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
mturner5 0:b7116bd48af6 3715 * @param[in] L upsample factor.
mturner5 0:b7116bd48af6 3716 * @param[in] numTaps number of filter coefficients in the filter.
mturner5 0:b7116bd48af6 3717 * @param[in] *pCoeffs points to the filter coefficient buffer.
mturner5 0:b7116bd48af6 3718 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3719 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3720 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
mturner5 0:b7116bd48af6 3721 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
mturner5 0:b7116bd48af6 3722 */
mturner5 0:b7116bd48af6 3723
mturner5 0:b7116bd48af6 3724 arm_status arm_fir_interpolate_init_q31(
mturner5 0:b7116bd48af6 3725 arm_fir_interpolate_instance_q31 * S,
mturner5 0:b7116bd48af6 3726 uint8_t L,
mturner5 0:b7116bd48af6 3727 uint16_t numTaps,
mturner5 0:b7116bd48af6 3728 q31_t * pCoeffs,
mturner5 0:b7116bd48af6 3729 q31_t * pState,
mturner5 0:b7116bd48af6 3730 uint32_t blockSize);
mturner5 0:b7116bd48af6 3731
mturner5 0:b7116bd48af6 3732
mturner5 0:b7116bd48af6 3733 /**
mturner5 0:b7116bd48af6 3734 * @brief Processing function for the floating-point FIR interpolator.
mturner5 0:b7116bd48af6 3735 * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
mturner5 0:b7116bd48af6 3736 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3737 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 3738 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3739 * @return none.
mturner5 0:b7116bd48af6 3740 */
mturner5 0:b7116bd48af6 3741
mturner5 0:b7116bd48af6 3742 void arm_fir_interpolate_f32(
mturner5 0:b7116bd48af6 3743 const arm_fir_interpolate_instance_f32 * S,
mturner5 0:b7116bd48af6 3744 float32_t * pSrc,
mturner5 0:b7116bd48af6 3745 float32_t * pDst,
mturner5 0:b7116bd48af6 3746 uint32_t blockSize);
mturner5 0:b7116bd48af6 3747
mturner5 0:b7116bd48af6 3748 /**
mturner5 0:b7116bd48af6 3749 * @brief Initialization function for the floating-point FIR interpolator.
mturner5 0:b7116bd48af6 3750 * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
mturner5 0:b7116bd48af6 3751 * @param[in] L upsample factor.
mturner5 0:b7116bd48af6 3752 * @param[in] numTaps number of filter coefficients in the filter.
mturner5 0:b7116bd48af6 3753 * @param[in] *pCoeffs points to the filter coefficient buffer.
mturner5 0:b7116bd48af6 3754 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3755 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 3756 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
mturner5 0:b7116bd48af6 3757 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
mturner5 0:b7116bd48af6 3758 */
mturner5 0:b7116bd48af6 3759
mturner5 0:b7116bd48af6 3760 arm_status arm_fir_interpolate_init_f32(
mturner5 0:b7116bd48af6 3761 arm_fir_interpolate_instance_f32 * S,
mturner5 0:b7116bd48af6 3762 uint8_t L,
mturner5 0:b7116bd48af6 3763 uint16_t numTaps,
mturner5 0:b7116bd48af6 3764 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 3765 float32_t * pState,
mturner5 0:b7116bd48af6 3766 uint32_t blockSize);
mturner5 0:b7116bd48af6 3767
mturner5 0:b7116bd48af6 3768 /**
mturner5 0:b7116bd48af6 3769 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
mturner5 0:b7116bd48af6 3770 */
mturner5 0:b7116bd48af6 3771
mturner5 0:b7116bd48af6 3772 typedef struct
mturner5 0:b7116bd48af6 3773 {
mturner5 0:b7116bd48af6 3774 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
mturner5 0:b7116bd48af6 3775 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
mturner5 0:b7116bd48af6 3776 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
mturner5 0:b7116bd48af6 3777 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
mturner5 0:b7116bd48af6 3778
mturner5 0:b7116bd48af6 3779 } arm_biquad_cas_df1_32x64_ins_q31;
mturner5 0:b7116bd48af6 3780
mturner5 0:b7116bd48af6 3781
mturner5 0:b7116bd48af6 3782 /**
mturner5 0:b7116bd48af6 3783 * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
mturner5 0:b7116bd48af6 3784 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3785 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3786 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 3787 * @return none.
mturner5 0:b7116bd48af6 3788 */
mturner5 0:b7116bd48af6 3789
mturner5 0:b7116bd48af6 3790 void arm_biquad_cas_df1_32x64_q31(
mturner5 0:b7116bd48af6 3791 const arm_biquad_cas_df1_32x64_ins_q31 * S,
mturner5 0:b7116bd48af6 3792 q31_t * pSrc,
mturner5 0:b7116bd48af6 3793 q31_t * pDst,
mturner5 0:b7116bd48af6 3794 uint32_t blockSize);
mturner5 0:b7116bd48af6 3795
mturner5 0:b7116bd48af6 3796
mturner5 0:b7116bd48af6 3797 /**
mturner5 0:b7116bd48af6 3798 * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
mturner5 0:b7116bd48af6 3799 * @param[in] numStages number of 2nd order stages in the filter.
mturner5 0:b7116bd48af6 3800 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 3801 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3802 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
mturner5 0:b7116bd48af6 3803 * @return none
mturner5 0:b7116bd48af6 3804 */
mturner5 0:b7116bd48af6 3805
mturner5 0:b7116bd48af6 3806 void arm_biquad_cas_df1_32x64_init_q31(
mturner5 0:b7116bd48af6 3807 arm_biquad_cas_df1_32x64_ins_q31 * S,
mturner5 0:b7116bd48af6 3808 uint8_t numStages,
mturner5 0:b7116bd48af6 3809 q31_t * pCoeffs,
mturner5 0:b7116bd48af6 3810 q63_t * pState,
mturner5 0:b7116bd48af6 3811 uint8_t postShift);
mturner5 0:b7116bd48af6 3812
mturner5 0:b7116bd48af6 3813
mturner5 0:b7116bd48af6 3814
mturner5 0:b7116bd48af6 3815 /**
mturner5 0:b7116bd48af6 3816 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
mturner5 0:b7116bd48af6 3817 */
mturner5 0:b7116bd48af6 3818
mturner5 0:b7116bd48af6 3819 typedef struct
mturner5 0:b7116bd48af6 3820 {
mturner5 0:b7116bd48af6 3821 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
mturner5 0:b7116bd48af6 3822 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
mturner5 0:b7116bd48af6 3823 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
mturner5 0:b7116bd48af6 3824 } arm_biquad_cascade_df2T_instance_f32;
mturner5 0:b7116bd48af6 3825
mturner5 0:b7116bd48af6 3826
mturner5 0:b7116bd48af6 3827
mturner5 0:b7116bd48af6 3828 /**
mturner5 0:b7116bd48af6 3829 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
mturner5 0:b7116bd48af6 3830 */
mturner5 0:b7116bd48af6 3831
mturner5 0:b7116bd48af6 3832 typedef struct
mturner5 0:b7116bd48af6 3833 {
mturner5 0:b7116bd48af6 3834 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
mturner5 0:b7116bd48af6 3835 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
mturner5 0:b7116bd48af6 3836 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
mturner5 0:b7116bd48af6 3837 } arm_biquad_cascade_stereo_df2T_instance_f32;
mturner5 0:b7116bd48af6 3838
mturner5 0:b7116bd48af6 3839
mturner5 0:b7116bd48af6 3840
mturner5 0:b7116bd48af6 3841 /**
mturner5 0:b7116bd48af6 3842 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
mturner5 0:b7116bd48af6 3843 */
mturner5 0:b7116bd48af6 3844
mturner5 0:b7116bd48af6 3845 typedef struct
mturner5 0:b7116bd48af6 3846 {
mturner5 0:b7116bd48af6 3847 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
mturner5 0:b7116bd48af6 3848 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
mturner5 0:b7116bd48af6 3849 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
mturner5 0:b7116bd48af6 3850 } arm_biquad_cascade_df2T_instance_f64;
mturner5 0:b7116bd48af6 3851
mturner5 0:b7116bd48af6 3852
mturner5 0:b7116bd48af6 3853 /**
mturner5 0:b7116bd48af6 3854 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
mturner5 0:b7116bd48af6 3855 * @param[in] *S points to an instance of the filter data structure.
mturner5 0:b7116bd48af6 3856 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3857 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3858 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 3859 * @return none.
mturner5 0:b7116bd48af6 3860 */
mturner5 0:b7116bd48af6 3861
mturner5 0:b7116bd48af6 3862 void arm_biquad_cascade_df2T_f32(
mturner5 0:b7116bd48af6 3863 const arm_biquad_cascade_df2T_instance_f32 * S,
mturner5 0:b7116bd48af6 3864 float32_t * pSrc,
mturner5 0:b7116bd48af6 3865 float32_t * pDst,
mturner5 0:b7116bd48af6 3866 uint32_t blockSize);
mturner5 0:b7116bd48af6 3867
mturner5 0:b7116bd48af6 3868
mturner5 0:b7116bd48af6 3869 /**
mturner5 0:b7116bd48af6 3870 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
mturner5 0:b7116bd48af6 3871 * @param[in] *S points to an instance of the filter data structure.
mturner5 0:b7116bd48af6 3872 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3873 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3874 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 3875 * @return none.
mturner5 0:b7116bd48af6 3876 */
mturner5 0:b7116bd48af6 3877
mturner5 0:b7116bd48af6 3878 void arm_biquad_cascade_stereo_df2T_f32(
mturner5 0:b7116bd48af6 3879 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
mturner5 0:b7116bd48af6 3880 float32_t * pSrc,
mturner5 0:b7116bd48af6 3881 float32_t * pDst,
mturner5 0:b7116bd48af6 3882 uint32_t blockSize);
mturner5 0:b7116bd48af6 3883
mturner5 0:b7116bd48af6 3884 /**
mturner5 0:b7116bd48af6 3885 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
mturner5 0:b7116bd48af6 3886 * @param[in] *S points to an instance of the filter data structure.
mturner5 0:b7116bd48af6 3887 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 3888 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 3889 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 3890 * @return none.
mturner5 0:b7116bd48af6 3891 */
mturner5 0:b7116bd48af6 3892
mturner5 0:b7116bd48af6 3893 void arm_biquad_cascade_df2T_f64(
mturner5 0:b7116bd48af6 3894 const arm_biquad_cascade_df2T_instance_f64 * S,
mturner5 0:b7116bd48af6 3895 float64_t * pSrc,
mturner5 0:b7116bd48af6 3896 float64_t * pDst,
mturner5 0:b7116bd48af6 3897 uint32_t blockSize);
mturner5 0:b7116bd48af6 3898
mturner5 0:b7116bd48af6 3899
mturner5 0:b7116bd48af6 3900 /**
mturner5 0:b7116bd48af6 3901 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
mturner5 0:b7116bd48af6 3902 * @param[in,out] *S points to an instance of the filter data structure.
mturner5 0:b7116bd48af6 3903 * @param[in] numStages number of 2nd order stages in the filter.
mturner5 0:b7116bd48af6 3904 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 3905 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3906 * @return none
mturner5 0:b7116bd48af6 3907 */
mturner5 0:b7116bd48af6 3908
mturner5 0:b7116bd48af6 3909 void arm_biquad_cascade_df2T_init_f32(
mturner5 0:b7116bd48af6 3910 arm_biquad_cascade_df2T_instance_f32 * S,
mturner5 0:b7116bd48af6 3911 uint8_t numStages,
mturner5 0:b7116bd48af6 3912 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 3913 float32_t * pState);
mturner5 0:b7116bd48af6 3914
mturner5 0:b7116bd48af6 3915
mturner5 0:b7116bd48af6 3916 /**
mturner5 0:b7116bd48af6 3917 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
mturner5 0:b7116bd48af6 3918 * @param[in,out] *S points to an instance of the filter data structure.
mturner5 0:b7116bd48af6 3919 * @param[in] numStages number of 2nd order stages in the filter.
mturner5 0:b7116bd48af6 3920 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 3921 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3922 * @return none
mturner5 0:b7116bd48af6 3923 */
mturner5 0:b7116bd48af6 3924
mturner5 0:b7116bd48af6 3925 void arm_biquad_cascade_stereo_df2T_init_f32(
mturner5 0:b7116bd48af6 3926 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
mturner5 0:b7116bd48af6 3927 uint8_t numStages,
mturner5 0:b7116bd48af6 3928 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 3929 float32_t * pState);
mturner5 0:b7116bd48af6 3930
mturner5 0:b7116bd48af6 3931
mturner5 0:b7116bd48af6 3932 /**
mturner5 0:b7116bd48af6 3933 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
mturner5 0:b7116bd48af6 3934 * @param[in,out] *S points to an instance of the filter data structure.
mturner5 0:b7116bd48af6 3935 * @param[in] numStages number of 2nd order stages in the filter.
mturner5 0:b7116bd48af6 3936 * @param[in] *pCoeffs points to the filter coefficients.
mturner5 0:b7116bd48af6 3937 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 3938 * @return none
mturner5 0:b7116bd48af6 3939 */
mturner5 0:b7116bd48af6 3940
mturner5 0:b7116bd48af6 3941 void arm_biquad_cascade_df2T_init_f64(
mturner5 0:b7116bd48af6 3942 arm_biquad_cascade_df2T_instance_f64 * S,
mturner5 0:b7116bd48af6 3943 uint8_t numStages,
mturner5 0:b7116bd48af6 3944 float64_t * pCoeffs,
mturner5 0:b7116bd48af6 3945 float64_t * pState);
mturner5 0:b7116bd48af6 3946
mturner5 0:b7116bd48af6 3947
mturner5 0:b7116bd48af6 3948
mturner5 0:b7116bd48af6 3949 /**
mturner5 0:b7116bd48af6 3950 * @brief Instance structure for the Q15 FIR lattice filter.
mturner5 0:b7116bd48af6 3951 */
mturner5 0:b7116bd48af6 3952
mturner5 0:b7116bd48af6 3953 typedef struct
mturner5 0:b7116bd48af6 3954 {
mturner5 0:b7116bd48af6 3955 uint16_t numStages; /**< number of filter stages. */
mturner5 0:b7116bd48af6 3956 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
mturner5 0:b7116bd48af6 3957 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
mturner5 0:b7116bd48af6 3958 } arm_fir_lattice_instance_q15;
mturner5 0:b7116bd48af6 3959
mturner5 0:b7116bd48af6 3960 /**
mturner5 0:b7116bd48af6 3961 * @brief Instance structure for the Q31 FIR lattice filter.
mturner5 0:b7116bd48af6 3962 */
mturner5 0:b7116bd48af6 3963
mturner5 0:b7116bd48af6 3964 typedef struct
mturner5 0:b7116bd48af6 3965 {
mturner5 0:b7116bd48af6 3966 uint16_t numStages; /**< number of filter stages. */
mturner5 0:b7116bd48af6 3967 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
mturner5 0:b7116bd48af6 3968 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
mturner5 0:b7116bd48af6 3969 } arm_fir_lattice_instance_q31;
mturner5 0:b7116bd48af6 3970
mturner5 0:b7116bd48af6 3971 /**
mturner5 0:b7116bd48af6 3972 * @brief Instance structure for the floating-point FIR lattice filter.
mturner5 0:b7116bd48af6 3973 */
mturner5 0:b7116bd48af6 3974
mturner5 0:b7116bd48af6 3975 typedef struct
mturner5 0:b7116bd48af6 3976 {
mturner5 0:b7116bd48af6 3977 uint16_t numStages; /**< number of filter stages. */
mturner5 0:b7116bd48af6 3978 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
mturner5 0:b7116bd48af6 3979 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
mturner5 0:b7116bd48af6 3980 } arm_fir_lattice_instance_f32;
mturner5 0:b7116bd48af6 3981
mturner5 0:b7116bd48af6 3982 /**
mturner5 0:b7116bd48af6 3983 * @brief Initialization function for the Q15 FIR lattice filter.
mturner5 0:b7116bd48af6 3984 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
mturner5 0:b7116bd48af6 3985 * @param[in] numStages number of filter stages.
mturner5 0:b7116bd48af6 3986 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
mturner5 0:b7116bd48af6 3987 * @param[in] *pState points to the state buffer. The array is of length numStages.
mturner5 0:b7116bd48af6 3988 * @return none.
mturner5 0:b7116bd48af6 3989 */
mturner5 0:b7116bd48af6 3990
mturner5 0:b7116bd48af6 3991 void arm_fir_lattice_init_q15(
mturner5 0:b7116bd48af6 3992 arm_fir_lattice_instance_q15 * S,
mturner5 0:b7116bd48af6 3993 uint16_t numStages,
mturner5 0:b7116bd48af6 3994 q15_t * pCoeffs,
mturner5 0:b7116bd48af6 3995 q15_t * pState);
mturner5 0:b7116bd48af6 3996
mturner5 0:b7116bd48af6 3997
mturner5 0:b7116bd48af6 3998 /**
mturner5 0:b7116bd48af6 3999 * @brief Processing function for the Q15 FIR lattice filter.
mturner5 0:b7116bd48af6 4000 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
mturner5 0:b7116bd48af6 4001 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4002 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 4003 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4004 * @return none.
mturner5 0:b7116bd48af6 4005 */
mturner5 0:b7116bd48af6 4006 void arm_fir_lattice_q15(
mturner5 0:b7116bd48af6 4007 const arm_fir_lattice_instance_q15 * S,
mturner5 0:b7116bd48af6 4008 q15_t * pSrc,
mturner5 0:b7116bd48af6 4009 q15_t * pDst,
mturner5 0:b7116bd48af6 4010 uint32_t blockSize);
mturner5 0:b7116bd48af6 4011
mturner5 0:b7116bd48af6 4012 /**
mturner5 0:b7116bd48af6 4013 * @brief Initialization function for the Q31 FIR lattice filter.
mturner5 0:b7116bd48af6 4014 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
mturner5 0:b7116bd48af6 4015 * @param[in] numStages number of filter stages.
mturner5 0:b7116bd48af6 4016 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
mturner5 0:b7116bd48af6 4017 * @param[in] *pState points to the state buffer. The array is of length numStages.
mturner5 0:b7116bd48af6 4018 * @return none.
mturner5 0:b7116bd48af6 4019 */
mturner5 0:b7116bd48af6 4020
mturner5 0:b7116bd48af6 4021 void arm_fir_lattice_init_q31(
mturner5 0:b7116bd48af6 4022 arm_fir_lattice_instance_q31 * S,
mturner5 0:b7116bd48af6 4023 uint16_t numStages,
mturner5 0:b7116bd48af6 4024 q31_t * pCoeffs,
mturner5 0:b7116bd48af6 4025 q31_t * pState);
mturner5 0:b7116bd48af6 4026
mturner5 0:b7116bd48af6 4027
mturner5 0:b7116bd48af6 4028 /**
mturner5 0:b7116bd48af6 4029 * @brief Processing function for the Q31 FIR lattice filter.
mturner5 0:b7116bd48af6 4030 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
mturner5 0:b7116bd48af6 4031 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4032 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 4033 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4034 * @return none.
mturner5 0:b7116bd48af6 4035 */
mturner5 0:b7116bd48af6 4036
mturner5 0:b7116bd48af6 4037 void arm_fir_lattice_q31(
mturner5 0:b7116bd48af6 4038 const arm_fir_lattice_instance_q31 * S,
mturner5 0:b7116bd48af6 4039 q31_t * pSrc,
mturner5 0:b7116bd48af6 4040 q31_t * pDst,
mturner5 0:b7116bd48af6 4041 uint32_t blockSize);
mturner5 0:b7116bd48af6 4042
mturner5 0:b7116bd48af6 4043 /**
mturner5 0:b7116bd48af6 4044 * @brief Initialization function for the floating-point FIR lattice filter.
mturner5 0:b7116bd48af6 4045 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
mturner5 0:b7116bd48af6 4046 * @param[in] numStages number of filter stages.
mturner5 0:b7116bd48af6 4047 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
mturner5 0:b7116bd48af6 4048 * @param[in] *pState points to the state buffer. The array is of length numStages.
mturner5 0:b7116bd48af6 4049 * @return none.
mturner5 0:b7116bd48af6 4050 */
mturner5 0:b7116bd48af6 4051
mturner5 0:b7116bd48af6 4052 void arm_fir_lattice_init_f32(
mturner5 0:b7116bd48af6 4053 arm_fir_lattice_instance_f32 * S,
mturner5 0:b7116bd48af6 4054 uint16_t numStages,
mturner5 0:b7116bd48af6 4055 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 4056 float32_t * pState);
mturner5 0:b7116bd48af6 4057
mturner5 0:b7116bd48af6 4058 /**
mturner5 0:b7116bd48af6 4059 * @brief Processing function for the floating-point FIR lattice filter.
mturner5 0:b7116bd48af6 4060 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
mturner5 0:b7116bd48af6 4061 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4062 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 4063 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4064 * @return none.
mturner5 0:b7116bd48af6 4065 */
mturner5 0:b7116bd48af6 4066
mturner5 0:b7116bd48af6 4067 void arm_fir_lattice_f32(
mturner5 0:b7116bd48af6 4068 const arm_fir_lattice_instance_f32 * S,
mturner5 0:b7116bd48af6 4069 float32_t * pSrc,
mturner5 0:b7116bd48af6 4070 float32_t * pDst,
mturner5 0:b7116bd48af6 4071 uint32_t blockSize);
mturner5 0:b7116bd48af6 4072
mturner5 0:b7116bd48af6 4073 /**
mturner5 0:b7116bd48af6 4074 * @brief Instance structure for the Q15 IIR lattice filter.
mturner5 0:b7116bd48af6 4075 */
mturner5 0:b7116bd48af6 4076 typedef struct
mturner5 0:b7116bd48af6 4077 {
mturner5 0:b7116bd48af6 4078 uint16_t numStages; /**< number of stages in the filter. */
mturner5 0:b7116bd48af6 4079 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
mturner5 0:b7116bd48af6 4080 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
mturner5 0:b7116bd48af6 4081 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
mturner5 0:b7116bd48af6 4082 } arm_iir_lattice_instance_q15;
mturner5 0:b7116bd48af6 4083
mturner5 0:b7116bd48af6 4084 /**
mturner5 0:b7116bd48af6 4085 * @brief Instance structure for the Q31 IIR lattice filter.
mturner5 0:b7116bd48af6 4086 */
mturner5 0:b7116bd48af6 4087 typedef struct
mturner5 0:b7116bd48af6 4088 {
mturner5 0:b7116bd48af6 4089 uint16_t numStages; /**< number of stages in the filter. */
mturner5 0:b7116bd48af6 4090 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
mturner5 0:b7116bd48af6 4091 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
mturner5 0:b7116bd48af6 4092 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
mturner5 0:b7116bd48af6 4093 } arm_iir_lattice_instance_q31;
mturner5 0:b7116bd48af6 4094
mturner5 0:b7116bd48af6 4095 /**
mturner5 0:b7116bd48af6 4096 * @brief Instance structure for the floating-point IIR lattice filter.
mturner5 0:b7116bd48af6 4097 */
mturner5 0:b7116bd48af6 4098 typedef struct
mturner5 0:b7116bd48af6 4099 {
mturner5 0:b7116bd48af6 4100 uint16_t numStages; /**< number of stages in the filter. */
mturner5 0:b7116bd48af6 4101 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
mturner5 0:b7116bd48af6 4102 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
mturner5 0:b7116bd48af6 4103 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
mturner5 0:b7116bd48af6 4104 } arm_iir_lattice_instance_f32;
mturner5 0:b7116bd48af6 4105
mturner5 0:b7116bd48af6 4106 /**
mturner5 0:b7116bd48af6 4107 * @brief Processing function for the floating-point IIR lattice filter.
mturner5 0:b7116bd48af6 4108 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
mturner5 0:b7116bd48af6 4109 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4110 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 4111 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4112 * @return none.
mturner5 0:b7116bd48af6 4113 */
mturner5 0:b7116bd48af6 4114
mturner5 0:b7116bd48af6 4115 void arm_iir_lattice_f32(
mturner5 0:b7116bd48af6 4116 const arm_iir_lattice_instance_f32 * S,
mturner5 0:b7116bd48af6 4117 float32_t * pSrc,
mturner5 0:b7116bd48af6 4118 float32_t * pDst,
mturner5 0:b7116bd48af6 4119 uint32_t blockSize);
mturner5 0:b7116bd48af6 4120
mturner5 0:b7116bd48af6 4121 /**
mturner5 0:b7116bd48af6 4122 * @brief Initialization function for the floating-point IIR lattice filter.
mturner5 0:b7116bd48af6 4123 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
mturner5 0:b7116bd48af6 4124 * @param[in] numStages number of stages in the filter.
mturner5 0:b7116bd48af6 4125 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
mturner5 0:b7116bd48af6 4126 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
mturner5 0:b7116bd48af6 4127 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
mturner5 0:b7116bd48af6 4128 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4129 * @return none.
mturner5 0:b7116bd48af6 4130 */
mturner5 0:b7116bd48af6 4131
mturner5 0:b7116bd48af6 4132 void arm_iir_lattice_init_f32(
mturner5 0:b7116bd48af6 4133 arm_iir_lattice_instance_f32 * S,
mturner5 0:b7116bd48af6 4134 uint16_t numStages,
mturner5 0:b7116bd48af6 4135 float32_t * pkCoeffs,
mturner5 0:b7116bd48af6 4136 float32_t * pvCoeffs,
mturner5 0:b7116bd48af6 4137 float32_t * pState,
mturner5 0:b7116bd48af6 4138 uint32_t blockSize);
mturner5 0:b7116bd48af6 4139
mturner5 0:b7116bd48af6 4140
mturner5 0:b7116bd48af6 4141 /**
mturner5 0:b7116bd48af6 4142 * @brief Processing function for the Q31 IIR lattice filter.
mturner5 0:b7116bd48af6 4143 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
mturner5 0:b7116bd48af6 4144 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4145 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 4146 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4147 * @return none.
mturner5 0:b7116bd48af6 4148 */
mturner5 0:b7116bd48af6 4149
mturner5 0:b7116bd48af6 4150 void arm_iir_lattice_q31(
mturner5 0:b7116bd48af6 4151 const arm_iir_lattice_instance_q31 * S,
mturner5 0:b7116bd48af6 4152 q31_t * pSrc,
mturner5 0:b7116bd48af6 4153 q31_t * pDst,
mturner5 0:b7116bd48af6 4154 uint32_t blockSize);
mturner5 0:b7116bd48af6 4155
mturner5 0:b7116bd48af6 4156
mturner5 0:b7116bd48af6 4157 /**
mturner5 0:b7116bd48af6 4158 * @brief Initialization function for the Q31 IIR lattice filter.
mturner5 0:b7116bd48af6 4159 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
mturner5 0:b7116bd48af6 4160 * @param[in] numStages number of stages in the filter.
mturner5 0:b7116bd48af6 4161 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
mturner5 0:b7116bd48af6 4162 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
mturner5 0:b7116bd48af6 4163 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
mturner5 0:b7116bd48af6 4164 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4165 * @return none.
mturner5 0:b7116bd48af6 4166 */
mturner5 0:b7116bd48af6 4167
mturner5 0:b7116bd48af6 4168 void arm_iir_lattice_init_q31(
mturner5 0:b7116bd48af6 4169 arm_iir_lattice_instance_q31 * S,
mturner5 0:b7116bd48af6 4170 uint16_t numStages,
mturner5 0:b7116bd48af6 4171 q31_t * pkCoeffs,
mturner5 0:b7116bd48af6 4172 q31_t * pvCoeffs,
mturner5 0:b7116bd48af6 4173 q31_t * pState,
mturner5 0:b7116bd48af6 4174 uint32_t blockSize);
mturner5 0:b7116bd48af6 4175
mturner5 0:b7116bd48af6 4176
mturner5 0:b7116bd48af6 4177 /**
mturner5 0:b7116bd48af6 4178 * @brief Processing function for the Q15 IIR lattice filter.
mturner5 0:b7116bd48af6 4179 * @param[in] *S points to an instance of the Q15 IIR lattice structure.
mturner5 0:b7116bd48af6 4180 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4181 * @param[out] *pDst points to the block of output data.
mturner5 0:b7116bd48af6 4182 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4183 * @return none.
mturner5 0:b7116bd48af6 4184 */
mturner5 0:b7116bd48af6 4185
mturner5 0:b7116bd48af6 4186 void arm_iir_lattice_q15(
mturner5 0:b7116bd48af6 4187 const arm_iir_lattice_instance_q15 * S,
mturner5 0:b7116bd48af6 4188 q15_t * pSrc,
mturner5 0:b7116bd48af6 4189 q15_t * pDst,
mturner5 0:b7116bd48af6 4190 uint32_t blockSize);
mturner5 0:b7116bd48af6 4191
mturner5 0:b7116bd48af6 4192
mturner5 0:b7116bd48af6 4193 /**
mturner5 0:b7116bd48af6 4194 * @brief Initialization function for the Q15 IIR lattice filter.
mturner5 0:b7116bd48af6 4195 * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
mturner5 0:b7116bd48af6 4196 * @param[in] numStages number of stages in the filter.
mturner5 0:b7116bd48af6 4197 * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
mturner5 0:b7116bd48af6 4198 * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
mturner5 0:b7116bd48af6 4199 * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
mturner5 0:b7116bd48af6 4200 * @param[in] blockSize number of samples to process per call.
mturner5 0:b7116bd48af6 4201 * @return none.
mturner5 0:b7116bd48af6 4202 */
mturner5 0:b7116bd48af6 4203
mturner5 0:b7116bd48af6 4204 void arm_iir_lattice_init_q15(
mturner5 0:b7116bd48af6 4205 arm_iir_lattice_instance_q15 * S,
mturner5 0:b7116bd48af6 4206 uint16_t numStages,
mturner5 0:b7116bd48af6 4207 q15_t * pkCoeffs,
mturner5 0:b7116bd48af6 4208 q15_t * pvCoeffs,
mturner5 0:b7116bd48af6 4209 q15_t * pState,
mturner5 0:b7116bd48af6 4210 uint32_t blockSize);
mturner5 0:b7116bd48af6 4211
mturner5 0:b7116bd48af6 4212 /**
mturner5 0:b7116bd48af6 4213 * @brief Instance structure for the floating-point LMS filter.
mturner5 0:b7116bd48af6 4214 */
mturner5 0:b7116bd48af6 4215
mturner5 0:b7116bd48af6 4216 typedef struct
mturner5 0:b7116bd48af6 4217 {
mturner5 0:b7116bd48af6 4218 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4219 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 4220 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4221 float32_t mu; /**< step size that controls filter coefficient updates. */
mturner5 0:b7116bd48af6 4222 } arm_lms_instance_f32;
mturner5 0:b7116bd48af6 4223
mturner5 0:b7116bd48af6 4224 /**
mturner5 0:b7116bd48af6 4225 * @brief Processing function for floating-point LMS filter.
mturner5 0:b7116bd48af6 4226 * @param[in] *S points to an instance of the floating-point LMS filter structure.
mturner5 0:b7116bd48af6 4227 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4228 * @param[in] *pRef points to the block of reference data.
mturner5 0:b7116bd48af6 4229 * @param[out] *pOut points to the block of output data.
mturner5 0:b7116bd48af6 4230 * @param[out] *pErr points to the block of error data.
mturner5 0:b7116bd48af6 4231 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4232 * @return none.
mturner5 0:b7116bd48af6 4233 */
mturner5 0:b7116bd48af6 4234
mturner5 0:b7116bd48af6 4235 void arm_lms_f32(
mturner5 0:b7116bd48af6 4236 const arm_lms_instance_f32 * S,
mturner5 0:b7116bd48af6 4237 float32_t * pSrc,
mturner5 0:b7116bd48af6 4238 float32_t * pRef,
mturner5 0:b7116bd48af6 4239 float32_t * pOut,
mturner5 0:b7116bd48af6 4240 float32_t * pErr,
mturner5 0:b7116bd48af6 4241 uint32_t blockSize);
mturner5 0:b7116bd48af6 4242
mturner5 0:b7116bd48af6 4243 /**
mturner5 0:b7116bd48af6 4244 * @brief Initialization function for floating-point LMS filter.
mturner5 0:b7116bd48af6 4245 * @param[in] *S points to an instance of the floating-point LMS filter structure.
mturner5 0:b7116bd48af6 4246 * @param[in] numTaps number of filter coefficients.
mturner5 0:b7116bd48af6 4247 * @param[in] *pCoeffs points to the coefficient buffer.
mturner5 0:b7116bd48af6 4248 * @param[in] *pState points to state buffer.
mturner5 0:b7116bd48af6 4249 * @param[in] mu step size that controls filter coefficient updates.
mturner5 0:b7116bd48af6 4250 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4251 * @return none.
mturner5 0:b7116bd48af6 4252 */
mturner5 0:b7116bd48af6 4253
mturner5 0:b7116bd48af6 4254 void arm_lms_init_f32(
mturner5 0:b7116bd48af6 4255 arm_lms_instance_f32 * S,
mturner5 0:b7116bd48af6 4256 uint16_t numTaps,
mturner5 0:b7116bd48af6 4257 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 4258 float32_t * pState,
mturner5 0:b7116bd48af6 4259 float32_t mu,
mturner5 0:b7116bd48af6 4260 uint32_t blockSize);
mturner5 0:b7116bd48af6 4261
mturner5 0:b7116bd48af6 4262 /**
mturner5 0:b7116bd48af6 4263 * @brief Instance structure for the Q15 LMS filter.
mturner5 0:b7116bd48af6 4264 */
mturner5 0:b7116bd48af6 4265
mturner5 0:b7116bd48af6 4266 typedef struct
mturner5 0:b7116bd48af6 4267 {
mturner5 0:b7116bd48af6 4268 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4269 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 4270 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4271 q15_t mu; /**< step size that controls filter coefficient updates. */
mturner5 0:b7116bd48af6 4272 uint32_t postShift; /**< bit shift applied to coefficients. */
mturner5 0:b7116bd48af6 4273 } arm_lms_instance_q15;
mturner5 0:b7116bd48af6 4274
mturner5 0:b7116bd48af6 4275
mturner5 0:b7116bd48af6 4276 /**
mturner5 0:b7116bd48af6 4277 * @brief Initialization function for the Q15 LMS filter.
mturner5 0:b7116bd48af6 4278 * @param[in] *S points to an instance of the Q15 LMS filter structure.
mturner5 0:b7116bd48af6 4279 * @param[in] numTaps number of filter coefficients.
mturner5 0:b7116bd48af6 4280 * @param[in] *pCoeffs points to the coefficient buffer.
mturner5 0:b7116bd48af6 4281 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 4282 * @param[in] mu step size that controls filter coefficient updates.
mturner5 0:b7116bd48af6 4283 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4284 * @param[in] postShift bit shift applied to coefficients.
mturner5 0:b7116bd48af6 4285 * @return none.
mturner5 0:b7116bd48af6 4286 */
mturner5 0:b7116bd48af6 4287
mturner5 0:b7116bd48af6 4288 void arm_lms_init_q15(
mturner5 0:b7116bd48af6 4289 arm_lms_instance_q15 * S,
mturner5 0:b7116bd48af6 4290 uint16_t numTaps,
mturner5 0:b7116bd48af6 4291 q15_t * pCoeffs,
mturner5 0:b7116bd48af6 4292 q15_t * pState,
mturner5 0:b7116bd48af6 4293 q15_t mu,
mturner5 0:b7116bd48af6 4294 uint32_t blockSize,
mturner5 0:b7116bd48af6 4295 uint32_t postShift);
mturner5 0:b7116bd48af6 4296
mturner5 0:b7116bd48af6 4297 /**
mturner5 0:b7116bd48af6 4298 * @brief Processing function for Q15 LMS filter.
mturner5 0:b7116bd48af6 4299 * @param[in] *S points to an instance of the Q15 LMS filter structure.
mturner5 0:b7116bd48af6 4300 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4301 * @param[in] *pRef points to the block of reference data.
mturner5 0:b7116bd48af6 4302 * @param[out] *pOut points to the block of output data.
mturner5 0:b7116bd48af6 4303 * @param[out] *pErr points to the block of error data.
mturner5 0:b7116bd48af6 4304 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4305 * @return none.
mturner5 0:b7116bd48af6 4306 */
mturner5 0:b7116bd48af6 4307
mturner5 0:b7116bd48af6 4308 void arm_lms_q15(
mturner5 0:b7116bd48af6 4309 const arm_lms_instance_q15 * S,
mturner5 0:b7116bd48af6 4310 q15_t * pSrc,
mturner5 0:b7116bd48af6 4311 q15_t * pRef,
mturner5 0:b7116bd48af6 4312 q15_t * pOut,
mturner5 0:b7116bd48af6 4313 q15_t * pErr,
mturner5 0:b7116bd48af6 4314 uint32_t blockSize);
mturner5 0:b7116bd48af6 4315
mturner5 0:b7116bd48af6 4316
mturner5 0:b7116bd48af6 4317 /**
mturner5 0:b7116bd48af6 4318 * @brief Instance structure for the Q31 LMS filter.
mturner5 0:b7116bd48af6 4319 */
mturner5 0:b7116bd48af6 4320
mturner5 0:b7116bd48af6 4321 typedef struct
mturner5 0:b7116bd48af6 4322 {
mturner5 0:b7116bd48af6 4323 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4324 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 4325 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4326 q31_t mu; /**< step size that controls filter coefficient updates. */
mturner5 0:b7116bd48af6 4327 uint32_t postShift; /**< bit shift applied to coefficients. */
mturner5 0:b7116bd48af6 4328
mturner5 0:b7116bd48af6 4329 } arm_lms_instance_q31;
mturner5 0:b7116bd48af6 4330
mturner5 0:b7116bd48af6 4331 /**
mturner5 0:b7116bd48af6 4332 * @brief Processing function for Q31 LMS filter.
mturner5 0:b7116bd48af6 4333 * @param[in] *S points to an instance of the Q15 LMS filter structure.
mturner5 0:b7116bd48af6 4334 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4335 * @param[in] *pRef points to the block of reference data.
mturner5 0:b7116bd48af6 4336 * @param[out] *pOut points to the block of output data.
mturner5 0:b7116bd48af6 4337 * @param[out] *pErr points to the block of error data.
mturner5 0:b7116bd48af6 4338 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4339 * @return none.
mturner5 0:b7116bd48af6 4340 */
mturner5 0:b7116bd48af6 4341
mturner5 0:b7116bd48af6 4342 void arm_lms_q31(
mturner5 0:b7116bd48af6 4343 const arm_lms_instance_q31 * S,
mturner5 0:b7116bd48af6 4344 q31_t * pSrc,
mturner5 0:b7116bd48af6 4345 q31_t * pRef,
mturner5 0:b7116bd48af6 4346 q31_t * pOut,
mturner5 0:b7116bd48af6 4347 q31_t * pErr,
mturner5 0:b7116bd48af6 4348 uint32_t blockSize);
mturner5 0:b7116bd48af6 4349
mturner5 0:b7116bd48af6 4350 /**
mturner5 0:b7116bd48af6 4351 * @brief Initialization function for Q31 LMS filter.
mturner5 0:b7116bd48af6 4352 * @param[in] *S points to an instance of the Q31 LMS filter structure.
mturner5 0:b7116bd48af6 4353 * @param[in] numTaps number of filter coefficients.
mturner5 0:b7116bd48af6 4354 * @param[in] *pCoeffs points to coefficient buffer.
mturner5 0:b7116bd48af6 4355 * @param[in] *pState points to state buffer.
mturner5 0:b7116bd48af6 4356 * @param[in] mu step size that controls filter coefficient updates.
mturner5 0:b7116bd48af6 4357 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4358 * @param[in] postShift bit shift applied to coefficients.
mturner5 0:b7116bd48af6 4359 * @return none.
mturner5 0:b7116bd48af6 4360 */
mturner5 0:b7116bd48af6 4361
mturner5 0:b7116bd48af6 4362 void arm_lms_init_q31(
mturner5 0:b7116bd48af6 4363 arm_lms_instance_q31 * S,
mturner5 0:b7116bd48af6 4364 uint16_t numTaps,
mturner5 0:b7116bd48af6 4365 q31_t * pCoeffs,
mturner5 0:b7116bd48af6 4366 q31_t * pState,
mturner5 0:b7116bd48af6 4367 q31_t mu,
mturner5 0:b7116bd48af6 4368 uint32_t blockSize,
mturner5 0:b7116bd48af6 4369 uint32_t postShift);
mturner5 0:b7116bd48af6 4370
mturner5 0:b7116bd48af6 4371 /**
mturner5 0:b7116bd48af6 4372 * @brief Instance structure for the floating-point normalized LMS filter.
mturner5 0:b7116bd48af6 4373 */
mturner5 0:b7116bd48af6 4374
mturner5 0:b7116bd48af6 4375 typedef struct
mturner5 0:b7116bd48af6 4376 {
mturner5 0:b7116bd48af6 4377 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4378 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 4379 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4380 float32_t mu; /**< step size that control filter coefficient updates. */
mturner5 0:b7116bd48af6 4381 float32_t energy; /**< saves previous frame energy. */
mturner5 0:b7116bd48af6 4382 float32_t x0; /**< saves previous input sample. */
mturner5 0:b7116bd48af6 4383 } arm_lms_norm_instance_f32;
mturner5 0:b7116bd48af6 4384
mturner5 0:b7116bd48af6 4385 /**
mturner5 0:b7116bd48af6 4386 * @brief Processing function for floating-point normalized LMS filter.
mturner5 0:b7116bd48af6 4387 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
mturner5 0:b7116bd48af6 4388 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4389 * @param[in] *pRef points to the block of reference data.
mturner5 0:b7116bd48af6 4390 * @param[out] *pOut points to the block of output data.
mturner5 0:b7116bd48af6 4391 * @param[out] *pErr points to the block of error data.
mturner5 0:b7116bd48af6 4392 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4393 * @return none.
mturner5 0:b7116bd48af6 4394 */
mturner5 0:b7116bd48af6 4395
mturner5 0:b7116bd48af6 4396 void arm_lms_norm_f32(
mturner5 0:b7116bd48af6 4397 arm_lms_norm_instance_f32 * S,
mturner5 0:b7116bd48af6 4398 float32_t * pSrc,
mturner5 0:b7116bd48af6 4399 float32_t * pRef,
mturner5 0:b7116bd48af6 4400 float32_t * pOut,
mturner5 0:b7116bd48af6 4401 float32_t * pErr,
mturner5 0:b7116bd48af6 4402 uint32_t blockSize);
mturner5 0:b7116bd48af6 4403
mturner5 0:b7116bd48af6 4404 /**
mturner5 0:b7116bd48af6 4405 * @brief Initialization function for floating-point normalized LMS filter.
mturner5 0:b7116bd48af6 4406 * @param[in] *S points to an instance of the floating-point LMS filter structure.
mturner5 0:b7116bd48af6 4407 * @param[in] numTaps number of filter coefficients.
mturner5 0:b7116bd48af6 4408 * @param[in] *pCoeffs points to coefficient buffer.
mturner5 0:b7116bd48af6 4409 * @param[in] *pState points to state buffer.
mturner5 0:b7116bd48af6 4410 * @param[in] mu step size that controls filter coefficient updates.
mturner5 0:b7116bd48af6 4411 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4412 * @return none.
mturner5 0:b7116bd48af6 4413 */
mturner5 0:b7116bd48af6 4414
mturner5 0:b7116bd48af6 4415 void arm_lms_norm_init_f32(
mturner5 0:b7116bd48af6 4416 arm_lms_norm_instance_f32 * S,
mturner5 0:b7116bd48af6 4417 uint16_t numTaps,
mturner5 0:b7116bd48af6 4418 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 4419 float32_t * pState,
mturner5 0:b7116bd48af6 4420 float32_t mu,
mturner5 0:b7116bd48af6 4421 uint32_t blockSize);
mturner5 0:b7116bd48af6 4422
mturner5 0:b7116bd48af6 4423
mturner5 0:b7116bd48af6 4424 /**
mturner5 0:b7116bd48af6 4425 * @brief Instance structure for the Q31 normalized LMS filter.
mturner5 0:b7116bd48af6 4426 */
mturner5 0:b7116bd48af6 4427 typedef struct
mturner5 0:b7116bd48af6 4428 {
mturner5 0:b7116bd48af6 4429 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4430 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 4431 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4432 q31_t mu; /**< step size that controls filter coefficient updates. */
mturner5 0:b7116bd48af6 4433 uint8_t postShift; /**< bit shift applied to coefficients. */
mturner5 0:b7116bd48af6 4434 q31_t *recipTable; /**< points to the reciprocal initial value table. */
mturner5 0:b7116bd48af6 4435 q31_t energy; /**< saves previous frame energy. */
mturner5 0:b7116bd48af6 4436 q31_t x0; /**< saves previous input sample. */
mturner5 0:b7116bd48af6 4437 } arm_lms_norm_instance_q31;
mturner5 0:b7116bd48af6 4438
mturner5 0:b7116bd48af6 4439 /**
mturner5 0:b7116bd48af6 4440 * @brief Processing function for Q31 normalized LMS filter.
mturner5 0:b7116bd48af6 4441 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
mturner5 0:b7116bd48af6 4442 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4443 * @param[in] *pRef points to the block of reference data.
mturner5 0:b7116bd48af6 4444 * @param[out] *pOut points to the block of output data.
mturner5 0:b7116bd48af6 4445 * @param[out] *pErr points to the block of error data.
mturner5 0:b7116bd48af6 4446 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4447 * @return none.
mturner5 0:b7116bd48af6 4448 */
mturner5 0:b7116bd48af6 4449
mturner5 0:b7116bd48af6 4450 void arm_lms_norm_q31(
mturner5 0:b7116bd48af6 4451 arm_lms_norm_instance_q31 * S,
mturner5 0:b7116bd48af6 4452 q31_t * pSrc,
mturner5 0:b7116bd48af6 4453 q31_t * pRef,
mturner5 0:b7116bd48af6 4454 q31_t * pOut,
mturner5 0:b7116bd48af6 4455 q31_t * pErr,
mturner5 0:b7116bd48af6 4456 uint32_t blockSize);
mturner5 0:b7116bd48af6 4457
mturner5 0:b7116bd48af6 4458 /**
mturner5 0:b7116bd48af6 4459 * @brief Initialization function for Q31 normalized LMS filter.
mturner5 0:b7116bd48af6 4460 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
mturner5 0:b7116bd48af6 4461 * @param[in] numTaps number of filter coefficients.
mturner5 0:b7116bd48af6 4462 * @param[in] *pCoeffs points to coefficient buffer.
mturner5 0:b7116bd48af6 4463 * @param[in] *pState points to state buffer.
mturner5 0:b7116bd48af6 4464 * @param[in] mu step size that controls filter coefficient updates.
mturner5 0:b7116bd48af6 4465 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4466 * @param[in] postShift bit shift applied to coefficients.
mturner5 0:b7116bd48af6 4467 * @return none.
mturner5 0:b7116bd48af6 4468 */
mturner5 0:b7116bd48af6 4469
mturner5 0:b7116bd48af6 4470 void arm_lms_norm_init_q31(
mturner5 0:b7116bd48af6 4471 arm_lms_norm_instance_q31 * S,
mturner5 0:b7116bd48af6 4472 uint16_t numTaps,
mturner5 0:b7116bd48af6 4473 q31_t * pCoeffs,
mturner5 0:b7116bd48af6 4474 q31_t * pState,
mturner5 0:b7116bd48af6 4475 q31_t mu,
mturner5 0:b7116bd48af6 4476 uint32_t blockSize,
mturner5 0:b7116bd48af6 4477 uint8_t postShift);
mturner5 0:b7116bd48af6 4478
mturner5 0:b7116bd48af6 4479 /**
mturner5 0:b7116bd48af6 4480 * @brief Instance structure for the Q15 normalized LMS filter.
mturner5 0:b7116bd48af6 4481 */
mturner5 0:b7116bd48af6 4482
mturner5 0:b7116bd48af6 4483 typedef struct
mturner5 0:b7116bd48af6 4484 {
mturner5 0:b7116bd48af6 4485 uint16_t numTaps; /**< Number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4486 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
mturner5 0:b7116bd48af6 4487 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4488 q15_t mu; /**< step size that controls filter coefficient updates. */
mturner5 0:b7116bd48af6 4489 uint8_t postShift; /**< bit shift applied to coefficients. */
mturner5 0:b7116bd48af6 4490 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
mturner5 0:b7116bd48af6 4491 q15_t energy; /**< saves previous frame energy. */
mturner5 0:b7116bd48af6 4492 q15_t x0; /**< saves previous input sample. */
mturner5 0:b7116bd48af6 4493 } arm_lms_norm_instance_q15;
mturner5 0:b7116bd48af6 4494
mturner5 0:b7116bd48af6 4495 /**
mturner5 0:b7116bd48af6 4496 * @brief Processing function for Q15 normalized LMS filter.
mturner5 0:b7116bd48af6 4497 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
mturner5 0:b7116bd48af6 4498 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4499 * @param[in] *pRef points to the block of reference data.
mturner5 0:b7116bd48af6 4500 * @param[out] *pOut points to the block of output data.
mturner5 0:b7116bd48af6 4501 * @param[out] *pErr points to the block of error data.
mturner5 0:b7116bd48af6 4502 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4503 * @return none.
mturner5 0:b7116bd48af6 4504 */
mturner5 0:b7116bd48af6 4505
mturner5 0:b7116bd48af6 4506 void arm_lms_norm_q15(
mturner5 0:b7116bd48af6 4507 arm_lms_norm_instance_q15 * S,
mturner5 0:b7116bd48af6 4508 q15_t * pSrc,
mturner5 0:b7116bd48af6 4509 q15_t * pRef,
mturner5 0:b7116bd48af6 4510 q15_t * pOut,
mturner5 0:b7116bd48af6 4511 q15_t * pErr,
mturner5 0:b7116bd48af6 4512 uint32_t blockSize);
mturner5 0:b7116bd48af6 4513
mturner5 0:b7116bd48af6 4514
mturner5 0:b7116bd48af6 4515 /**
mturner5 0:b7116bd48af6 4516 * @brief Initialization function for Q15 normalized LMS filter.
mturner5 0:b7116bd48af6 4517 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
mturner5 0:b7116bd48af6 4518 * @param[in] numTaps number of filter coefficients.
mturner5 0:b7116bd48af6 4519 * @param[in] *pCoeffs points to coefficient buffer.
mturner5 0:b7116bd48af6 4520 * @param[in] *pState points to state buffer.
mturner5 0:b7116bd48af6 4521 * @param[in] mu step size that controls filter coefficient updates.
mturner5 0:b7116bd48af6 4522 * @param[in] blockSize number of samples to process.
mturner5 0:b7116bd48af6 4523 * @param[in] postShift bit shift applied to coefficients.
mturner5 0:b7116bd48af6 4524 * @return none.
mturner5 0:b7116bd48af6 4525 */
mturner5 0:b7116bd48af6 4526
mturner5 0:b7116bd48af6 4527 void arm_lms_norm_init_q15(
mturner5 0:b7116bd48af6 4528 arm_lms_norm_instance_q15 * S,
mturner5 0:b7116bd48af6 4529 uint16_t numTaps,
mturner5 0:b7116bd48af6 4530 q15_t * pCoeffs,
mturner5 0:b7116bd48af6 4531 q15_t * pState,
mturner5 0:b7116bd48af6 4532 q15_t mu,
mturner5 0:b7116bd48af6 4533 uint32_t blockSize,
mturner5 0:b7116bd48af6 4534 uint8_t postShift);
mturner5 0:b7116bd48af6 4535
mturner5 0:b7116bd48af6 4536 /**
mturner5 0:b7116bd48af6 4537 * @brief Correlation of floating-point sequences.
mturner5 0:b7116bd48af6 4538 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 4539 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 4540 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 4541 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 4542 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
mturner5 0:b7116bd48af6 4543 * @return none.
mturner5 0:b7116bd48af6 4544 */
mturner5 0:b7116bd48af6 4545
mturner5 0:b7116bd48af6 4546 void arm_correlate_f32(
mturner5 0:b7116bd48af6 4547 float32_t * pSrcA,
mturner5 0:b7116bd48af6 4548 uint32_t srcALen,
mturner5 0:b7116bd48af6 4549 float32_t * pSrcB,
mturner5 0:b7116bd48af6 4550 uint32_t srcBLen,
mturner5 0:b7116bd48af6 4551 float32_t * pDst);
mturner5 0:b7116bd48af6 4552
mturner5 0:b7116bd48af6 4553
mturner5 0:b7116bd48af6 4554 /**
mturner5 0:b7116bd48af6 4555 * @brief Correlation of Q15 sequences
mturner5 0:b7116bd48af6 4556 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 4557 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 4558 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 4559 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 4560 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
mturner5 0:b7116bd48af6 4561 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
mturner5 0:b7116bd48af6 4562 * @return none.
mturner5 0:b7116bd48af6 4563 */
mturner5 0:b7116bd48af6 4564 void arm_correlate_opt_q15(
mturner5 0:b7116bd48af6 4565 q15_t * pSrcA,
mturner5 0:b7116bd48af6 4566 uint32_t srcALen,
mturner5 0:b7116bd48af6 4567 q15_t * pSrcB,
mturner5 0:b7116bd48af6 4568 uint32_t srcBLen,
mturner5 0:b7116bd48af6 4569 q15_t * pDst,
mturner5 0:b7116bd48af6 4570 q15_t * pScratch);
mturner5 0:b7116bd48af6 4571
mturner5 0:b7116bd48af6 4572
mturner5 0:b7116bd48af6 4573 /**
mturner5 0:b7116bd48af6 4574 * @brief Correlation of Q15 sequences.
mturner5 0:b7116bd48af6 4575 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 4576 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 4577 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 4578 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 4579 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
mturner5 0:b7116bd48af6 4580 * @return none.
mturner5 0:b7116bd48af6 4581 */
mturner5 0:b7116bd48af6 4582
mturner5 0:b7116bd48af6 4583 void arm_correlate_q15(
mturner5 0:b7116bd48af6 4584 q15_t * pSrcA,
mturner5 0:b7116bd48af6 4585 uint32_t srcALen,
mturner5 0:b7116bd48af6 4586 q15_t * pSrcB,
mturner5 0:b7116bd48af6 4587 uint32_t srcBLen,
mturner5 0:b7116bd48af6 4588 q15_t * pDst);
mturner5 0:b7116bd48af6 4589
mturner5 0:b7116bd48af6 4590 /**
mturner5 0:b7116bd48af6 4591 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
mturner5 0:b7116bd48af6 4592 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 4593 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 4594 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 4595 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 4596 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
mturner5 0:b7116bd48af6 4597 * @return none.
mturner5 0:b7116bd48af6 4598 */
mturner5 0:b7116bd48af6 4599
mturner5 0:b7116bd48af6 4600 void arm_correlate_fast_q15(
mturner5 0:b7116bd48af6 4601 q15_t * pSrcA,
mturner5 0:b7116bd48af6 4602 uint32_t srcALen,
mturner5 0:b7116bd48af6 4603 q15_t * pSrcB,
mturner5 0:b7116bd48af6 4604 uint32_t srcBLen,
mturner5 0:b7116bd48af6 4605 q15_t * pDst);
mturner5 0:b7116bd48af6 4606
mturner5 0:b7116bd48af6 4607
mturner5 0:b7116bd48af6 4608
mturner5 0:b7116bd48af6 4609 /**
mturner5 0:b7116bd48af6 4610 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
mturner5 0:b7116bd48af6 4611 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 4612 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 4613 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 4614 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 4615 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
mturner5 0:b7116bd48af6 4616 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
mturner5 0:b7116bd48af6 4617 * @return none.
mturner5 0:b7116bd48af6 4618 */
mturner5 0:b7116bd48af6 4619
mturner5 0:b7116bd48af6 4620 void arm_correlate_fast_opt_q15(
mturner5 0:b7116bd48af6 4621 q15_t * pSrcA,
mturner5 0:b7116bd48af6 4622 uint32_t srcALen,
mturner5 0:b7116bd48af6 4623 q15_t * pSrcB,
mturner5 0:b7116bd48af6 4624 uint32_t srcBLen,
mturner5 0:b7116bd48af6 4625 q15_t * pDst,
mturner5 0:b7116bd48af6 4626 q15_t * pScratch);
mturner5 0:b7116bd48af6 4627
mturner5 0:b7116bd48af6 4628 /**
mturner5 0:b7116bd48af6 4629 * @brief Correlation of Q31 sequences.
mturner5 0:b7116bd48af6 4630 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 4631 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 4632 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 4633 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 4634 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
mturner5 0:b7116bd48af6 4635 * @return none.
mturner5 0:b7116bd48af6 4636 */
mturner5 0:b7116bd48af6 4637
mturner5 0:b7116bd48af6 4638 void arm_correlate_q31(
mturner5 0:b7116bd48af6 4639 q31_t * pSrcA,
mturner5 0:b7116bd48af6 4640 uint32_t srcALen,
mturner5 0:b7116bd48af6 4641 q31_t * pSrcB,
mturner5 0:b7116bd48af6 4642 uint32_t srcBLen,
mturner5 0:b7116bd48af6 4643 q31_t * pDst);
mturner5 0:b7116bd48af6 4644
mturner5 0:b7116bd48af6 4645 /**
mturner5 0:b7116bd48af6 4646 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
mturner5 0:b7116bd48af6 4647 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 4648 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 4649 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 4650 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 4651 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
mturner5 0:b7116bd48af6 4652 * @return none.
mturner5 0:b7116bd48af6 4653 */
mturner5 0:b7116bd48af6 4654
mturner5 0:b7116bd48af6 4655 void arm_correlate_fast_q31(
mturner5 0:b7116bd48af6 4656 q31_t * pSrcA,
mturner5 0:b7116bd48af6 4657 uint32_t srcALen,
mturner5 0:b7116bd48af6 4658 q31_t * pSrcB,
mturner5 0:b7116bd48af6 4659 uint32_t srcBLen,
mturner5 0:b7116bd48af6 4660 q31_t * pDst);
mturner5 0:b7116bd48af6 4661
mturner5 0:b7116bd48af6 4662
mturner5 0:b7116bd48af6 4663
mturner5 0:b7116bd48af6 4664 /**
mturner5 0:b7116bd48af6 4665 * @brief Correlation of Q7 sequences.
mturner5 0:b7116bd48af6 4666 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 4667 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 4668 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 4669 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 4670 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
mturner5 0:b7116bd48af6 4671 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
mturner5 0:b7116bd48af6 4672 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
mturner5 0:b7116bd48af6 4673 * @return none.
mturner5 0:b7116bd48af6 4674 */
mturner5 0:b7116bd48af6 4675
mturner5 0:b7116bd48af6 4676 void arm_correlate_opt_q7(
mturner5 0:b7116bd48af6 4677 q7_t * pSrcA,
mturner5 0:b7116bd48af6 4678 uint32_t srcALen,
mturner5 0:b7116bd48af6 4679 q7_t * pSrcB,
mturner5 0:b7116bd48af6 4680 uint32_t srcBLen,
mturner5 0:b7116bd48af6 4681 q7_t * pDst,
mturner5 0:b7116bd48af6 4682 q15_t * pScratch1,
mturner5 0:b7116bd48af6 4683 q15_t * pScratch2);
mturner5 0:b7116bd48af6 4684
mturner5 0:b7116bd48af6 4685
mturner5 0:b7116bd48af6 4686 /**
mturner5 0:b7116bd48af6 4687 * @brief Correlation of Q7 sequences.
mturner5 0:b7116bd48af6 4688 * @param[in] *pSrcA points to the first input sequence.
mturner5 0:b7116bd48af6 4689 * @param[in] srcALen length of the first input sequence.
mturner5 0:b7116bd48af6 4690 * @param[in] *pSrcB points to the second input sequence.
mturner5 0:b7116bd48af6 4691 * @param[in] srcBLen length of the second input sequence.
mturner5 0:b7116bd48af6 4692 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
mturner5 0:b7116bd48af6 4693 * @return none.
mturner5 0:b7116bd48af6 4694 */
mturner5 0:b7116bd48af6 4695
mturner5 0:b7116bd48af6 4696 void arm_correlate_q7(
mturner5 0:b7116bd48af6 4697 q7_t * pSrcA,
mturner5 0:b7116bd48af6 4698 uint32_t srcALen,
mturner5 0:b7116bd48af6 4699 q7_t * pSrcB,
mturner5 0:b7116bd48af6 4700 uint32_t srcBLen,
mturner5 0:b7116bd48af6 4701 q7_t * pDst);
mturner5 0:b7116bd48af6 4702
mturner5 0:b7116bd48af6 4703
mturner5 0:b7116bd48af6 4704 /**
mturner5 0:b7116bd48af6 4705 * @brief Instance structure for the floating-point sparse FIR filter.
mturner5 0:b7116bd48af6 4706 */
mturner5 0:b7116bd48af6 4707 typedef struct
mturner5 0:b7116bd48af6 4708 {
mturner5 0:b7116bd48af6 4709 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4710 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
mturner5 0:b7116bd48af6 4711 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
mturner5 0:b7116bd48af6 4712 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
mturner5 0:b7116bd48af6 4713 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
mturner5 0:b7116bd48af6 4714 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4715 } arm_fir_sparse_instance_f32;
mturner5 0:b7116bd48af6 4716
mturner5 0:b7116bd48af6 4717 /**
mturner5 0:b7116bd48af6 4718 * @brief Instance structure for the Q31 sparse FIR filter.
mturner5 0:b7116bd48af6 4719 */
mturner5 0:b7116bd48af6 4720
mturner5 0:b7116bd48af6 4721 typedef struct
mturner5 0:b7116bd48af6 4722 {
mturner5 0:b7116bd48af6 4723 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4724 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
mturner5 0:b7116bd48af6 4725 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
mturner5 0:b7116bd48af6 4726 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
mturner5 0:b7116bd48af6 4727 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
mturner5 0:b7116bd48af6 4728 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4729 } arm_fir_sparse_instance_q31;
mturner5 0:b7116bd48af6 4730
mturner5 0:b7116bd48af6 4731 /**
mturner5 0:b7116bd48af6 4732 * @brief Instance structure for the Q15 sparse FIR filter.
mturner5 0:b7116bd48af6 4733 */
mturner5 0:b7116bd48af6 4734
mturner5 0:b7116bd48af6 4735 typedef struct
mturner5 0:b7116bd48af6 4736 {
mturner5 0:b7116bd48af6 4737 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4738 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
mturner5 0:b7116bd48af6 4739 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
mturner5 0:b7116bd48af6 4740 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
mturner5 0:b7116bd48af6 4741 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
mturner5 0:b7116bd48af6 4742 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4743 } arm_fir_sparse_instance_q15;
mturner5 0:b7116bd48af6 4744
mturner5 0:b7116bd48af6 4745 /**
mturner5 0:b7116bd48af6 4746 * @brief Instance structure for the Q7 sparse FIR filter.
mturner5 0:b7116bd48af6 4747 */
mturner5 0:b7116bd48af6 4748
mturner5 0:b7116bd48af6 4749 typedef struct
mturner5 0:b7116bd48af6 4750 {
mturner5 0:b7116bd48af6 4751 uint16_t numTaps; /**< number of coefficients in the filter. */
mturner5 0:b7116bd48af6 4752 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
mturner5 0:b7116bd48af6 4753 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
mturner5 0:b7116bd48af6 4754 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
mturner5 0:b7116bd48af6 4755 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
mturner5 0:b7116bd48af6 4756 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
mturner5 0:b7116bd48af6 4757 } arm_fir_sparse_instance_q7;
mturner5 0:b7116bd48af6 4758
mturner5 0:b7116bd48af6 4759 /**
mturner5 0:b7116bd48af6 4760 * @brief Processing function for the floating-point sparse FIR filter.
mturner5 0:b7116bd48af6 4761 * @param[in] *S points to an instance of the floating-point sparse FIR structure.
mturner5 0:b7116bd48af6 4762 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4763 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 4764 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
mturner5 0:b7116bd48af6 4765 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 4766 * @return none.
mturner5 0:b7116bd48af6 4767 */
mturner5 0:b7116bd48af6 4768
mturner5 0:b7116bd48af6 4769 void arm_fir_sparse_f32(
mturner5 0:b7116bd48af6 4770 arm_fir_sparse_instance_f32 * S,
mturner5 0:b7116bd48af6 4771 float32_t * pSrc,
mturner5 0:b7116bd48af6 4772 float32_t * pDst,
mturner5 0:b7116bd48af6 4773 float32_t * pScratchIn,
mturner5 0:b7116bd48af6 4774 uint32_t blockSize);
mturner5 0:b7116bd48af6 4775
mturner5 0:b7116bd48af6 4776 /**
mturner5 0:b7116bd48af6 4777 * @brief Initialization function for the floating-point sparse FIR filter.
mturner5 0:b7116bd48af6 4778 * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
mturner5 0:b7116bd48af6 4779 * @param[in] numTaps number of nonzero coefficients in the filter.
mturner5 0:b7116bd48af6 4780 * @param[in] *pCoeffs points to the array of filter coefficients.
mturner5 0:b7116bd48af6 4781 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 4782 * @param[in] *pTapDelay points to the array of offset times.
mturner5 0:b7116bd48af6 4783 * @param[in] maxDelay maximum offset time supported.
mturner5 0:b7116bd48af6 4784 * @param[in] blockSize number of samples that will be processed per block.
mturner5 0:b7116bd48af6 4785 * @return none
mturner5 0:b7116bd48af6 4786 */
mturner5 0:b7116bd48af6 4787
mturner5 0:b7116bd48af6 4788 void arm_fir_sparse_init_f32(
mturner5 0:b7116bd48af6 4789 arm_fir_sparse_instance_f32 * S,
mturner5 0:b7116bd48af6 4790 uint16_t numTaps,
mturner5 0:b7116bd48af6 4791 float32_t * pCoeffs,
mturner5 0:b7116bd48af6 4792 float32_t * pState,
mturner5 0:b7116bd48af6 4793 int32_t * pTapDelay,
mturner5 0:b7116bd48af6 4794 uint16_t maxDelay,
mturner5 0:b7116bd48af6 4795 uint32_t blockSize);
mturner5 0:b7116bd48af6 4796
mturner5 0:b7116bd48af6 4797 /**
mturner5 0:b7116bd48af6 4798 * @brief Processing function for the Q31 sparse FIR filter.
mturner5 0:b7116bd48af6 4799 * @param[in] *S points to an instance of the Q31 sparse FIR structure.
mturner5 0:b7116bd48af6 4800 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4801 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 4802 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
mturner5 0:b7116bd48af6 4803 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 4804 * @return none.
mturner5 0:b7116bd48af6 4805 */
mturner5 0:b7116bd48af6 4806
mturner5 0:b7116bd48af6 4807 void arm_fir_sparse_q31(
mturner5 0:b7116bd48af6 4808 arm_fir_sparse_instance_q31 * S,
mturner5 0:b7116bd48af6 4809 q31_t * pSrc,
mturner5 0:b7116bd48af6 4810 q31_t * pDst,
mturner5 0:b7116bd48af6 4811 q31_t * pScratchIn,
mturner5 0:b7116bd48af6 4812 uint32_t blockSize);
mturner5 0:b7116bd48af6 4813
mturner5 0:b7116bd48af6 4814 /**
mturner5 0:b7116bd48af6 4815 * @brief Initialization function for the Q31 sparse FIR filter.
mturner5 0:b7116bd48af6 4816 * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
mturner5 0:b7116bd48af6 4817 * @param[in] numTaps number of nonzero coefficients in the filter.
mturner5 0:b7116bd48af6 4818 * @param[in] *pCoeffs points to the array of filter coefficients.
mturner5 0:b7116bd48af6 4819 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 4820 * @param[in] *pTapDelay points to the array of offset times.
mturner5 0:b7116bd48af6 4821 * @param[in] maxDelay maximum offset time supported.
mturner5 0:b7116bd48af6 4822 * @param[in] blockSize number of samples that will be processed per block.
mturner5 0:b7116bd48af6 4823 * @return none
mturner5 0:b7116bd48af6 4824 */
mturner5 0:b7116bd48af6 4825
mturner5 0:b7116bd48af6 4826 void arm_fir_sparse_init_q31(
mturner5 0:b7116bd48af6 4827 arm_fir_sparse_instance_q31 * S,
mturner5 0:b7116bd48af6 4828 uint16_t numTaps,
mturner5 0:b7116bd48af6 4829 q31_t * pCoeffs,
mturner5 0:b7116bd48af6 4830 q31_t * pState,
mturner5 0:b7116bd48af6 4831 int32_t * pTapDelay,
mturner5 0:b7116bd48af6 4832 uint16_t maxDelay,
mturner5 0:b7116bd48af6 4833 uint32_t blockSize);
mturner5 0:b7116bd48af6 4834
mturner5 0:b7116bd48af6 4835 /**
mturner5 0:b7116bd48af6 4836 * @brief Processing function for the Q15 sparse FIR filter.
mturner5 0:b7116bd48af6 4837 * @param[in] *S points to an instance of the Q15 sparse FIR structure.
mturner5 0:b7116bd48af6 4838 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4839 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 4840 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
mturner5 0:b7116bd48af6 4841 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
mturner5 0:b7116bd48af6 4842 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 4843 * @return none.
mturner5 0:b7116bd48af6 4844 */
mturner5 0:b7116bd48af6 4845
mturner5 0:b7116bd48af6 4846 void arm_fir_sparse_q15(
mturner5 0:b7116bd48af6 4847 arm_fir_sparse_instance_q15 * S,
mturner5 0:b7116bd48af6 4848 q15_t * pSrc,
mturner5 0:b7116bd48af6 4849 q15_t * pDst,
mturner5 0:b7116bd48af6 4850 q15_t * pScratchIn,
mturner5 0:b7116bd48af6 4851 q31_t * pScratchOut,
mturner5 0:b7116bd48af6 4852 uint32_t blockSize);
mturner5 0:b7116bd48af6 4853
mturner5 0:b7116bd48af6 4854
mturner5 0:b7116bd48af6 4855 /**
mturner5 0:b7116bd48af6 4856 * @brief Initialization function for the Q15 sparse FIR filter.
mturner5 0:b7116bd48af6 4857 * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
mturner5 0:b7116bd48af6 4858 * @param[in] numTaps number of nonzero coefficients in the filter.
mturner5 0:b7116bd48af6 4859 * @param[in] *pCoeffs points to the array of filter coefficients.
mturner5 0:b7116bd48af6 4860 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 4861 * @param[in] *pTapDelay points to the array of offset times.
mturner5 0:b7116bd48af6 4862 * @param[in] maxDelay maximum offset time supported.
mturner5 0:b7116bd48af6 4863 * @param[in] blockSize number of samples that will be processed per block.
mturner5 0:b7116bd48af6 4864 * @return none
mturner5 0:b7116bd48af6 4865 */
mturner5 0:b7116bd48af6 4866
mturner5 0:b7116bd48af6 4867 void arm_fir_sparse_init_q15(
mturner5 0:b7116bd48af6 4868 arm_fir_sparse_instance_q15 * S,
mturner5 0:b7116bd48af6 4869 uint16_t numTaps,
mturner5 0:b7116bd48af6 4870 q15_t * pCoeffs,
mturner5 0:b7116bd48af6 4871 q15_t * pState,
mturner5 0:b7116bd48af6 4872 int32_t * pTapDelay,
mturner5 0:b7116bd48af6 4873 uint16_t maxDelay,
mturner5 0:b7116bd48af6 4874 uint32_t blockSize);
mturner5 0:b7116bd48af6 4875
mturner5 0:b7116bd48af6 4876 /**
mturner5 0:b7116bd48af6 4877 * @brief Processing function for the Q7 sparse FIR filter.
mturner5 0:b7116bd48af6 4878 * @param[in] *S points to an instance of the Q7 sparse FIR structure.
mturner5 0:b7116bd48af6 4879 * @param[in] *pSrc points to the block of input data.
mturner5 0:b7116bd48af6 4880 * @param[out] *pDst points to the block of output data
mturner5 0:b7116bd48af6 4881 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
mturner5 0:b7116bd48af6 4882 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
mturner5 0:b7116bd48af6 4883 * @param[in] blockSize number of input samples to process per call.
mturner5 0:b7116bd48af6 4884 * @return none.
mturner5 0:b7116bd48af6 4885 */
mturner5 0:b7116bd48af6 4886
mturner5 0:b7116bd48af6 4887 void arm_fir_sparse_q7(
mturner5 0:b7116bd48af6 4888 arm_fir_sparse_instance_q7 * S,
mturner5 0:b7116bd48af6 4889 q7_t * pSrc,
mturner5 0:b7116bd48af6 4890 q7_t * pDst,
mturner5 0:b7116bd48af6 4891 q7_t * pScratchIn,
mturner5 0:b7116bd48af6 4892 q31_t * pScratchOut,
mturner5 0:b7116bd48af6 4893 uint32_t blockSize);
mturner5 0:b7116bd48af6 4894
mturner5 0:b7116bd48af6 4895 /**
mturner5 0:b7116bd48af6 4896 * @brief Initialization function for the Q7 sparse FIR filter.
mturner5 0:b7116bd48af6 4897 * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
mturner5 0:b7116bd48af6 4898 * @param[in] numTaps number of nonzero coefficients in the filter.
mturner5 0:b7116bd48af6 4899 * @param[in] *pCoeffs points to the array of filter coefficients.
mturner5 0:b7116bd48af6 4900 * @param[in] *pState points to the state buffer.
mturner5 0:b7116bd48af6 4901 * @param[in] *pTapDelay points to the array of offset times.
mturner5 0:b7116bd48af6 4902 * @param[in] maxDelay maximum offset time supported.
mturner5 0:b7116bd48af6 4903 * @param[in] blockSize number of samples that will be processed per block.
mturner5 0:b7116bd48af6 4904 * @return none
mturner5 0:b7116bd48af6 4905 */
mturner5 0:b7116bd48af6 4906
mturner5 0:b7116bd48af6 4907 void arm_fir_sparse_init_q7(
mturner5 0:b7116bd48af6 4908 arm_fir_sparse_instance_q7 * S,
mturner5 0:b7116bd48af6 4909 uint16_t numTaps,
mturner5 0:b7116bd48af6 4910 q7_t * pCoeffs,
mturner5 0:b7116bd48af6 4911 q7_t * pState,
mturner5 0:b7116bd48af6 4912 int32_t * pTapDelay,
mturner5 0:b7116bd48af6 4913 uint16_t maxDelay,
mturner5 0:b7116bd48af6 4914 uint32_t blockSize);
mturner5 0:b7116bd48af6 4915
mturner5 0:b7116bd48af6 4916
mturner5 0:b7116bd48af6 4917 /*
mturner5 0:b7116bd48af6 4918 * @brief Floating-point sin_cos function.
mturner5 0:b7116bd48af6 4919 * @param[in] theta input value in degrees
mturner5 0:b7116bd48af6 4920 * @param[out] *pSinVal points to the processed sine output.
mturner5 0:b7116bd48af6 4921 * @param[out] *pCosVal points to the processed cos output.
mturner5 0:b7116bd48af6 4922 * @return none.
mturner5 0:b7116bd48af6 4923 */
mturner5 0:b7116bd48af6 4924
mturner5 0:b7116bd48af6 4925 void arm_sin_cos_f32(
mturner5 0:b7116bd48af6 4926 float32_t theta,
mturner5 0:b7116bd48af6 4927 float32_t * pSinVal,
mturner5 0:b7116bd48af6 4928 float32_t * pCcosVal);
mturner5 0:b7116bd48af6 4929
mturner5 0:b7116bd48af6 4930 /*
mturner5 0:b7116bd48af6 4931 * @brief Q31 sin_cos function.
mturner5 0:b7116bd48af6 4932 * @param[in] theta scaled input value in degrees
mturner5 0:b7116bd48af6 4933 * @param[out] *pSinVal points to the processed sine output.
mturner5 0:b7116bd48af6 4934 * @param[out] *pCosVal points to the processed cosine output.
mturner5 0:b7116bd48af6 4935 * @return none.
mturner5 0:b7116bd48af6 4936 */
mturner5 0:b7116bd48af6 4937
mturner5 0:b7116bd48af6 4938 void arm_sin_cos_q31(
mturner5 0:b7116bd48af6 4939 q31_t theta,
mturner5 0:b7116bd48af6 4940 q31_t * pSinVal,
mturner5 0:b7116bd48af6 4941 q31_t * pCosVal);
mturner5 0:b7116bd48af6 4942
mturner5 0:b7116bd48af6 4943
mturner5 0:b7116bd48af6 4944 /**
mturner5 0:b7116bd48af6 4945 * @brief Floating-point complex conjugate.
mturner5 0:b7116bd48af6 4946 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 4947 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 4948 * @param[in] numSamples number of complex samples in each vector
mturner5 0:b7116bd48af6 4949 * @return none.
mturner5 0:b7116bd48af6 4950 */
mturner5 0:b7116bd48af6 4951
mturner5 0:b7116bd48af6 4952 void arm_cmplx_conj_f32(
mturner5 0:b7116bd48af6 4953 float32_t * pSrc,
mturner5 0:b7116bd48af6 4954 float32_t * pDst,
mturner5 0:b7116bd48af6 4955 uint32_t numSamples);
mturner5 0:b7116bd48af6 4956
mturner5 0:b7116bd48af6 4957 /**
mturner5 0:b7116bd48af6 4958 * @brief Q31 complex conjugate.
mturner5 0:b7116bd48af6 4959 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 4960 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 4961 * @param[in] numSamples number of complex samples in each vector
mturner5 0:b7116bd48af6 4962 * @return none.
mturner5 0:b7116bd48af6 4963 */
mturner5 0:b7116bd48af6 4964
mturner5 0:b7116bd48af6 4965 void arm_cmplx_conj_q31(
mturner5 0:b7116bd48af6 4966 q31_t * pSrc,
mturner5 0:b7116bd48af6 4967 q31_t * pDst,
mturner5 0:b7116bd48af6 4968 uint32_t numSamples);
mturner5 0:b7116bd48af6 4969
mturner5 0:b7116bd48af6 4970 /**
mturner5 0:b7116bd48af6 4971 * @brief Q15 complex conjugate.
mturner5 0:b7116bd48af6 4972 * @param[in] *pSrc points to the input vector
mturner5 0:b7116bd48af6 4973 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 4974 * @param[in] numSamples number of complex samples in each vector
mturner5 0:b7116bd48af6 4975 * @return none.
mturner5 0:b7116bd48af6 4976 */
mturner5 0:b7116bd48af6 4977
mturner5 0:b7116bd48af6 4978 void arm_cmplx_conj_q15(
mturner5 0:b7116bd48af6 4979 q15_t * pSrc,
mturner5 0:b7116bd48af6 4980 q15_t * pDst,
mturner5 0:b7116bd48af6 4981 uint32_t numSamples);
mturner5 0:b7116bd48af6 4982
mturner5 0:b7116bd48af6 4983
mturner5 0:b7116bd48af6 4984
mturner5 0:b7116bd48af6 4985 /**
mturner5 0:b7116bd48af6 4986 * @brief Floating-point complex magnitude squared
mturner5 0:b7116bd48af6 4987 * @param[in] *pSrc points to the complex input vector
mturner5 0:b7116bd48af6 4988 * @param[out] *pDst points to the real output vector
mturner5 0:b7116bd48af6 4989 * @param[in] numSamples number of complex samples in the input vector
mturner5 0:b7116bd48af6 4990 * @return none.
mturner5 0:b7116bd48af6 4991 */
mturner5 0:b7116bd48af6 4992
mturner5 0:b7116bd48af6 4993 void arm_cmplx_mag_squared_f32(
mturner5 0:b7116bd48af6 4994 float32_t * pSrc,
mturner5 0:b7116bd48af6 4995 float32_t * pDst,
mturner5 0:b7116bd48af6 4996 uint32_t numSamples);
mturner5 0:b7116bd48af6 4997
mturner5 0:b7116bd48af6 4998 /**
mturner5 0:b7116bd48af6 4999 * @brief Q31 complex magnitude squared
mturner5 0:b7116bd48af6 5000 * @param[in] *pSrc points to the complex input vector
mturner5 0:b7116bd48af6 5001 * @param[out] *pDst points to the real output vector
mturner5 0:b7116bd48af6 5002 * @param[in] numSamples number of complex samples in the input vector
mturner5 0:b7116bd48af6 5003 * @return none.
mturner5 0:b7116bd48af6 5004 */
mturner5 0:b7116bd48af6 5005
mturner5 0:b7116bd48af6 5006 void arm_cmplx_mag_squared_q31(
mturner5 0:b7116bd48af6 5007 q31_t * pSrc,
mturner5 0:b7116bd48af6 5008 q31_t * pDst,
mturner5 0:b7116bd48af6 5009 uint32_t numSamples);
mturner5 0:b7116bd48af6 5010
mturner5 0:b7116bd48af6 5011 /**
mturner5 0:b7116bd48af6 5012 * @brief Q15 complex magnitude squared
mturner5 0:b7116bd48af6 5013 * @param[in] *pSrc points to the complex input vector
mturner5 0:b7116bd48af6 5014 * @param[out] *pDst points to the real output vector
mturner5 0:b7116bd48af6 5015 * @param[in] numSamples number of complex samples in the input vector
mturner5 0:b7116bd48af6 5016 * @return none.
mturner5 0:b7116bd48af6 5017 */
mturner5 0:b7116bd48af6 5018
mturner5 0:b7116bd48af6 5019 void arm_cmplx_mag_squared_q15(
mturner5 0:b7116bd48af6 5020 q15_t * pSrc,
mturner5 0:b7116bd48af6 5021 q15_t * pDst,
mturner5 0:b7116bd48af6 5022 uint32_t numSamples);
mturner5 0:b7116bd48af6 5023
mturner5 0:b7116bd48af6 5024
mturner5 0:b7116bd48af6 5025 /**
mturner5 0:b7116bd48af6 5026 * @ingroup groupController
mturner5 0:b7116bd48af6 5027 */
mturner5 0:b7116bd48af6 5028
mturner5 0:b7116bd48af6 5029 /**
mturner5 0:b7116bd48af6 5030 * @defgroup PID PID Motor Control
mturner5 0:b7116bd48af6 5031 *
mturner5 0:b7116bd48af6 5032 * A Proportional Integral Derivative (PID) controller is a generic feedback control
mturner5 0:b7116bd48af6 5033 * loop mechanism widely used in industrial control systems.
mturner5 0:b7116bd48af6 5034 * A PID controller is the most commonly used type of feedback controller.
mturner5 0:b7116bd48af6 5035 *
mturner5 0:b7116bd48af6 5036 * This set of functions implements (PID) controllers
mturner5 0:b7116bd48af6 5037 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
mturner5 0:b7116bd48af6 5038 * of data and each call to the function returns a single processed value.
mturner5 0:b7116bd48af6 5039 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
mturner5 0:b7116bd48af6 5040 * is the input sample value. The functions return the output value.
mturner5 0:b7116bd48af6 5041 *
mturner5 0:b7116bd48af6 5042 * \par Algorithm:
mturner5 0:b7116bd48af6 5043 * <pre>
mturner5 0:b7116bd48af6 5044 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
mturner5 0:b7116bd48af6 5045 * A0 = Kp + Ki + Kd
mturner5 0:b7116bd48af6 5046 * A1 = (-Kp ) - (2 * Kd )
mturner5 0:b7116bd48af6 5047 * A2 = Kd </pre>
mturner5 0:b7116bd48af6 5048 *
mturner5 0:b7116bd48af6 5049 * \par
mturner5 0:b7116bd48af6 5050 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
mturner5 0:b7116bd48af6 5051 *
mturner5 0:b7116bd48af6 5052 * \par
mturner5 0:b7116bd48af6 5053 * \image html PID.gif "Proportional Integral Derivative Controller"
mturner5 0:b7116bd48af6 5054 *
mturner5 0:b7116bd48af6 5055 * \par
mturner5 0:b7116bd48af6 5056 * The PID controller calculates an "error" value as the difference between
mturner5 0:b7116bd48af6 5057 * the measured output and the reference input.
mturner5 0:b7116bd48af6 5058 * The controller attempts to minimize the error by adjusting the process control inputs.
mturner5 0:b7116bd48af6 5059 * The proportional value determines the reaction to the current error,
mturner5 0:b7116bd48af6 5060 * the integral value determines the reaction based on the sum of recent errors,
mturner5 0:b7116bd48af6 5061 * and the derivative value determines the reaction based on the rate at which the error has been changing.
mturner5 0:b7116bd48af6 5062 *
mturner5 0:b7116bd48af6 5063 * \par Instance Structure
mturner5 0:b7116bd48af6 5064 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
mturner5 0:b7116bd48af6 5065 * A separate instance structure must be defined for each PID Controller.
mturner5 0:b7116bd48af6 5066 * There are separate instance structure declarations for each of the 3 supported data types.
mturner5 0:b7116bd48af6 5067 *
mturner5 0:b7116bd48af6 5068 * \par Reset Functions
mturner5 0:b7116bd48af6 5069 * There is also an associated reset function for each data type which clears the state array.
mturner5 0:b7116bd48af6 5070 *
mturner5 0:b7116bd48af6 5071 * \par Initialization Functions
mturner5 0:b7116bd48af6 5072 * There is also an associated initialization function for each data type.
mturner5 0:b7116bd48af6 5073 * The initialization function performs the following operations:
mturner5 0:b7116bd48af6 5074 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
mturner5 0:b7116bd48af6 5075 * - Zeros out the values in the state buffer.
mturner5 0:b7116bd48af6 5076 *
mturner5 0:b7116bd48af6 5077 * \par
mturner5 0:b7116bd48af6 5078 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
mturner5 0:b7116bd48af6 5079 *
mturner5 0:b7116bd48af6 5080 * \par Fixed-Point Behavior
mturner5 0:b7116bd48af6 5081 * Care must be taken when using the fixed-point versions of the PID Controller functions.
mturner5 0:b7116bd48af6 5082 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
mturner5 0:b7116bd48af6 5083 * Refer to the function specific documentation below for usage guidelines.
mturner5 0:b7116bd48af6 5084 */
mturner5 0:b7116bd48af6 5085
mturner5 0:b7116bd48af6 5086 /**
mturner5 0:b7116bd48af6 5087 * @addtogroup PID
mturner5 0:b7116bd48af6 5088 * @{
mturner5 0:b7116bd48af6 5089 */
mturner5 0:b7116bd48af6 5090
mturner5 0:b7116bd48af6 5091 /**
mturner5 0:b7116bd48af6 5092 * @brief Process function for the floating-point PID Control.
mturner5 0:b7116bd48af6 5093 * @param[in,out] *S is an instance of the floating-point PID Control structure
mturner5 0:b7116bd48af6 5094 * @param[in] in input sample to process
mturner5 0:b7116bd48af6 5095 * @return out processed output sample.
mturner5 0:b7116bd48af6 5096 */
mturner5 0:b7116bd48af6 5097
mturner5 0:b7116bd48af6 5098
mturner5 0:b7116bd48af6 5099 static __INLINE float32_t arm_pid_f32(
mturner5 0:b7116bd48af6 5100 arm_pid_instance_f32 * S,
mturner5 0:b7116bd48af6 5101 float32_t in)
mturner5 0:b7116bd48af6 5102 {
mturner5 0:b7116bd48af6 5103 float32_t out;
mturner5 0:b7116bd48af6 5104
mturner5 0:b7116bd48af6 5105 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
mturner5 0:b7116bd48af6 5106 out = (S->A0 * in) +
mturner5 0:b7116bd48af6 5107 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
mturner5 0:b7116bd48af6 5108
mturner5 0:b7116bd48af6 5109 /* Update state */
mturner5 0:b7116bd48af6 5110 S->state[1] = S->state[0];
mturner5 0:b7116bd48af6 5111 S->state[0] = in;
mturner5 0:b7116bd48af6 5112 S->state[2] = out;
mturner5 0:b7116bd48af6 5113
mturner5 0:b7116bd48af6 5114 /* return to application */
mturner5 0:b7116bd48af6 5115 return (out);
mturner5 0:b7116bd48af6 5116
mturner5 0:b7116bd48af6 5117 }
mturner5 0:b7116bd48af6 5118
mturner5 0:b7116bd48af6 5119 /**
mturner5 0:b7116bd48af6 5120 * @brief Process function for the Q31 PID Control.
mturner5 0:b7116bd48af6 5121 * @param[in,out] *S points to an instance of the Q31 PID Control structure
mturner5 0:b7116bd48af6 5122 * @param[in] in input sample to process
mturner5 0:b7116bd48af6 5123 * @return out processed output sample.
mturner5 0:b7116bd48af6 5124 *
mturner5 0:b7116bd48af6 5125 * <b>Scaling and Overflow Behavior:</b>
mturner5 0:b7116bd48af6 5126 * \par
mturner5 0:b7116bd48af6 5127 * The function is implemented using an internal 64-bit accumulator.
mturner5 0:b7116bd48af6 5128 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
mturner5 0:b7116bd48af6 5129 * Thus, if the accumulator result overflows it wraps around rather than clip.
mturner5 0:b7116bd48af6 5130 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
mturner5 0:b7116bd48af6 5131 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
mturner5 0:b7116bd48af6 5132 */
mturner5 0:b7116bd48af6 5133
mturner5 0:b7116bd48af6 5134 static __INLINE q31_t arm_pid_q31(
mturner5 0:b7116bd48af6 5135 arm_pid_instance_q31 * S,
mturner5 0:b7116bd48af6 5136 q31_t in)
mturner5 0:b7116bd48af6 5137 {
mturner5 0:b7116bd48af6 5138 q63_t acc;
mturner5 0:b7116bd48af6 5139 q31_t out;
mturner5 0:b7116bd48af6 5140
mturner5 0:b7116bd48af6 5141 /* acc = A0 * x[n] */
mturner5 0:b7116bd48af6 5142 acc = (q63_t) S->A0 * in;
mturner5 0:b7116bd48af6 5143
mturner5 0:b7116bd48af6 5144 /* acc += A1 * x[n-1] */
mturner5 0:b7116bd48af6 5145 acc += (q63_t) S->A1 * S->state[0];
mturner5 0:b7116bd48af6 5146
mturner5 0:b7116bd48af6 5147 /* acc += A2 * x[n-2] */
mturner5 0:b7116bd48af6 5148 acc += (q63_t) S->A2 * S->state[1];
mturner5 0:b7116bd48af6 5149
mturner5 0:b7116bd48af6 5150 /* convert output to 1.31 format to add y[n-1] */
mturner5 0:b7116bd48af6 5151 out = (q31_t) (acc >> 31u);
mturner5 0:b7116bd48af6 5152
mturner5 0:b7116bd48af6 5153 /* out += y[n-1] */
mturner5 0:b7116bd48af6 5154 out += S->state[2];
mturner5 0:b7116bd48af6 5155
mturner5 0:b7116bd48af6 5156 /* Update state */
mturner5 0:b7116bd48af6 5157 S->state[1] = S->state[0];
mturner5 0:b7116bd48af6 5158 S->state[0] = in;
mturner5 0:b7116bd48af6 5159 S->state[2] = out;
mturner5 0:b7116bd48af6 5160
mturner5 0:b7116bd48af6 5161 /* return to application */
mturner5 0:b7116bd48af6 5162 return (out);
mturner5 0:b7116bd48af6 5163
mturner5 0:b7116bd48af6 5164 }
mturner5 0:b7116bd48af6 5165
mturner5 0:b7116bd48af6 5166 /**
mturner5 0:b7116bd48af6 5167 * @brief Process function for the Q15 PID Control.
mturner5 0:b7116bd48af6 5168 * @param[in,out] *S points to an instance of the Q15 PID Control structure
mturner5 0:b7116bd48af6 5169 * @param[in] in input sample to process
mturner5 0:b7116bd48af6 5170 * @return out processed output sample.
mturner5 0:b7116bd48af6 5171 *
mturner5 0:b7116bd48af6 5172 * <b>Scaling and Overflow Behavior:</b>
mturner5 0:b7116bd48af6 5173 * \par
mturner5 0:b7116bd48af6 5174 * The function is implemented using a 64-bit internal accumulator.
mturner5 0:b7116bd48af6 5175 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
mturner5 0:b7116bd48af6 5176 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
mturner5 0:b7116bd48af6 5177 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
mturner5 0:b7116bd48af6 5178 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
mturner5 0:b7116bd48af6 5179 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
mturner5 0:b7116bd48af6 5180 */
mturner5 0:b7116bd48af6 5181
mturner5 0:b7116bd48af6 5182 static __INLINE q15_t arm_pid_q15(
mturner5 0:b7116bd48af6 5183 arm_pid_instance_q15 * S,
mturner5 0:b7116bd48af6 5184 q15_t in)
mturner5 0:b7116bd48af6 5185 {
mturner5 0:b7116bd48af6 5186 q63_t acc;
mturner5 0:b7116bd48af6 5187 q15_t out;
mturner5 0:b7116bd48af6 5188
mturner5 0:b7116bd48af6 5189 #ifndef ARM_MATH_CM0_FAMILY
mturner5 0:b7116bd48af6 5190 __SIMD32_TYPE *vstate;
mturner5 0:b7116bd48af6 5191
mturner5 0:b7116bd48af6 5192 /* Implementation of PID controller */
mturner5 0:b7116bd48af6 5193
mturner5 0:b7116bd48af6 5194 /* acc = A0 * x[n] */
mturner5 0:b7116bd48af6 5195 acc = (q31_t) __SMUAD(S->A0, in);
mturner5 0:b7116bd48af6 5196
mturner5 0:b7116bd48af6 5197 /* acc += A1 * x[n-1] + A2 * x[n-2] */
mturner5 0:b7116bd48af6 5198 vstate = __SIMD32_CONST(S->state);
mturner5 0:b7116bd48af6 5199 acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
mturner5 0:b7116bd48af6 5200
mturner5 0:b7116bd48af6 5201 #else
mturner5 0:b7116bd48af6 5202 /* acc = A0 * x[n] */
mturner5 0:b7116bd48af6 5203 acc = ((q31_t) S->A0) * in;
mturner5 0:b7116bd48af6 5204
mturner5 0:b7116bd48af6 5205 /* acc += A1 * x[n-1] + A2 * x[n-2] */
mturner5 0:b7116bd48af6 5206 acc += (q31_t) S->A1 * S->state[0];
mturner5 0:b7116bd48af6 5207 acc += (q31_t) S->A2 * S->state[1];
mturner5 0:b7116bd48af6 5208
mturner5 0:b7116bd48af6 5209 #endif
mturner5 0:b7116bd48af6 5210
mturner5 0:b7116bd48af6 5211 /* acc += y[n-1] */
mturner5 0:b7116bd48af6 5212 acc += (q31_t) S->state[2] << 15;
mturner5 0:b7116bd48af6 5213
mturner5 0:b7116bd48af6 5214 /* saturate the output */
mturner5 0:b7116bd48af6 5215 out = (q15_t) (__SSAT((acc >> 15), 16));
mturner5 0:b7116bd48af6 5216
mturner5 0:b7116bd48af6 5217 /* Update state */
mturner5 0:b7116bd48af6 5218 S->state[1] = S->state[0];
mturner5 0:b7116bd48af6 5219 S->state[0] = in;
mturner5 0:b7116bd48af6 5220 S->state[2] = out;
mturner5 0:b7116bd48af6 5221
mturner5 0:b7116bd48af6 5222 /* return to application */
mturner5 0:b7116bd48af6 5223 return (out);
mturner5 0:b7116bd48af6 5224
mturner5 0:b7116bd48af6 5225 }
mturner5 0:b7116bd48af6 5226
mturner5 0:b7116bd48af6 5227 /**
mturner5 0:b7116bd48af6 5228 * @} end of PID group
mturner5 0:b7116bd48af6 5229 */
mturner5 0:b7116bd48af6 5230
mturner5 0:b7116bd48af6 5231
mturner5 0:b7116bd48af6 5232 /**
mturner5 0:b7116bd48af6 5233 * @brief Floating-point matrix inverse.
mturner5 0:b7116bd48af6 5234 * @param[in] *src points to the instance of the input floating-point matrix structure.
mturner5 0:b7116bd48af6 5235 * @param[out] *dst points to the instance of the output floating-point matrix structure.
mturner5 0:b7116bd48af6 5236 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
mturner5 0:b7116bd48af6 5237 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
mturner5 0:b7116bd48af6 5238 */
mturner5 0:b7116bd48af6 5239
mturner5 0:b7116bd48af6 5240 arm_status arm_mat_inverse_f32(
mturner5 0:b7116bd48af6 5241 const arm_matrix_instance_f32 * src,
mturner5 0:b7116bd48af6 5242 arm_matrix_instance_f32 * dst);
mturner5 0:b7116bd48af6 5243
mturner5 0:b7116bd48af6 5244
mturner5 0:b7116bd48af6 5245 /**
mturner5 0:b7116bd48af6 5246 * @brief Floating-point matrix inverse.
mturner5 0:b7116bd48af6 5247 * @param[in] *src points to the instance of the input floating-point matrix structure.
mturner5 0:b7116bd48af6 5248 * @param[out] *dst points to the instance of the output floating-point matrix structure.
mturner5 0:b7116bd48af6 5249 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
mturner5 0:b7116bd48af6 5250 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
mturner5 0:b7116bd48af6 5251 */
mturner5 0:b7116bd48af6 5252
mturner5 0:b7116bd48af6 5253 arm_status arm_mat_inverse_f64(
mturner5 0:b7116bd48af6 5254 const arm_matrix_instance_f64 * src,
mturner5 0:b7116bd48af6 5255 arm_matrix_instance_f64 * dst);
mturner5 0:b7116bd48af6 5256
mturner5 0:b7116bd48af6 5257
mturner5 0:b7116bd48af6 5258
mturner5 0:b7116bd48af6 5259 /**
mturner5 0:b7116bd48af6 5260 * @ingroup groupController
mturner5 0:b7116bd48af6 5261 */
mturner5 0:b7116bd48af6 5262
mturner5 0:b7116bd48af6 5263
mturner5 0:b7116bd48af6 5264 /**
mturner5 0:b7116bd48af6 5265 * @defgroup clarke Vector Clarke Transform
mturner5 0:b7116bd48af6 5266 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
mturner5 0:b7116bd48af6 5267 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
mturner5 0:b7116bd48af6 5268 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
mturner5 0:b7116bd48af6 5269 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
mturner5 0:b7116bd48af6 5270 * \image html clarke.gif Stator current space vector and its components in (a,b).
mturner5 0:b7116bd48af6 5271 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
mturner5 0:b7116bd48af6 5272 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
mturner5 0:b7116bd48af6 5273 *
mturner5 0:b7116bd48af6 5274 * The function operates on a single sample of data and each call to the function returns the processed output.
mturner5 0:b7116bd48af6 5275 * The library provides separate functions for Q31 and floating-point data types.
mturner5 0:b7116bd48af6 5276 * \par Algorithm
mturner5 0:b7116bd48af6 5277 * \image html clarkeFormula.gif
mturner5 0:b7116bd48af6 5278 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
mturner5 0:b7116bd48af6 5279 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
mturner5 0:b7116bd48af6 5280 * \par Fixed-Point Behavior
mturner5 0:b7116bd48af6 5281 * Care must be taken when using the Q31 version of the Clarke transform.
mturner5 0:b7116bd48af6 5282 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
mturner5 0:b7116bd48af6 5283 * Refer to the function specific documentation below for usage guidelines.
mturner5 0:b7116bd48af6 5284 */
mturner5 0:b7116bd48af6 5285
mturner5 0:b7116bd48af6 5286 /**
mturner5 0:b7116bd48af6 5287 * @addtogroup clarke
mturner5 0:b7116bd48af6 5288 * @{
mturner5 0:b7116bd48af6 5289 */
mturner5 0:b7116bd48af6 5290
mturner5 0:b7116bd48af6 5291 /**
mturner5 0:b7116bd48af6 5292 *
mturner5 0:b7116bd48af6 5293 * @brief Floating-point Clarke transform
mturner5 0:b7116bd48af6 5294 * @param[in] Ia input three-phase coordinate <code>a</code>
mturner5 0:b7116bd48af6 5295 * @param[in] Ib input three-phase coordinate <code>b</code>
mturner5 0:b7116bd48af6 5296 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
mturner5 0:b7116bd48af6 5297 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
mturner5 0:b7116bd48af6 5298 * @return none.
mturner5 0:b7116bd48af6 5299 */
mturner5 0:b7116bd48af6 5300
mturner5 0:b7116bd48af6 5301 static __INLINE void arm_clarke_f32(
mturner5 0:b7116bd48af6 5302 float32_t Ia,
mturner5 0:b7116bd48af6 5303 float32_t Ib,
mturner5 0:b7116bd48af6 5304 float32_t * pIalpha,
mturner5 0:b7116bd48af6 5305 float32_t * pIbeta)
mturner5 0:b7116bd48af6 5306 {
mturner5 0:b7116bd48af6 5307 /* Calculate pIalpha using the equation, pIalpha = Ia */
mturner5 0:b7116bd48af6 5308 *pIalpha = Ia;
mturner5 0:b7116bd48af6 5309
mturner5 0:b7116bd48af6 5310 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
mturner5 0:b7116bd48af6 5311 *pIbeta =
mturner5 0:b7116bd48af6 5312 ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
mturner5 0:b7116bd48af6 5313
mturner5 0:b7116bd48af6 5314 }
mturner5 0:b7116bd48af6 5315
mturner5 0:b7116bd48af6 5316 /**
mturner5 0:b7116bd48af6 5317 * @brief Clarke transform for Q31 version
mturner5 0:b7116bd48af6 5318 * @param[in] Ia input three-phase coordinate <code>a</code>
mturner5 0:b7116bd48af6 5319 * @param[in] Ib input three-phase coordinate <code>b</code>
mturner5 0:b7116bd48af6 5320 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
mturner5 0:b7116bd48af6 5321 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
mturner5 0:b7116bd48af6 5322 * @return none.
mturner5 0:b7116bd48af6 5323 *
mturner5 0:b7116bd48af6 5324 * <b>Scaling and Overflow Behavior:</b>
mturner5 0:b7116bd48af6 5325 * \par
mturner5 0:b7116bd48af6 5326 * The function is implemented using an internal 32-bit accumulator.
mturner5 0:b7116bd48af6 5327 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
mturner5 0:b7116bd48af6 5328 * There is saturation on the addition, hence there is no risk of overflow.
mturner5 0:b7116bd48af6 5329 */
mturner5 0:b7116bd48af6 5330
mturner5 0:b7116bd48af6 5331 static __INLINE void arm_clarke_q31(
mturner5 0:b7116bd48af6 5332 q31_t Ia,
mturner5 0:b7116bd48af6 5333 q31_t Ib,
mturner5 0:b7116bd48af6 5334 q31_t * pIalpha,
mturner5 0:b7116bd48af6 5335 q31_t * pIbeta)
mturner5 0:b7116bd48af6 5336 {
mturner5 0:b7116bd48af6 5337 q31_t product1, product2; /* Temporary variables used to store intermediate results */
mturner5 0:b7116bd48af6 5338
mturner5 0:b7116bd48af6 5339 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
mturner5 0:b7116bd48af6 5340 *pIalpha = Ia;
mturner5 0:b7116bd48af6 5341
mturner5 0:b7116bd48af6 5342 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
mturner5 0:b7116bd48af6 5343 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
mturner5 0:b7116bd48af6 5344
mturner5 0:b7116bd48af6 5345 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
mturner5 0:b7116bd48af6 5346 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
mturner5 0:b7116bd48af6 5347
mturner5 0:b7116bd48af6 5348 /* pIbeta is calculated by adding the intermediate products */
mturner5 0:b7116bd48af6 5349 *pIbeta = __QADD(product1, product2);
mturner5 0:b7116bd48af6 5350 }
mturner5 0:b7116bd48af6 5351
mturner5 0:b7116bd48af6 5352 /**
mturner5 0:b7116bd48af6 5353 * @} end of clarke group
mturner5 0:b7116bd48af6 5354 */
mturner5 0:b7116bd48af6 5355
mturner5 0:b7116bd48af6 5356 /**
mturner5 0:b7116bd48af6 5357 * @brief Converts the elements of the Q7 vector to Q31 vector.
mturner5 0:b7116bd48af6 5358 * @param[in] *pSrc input pointer
mturner5 0:b7116bd48af6 5359 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 5360 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 5361 * @return none.
mturner5 0:b7116bd48af6 5362 */
mturner5 0:b7116bd48af6 5363 void arm_q7_to_q31(
mturner5 0:b7116bd48af6 5364 q7_t * pSrc,
mturner5 0:b7116bd48af6 5365 q31_t * pDst,
mturner5 0:b7116bd48af6 5366 uint32_t blockSize);
mturner5 0:b7116bd48af6 5367
mturner5 0:b7116bd48af6 5368
mturner5 0:b7116bd48af6 5369
mturner5 0:b7116bd48af6 5370
mturner5 0:b7116bd48af6 5371 /**
mturner5 0:b7116bd48af6 5372 * @ingroup groupController
mturner5 0:b7116bd48af6 5373 */
mturner5 0:b7116bd48af6 5374
mturner5 0:b7116bd48af6 5375 /**
mturner5 0:b7116bd48af6 5376 * @defgroup inv_clarke Vector Inverse Clarke Transform
mturner5 0:b7116bd48af6 5377 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
mturner5 0:b7116bd48af6 5378 *
mturner5 0:b7116bd48af6 5379 * The function operates on a single sample of data and each call to the function returns the processed output.
mturner5 0:b7116bd48af6 5380 * The library provides separate functions for Q31 and floating-point data types.
mturner5 0:b7116bd48af6 5381 * \par Algorithm
mturner5 0:b7116bd48af6 5382 * \image html clarkeInvFormula.gif
mturner5 0:b7116bd48af6 5383 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
mturner5 0:b7116bd48af6 5384 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
mturner5 0:b7116bd48af6 5385 * \par Fixed-Point Behavior
mturner5 0:b7116bd48af6 5386 * Care must be taken when using the Q31 version of the Clarke transform.
mturner5 0:b7116bd48af6 5387 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
mturner5 0:b7116bd48af6 5388 * Refer to the function specific documentation below for usage guidelines.
mturner5 0:b7116bd48af6 5389 */
mturner5 0:b7116bd48af6 5390
mturner5 0:b7116bd48af6 5391 /**
mturner5 0:b7116bd48af6 5392 * @addtogroup inv_clarke
mturner5 0:b7116bd48af6 5393 * @{
mturner5 0:b7116bd48af6 5394 */
mturner5 0:b7116bd48af6 5395
mturner5 0:b7116bd48af6 5396 /**
mturner5 0:b7116bd48af6 5397 * @brief Floating-point Inverse Clarke transform
mturner5 0:b7116bd48af6 5398 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
mturner5 0:b7116bd48af6 5399 * @param[in] Ibeta input two-phase orthogonal vector axis beta
mturner5 0:b7116bd48af6 5400 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
mturner5 0:b7116bd48af6 5401 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
mturner5 0:b7116bd48af6 5402 * @return none.
mturner5 0:b7116bd48af6 5403 */
mturner5 0:b7116bd48af6 5404
mturner5 0:b7116bd48af6 5405
mturner5 0:b7116bd48af6 5406 static __INLINE void arm_inv_clarke_f32(
mturner5 0:b7116bd48af6 5407 float32_t Ialpha,
mturner5 0:b7116bd48af6 5408 float32_t Ibeta,
mturner5 0:b7116bd48af6 5409 float32_t * pIa,
mturner5 0:b7116bd48af6 5410 float32_t * pIb)
mturner5 0:b7116bd48af6 5411 {
mturner5 0:b7116bd48af6 5412 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
mturner5 0:b7116bd48af6 5413 *pIa = Ialpha;
mturner5 0:b7116bd48af6 5414
mturner5 0:b7116bd48af6 5415 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
mturner5 0:b7116bd48af6 5416 *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
mturner5 0:b7116bd48af6 5417
mturner5 0:b7116bd48af6 5418 }
mturner5 0:b7116bd48af6 5419
mturner5 0:b7116bd48af6 5420 /**
mturner5 0:b7116bd48af6 5421 * @brief Inverse Clarke transform for Q31 version
mturner5 0:b7116bd48af6 5422 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
mturner5 0:b7116bd48af6 5423 * @param[in] Ibeta input two-phase orthogonal vector axis beta
mturner5 0:b7116bd48af6 5424 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
mturner5 0:b7116bd48af6 5425 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
mturner5 0:b7116bd48af6 5426 * @return none.
mturner5 0:b7116bd48af6 5427 *
mturner5 0:b7116bd48af6 5428 * <b>Scaling and Overflow Behavior:</b>
mturner5 0:b7116bd48af6 5429 * \par
mturner5 0:b7116bd48af6 5430 * The function is implemented using an internal 32-bit accumulator.
mturner5 0:b7116bd48af6 5431 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
mturner5 0:b7116bd48af6 5432 * There is saturation on the subtraction, hence there is no risk of overflow.
mturner5 0:b7116bd48af6 5433 */
mturner5 0:b7116bd48af6 5434
mturner5 0:b7116bd48af6 5435 static __INLINE void arm_inv_clarke_q31(
mturner5 0:b7116bd48af6 5436 q31_t Ialpha,
mturner5 0:b7116bd48af6 5437 q31_t Ibeta,
mturner5 0:b7116bd48af6 5438 q31_t * pIa,
mturner5 0:b7116bd48af6 5439 q31_t * pIb)
mturner5 0:b7116bd48af6 5440 {
mturner5 0:b7116bd48af6 5441 q31_t product1, product2; /* Temporary variables used to store intermediate results */
mturner5 0:b7116bd48af6 5442
mturner5 0:b7116bd48af6 5443 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
mturner5 0:b7116bd48af6 5444 *pIa = Ialpha;
mturner5 0:b7116bd48af6 5445
mturner5 0:b7116bd48af6 5446 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
mturner5 0:b7116bd48af6 5447 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
mturner5 0:b7116bd48af6 5448
mturner5 0:b7116bd48af6 5449 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
mturner5 0:b7116bd48af6 5450 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
mturner5 0:b7116bd48af6 5451
mturner5 0:b7116bd48af6 5452 /* pIb is calculated by subtracting the products */
mturner5 0:b7116bd48af6 5453 *pIb = __QSUB(product2, product1);
mturner5 0:b7116bd48af6 5454
mturner5 0:b7116bd48af6 5455 }
mturner5 0:b7116bd48af6 5456
mturner5 0:b7116bd48af6 5457 /**
mturner5 0:b7116bd48af6 5458 * @} end of inv_clarke group
mturner5 0:b7116bd48af6 5459 */
mturner5 0:b7116bd48af6 5460
mturner5 0:b7116bd48af6 5461 /**
mturner5 0:b7116bd48af6 5462 * @brief Converts the elements of the Q7 vector to Q15 vector.
mturner5 0:b7116bd48af6 5463 * @param[in] *pSrc input pointer
mturner5 0:b7116bd48af6 5464 * @param[out] *pDst output pointer
mturner5 0:b7116bd48af6 5465 * @param[in] blockSize number of samples to process
mturner5 0:b7116bd48af6 5466 * @return none.
mturner5 0:b7116bd48af6 5467 */
mturner5 0:b7116bd48af6 5468 void arm_q7_to_q15(
mturner5 0:b7116bd48af6 5469 q7_t * pSrc,
mturner5 0:b7116bd48af6 5470 q15_t * pDst,
mturner5 0:b7116bd48af6 5471 uint32_t blockSize);
mturner5 0:b7116bd48af6 5472
mturner5 0:b7116bd48af6 5473
mturner5 0:b7116bd48af6 5474
mturner5 0:b7116bd48af6 5475 /**
mturner5 0:b7116bd48af6 5476 * @ingroup groupController
mturner5 0:b7116bd48af6 5477 */
mturner5 0:b7116bd48af6 5478
mturner5 0:b7116bd48af6 5479 /**
mturner5 0:b7116bd48af6 5480 * @defgroup park Vector Park Transform
mturner5 0:b7116bd48af6 5481 *
mturner5 0:b7116bd48af6 5482 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
mturner5 0:b7116bd48af6 5483 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
mturner5 0:b7116bd48af6 5484 * from the stationary to the moving reference frame and control the spatial relationship between
mturner5 0:b7116bd48af6 5485 * the stator vector current and rotor flux vector.
mturner5 0:b7116bd48af6 5486 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
mturner5 0:b7116bd48af6 5487 * current vector and the relationship from the two reference frames:
mturner5 0:b7116bd48af6 5488 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
mturner5 0:b7116bd48af6 5489 *
mturner5 0:b7116bd48af6 5490 * The function operates on a single sample of data and each call to the function returns the processed output.
mturner5 0:b7116bd48af6 5491 * The library provides separate functions for Q31 and floating-point data types.
mturner5 0:b7116bd48af6 5492 * \par Algorithm
mturner5 0:b7116bd48af6 5493 * \image html parkFormula.gif
mturner5 0:b7116bd48af6 5494 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
mturner5 0:b7116bd48af6 5495 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
mturner5 0:b7116bd48af6 5496 * cosine and sine values of theta (rotor flux position).
mturner5 0:b7116bd48af6 5497 * \par Fixed-Point Behavior
mturner5 0:b7116bd48af6 5498 * Care must be taken when using the Q31 version of the Park transform.
mturner5 0:b7116bd48af6 5499 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
mturner5 0:b7116bd48af6 5500 * Refer to the function specific documentation below for usage guidelines.
mturner5 0:b7116bd48af6 5501 */
mturner5 0:b7116bd48af6 5502
mturner5 0:b7116bd48af6 5503 /**
mturner5 0:b7116bd48af6 5504 * @addtogroup park
mturner5 0:b7116bd48af6 5505 * @{
mturner5 0:b7116bd48af6 5506 */
mturner5 0:b7116bd48af6 5507
mturner5 0:b7116bd48af6 5508 /**
mturner5 0:b7116bd48af6 5509 * @brief Floating-point Park transform
mturner5 0:b7116bd48af6 5510 * @param[in] Ialpha input two-phase vector coordinate alpha
mturner5 0:b7116bd48af6 5511 * @param[in] Ibeta input two-phase vector coordinate beta
mturner5 0:b7116bd48af6 5512 * @param[out] *pId points to output rotor reference frame d
mturner5 0:b7116bd48af6 5513 * @param[out] *pIq points to output rotor reference frame q
mturner5 0:b7116bd48af6 5514 * @param[in] sinVal sine value of rotation angle theta
mturner5 0:b7116bd48af6 5515 * @param[in] cosVal cosine value of rotation angle theta
mturner5 0:b7116bd48af6 5516 * @return none.
mturner5 0:b7116bd48af6 5517 *
mturner5 0:b7116bd48af6 5518 * The function implements the forward Park transform.
mturner5 0:b7116bd48af6 5519 *
mturner5 0:b7116bd48af6 5520 */
mturner5 0:b7116bd48af6 5521
mturner5 0:b7116bd48af6 5522 static __INLINE void arm_park_f32(
mturner5 0:b7116bd48af6 5523 float32_t Ialpha,
mturner5 0:b7116bd48af6 5524 float32_t Ibeta,
mturner5 0:b7116bd48af6 5525 float32_t * pId,
mturner5 0:b7116bd48af6 5526 float32_t * pIq,
mturner5 0:b7116bd48af6 5527 float32_t sinVal,
mturner5 0:b7116bd48af6 5528 float32_t cosVal)
mturner5 0:b7116bd48af6 5529 {
mturner5 0:b7116bd48af6 5530 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
mturner5 0:b7116bd48af6 5531 *pId = Ialpha * cosVal + Ibeta * sinVal;
mturner5 0:b7116bd48af6 5532
mturner5 0:b7116bd48af6 5533 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
mturner5 0:b7116bd48af6 5534 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
mturner5 0:b7116bd48af6 5535
mturner5 0:b7116bd48af6 5536 }
mturner5 0:b7116bd48af6 5537
mturner5 0:b7116bd48af6 5538 /**
mturner5 0:b7116bd48af6 5539 * @brief Park transform for Q31 version
mturner5 0:b7116bd48af6 5540 * @param[in] Ialpha input two-phase vector coordinate alpha
mturner5 0:b7116bd48af6 5541 * @param[in] Ibeta input two-phase vector coordinate beta
mturner5 0:b7116bd48af6 5542 * @param[out] *pId points to output rotor reference frame d
mturner5 0:b7116bd48af6 5543 * @param[out] *pIq points to output rotor reference frame q
mturner5 0:b7116bd48af6 5544 * @param[in] sinVal sine value of rotation angle theta
mturner5 0:b7116bd48af6 5545 * @param[in] cosVal cosine value of rotation angle theta
mturner5 0:b7116bd48af6 5546 * @return none.
mturner5 0:b7116bd48af6 5547 *
mturner5 0:b7116bd48af6 5548 * <b>Scaling and Overflow Behavior:</b>
mturner5 0:b7116bd48af6 5549 * \par
mturner5 0:b7116bd48af6 5550 * The function is implemented using an internal 32-bit accumulator.
mturner5 0:b7116bd48af6 5551 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
mturner5 0:b7116bd48af6 5552 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
mturner5 0:b7116bd48af6 5553 */
mturner5 0:b7116bd48af6 5554
mturner5 0:b7116bd48af6 5555
mturner5 0:b7116bd48af6 5556 static __INLINE void arm_park_q31(
mturner5 0:b7116bd48af6 5557 q31_t Ialpha,
mturner5 0:b7116bd48af6 5558 q31_t Ibeta,
mturner5 0:b7116bd48af6 5559 q31_t * pId,
mturner5 0:b7116bd48af6 5560 q31_t * pIq,
mturner5 0:b7116bd48af6 5561 q31_t sinVal,
mturner5 0:b7116bd48af6 5562 q31_t cosVal)
mturner5 0:b7116bd48af6 5563 {
mturner5 0:b7116bd48af6 5564 q31_t product1, product2; /* Temporary variables used to store intermediate results */
mturner5 0:b7116bd48af6 5565 q31_t product3, product4; /* Temporary variables used to store intermediate results */
mturner5 0:b7116bd48af6 5566
mturner5 0:b7116bd48af6 5567 /* Intermediate product is calculated by (Ialpha * cosVal) */
mturner5 0:b7116bd48af6 5568 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
mturner5 0:b7116bd48af6 5569
mturner5 0:b7116bd48af6 5570 /* Intermediate product is calculated by (Ibeta * sinVal) */
mturner5 0:b7116bd48af6 5571 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
mturner5 0:b7116bd48af6 5572
mturner5 0:b7116bd48af6 5573
mturner5 0:b7116bd48af6 5574 /* Intermediate product is calculated by (Ialpha * sinVal) */
mturner5 0:b7116bd48af6 5575 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
mturner5 0:b7116bd48af6 5576
mturner5 0:b7116bd48af6 5577 /* Intermediate product is calculated by (Ibeta * cosVal) */
mturner5 0:b7116bd48af6 5578 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
mturner5 0:b7116bd48af6 5579
mturner5 0:b7116bd48af6 5580 /* Calculate pId by adding the two intermediate products 1 and 2 */
mturner5 0:b7116bd48af6 5581 *pId = __QADD(product1, product2);
mturner5 0:b7116bd48af6 5582
mturner5 0:b7116bd48af6 5583 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
mturner5 0:b7116bd48af6 5584 *pIq = __QSUB(product4, product3);
mturner5 0:b7116bd48af6 5585 }
mturner5 0:b7116bd48af6 5586
mturner5 0:b7116bd48af6 5587 /**
mturner5 0:b7116bd48af6 5588 * @} end of park group
mturner5 0:b7116bd48af6 5589 */
mturner5 0:b7116bd48af6 5590
mturner5 0:b7116bd48af6 5591 /**
mturner5 0:b7116bd48af6 5592 * @brief Converts the elements of the Q7 vector to floating-point vector.
mturner5 0:b7116bd48af6 5593 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 5594 * @param[out] *pDst is output pointer
mturner5 0:b7116bd48af6 5595 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 5596 * @return none.
mturner5 0:b7116bd48af6 5597 */
mturner5 0:b7116bd48af6 5598 void arm_q7_to_float(
mturner5 0:b7116bd48af6 5599 q7_t * pSrc,
mturner5 0:b7116bd48af6 5600 float32_t * pDst,
mturner5 0:b7116bd48af6 5601 uint32_t blockSize);
mturner5 0:b7116bd48af6 5602
mturner5 0:b7116bd48af6 5603
mturner5 0:b7116bd48af6 5604 /**
mturner5 0:b7116bd48af6 5605 * @ingroup groupController
mturner5 0:b7116bd48af6 5606 */
mturner5 0:b7116bd48af6 5607
mturner5 0:b7116bd48af6 5608 /**
mturner5 0:b7116bd48af6 5609 * @defgroup inv_park Vector Inverse Park transform
mturner5 0:b7116bd48af6 5610 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
mturner5 0:b7116bd48af6 5611 *
mturner5 0:b7116bd48af6 5612 * The function operates on a single sample of data and each call to the function returns the processed output.
mturner5 0:b7116bd48af6 5613 * The library provides separate functions for Q31 and floating-point data types.
mturner5 0:b7116bd48af6 5614 * \par Algorithm
mturner5 0:b7116bd48af6 5615 * \image html parkInvFormula.gif
mturner5 0:b7116bd48af6 5616 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
mturner5 0:b7116bd48af6 5617 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
mturner5 0:b7116bd48af6 5618 * cosine and sine values of theta (rotor flux position).
mturner5 0:b7116bd48af6 5619 * \par Fixed-Point Behavior
mturner5 0:b7116bd48af6 5620 * Care must be taken when using the Q31 version of the Park transform.
mturner5 0:b7116bd48af6 5621 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
mturner5 0:b7116bd48af6 5622 * Refer to the function specific documentation below for usage guidelines.
mturner5 0:b7116bd48af6 5623 */
mturner5 0:b7116bd48af6 5624
mturner5 0:b7116bd48af6 5625 /**
mturner5 0:b7116bd48af6 5626 * @addtogroup inv_park
mturner5 0:b7116bd48af6 5627 * @{
mturner5 0:b7116bd48af6 5628 */
mturner5 0:b7116bd48af6 5629
mturner5 0:b7116bd48af6 5630 /**
mturner5 0:b7116bd48af6 5631 * @brief Floating-point Inverse Park transform
mturner5 0:b7116bd48af6 5632 * @param[in] Id input coordinate of rotor reference frame d
mturner5 0:b7116bd48af6 5633 * @param[in] Iq input coordinate of rotor reference frame q
mturner5 0:b7116bd48af6 5634 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
mturner5 0:b7116bd48af6 5635 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
mturner5 0:b7116bd48af6 5636 * @param[in] sinVal sine value of rotation angle theta
mturner5 0:b7116bd48af6 5637 * @param[in] cosVal cosine value of rotation angle theta
mturner5 0:b7116bd48af6 5638 * @return none.
mturner5 0:b7116bd48af6 5639 */
mturner5 0:b7116bd48af6 5640
mturner5 0:b7116bd48af6 5641 static __INLINE void arm_inv_park_f32(
mturner5 0:b7116bd48af6 5642 float32_t Id,
mturner5 0:b7116bd48af6 5643 float32_t Iq,
mturner5 0:b7116bd48af6 5644 float32_t * pIalpha,
mturner5 0:b7116bd48af6 5645 float32_t * pIbeta,
mturner5 0:b7116bd48af6 5646 float32_t sinVal,
mturner5 0:b7116bd48af6 5647 float32_t cosVal)
mturner5 0:b7116bd48af6 5648 {
mturner5 0:b7116bd48af6 5649 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
mturner5 0:b7116bd48af6 5650 *pIalpha = Id * cosVal - Iq * sinVal;
mturner5 0:b7116bd48af6 5651
mturner5 0:b7116bd48af6 5652 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
mturner5 0:b7116bd48af6 5653 *pIbeta = Id * sinVal + Iq * cosVal;
mturner5 0:b7116bd48af6 5654
mturner5 0:b7116bd48af6 5655 }
mturner5 0:b7116bd48af6 5656
mturner5 0:b7116bd48af6 5657
mturner5 0:b7116bd48af6 5658 /**
mturner5 0:b7116bd48af6 5659 * @brief Inverse Park transform for Q31 version
mturner5 0:b7116bd48af6 5660 * @param[in] Id input coordinate of rotor reference frame d
mturner5 0:b7116bd48af6 5661 * @param[in] Iq input coordinate of rotor reference frame q
mturner5 0:b7116bd48af6 5662 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
mturner5 0:b7116bd48af6 5663 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
mturner5 0:b7116bd48af6 5664 * @param[in] sinVal sine value of rotation angle theta
mturner5 0:b7116bd48af6 5665 * @param[in] cosVal cosine value of rotation angle theta
mturner5 0:b7116bd48af6 5666 * @return none.
mturner5 0:b7116bd48af6 5667 *
mturner5 0:b7116bd48af6 5668 * <b>Scaling and Overflow Behavior:</b>
mturner5 0:b7116bd48af6 5669 * \par
mturner5 0:b7116bd48af6 5670 * The function is implemented using an internal 32-bit accumulator.
mturner5 0:b7116bd48af6 5671 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
mturner5 0:b7116bd48af6 5672 * There is saturation on the addition, hence there is no risk of overflow.
mturner5 0:b7116bd48af6 5673 */
mturner5 0:b7116bd48af6 5674
mturner5 0:b7116bd48af6 5675
mturner5 0:b7116bd48af6 5676 static __INLINE void arm_inv_park_q31(
mturner5 0:b7116bd48af6 5677 q31_t Id,
mturner5 0:b7116bd48af6 5678 q31_t Iq,
mturner5 0:b7116bd48af6 5679 q31_t * pIalpha,
mturner5 0:b7116bd48af6 5680 q31_t * pIbeta,
mturner5 0:b7116bd48af6 5681 q31_t sinVal,
mturner5 0:b7116bd48af6 5682 q31_t cosVal)
mturner5 0:b7116bd48af6 5683 {
mturner5 0:b7116bd48af6 5684 q31_t product1, product2; /* Temporary variables used to store intermediate results */
mturner5 0:b7116bd48af6 5685 q31_t product3, product4; /* Temporary variables used to store intermediate results */
mturner5 0:b7116bd48af6 5686
mturner5 0:b7116bd48af6 5687 /* Intermediate product is calculated by (Id * cosVal) */
mturner5 0:b7116bd48af6 5688 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
mturner5 0:b7116bd48af6 5689
mturner5 0:b7116bd48af6 5690 /* Intermediate product is calculated by (Iq * sinVal) */
mturner5 0:b7116bd48af6 5691 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
mturner5 0:b7116bd48af6 5692
mturner5 0:b7116bd48af6 5693
mturner5 0:b7116bd48af6 5694 /* Intermediate product is calculated by (Id * sinVal) */
mturner5 0:b7116bd48af6 5695 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
mturner5 0:b7116bd48af6 5696
mturner5 0:b7116bd48af6 5697 /* Intermediate product is calculated by (Iq * cosVal) */
mturner5 0:b7116bd48af6 5698 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
mturner5 0:b7116bd48af6 5699
mturner5 0:b7116bd48af6 5700 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
mturner5 0:b7116bd48af6 5701 *pIalpha = __QSUB(product1, product2);
mturner5 0:b7116bd48af6 5702
mturner5 0:b7116bd48af6 5703 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
mturner5 0:b7116bd48af6 5704 *pIbeta = __QADD(product4, product3);
mturner5 0:b7116bd48af6 5705
mturner5 0:b7116bd48af6 5706 }
mturner5 0:b7116bd48af6 5707
mturner5 0:b7116bd48af6 5708 /**
mturner5 0:b7116bd48af6 5709 * @} end of Inverse park group
mturner5 0:b7116bd48af6 5710 */
mturner5 0:b7116bd48af6 5711
mturner5 0:b7116bd48af6 5712
mturner5 0:b7116bd48af6 5713 /**
mturner5 0:b7116bd48af6 5714 * @brief Converts the elements of the Q31 vector to floating-point vector.
mturner5 0:b7116bd48af6 5715 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 5716 * @param[out] *pDst is output pointer
mturner5 0:b7116bd48af6 5717 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 5718 * @return none.
mturner5 0:b7116bd48af6 5719 */
mturner5 0:b7116bd48af6 5720 void arm_q31_to_float(
mturner5 0:b7116bd48af6 5721 q31_t * pSrc,
mturner5 0:b7116bd48af6 5722 float32_t * pDst,
mturner5 0:b7116bd48af6 5723 uint32_t blockSize);
mturner5 0:b7116bd48af6 5724
mturner5 0:b7116bd48af6 5725 /**
mturner5 0:b7116bd48af6 5726 * @ingroup groupInterpolation
mturner5 0:b7116bd48af6 5727 */
mturner5 0:b7116bd48af6 5728
mturner5 0:b7116bd48af6 5729 /**
mturner5 0:b7116bd48af6 5730 * @defgroup LinearInterpolate Linear Interpolation
mturner5 0:b7116bd48af6 5731 *
mturner5 0:b7116bd48af6 5732 * Linear interpolation is a method of curve fitting using linear polynomials.
mturner5 0:b7116bd48af6 5733 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
mturner5 0:b7116bd48af6 5734 *
mturner5 0:b7116bd48af6 5735 * \par
mturner5 0:b7116bd48af6 5736 * \image html LinearInterp.gif "Linear interpolation"
mturner5 0:b7116bd48af6 5737 *
mturner5 0:b7116bd48af6 5738 * \par
mturner5 0:b7116bd48af6 5739 * A Linear Interpolate function calculates an output value(y), for the input(x)
mturner5 0:b7116bd48af6 5740 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
mturner5 0:b7116bd48af6 5741 *
mturner5 0:b7116bd48af6 5742 * \par Algorithm:
mturner5 0:b7116bd48af6 5743 * <pre>
mturner5 0:b7116bd48af6 5744 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
mturner5 0:b7116bd48af6 5745 * where x0, x1 are nearest values of input x
mturner5 0:b7116bd48af6 5746 * y0, y1 are nearest values to output y
mturner5 0:b7116bd48af6 5747 * </pre>
mturner5 0:b7116bd48af6 5748 *
mturner5 0:b7116bd48af6 5749 * \par
mturner5 0:b7116bd48af6 5750 * This set of functions implements Linear interpolation process
mturner5 0:b7116bd48af6 5751 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
mturner5 0:b7116bd48af6 5752 * sample of data and each call to the function returns a single processed value.
mturner5 0:b7116bd48af6 5753 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
mturner5 0:b7116bd48af6 5754 * <code>x</code> is the input sample value. The functions returns the output value.
mturner5 0:b7116bd48af6 5755 *
mturner5 0:b7116bd48af6 5756 * \par
mturner5 0:b7116bd48af6 5757 * if x is outside of the table boundary, Linear interpolation returns first value of the table
mturner5 0:b7116bd48af6 5758 * if x is below input range and returns last value of table if x is above range.
mturner5 0:b7116bd48af6 5759 */
mturner5 0:b7116bd48af6 5760
mturner5 0:b7116bd48af6 5761 /**
mturner5 0:b7116bd48af6 5762 * @addtogroup LinearInterpolate
mturner5 0:b7116bd48af6 5763 * @{
mturner5 0:b7116bd48af6 5764 */
mturner5 0:b7116bd48af6 5765
mturner5 0:b7116bd48af6 5766 /**
mturner5 0:b7116bd48af6 5767 * @brief Process function for the floating-point Linear Interpolation Function.
mturner5 0:b7116bd48af6 5768 * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
mturner5 0:b7116bd48af6 5769 * @param[in] x input sample to process
mturner5 0:b7116bd48af6 5770 * @return y processed output sample.
mturner5 0:b7116bd48af6 5771 *
mturner5 0:b7116bd48af6 5772 */
mturner5 0:b7116bd48af6 5773
mturner5 0:b7116bd48af6 5774 static __INLINE float32_t arm_linear_interp_f32(
mturner5 0:b7116bd48af6 5775 arm_linear_interp_instance_f32 * S,
mturner5 0:b7116bd48af6 5776 float32_t x)
mturner5 0:b7116bd48af6 5777 {
mturner5 0:b7116bd48af6 5778
mturner5 0:b7116bd48af6 5779 float32_t y;
mturner5 0:b7116bd48af6 5780 float32_t x0, x1; /* Nearest input values */
mturner5 0:b7116bd48af6 5781 float32_t y0, y1; /* Nearest output values */
mturner5 0:b7116bd48af6 5782 float32_t xSpacing = S->xSpacing; /* spacing between input values */
mturner5 0:b7116bd48af6 5783 int32_t i; /* Index variable */
mturner5 0:b7116bd48af6 5784 float32_t *pYData = S->pYData; /* pointer to output table */
mturner5 0:b7116bd48af6 5785
mturner5 0:b7116bd48af6 5786 /* Calculation of index */
mturner5 0:b7116bd48af6 5787 i = (int32_t) ((x - S->x1) / xSpacing);
mturner5 0:b7116bd48af6 5788
mturner5 0:b7116bd48af6 5789 if(i < 0)
mturner5 0:b7116bd48af6 5790 {
mturner5 0:b7116bd48af6 5791 /* Iniatilize output for below specified range as least output value of table */
mturner5 0:b7116bd48af6 5792 y = pYData[0];
mturner5 0:b7116bd48af6 5793 }
mturner5 0:b7116bd48af6 5794 else if((uint32_t)i >= S->nValues)
mturner5 0:b7116bd48af6 5795 {
mturner5 0:b7116bd48af6 5796 /* Iniatilize output for above specified range as last output value of table */
mturner5 0:b7116bd48af6 5797 y = pYData[S->nValues - 1];
mturner5 0:b7116bd48af6 5798 }
mturner5 0:b7116bd48af6 5799 else
mturner5 0:b7116bd48af6 5800 {
mturner5 0:b7116bd48af6 5801 /* Calculation of nearest input values */
mturner5 0:b7116bd48af6 5802 x0 = S->x1 + i * xSpacing;
mturner5 0:b7116bd48af6 5803 x1 = S->x1 + (i + 1) * xSpacing;
mturner5 0:b7116bd48af6 5804
mturner5 0:b7116bd48af6 5805 /* Read of nearest output values */
mturner5 0:b7116bd48af6 5806 y0 = pYData[i];
mturner5 0:b7116bd48af6 5807 y1 = pYData[i + 1];
mturner5 0:b7116bd48af6 5808
mturner5 0:b7116bd48af6 5809 /* Calculation of output */
mturner5 0:b7116bd48af6 5810 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
mturner5 0:b7116bd48af6 5811
mturner5 0:b7116bd48af6 5812 }
mturner5 0:b7116bd48af6 5813
mturner5 0:b7116bd48af6 5814 /* returns output value */
mturner5 0:b7116bd48af6 5815 return (y);
mturner5 0:b7116bd48af6 5816 }
mturner5 0:b7116bd48af6 5817
mturner5 0:b7116bd48af6 5818 /**
mturner5 0:b7116bd48af6 5819 *
mturner5 0:b7116bd48af6 5820 * @brief Process function for the Q31 Linear Interpolation Function.
mturner5 0:b7116bd48af6 5821 * @param[in] *pYData pointer to Q31 Linear Interpolation table
mturner5 0:b7116bd48af6 5822 * @param[in] x input sample to process
mturner5 0:b7116bd48af6 5823 * @param[in] nValues number of table values
mturner5 0:b7116bd48af6 5824 * @return y processed output sample.
mturner5 0:b7116bd48af6 5825 *
mturner5 0:b7116bd48af6 5826 * \par
mturner5 0:b7116bd48af6 5827 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
mturner5 0:b7116bd48af6 5828 * This function can support maximum of table size 2^12.
mturner5 0:b7116bd48af6 5829 *
mturner5 0:b7116bd48af6 5830 */
mturner5 0:b7116bd48af6 5831
mturner5 0:b7116bd48af6 5832
mturner5 0:b7116bd48af6 5833 static __INLINE q31_t arm_linear_interp_q31(
mturner5 0:b7116bd48af6 5834 q31_t * pYData,
mturner5 0:b7116bd48af6 5835 q31_t x,
mturner5 0:b7116bd48af6 5836 uint32_t nValues)
mturner5 0:b7116bd48af6 5837 {
mturner5 0:b7116bd48af6 5838 q31_t y; /* output */
mturner5 0:b7116bd48af6 5839 q31_t y0, y1; /* Nearest output values */
mturner5 0:b7116bd48af6 5840 q31_t fract; /* fractional part */
mturner5 0:b7116bd48af6 5841 int32_t index; /* Index to read nearest output values */
mturner5 0:b7116bd48af6 5842
mturner5 0:b7116bd48af6 5843 /* Input is in 12.20 format */
mturner5 0:b7116bd48af6 5844 /* 12 bits for the table index */
mturner5 0:b7116bd48af6 5845 /* Index value calculation */
mturner5 0:b7116bd48af6 5846 index = ((x & 0xFFF00000) >> 20);
mturner5 0:b7116bd48af6 5847
mturner5 0:b7116bd48af6 5848 if(index >= (int32_t)(nValues - 1))
mturner5 0:b7116bd48af6 5849 {
mturner5 0:b7116bd48af6 5850 return (pYData[nValues - 1]);
mturner5 0:b7116bd48af6 5851 }
mturner5 0:b7116bd48af6 5852 else if(index < 0)
mturner5 0:b7116bd48af6 5853 {
mturner5 0:b7116bd48af6 5854 return (pYData[0]);
mturner5 0:b7116bd48af6 5855 }
mturner5 0:b7116bd48af6 5856 else
mturner5 0:b7116bd48af6 5857 {
mturner5 0:b7116bd48af6 5858
mturner5 0:b7116bd48af6 5859 /* 20 bits for the fractional part */
mturner5 0:b7116bd48af6 5860 /* shift left by 11 to keep fract in 1.31 format */
mturner5 0:b7116bd48af6 5861 fract = (x & 0x000FFFFF) << 11;
mturner5 0:b7116bd48af6 5862
mturner5 0:b7116bd48af6 5863 /* Read two nearest output values from the index in 1.31(q31) format */
mturner5 0:b7116bd48af6 5864 y0 = pYData[index];
mturner5 0:b7116bd48af6 5865 y1 = pYData[index + 1u];
mturner5 0:b7116bd48af6 5866
mturner5 0:b7116bd48af6 5867 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
mturner5 0:b7116bd48af6 5868 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
mturner5 0:b7116bd48af6 5869
mturner5 0:b7116bd48af6 5870 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
mturner5 0:b7116bd48af6 5871 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
mturner5 0:b7116bd48af6 5872
mturner5 0:b7116bd48af6 5873 /* Convert y to 1.31 format */
mturner5 0:b7116bd48af6 5874 return (y << 1u);
mturner5 0:b7116bd48af6 5875
mturner5 0:b7116bd48af6 5876 }
mturner5 0:b7116bd48af6 5877
mturner5 0:b7116bd48af6 5878 }
mturner5 0:b7116bd48af6 5879
mturner5 0:b7116bd48af6 5880 /**
mturner5 0:b7116bd48af6 5881 *
mturner5 0:b7116bd48af6 5882 * @brief Process function for the Q15 Linear Interpolation Function.
mturner5 0:b7116bd48af6 5883 * @param[in] *pYData pointer to Q15 Linear Interpolation table
mturner5 0:b7116bd48af6 5884 * @param[in] x input sample to process
mturner5 0:b7116bd48af6 5885 * @param[in] nValues number of table values
mturner5 0:b7116bd48af6 5886 * @return y processed output sample.
mturner5 0:b7116bd48af6 5887 *
mturner5 0:b7116bd48af6 5888 * \par
mturner5 0:b7116bd48af6 5889 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
mturner5 0:b7116bd48af6 5890 * This function can support maximum of table size 2^12.
mturner5 0:b7116bd48af6 5891 *
mturner5 0:b7116bd48af6 5892 */
mturner5 0:b7116bd48af6 5893
mturner5 0:b7116bd48af6 5894
mturner5 0:b7116bd48af6 5895 static __INLINE q15_t arm_linear_interp_q15(
mturner5 0:b7116bd48af6 5896 q15_t * pYData,
mturner5 0:b7116bd48af6 5897 q31_t x,
mturner5 0:b7116bd48af6 5898 uint32_t nValues)
mturner5 0:b7116bd48af6 5899 {
mturner5 0:b7116bd48af6 5900 q63_t y; /* output */
mturner5 0:b7116bd48af6 5901 q15_t y0, y1; /* Nearest output values */
mturner5 0:b7116bd48af6 5902 q31_t fract; /* fractional part */
mturner5 0:b7116bd48af6 5903 int32_t index; /* Index to read nearest output values */
mturner5 0:b7116bd48af6 5904
mturner5 0:b7116bd48af6 5905 /* Input is in 12.20 format */
mturner5 0:b7116bd48af6 5906 /* 12 bits for the table index */
mturner5 0:b7116bd48af6 5907 /* Index value calculation */
mturner5 0:b7116bd48af6 5908 index = ((x & 0xFFF00000) >> 20u);
mturner5 0:b7116bd48af6 5909
mturner5 0:b7116bd48af6 5910 if(index >= (int32_t)(nValues - 1))
mturner5 0:b7116bd48af6 5911 {
mturner5 0:b7116bd48af6 5912 return (pYData[nValues - 1]);
mturner5 0:b7116bd48af6 5913 }
mturner5 0:b7116bd48af6 5914 else if(index < 0)
mturner5 0:b7116bd48af6 5915 {
mturner5 0:b7116bd48af6 5916 return (pYData[0]);
mturner5 0:b7116bd48af6 5917 }
mturner5 0:b7116bd48af6 5918 else
mturner5 0:b7116bd48af6 5919 {
mturner5 0:b7116bd48af6 5920 /* 20 bits for the fractional part */
mturner5 0:b7116bd48af6 5921 /* fract is in 12.20 format */
mturner5 0:b7116bd48af6 5922 fract = (x & 0x000FFFFF);
mturner5 0:b7116bd48af6 5923
mturner5 0:b7116bd48af6 5924 /* Read two nearest output values from the index */
mturner5 0:b7116bd48af6 5925 y0 = pYData[index];
mturner5 0:b7116bd48af6 5926 y1 = pYData[index + 1u];
mturner5 0:b7116bd48af6 5927
mturner5 0:b7116bd48af6 5928 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
mturner5 0:b7116bd48af6 5929 y = ((q63_t) y0 * (0xFFFFF - fract));
mturner5 0:b7116bd48af6 5930
mturner5 0:b7116bd48af6 5931 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
mturner5 0:b7116bd48af6 5932 y += ((q63_t) y1 * (fract));
mturner5 0:b7116bd48af6 5933
mturner5 0:b7116bd48af6 5934 /* convert y to 1.15 format */
mturner5 0:b7116bd48af6 5935 return (y >> 20);
mturner5 0:b7116bd48af6 5936 }
mturner5 0:b7116bd48af6 5937
mturner5 0:b7116bd48af6 5938
mturner5 0:b7116bd48af6 5939 }
mturner5 0:b7116bd48af6 5940
mturner5 0:b7116bd48af6 5941 /**
mturner5 0:b7116bd48af6 5942 *
mturner5 0:b7116bd48af6 5943 * @brief Process function for the Q7 Linear Interpolation Function.
mturner5 0:b7116bd48af6 5944 * @param[in] *pYData pointer to Q7 Linear Interpolation table
mturner5 0:b7116bd48af6 5945 * @param[in] x input sample to process
mturner5 0:b7116bd48af6 5946 * @param[in] nValues number of table values
mturner5 0:b7116bd48af6 5947 * @return y processed output sample.
mturner5 0:b7116bd48af6 5948 *
mturner5 0:b7116bd48af6 5949 * \par
mturner5 0:b7116bd48af6 5950 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
mturner5 0:b7116bd48af6 5951 * This function can support maximum of table size 2^12.
mturner5 0:b7116bd48af6 5952 */
mturner5 0:b7116bd48af6 5953
mturner5 0:b7116bd48af6 5954
mturner5 0:b7116bd48af6 5955 static __INLINE q7_t arm_linear_interp_q7(
mturner5 0:b7116bd48af6 5956 q7_t * pYData,
mturner5 0:b7116bd48af6 5957 q31_t x,
mturner5 0:b7116bd48af6 5958 uint32_t nValues)
mturner5 0:b7116bd48af6 5959 {
mturner5 0:b7116bd48af6 5960 q31_t y; /* output */
mturner5 0:b7116bd48af6 5961 q7_t y0, y1; /* Nearest output values */
mturner5 0:b7116bd48af6 5962 q31_t fract; /* fractional part */
mturner5 0:b7116bd48af6 5963 uint32_t index; /* Index to read nearest output values */
mturner5 0:b7116bd48af6 5964
mturner5 0:b7116bd48af6 5965 /* Input is in 12.20 format */
mturner5 0:b7116bd48af6 5966 /* 12 bits for the table index */
mturner5 0:b7116bd48af6 5967 /* Index value calculation */
mturner5 0:b7116bd48af6 5968 if (x < 0)
mturner5 0:b7116bd48af6 5969 {
mturner5 0:b7116bd48af6 5970 return (pYData[0]);
mturner5 0:b7116bd48af6 5971 }
mturner5 0:b7116bd48af6 5972 index = (x >> 20) & 0xfff;
mturner5 0:b7116bd48af6 5973
mturner5 0:b7116bd48af6 5974
mturner5 0:b7116bd48af6 5975 if(index >= (nValues - 1))
mturner5 0:b7116bd48af6 5976 {
mturner5 0:b7116bd48af6 5977 return (pYData[nValues - 1]);
mturner5 0:b7116bd48af6 5978 }
mturner5 0:b7116bd48af6 5979 else
mturner5 0:b7116bd48af6 5980 {
mturner5 0:b7116bd48af6 5981
mturner5 0:b7116bd48af6 5982 /* 20 bits for the fractional part */
mturner5 0:b7116bd48af6 5983 /* fract is in 12.20 format */
mturner5 0:b7116bd48af6 5984 fract = (x & 0x000FFFFF);
mturner5 0:b7116bd48af6 5985
mturner5 0:b7116bd48af6 5986 /* Read two nearest output values from the index and are in 1.7(q7) format */
mturner5 0:b7116bd48af6 5987 y0 = pYData[index];
mturner5 0:b7116bd48af6 5988 y1 = pYData[index + 1u];
mturner5 0:b7116bd48af6 5989
mturner5 0:b7116bd48af6 5990 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
mturner5 0:b7116bd48af6 5991 y = ((y0 * (0xFFFFF - fract)));
mturner5 0:b7116bd48af6 5992
mturner5 0:b7116bd48af6 5993 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
mturner5 0:b7116bd48af6 5994 y += (y1 * fract);
mturner5 0:b7116bd48af6 5995
mturner5 0:b7116bd48af6 5996 /* convert y to 1.7(q7) format */
mturner5 0:b7116bd48af6 5997 return (y >> 20u);
mturner5 0:b7116bd48af6 5998
mturner5 0:b7116bd48af6 5999 }
mturner5 0:b7116bd48af6 6000
mturner5 0:b7116bd48af6 6001 }
mturner5 0:b7116bd48af6 6002 /**
mturner5 0:b7116bd48af6 6003 * @} end of LinearInterpolate group
mturner5 0:b7116bd48af6 6004 */
mturner5 0:b7116bd48af6 6005
mturner5 0:b7116bd48af6 6006 /**
mturner5 0:b7116bd48af6 6007 * @brief Fast approximation to the trigonometric sine function for floating-point data.
mturner5 0:b7116bd48af6 6008 * @param[in] x input value in radians.
mturner5 0:b7116bd48af6 6009 * @return sin(x).
mturner5 0:b7116bd48af6 6010 */
mturner5 0:b7116bd48af6 6011
mturner5 0:b7116bd48af6 6012 float32_t arm_sin_f32(
mturner5 0:b7116bd48af6 6013 float32_t x);
mturner5 0:b7116bd48af6 6014
mturner5 0:b7116bd48af6 6015 /**
mturner5 0:b7116bd48af6 6016 * @brief Fast approximation to the trigonometric sine function for Q31 data.
mturner5 0:b7116bd48af6 6017 * @param[in] x Scaled input value in radians.
mturner5 0:b7116bd48af6 6018 * @return sin(x).
mturner5 0:b7116bd48af6 6019 */
mturner5 0:b7116bd48af6 6020
mturner5 0:b7116bd48af6 6021 q31_t arm_sin_q31(
mturner5 0:b7116bd48af6 6022 q31_t x);
mturner5 0:b7116bd48af6 6023
mturner5 0:b7116bd48af6 6024 /**
mturner5 0:b7116bd48af6 6025 * @brief Fast approximation to the trigonometric sine function for Q15 data.
mturner5 0:b7116bd48af6 6026 * @param[in] x Scaled input value in radians.
mturner5 0:b7116bd48af6 6027 * @return sin(x).
mturner5 0:b7116bd48af6 6028 */
mturner5 0:b7116bd48af6 6029
mturner5 0:b7116bd48af6 6030 q15_t arm_sin_q15(
mturner5 0:b7116bd48af6 6031 q15_t x);
mturner5 0:b7116bd48af6 6032
mturner5 0:b7116bd48af6 6033 /**
mturner5 0:b7116bd48af6 6034 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
mturner5 0:b7116bd48af6 6035 * @param[in] x input value in radians.
mturner5 0:b7116bd48af6 6036 * @return cos(x).
mturner5 0:b7116bd48af6 6037 */
mturner5 0:b7116bd48af6 6038
mturner5 0:b7116bd48af6 6039 float32_t arm_cos_f32(
mturner5 0:b7116bd48af6 6040 float32_t x);
mturner5 0:b7116bd48af6 6041
mturner5 0:b7116bd48af6 6042 /**
mturner5 0:b7116bd48af6 6043 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
mturner5 0:b7116bd48af6 6044 * @param[in] x Scaled input value in radians.
mturner5 0:b7116bd48af6 6045 * @return cos(x).
mturner5 0:b7116bd48af6 6046 */
mturner5 0:b7116bd48af6 6047
mturner5 0:b7116bd48af6 6048 q31_t arm_cos_q31(
mturner5 0:b7116bd48af6 6049 q31_t x);
mturner5 0:b7116bd48af6 6050
mturner5 0:b7116bd48af6 6051 /**
mturner5 0:b7116bd48af6 6052 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
mturner5 0:b7116bd48af6 6053 * @param[in] x Scaled input value in radians.
mturner5 0:b7116bd48af6 6054 * @return cos(x).
mturner5 0:b7116bd48af6 6055 */
mturner5 0:b7116bd48af6 6056
mturner5 0:b7116bd48af6 6057 q15_t arm_cos_q15(
mturner5 0:b7116bd48af6 6058 q15_t x);
mturner5 0:b7116bd48af6 6059
mturner5 0:b7116bd48af6 6060
mturner5 0:b7116bd48af6 6061 /**
mturner5 0:b7116bd48af6 6062 * @ingroup groupFastMath
mturner5 0:b7116bd48af6 6063 */
mturner5 0:b7116bd48af6 6064
mturner5 0:b7116bd48af6 6065
mturner5 0:b7116bd48af6 6066 /**
mturner5 0:b7116bd48af6 6067 * @defgroup SQRT Square Root
mturner5 0:b7116bd48af6 6068 *
mturner5 0:b7116bd48af6 6069 * Computes the square root of a number.
mturner5 0:b7116bd48af6 6070 * There are separate functions for Q15, Q31, and floating-point data types.
mturner5 0:b7116bd48af6 6071 * The square root function is computed using the Newton-Raphson algorithm.
mturner5 0:b7116bd48af6 6072 * This is an iterative algorithm of the form:
mturner5 0:b7116bd48af6 6073 * <pre>
mturner5 0:b7116bd48af6 6074 * x1 = x0 - f(x0)/f'(x0)
mturner5 0:b7116bd48af6 6075 * </pre>
mturner5 0:b7116bd48af6 6076 * where <code>x1</code> is the current estimate,
mturner5 0:b7116bd48af6 6077 * <code>x0</code> is the previous estimate, and
mturner5 0:b7116bd48af6 6078 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
mturner5 0:b7116bd48af6 6079 * For the square root function, the algorithm reduces to:
mturner5 0:b7116bd48af6 6080 * <pre>
mturner5 0:b7116bd48af6 6081 * x0 = in/2 [initial guess]
mturner5 0:b7116bd48af6 6082 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
mturner5 0:b7116bd48af6 6083 * </pre>
mturner5 0:b7116bd48af6 6084 */
mturner5 0:b7116bd48af6 6085
mturner5 0:b7116bd48af6 6086
mturner5 0:b7116bd48af6 6087 /**
mturner5 0:b7116bd48af6 6088 * @addtogroup SQRT
mturner5 0:b7116bd48af6 6089 * @{
mturner5 0:b7116bd48af6 6090 */
mturner5 0:b7116bd48af6 6091
mturner5 0:b7116bd48af6 6092 /**
mturner5 0:b7116bd48af6 6093 * @brief Floating-point square root function.
mturner5 0:b7116bd48af6 6094 * @param[in] in input value.
mturner5 0:b7116bd48af6 6095 * @param[out] *pOut square root of input value.
mturner5 0:b7116bd48af6 6096 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
mturner5 0:b7116bd48af6 6097 * <code>in</code> is negative value and returns zero output for negative values.
mturner5 0:b7116bd48af6 6098 */
mturner5 0:b7116bd48af6 6099
mturner5 0:b7116bd48af6 6100 static __INLINE arm_status arm_sqrt_f32(
mturner5 0:b7116bd48af6 6101 float32_t in,
mturner5 0:b7116bd48af6 6102 float32_t * pOut)
mturner5 0:b7116bd48af6 6103 {
mturner5 0:b7116bd48af6 6104 if(in >= 0.0f)
mturner5 0:b7116bd48af6 6105 {
mturner5 0:b7116bd48af6 6106
mturner5 0:b7116bd48af6 6107 // #if __FPU_USED
mturner5 0:b7116bd48af6 6108 #if (__FPU_USED == 1) && defined ( __CC_ARM )
mturner5 0:b7116bd48af6 6109 *pOut = __sqrtf(in);
mturner5 0:b7116bd48af6 6110 #else
mturner5 0:b7116bd48af6 6111 *pOut = sqrtf(in);
mturner5 0:b7116bd48af6 6112 #endif
mturner5 0:b7116bd48af6 6113
mturner5 0:b7116bd48af6 6114 return (ARM_MATH_SUCCESS);
mturner5 0:b7116bd48af6 6115 }
mturner5 0:b7116bd48af6 6116 else
mturner5 0:b7116bd48af6 6117 {
mturner5 0:b7116bd48af6 6118 *pOut = 0.0f;
mturner5 0:b7116bd48af6 6119 return (ARM_MATH_ARGUMENT_ERROR);
mturner5 0:b7116bd48af6 6120 }
mturner5 0:b7116bd48af6 6121
mturner5 0:b7116bd48af6 6122 }
mturner5 0:b7116bd48af6 6123
mturner5 0:b7116bd48af6 6124
mturner5 0:b7116bd48af6 6125 /**
mturner5 0:b7116bd48af6 6126 * @brief Q31 square root function.
mturner5 0:b7116bd48af6 6127 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
mturner5 0:b7116bd48af6 6128 * @param[out] *pOut square root of input value.
mturner5 0:b7116bd48af6 6129 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
mturner5 0:b7116bd48af6 6130 * <code>in</code> is negative value and returns zero output for negative values.
mturner5 0:b7116bd48af6 6131 */
mturner5 0:b7116bd48af6 6132 arm_status arm_sqrt_q31(
mturner5 0:b7116bd48af6 6133 q31_t in,
mturner5 0:b7116bd48af6 6134 q31_t * pOut);
mturner5 0:b7116bd48af6 6135
mturner5 0:b7116bd48af6 6136 /**
mturner5 0:b7116bd48af6 6137 * @brief Q15 square root function.
mturner5 0:b7116bd48af6 6138 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
mturner5 0:b7116bd48af6 6139 * @param[out] *pOut square root of input value.
mturner5 0:b7116bd48af6 6140 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
mturner5 0:b7116bd48af6 6141 * <code>in</code> is negative value and returns zero output for negative values.
mturner5 0:b7116bd48af6 6142 */
mturner5 0:b7116bd48af6 6143 arm_status arm_sqrt_q15(
mturner5 0:b7116bd48af6 6144 q15_t in,
mturner5 0:b7116bd48af6 6145 q15_t * pOut);
mturner5 0:b7116bd48af6 6146
mturner5 0:b7116bd48af6 6147 /**
mturner5 0:b7116bd48af6 6148 * @} end of SQRT group
mturner5 0:b7116bd48af6 6149 */
mturner5 0:b7116bd48af6 6150
mturner5 0:b7116bd48af6 6151
mturner5 0:b7116bd48af6 6152
mturner5 0:b7116bd48af6 6153
mturner5 0:b7116bd48af6 6154
mturner5 0:b7116bd48af6 6155
mturner5 0:b7116bd48af6 6156 /**
mturner5 0:b7116bd48af6 6157 * @brief floating-point Circular write function.
mturner5 0:b7116bd48af6 6158 */
mturner5 0:b7116bd48af6 6159
mturner5 0:b7116bd48af6 6160 static __INLINE void arm_circularWrite_f32(
mturner5 0:b7116bd48af6 6161 int32_t * circBuffer,
mturner5 0:b7116bd48af6 6162 int32_t L,
mturner5 0:b7116bd48af6 6163 uint16_t * writeOffset,
mturner5 0:b7116bd48af6 6164 int32_t bufferInc,
mturner5 0:b7116bd48af6 6165 const int32_t * src,
mturner5 0:b7116bd48af6 6166 int32_t srcInc,
mturner5 0:b7116bd48af6 6167 uint32_t blockSize)
mturner5 0:b7116bd48af6 6168 {
mturner5 0:b7116bd48af6 6169 uint32_t i = 0u;
mturner5 0:b7116bd48af6 6170 int32_t wOffset;
mturner5 0:b7116bd48af6 6171
mturner5 0:b7116bd48af6 6172 /* Copy the value of Index pointer that points
mturner5 0:b7116bd48af6 6173 * to the current location where the input samples to be copied */
mturner5 0:b7116bd48af6 6174 wOffset = *writeOffset;
mturner5 0:b7116bd48af6 6175
mturner5 0:b7116bd48af6 6176 /* Loop over the blockSize */
mturner5 0:b7116bd48af6 6177 i = blockSize;
mturner5 0:b7116bd48af6 6178
mturner5 0:b7116bd48af6 6179 while(i > 0u)
mturner5 0:b7116bd48af6 6180 {
mturner5 0:b7116bd48af6 6181 /* copy the input sample to the circular buffer */
mturner5 0:b7116bd48af6 6182 circBuffer[wOffset] = *src;
mturner5 0:b7116bd48af6 6183
mturner5 0:b7116bd48af6 6184 /* Update the input pointer */
mturner5 0:b7116bd48af6 6185 src += srcInc;
mturner5 0:b7116bd48af6 6186
mturner5 0:b7116bd48af6 6187 /* Circularly update wOffset. Watch out for positive and negative value */
mturner5 0:b7116bd48af6 6188 wOffset += bufferInc;
mturner5 0:b7116bd48af6 6189 if(wOffset >= L)
mturner5 0:b7116bd48af6 6190 wOffset -= L;
mturner5 0:b7116bd48af6 6191
mturner5 0:b7116bd48af6 6192 /* Decrement the loop counter */
mturner5 0:b7116bd48af6 6193 i--;
mturner5 0:b7116bd48af6 6194 }
mturner5 0:b7116bd48af6 6195
mturner5 0:b7116bd48af6 6196 /* Update the index pointer */
mturner5 0:b7116bd48af6 6197 *writeOffset = wOffset;
mturner5 0:b7116bd48af6 6198 }
mturner5 0:b7116bd48af6 6199
mturner5 0:b7116bd48af6 6200
mturner5 0:b7116bd48af6 6201
mturner5 0:b7116bd48af6 6202 /**
mturner5 0:b7116bd48af6 6203 * @brief floating-point Circular Read function.
mturner5 0:b7116bd48af6 6204 */
mturner5 0:b7116bd48af6 6205 static __INLINE void arm_circularRead_f32(
mturner5 0:b7116bd48af6 6206 int32_t * circBuffer,
mturner5 0:b7116bd48af6 6207 int32_t L,
mturner5 0:b7116bd48af6 6208 int32_t * readOffset,
mturner5 0:b7116bd48af6 6209 int32_t bufferInc,
mturner5 0:b7116bd48af6 6210 int32_t * dst,
mturner5 0:b7116bd48af6 6211 int32_t * dst_base,
mturner5 0:b7116bd48af6 6212 int32_t dst_length,
mturner5 0:b7116bd48af6 6213 int32_t dstInc,
mturner5 0:b7116bd48af6 6214 uint32_t blockSize)
mturner5 0:b7116bd48af6 6215 {
mturner5 0:b7116bd48af6 6216 uint32_t i = 0u;
mturner5 0:b7116bd48af6 6217 int32_t rOffset, dst_end;
mturner5 0:b7116bd48af6 6218
mturner5 0:b7116bd48af6 6219 /* Copy the value of Index pointer that points
mturner5 0:b7116bd48af6 6220 * to the current location from where the input samples to be read */
mturner5 0:b7116bd48af6 6221 rOffset = *readOffset;
mturner5 0:b7116bd48af6 6222 dst_end = (int32_t) (dst_base + dst_length);
mturner5 0:b7116bd48af6 6223
mturner5 0:b7116bd48af6 6224 /* Loop over the blockSize */
mturner5 0:b7116bd48af6 6225 i = blockSize;
mturner5 0:b7116bd48af6 6226
mturner5 0:b7116bd48af6 6227 while(i > 0u)
mturner5 0:b7116bd48af6 6228 {
mturner5 0:b7116bd48af6 6229 /* copy the sample from the circular buffer to the destination buffer */
mturner5 0:b7116bd48af6 6230 *dst = circBuffer[rOffset];
mturner5 0:b7116bd48af6 6231
mturner5 0:b7116bd48af6 6232 /* Update the input pointer */
mturner5 0:b7116bd48af6 6233 dst += dstInc;
mturner5 0:b7116bd48af6 6234
mturner5 0:b7116bd48af6 6235 if(dst == (int32_t *) dst_end)
mturner5 0:b7116bd48af6 6236 {
mturner5 0:b7116bd48af6 6237 dst = dst_base;
mturner5 0:b7116bd48af6 6238 }
mturner5 0:b7116bd48af6 6239
mturner5 0:b7116bd48af6 6240 /* Circularly update rOffset. Watch out for positive and negative value */
mturner5 0:b7116bd48af6 6241 rOffset += bufferInc;
mturner5 0:b7116bd48af6 6242
mturner5 0:b7116bd48af6 6243 if(rOffset >= L)
mturner5 0:b7116bd48af6 6244 {
mturner5 0:b7116bd48af6 6245 rOffset -= L;
mturner5 0:b7116bd48af6 6246 }
mturner5 0:b7116bd48af6 6247
mturner5 0:b7116bd48af6 6248 /* Decrement the loop counter */
mturner5 0:b7116bd48af6 6249 i--;
mturner5 0:b7116bd48af6 6250 }
mturner5 0:b7116bd48af6 6251
mturner5 0:b7116bd48af6 6252 /* Update the index pointer */
mturner5 0:b7116bd48af6 6253 *readOffset = rOffset;
mturner5 0:b7116bd48af6 6254 }
mturner5 0:b7116bd48af6 6255
mturner5 0:b7116bd48af6 6256 /**
mturner5 0:b7116bd48af6 6257 * @brief Q15 Circular write function.
mturner5 0:b7116bd48af6 6258 */
mturner5 0:b7116bd48af6 6259
mturner5 0:b7116bd48af6 6260 static __INLINE void arm_circularWrite_q15(
mturner5 0:b7116bd48af6 6261 q15_t * circBuffer,
mturner5 0:b7116bd48af6 6262 int32_t L,
mturner5 0:b7116bd48af6 6263 uint16_t * writeOffset,
mturner5 0:b7116bd48af6 6264 int32_t bufferInc,
mturner5 0:b7116bd48af6 6265 const q15_t * src,
mturner5 0:b7116bd48af6 6266 int32_t srcInc,
mturner5 0:b7116bd48af6 6267 uint32_t blockSize)
mturner5 0:b7116bd48af6 6268 {
mturner5 0:b7116bd48af6 6269 uint32_t i = 0u;
mturner5 0:b7116bd48af6 6270 int32_t wOffset;
mturner5 0:b7116bd48af6 6271
mturner5 0:b7116bd48af6 6272 /* Copy the value of Index pointer that points
mturner5 0:b7116bd48af6 6273 * to the current location where the input samples to be copied */
mturner5 0:b7116bd48af6 6274 wOffset = *writeOffset;
mturner5 0:b7116bd48af6 6275
mturner5 0:b7116bd48af6 6276 /* Loop over the blockSize */
mturner5 0:b7116bd48af6 6277 i = blockSize;
mturner5 0:b7116bd48af6 6278
mturner5 0:b7116bd48af6 6279 while(i > 0u)
mturner5 0:b7116bd48af6 6280 {
mturner5 0:b7116bd48af6 6281 /* copy the input sample to the circular buffer */
mturner5 0:b7116bd48af6 6282 circBuffer[wOffset] = *src;
mturner5 0:b7116bd48af6 6283
mturner5 0:b7116bd48af6 6284 /* Update the input pointer */
mturner5 0:b7116bd48af6 6285 src += srcInc;
mturner5 0:b7116bd48af6 6286
mturner5 0:b7116bd48af6 6287 /* Circularly update wOffset. Watch out for positive and negative value */
mturner5 0:b7116bd48af6 6288 wOffset += bufferInc;
mturner5 0:b7116bd48af6 6289 if(wOffset >= L)
mturner5 0:b7116bd48af6 6290 wOffset -= L;
mturner5 0:b7116bd48af6 6291
mturner5 0:b7116bd48af6 6292 /* Decrement the loop counter */
mturner5 0:b7116bd48af6 6293 i--;
mturner5 0:b7116bd48af6 6294 }
mturner5 0:b7116bd48af6 6295
mturner5 0:b7116bd48af6 6296 /* Update the index pointer */
mturner5 0:b7116bd48af6 6297 *writeOffset = wOffset;
mturner5 0:b7116bd48af6 6298 }
mturner5 0:b7116bd48af6 6299
mturner5 0:b7116bd48af6 6300
mturner5 0:b7116bd48af6 6301
mturner5 0:b7116bd48af6 6302 /**
mturner5 0:b7116bd48af6 6303 * @brief Q15 Circular Read function.
mturner5 0:b7116bd48af6 6304 */
mturner5 0:b7116bd48af6 6305 static __INLINE void arm_circularRead_q15(
mturner5 0:b7116bd48af6 6306 q15_t * circBuffer,
mturner5 0:b7116bd48af6 6307 int32_t L,
mturner5 0:b7116bd48af6 6308 int32_t * readOffset,
mturner5 0:b7116bd48af6 6309 int32_t bufferInc,
mturner5 0:b7116bd48af6 6310 q15_t * dst,
mturner5 0:b7116bd48af6 6311 q15_t * dst_base,
mturner5 0:b7116bd48af6 6312 int32_t dst_length,
mturner5 0:b7116bd48af6 6313 int32_t dstInc,
mturner5 0:b7116bd48af6 6314 uint32_t blockSize)
mturner5 0:b7116bd48af6 6315 {
mturner5 0:b7116bd48af6 6316 uint32_t i = 0;
mturner5 0:b7116bd48af6 6317 int32_t rOffset, dst_end;
mturner5 0:b7116bd48af6 6318
mturner5 0:b7116bd48af6 6319 /* Copy the value of Index pointer that points
mturner5 0:b7116bd48af6 6320 * to the current location from where the input samples to be read */
mturner5 0:b7116bd48af6 6321 rOffset = *readOffset;
mturner5 0:b7116bd48af6 6322
mturner5 0:b7116bd48af6 6323 dst_end = (int32_t) (dst_base + dst_length);
mturner5 0:b7116bd48af6 6324
mturner5 0:b7116bd48af6 6325 /* Loop over the blockSize */
mturner5 0:b7116bd48af6 6326 i = blockSize;
mturner5 0:b7116bd48af6 6327
mturner5 0:b7116bd48af6 6328 while(i > 0u)
mturner5 0:b7116bd48af6 6329 {
mturner5 0:b7116bd48af6 6330 /* copy the sample from the circular buffer to the destination buffer */
mturner5 0:b7116bd48af6 6331 *dst = circBuffer[rOffset];
mturner5 0:b7116bd48af6 6332
mturner5 0:b7116bd48af6 6333 /* Update the input pointer */
mturner5 0:b7116bd48af6 6334 dst += dstInc;
mturner5 0:b7116bd48af6 6335
mturner5 0:b7116bd48af6 6336 if(dst == (q15_t *) dst_end)
mturner5 0:b7116bd48af6 6337 {
mturner5 0:b7116bd48af6 6338 dst = dst_base;
mturner5 0:b7116bd48af6 6339 }
mturner5 0:b7116bd48af6 6340
mturner5 0:b7116bd48af6 6341 /* Circularly update wOffset. Watch out for positive and negative value */
mturner5 0:b7116bd48af6 6342 rOffset += bufferInc;
mturner5 0:b7116bd48af6 6343
mturner5 0:b7116bd48af6 6344 if(rOffset >= L)
mturner5 0:b7116bd48af6 6345 {
mturner5 0:b7116bd48af6 6346 rOffset -= L;
mturner5 0:b7116bd48af6 6347 }
mturner5 0:b7116bd48af6 6348
mturner5 0:b7116bd48af6 6349 /* Decrement the loop counter */
mturner5 0:b7116bd48af6 6350 i--;
mturner5 0:b7116bd48af6 6351 }
mturner5 0:b7116bd48af6 6352
mturner5 0:b7116bd48af6 6353 /* Update the index pointer */
mturner5 0:b7116bd48af6 6354 *readOffset = rOffset;
mturner5 0:b7116bd48af6 6355 }
mturner5 0:b7116bd48af6 6356
mturner5 0:b7116bd48af6 6357
mturner5 0:b7116bd48af6 6358 /**
mturner5 0:b7116bd48af6 6359 * @brief Q7 Circular write function.
mturner5 0:b7116bd48af6 6360 */
mturner5 0:b7116bd48af6 6361
mturner5 0:b7116bd48af6 6362 static __INLINE void arm_circularWrite_q7(
mturner5 0:b7116bd48af6 6363 q7_t * circBuffer,
mturner5 0:b7116bd48af6 6364 int32_t L,
mturner5 0:b7116bd48af6 6365 uint16_t * writeOffset,
mturner5 0:b7116bd48af6 6366 int32_t bufferInc,
mturner5 0:b7116bd48af6 6367 const q7_t * src,
mturner5 0:b7116bd48af6 6368 int32_t srcInc,
mturner5 0:b7116bd48af6 6369 uint32_t blockSize)
mturner5 0:b7116bd48af6 6370 {
mturner5 0:b7116bd48af6 6371 uint32_t i = 0u;
mturner5 0:b7116bd48af6 6372 int32_t wOffset;
mturner5 0:b7116bd48af6 6373
mturner5 0:b7116bd48af6 6374 /* Copy the value of Index pointer that points
mturner5 0:b7116bd48af6 6375 * to the current location where the input samples to be copied */
mturner5 0:b7116bd48af6 6376 wOffset = *writeOffset;
mturner5 0:b7116bd48af6 6377
mturner5 0:b7116bd48af6 6378 /* Loop over the blockSize */
mturner5 0:b7116bd48af6 6379 i = blockSize;
mturner5 0:b7116bd48af6 6380
mturner5 0:b7116bd48af6 6381 while(i > 0u)
mturner5 0:b7116bd48af6 6382 {
mturner5 0:b7116bd48af6 6383 /* copy the input sample to the circular buffer */
mturner5 0:b7116bd48af6 6384 circBuffer[wOffset] = *src;
mturner5 0:b7116bd48af6 6385
mturner5 0:b7116bd48af6 6386 /* Update the input pointer */
mturner5 0:b7116bd48af6 6387 src += srcInc;
mturner5 0:b7116bd48af6 6388
mturner5 0:b7116bd48af6 6389 /* Circularly update wOffset. Watch out for positive and negative value */
mturner5 0:b7116bd48af6 6390 wOffset += bufferInc;
mturner5 0:b7116bd48af6 6391 if(wOffset >= L)
mturner5 0:b7116bd48af6 6392 wOffset -= L;
mturner5 0:b7116bd48af6 6393
mturner5 0:b7116bd48af6 6394 /* Decrement the loop counter */
mturner5 0:b7116bd48af6 6395 i--;
mturner5 0:b7116bd48af6 6396 }
mturner5 0:b7116bd48af6 6397
mturner5 0:b7116bd48af6 6398 /* Update the index pointer */
mturner5 0:b7116bd48af6 6399 *writeOffset = wOffset;
mturner5 0:b7116bd48af6 6400 }
mturner5 0:b7116bd48af6 6401
mturner5 0:b7116bd48af6 6402
mturner5 0:b7116bd48af6 6403
mturner5 0:b7116bd48af6 6404 /**
mturner5 0:b7116bd48af6 6405 * @brief Q7 Circular Read function.
mturner5 0:b7116bd48af6 6406 */
mturner5 0:b7116bd48af6 6407 static __INLINE void arm_circularRead_q7(
mturner5 0:b7116bd48af6 6408 q7_t * circBuffer,
mturner5 0:b7116bd48af6 6409 int32_t L,
mturner5 0:b7116bd48af6 6410 int32_t * readOffset,
mturner5 0:b7116bd48af6 6411 int32_t bufferInc,
mturner5 0:b7116bd48af6 6412 q7_t * dst,
mturner5 0:b7116bd48af6 6413 q7_t * dst_base,
mturner5 0:b7116bd48af6 6414 int32_t dst_length,
mturner5 0:b7116bd48af6 6415 int32_t dstInc,
mturner5 0:b7116bd48af6 6416 uint32_t blockSize)
mturner5 0:b7116bd48af6 6417 {
mturner5 0:b7116bd48af6 6418 uint32_t i = 0;
mturner5 0:b7116bd48af6 6419 int32_t rOffset, dst_end;
mturner5 0:b7116bd48af6 6420
mturner5 0:b7116bd48af6 6421 /* Copy the value of Index pointer that points
mturner5 0:b7116bd48af6 6422 * to the current location from where the input samples to be read */
mturner5 0:b7116bd48af6 6423 rOffset = *readOffset;
mturner5 0:b7116bd48af6 6424
mturner5 0:b7116bd48af6 6425 dst_end = (int32_t) (dst_base + dst_length);
mturner5 0:b7116bd48af6 6426
mturner5 0:b7116bd48af6 6427 /* Loop over the blockSize */
mturner5 0:b7116bd48af6 6428 i = blockSize;
mturner5 0:b7116bd48af6 6429
mturner5 0:b7116bd48af6 6430 while(i > 0u)
mturner5 0:b7116bd48af6 6431 {
mturner5 0:b7116bd48af6 6432 /* copy the sample from the circular buffer to the destination buffer */
mturner5 0:b7116bd48af6 6433 *dst = circBuffer[rOffset];
mturner5 0:b7116bd48af6 6434
mturner5 0:b7116bd48af6 6435 /* Update the input pointer */
mturner5 0:b7116bd48af6 6436 dst += dstInc;
mturner5 0:b7116bd48af6 6437
mturner5 0:b7116bd48af6 6438 if(dst == (q7_t *) dst_end)
mturner5 0:b7116bd48af6 6439 {
mturner5 0:b7116bd48af6 6440 dst = dst_base;
mturner5 0:b7116bd48af6 6441 }
mturner5 0:b7116bd48af6 6442
mturner5 0:b7116bd48af6 6443 /* Circularly update rOffset. Watch out for positive and negative value */
mturner5 0:b7116bd48af6 6444 rOffset += bufferInc;
mturner5 0:b7116bd48af6 6445
mturner5 0:b7116bd48af6 6446 if(rOffset >= L)
mturner5 0:b7116bd48af6 6447 {
mturner5 0:b7116bd48af6 6448 rOffset -= L;
mturner5 0:b7116bd48af6 6449 }
mturner5 0:b7116bd48af6 6450
mturner5 0:b7116bd48af6 6451 /* Decrement the loop counter */
mturner5 0:b7116bd48af6 6452 i--;
mturner5 0:b7116bd48af6 6453 }
mturner5 0:b7116bd48af6 6454
mturner5 0:b7116bd48af6 6455 /* Update the index pointer */
mturner5 0:b7116bd48af6 6456 *readOffset = rOffset;
mturner5 0:b7116bd48af6 6457 }
mturner5 0:b7116bd48af6 6458
mturner5 0:b7116bd48af6 6459
mturner5 0:b7116bd48af6 6460 /**
mturner5 0:b7116bd48af6 6461 * @brief Sum of the squares of the elements of a Q31 vector.
mturner5 0:b7116bd48af6 6462 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6463 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6464 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6465 * @return none.
mturner5 0:b7116bd48af6 6466 */
mturner5 0:b7116bd48af6 6467
mturner5 0:b7116bd48af6 6468 void arm_power_q31(
mturner5 0:b7116bd48af6 6469 q31_t * pSrc,
mturner5 0:b7116bd48af6 6470 uint32_t blockSize,
mturner5 0:b7116bd48af6 6471 q63_t * pResult);
mturner5 0:b7116bd48af6 6472
mturner5 0:b7116bd48af6 6473 /**
mturner5 0:b7116bd48af6 6474 * @brief Sum of the squares of the elements of a floating-point vector.
mturner5 0:b7116bd48af6 6475 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6476 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6477 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6478 * @return none.
mturner5 0:b7116bd48af6 6479 */
mturner5 0:b7116bd48af6 6480
mturner5 0:b7116bd48af6 6481 void arm_power_f32(
mturner5 0:b7116bd48af6 6482 float32_t * pSrc,
mturner5 0:b7116bd48af6 6483 uint32_t blockSize,
mturner5 0:b7116bd48af6 6484 float32_t * pResult);
mturner5 0:b7116bd48af6 6485
mturner5 0:b7116bd48af6 6486 /**
mturner5 0:b7116bd48af6 6487 * @brief Sum of the squares of the elements of a Q15 vector.
mturner5 0:b7116bd48af6 6488 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6489 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6490 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6491 * @return none.
mturner5 0:b7116bd48af6 6492 */
mturner5 0:b7116bd48af6 6493
mturner5 0:b7116bd48af6 6494 void arm_power_q15(
mturner5 0:b7116bd48af6 6495 q15_t * pSrc,
mturner5 0:b7116bd48af6 6496 uint32_t blockSize,
mturner5 0:b7116bd48af6 6497 q63_t * pResult);
mturner5 0:b7116bd48af6 6498
mturner5 0:b7116bd48af6 6499 /**
mturner5 0:b7116bd48af6 6500 * @brief Sum of the squares of the elements of a Q7 vector.
mturner5 0:b7116bd48af6 6501 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6502 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6503 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6504 * @return none.
mturner5 0:b7116bd48af6 6505 */
mturner5 0:b7116bd48af6 6506
mturner5 0:b7116bd48af6 6507 void arm_power_q7(
mturner5 0:b7116bd48af6 6508 q7_t * pSrc,
mturner5 0:b7116bd48af6 6509 uint32_t blockSize,
mturner5 0:b7116bd48af6 6510 q31_t * pResult);
mturner5 0:b7116bd48af6 6511
mturner5 0:b7116bd48af6 6512 /**
mturner5 0:b7116bd48af6 6513 * @brief Mean value of a Q7 vector.
mturner5 0:b7116bd48af6 6514 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6515 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6516 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6517 * @return none.
mturner5 0:b7116bd48af6 6518 */
mturner5 0:b7116bd48af6 6519
mturner5 0:b7116bd48af6 6520 void arm_mean_q7(
mturner5 0:b7116bd48af6 6521 q7_t * pSrc,
mturner5 0:b7116bd48af6 6522 uint32_t blockSize,
mturner5 0:b7116bd48af6 6523 q7_t * pResult);
mturner5 0:b7116bd48af6 6524
mturner5 0:b7116bd48af6 6525 /**
mturner5 0:b7116bd48af6 6526 * @brief Mean value of a Q15 vector.
mturner5 0:b7116bd48af6 6527 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6528 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6529 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6530 * @return none.
mturner5 0:b7116bd48af6 6531 */
mturner5 0:b7116bd48af6 6532 void arm_mean_q15(
mturner5 0:b7116bd48af6 6533 q15_t * pSrc,
mturner5 0:b7116bd48af6 6534 uint32_t blockSize,
mturner5 0:b7116bd48af6 6535 q15_t * pResult);
mturner5 0:b7116bd48af6 6536
mturner5 0:b7116bd48af6 6537 /**
mturner5 0:b7116bd48af6 6538 * @brief Mean value of a Q31 vector.
mturner5 0:b7116bd48af6 6539 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6540 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6541 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6542 * @return none.
mturner5 0:b7116bd48af6 6543 */
mturner5 0:b7116bd48af6 6544 void arm_mean_q31(
mturner5 0:b7116bd48af6 6545 q31_t * pSrc,
mturner5 0:b7116bd48af6 6546 uint32_t blockSize,
mturner5 0:b7116bd48af6 6547 q31_t * pResult);
mturner5 0:b7116bd48af6 6548
mturner5 0:b7116bd48af6 6549 /**
mturner5 0:b7116bd48af6 6550 * @brief Mean value of a floating-point vector.
mturner5 0:b7116bd48af6 6551 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6552 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6553 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6554 * @return none.
mturner5 0:b7116bd48af6 6555 */
mturner5 0:b7116bd48af6 6556 void arm_mean_f32(
mturner5 0:b7116bd48af6 6557 float32_t * pSrc,
mturner5 0:b7116bd48af6 6558 uint32_t blockSize,
mturner5 0:b7116bd48af6 6559 float32_t * pResult);
mturner5 0:b7116bd48af6 6560
mturner5 0:b7116bd48af6 6561 /**
mturner5 0:b7116bd48af6 6562 * @brief Variance of the elements of a floating-point vector.
mturner5 0:b7116bd48af6 6563 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6564 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6565 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6566 * @return none.
mturner5 0:b7116bd48af6 6567 */
mturner5 0:b7116bd48af6 6568
mturner5 0:b7116bd48af6 6569 void arm_var_f32(
mturner5 0:b7116bd48af6 6570 float32_t * pSrc,
mturner5 0:b7116bd48af6 6571 uint32_t blockSize,
mturner5 0:b7116bd48af6 6572 float32_t * pResult);
mturner5 0:b7116bd48af6 6573
mturner5 0:b7116bd48af6 6574 /**
mturner5 0:b7116bd48af6 6575 * @brief Variance of the elements of a Q31 vector.
mturner5 0:b7116bd48af6 6576 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6577 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6578 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6579 * @return none.
mturner5 0:b7116bd48af6 6580 */
mturner5 0:b7116bd48af6 6581
mturner5 0:b7116bd48af6 6582 void arm_var_q31(
mturner5 0:b7116bd48af6 6583 q31_t * pSrc,
mturner5 0:b7116bd48af6 6584 uint32_t blockSize,
mturner5 0:b7116bd48af6 6585 q31_t * pResult);
mturner5 0:b7116bd48af6 6586
mturner5 0:b7116bd48af6 6587 /**
mturner5 0:b7116bd48af6 6588 * @brief Variance of the elements of a Q15 vector.
mturner5 0:b7116bd48af6 6589 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6590 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6591 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6592 * @return none.
mturner5 0:b7116bd48af6 6593 */
mturner5 0:b7116bd48af6 6594
mturner5 0:b7116bd48af6 6595 void arm_var_q15(
mturner5 0:b7116bd48af6 6596 q15_t * pSrc,
mturner5 0:b7116bd48af6 6597 uint32_t blockSize,
mturner5 0:b7116bd48af6 6598 q15_t * pResult);
mturner5 0:b7116bd48af6 6599
mturner5 0:b7116bd48af6 6600 /**
mturner5 0:b7116bd48af6 6601 * @brief Root Mean Square of the elements of a floating-point vector.
mturner5 0:b7116bd48af6 6602 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6603 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6604 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6605 * @return none.
mturner5 0:b7116bd48af6 6606 */
mturner5 0:b7116bd48af6 6607
mturner5 0:b7116bd48af6 6608 void arm_rms_f32(
mturner5 0:b7116bd48af6 6609 float32_t * pSrc,
mturner5 0:b7116bd48af6 6610 uint32_t blockSize,
mturner5 0:b7116bd48af6 6611 float32_t * pResult);
mturner5 0:b7116bd48af6 6612
mturner5 0:b7116bd48af6 6613 /**
mturner5 0:b7116bd48af6 6614 * @brief Root Mean Square of the elements of a Q31 vector.
mturner5 0:b7116bd48af6 6615 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6616 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6617 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6618 * @return none.
mturner5 0:b7116bd48af6 6619 */
mturner5 0:b7116bd48af6 6620
mturner5 0:b7116bd48af6 6621 void arm_rms_q31(
mturner5 0:b7116bd48af6 6622 q31_t * pSrc,
mturner5 0:b7116bd48af6 6623 uint32_t blockSize,
mturner5 0:b7116bd48af6 6624 q31_t * pResult);
mturner5 0:b7116bd48af6 6625
mturner5 0:b7116bd48af6 6626 /**
mturner5 0:b7116bd48af6 6627 * @brief Root Mean Square of the elements of a Q15 vector.
mturner5 0:b7116bd48af6 6628 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6629 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6630 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6631 * @return none.
mturner5 0:b7116bd48af6 6632 */
mturner5 0:b7116bd48af6 6633
mturner5 0:b7116bd48af6 6634 void arm_rms_q15(
mturner5 0:b7116bd48af6 6635 q15_t * pSrc,
mturner5 0:b7116bd48af6 6636 uint32_t blockSize,
mturner5 0:b7116bd48af6 6637 q15_t * pResult);
mturner5 0:b7116bd48af6 6638
mturner5 0:b7116bd48af6 6639 /**
mturner5 0:b7116bd48af6 6640 * @brief Standard deviation of the elements of a floating-point vector.
mturner5 0:b7116bd48af6 6641 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6642 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6643 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6644 * @return none.
mturner5 0:b7116bd48af6 6645 */
mturner5 0:b7116bd48af6 6646
mturner5 0:b7116bd48af6 6647 void arm_std_f32(
mturner5 0:b7116bd48af6 6648 float32_t * pSrc,
mturner5 0:b7116bd48af6 6649 uint32_t blockSize,
mturner5 0:b7116bd48af6 6650 float32_t * pResult);
mturner5 0:b7116bd48af6 6651
mturner5 0:b7116bd48af6 6652 /**
mturner5 0:b7116bd48af6 6653 * @brief Standard deviation of the elements of a Q31 vector.
mturner5 0:b7116bd48af6 6654 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6655 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6656 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6657 * @return none.
mturner5 0:b7116bd48af6 6658 */
mturner5 0:b7116bd48af6 6659
mturner5 0:b7116bd48af6 6660 void arm_std_q31(
mturner5 0:b7116bd48af6 6661 q31_t * pSrc,
mturner5 0:b7116bd48af6 6662 uint32_t blockSize,
mturner5 0:b7116bd48af6 6663 q31_t * pResult);
mturner5 0:b7116bd48af6 6664
mturner5 0:b7116bd48af6 6665 /**
mturner5 0:b7116bd48af6 6666 * @brief Standard deviation of the elements of a Q15 vector.
mturner5 0:b7116bd48af6 6667 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6668 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6669 * @param[out] *pResult is output value.
mturner5 0:b7116bd48af6 6670 * @return none.
mturner5 0:b7116bd48af6 6671 */
mturner5 0:b7116bd48af6 6672
mturner5 0:b7116bd48af6 6673 void arm_std_q15(
mturner5 0:b7116bd48af6 6674 q15_t * pSrc,
mturner5 0:b7116bd48af6 6675 uint32_t blockSize,
mturner5 0:b7116bd48af6 6676 q15_t * pResult);
mturner5 0:b7116bd48af6 6677
mturner5 0:b7116bd48af6 6678 /**
mturner5 0:b7116bd48af6 6679 * @brief Floating-point complex magnitude
mturner5 0:b7116bd48af6 6680 * @param[in] *pSrc points to the complex input vector
mturner5 0:b7116bd48af6 6681 * @param[out] *pDst points to the real output vector
mturner5 0:b7116bd48af6 6682 * @param[in] numSamples number of complex samples in the input vector
mturner5 0:b7116bd48af6 6683 * @return none.
mturner5 0:b7116bd48af6 6684 */
mturner5 0:b7116bd48af6 6685
mturner5 0:b7116bd48af6 6686 void arm_cmplx_mag_f32(
mturner5 0:b7116bd48af6 6687 float32_t * pSrc,
mturner5 0:b7116bd48af6 6688 float32_t * pDst,
mturner5 0:b7116bd48af6 6689 uint32_t numSamples);
mturner5 0:b7116bd48af6 6690
mturner5 0:b7116bd48af6 6691 /**
mturner5 0:b7116bd48af6 6692 * @brief Q31 complex magnitude
mturner5 0:b7116bd48af6 6693 * @param[in] *pSrc points to the complex input vector
mturner5 0:b7116bd48af6 6694 * @param[out] *pDst points to the real output vector
mturner5 0:b7116bd48af6 6695 * @param[in] numSamples number of complex samples in the input vector
mturner5 0:b7116bd48af6 6696 * @return none.
mturner5 0:b7116bd48af6 6697 */
mturner5 0:b7116bd48af6 6698
mturner5 0:b7116bd48af6 6699 void arm_cmplx_mag_q31(
mturner5 0:b7116bd48af6 6700 q31_t * pSrc,
mturner5 0:b7116bd48af6 6701 q31_t * pDst,
mturner5 0:b7116bd48af6 6702 uint32_t numSamples);
mturner5 0:b7116bd48af6 6703
mturner5 0:b7116bd48af6 6704 /**
mturner5 0:b7116bd48af6 6705 * @brief Q15 complex magnitude
mturner5 0:b7116bd48af6 6706 * @param[in] *pSrc points to the complex input vector
mturner5 0:b7116bd48af6 6707 * @param[out] *pDst points to the real output vector
mturner5 0:b7116bd48af6 6708 * @param[in] numSamples number of complex samples in the input vector
mturner5 0:b7116bd48af6 6709 * @return none.
mturner5 0:b7116bd48af6 6710 */
mturner5 0:b7116bd48af6 6711
mturner5 0:b7116bd48af6 6712 void arm_cmplx_mag_q15(
mturner5 0:b7116bd48af6 6713 q15_t * pSrc,
mturner5 0:b7116bd48af6 6714 q15_t * pDst,
mturner5 0:b7116bd48af6 6715 uint32_t numSamples);
mturner5 0:b7116bd48af6 6716
mturner5 0:b7116bd48af6 6717 /**
mturner5 0:b7116bd48af6 6718 * @brief Q15 complex dot product
mturner5 0:b7116bd48af6 6719 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 6720 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 6721 * @param[in] numSamples number of complex samples in each vector
mturner5 0:b7116bd48af6 6722 * @param[out] *realResult real part of the result returned here
mturner5 0:b7116bd48af6 6723 * @param[out] *imagResult imaginary part of the result returned here
mturner5 0:b7116bd48af6 6724 * @return none.
mturner5 0:b7116bd48af6 6725 */
mturner5 0:b7116bd48af6 6726
mturner5 0:b7116bd48af6 6727 void arm_cmplx_dot_prod_q15(
mturner5 0:b7116bd48af6 6728 q15_t * pSrcA,
mturner5 0:b7116bd48af6 6729 q15_t * pSrcB,
mturner5 0:b7116bd48af6 6730 uint32_t numSamples,
mturner5 0:b7116bd48af6 6731 q31_t * realResult,
mturner5 0:b7116bd48af6 6732 q31_t * imagResult);
mturner5 0:b7116bd48af6 6733
mturner5 0:b7116bd48af6 6734 /**
mturner5 0:b7116bd48af6 6735 * @brief Q31 complex dot product
mturner5 0:b7116bd48af6 6736 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 6737 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 6738 * @param[in] numSamples number of complex samples in each vector
mturner5 0:b7116bd48af6 6739 * @param[out] *realResult real part of the result returned here
mturner5 0:b7116bd48af6 6740 * @param[out] *imagResult imaginary part of the result returned here
mturner5 0:b7116bd48af6 6741 * @return none.
mturner5 0:b7116bd48af6 6742 */
mturner5 0:b7116bd48af6 6743
mturner5 0:b7116bd48af6 6744 void arm_cmplx_dot_prod_q31(
mturner5 0:b7116bd48af6 6745 q31_t * pSrcA,
mturner5 0:b7116bd48af6 6746 q31_t * pSrcB,
mturner5 0:b7116bd48af6 6747 uint32_t numSamples,
mturner5 0:b7116bd48af6 6748 q63_t * realResult,
mturner5 0:b7116bd48af6 6749 q63_t * imagResult);
mturner5 0:b7116bd48af6 6750
mturner5 0:b7116bd48af6 6751 /**
mturner5 0:b7116bd48af6 6752 * @brief Floating-point complex dot product
mturner5 0:b7116bd48af6 6753 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 6754 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 6755 * @param[in] numSamples number of complex samples in each vector
mturner5 0:b7116bd48af6 6756 * @param[out] *realResult real part of the result returned here
mturner5 0:b7116bd48af6 6757 * @param[out] *imagResult imaginary part of the result returned here
mturner5 0:b7116bd48af6 6758 * @return none.
mturner5 0:b7116bd48af6 6759 */
mturner5 0:b7116bd48af6 6760
mturner5 0:b7116bd48af6 6761 void arm_cmplx_dot_prod_f32(
mturner5 0:b7116bd48af6 6762 float32_t * pSrcA,
mturner5 0:b7116bd48af6 6763 float32_t * pSrcB,
mturner5 0:b7116bd48af6 6764 uint32_t numSamples,
mturner5 0:b7116bd48af6 6765 float32_t * realResult,
mturner5 0:b7116bd48af6 6766 float32_t * imagResult);
mturner5 0:b7116bd48af6 6767
mturner5 0:b7116bd48af6 6768 /**
mturner5 0:b7116bd48af6 6769 * @brief Q15 complex-by-real multiplication
mturner5 0:b7116bd48af6 6770 * @param[in] *pSrcCmplx points to the complex input vector
mturner5 0:b7116bd48af6 6771 * @param[in] *pSrcReal points to the real input vector
mturner5 0:b7116bd48af6 6772 * @param[out] *pCmplxDst points to the complex output vector
mturner5 0:b7116bd48af6 6773 * @param[in] numSamples number of samples in each vector
mturner5 0:b7116bd48af6 6774 * @return none.
mturner5 0:b7116bd48af6 6775 */
mturner5 0:b7116bd48af6 6776
mturner5 0:b7116bd48af6 6777 void arm_cmplx_mult_real_q15(
mturner5 0:b7116bd48af6 6778 q15_t * pSrcCmplx,
mturner5 0:b7116bd48af6 6779 q15_t * pSrcReal,
mturner5 0:b7116bd48af6 6780 q15_t * pCmplxDst,
mturner5 0:b7116bd48af6 6781 uint32_t numSamples);
mturner5 0:b7116bd48af6 6782
mturner5 0:b7116bd48af6 6783 /**
mturner5 0:b7116bd48af6 6784 * @brief Q31 complex-by-real multiplication
mturner5 0:b7116bd48af6 6785 * @param[in] *pSrcCmplx points to the complex input vector
mturner5 0:b7116bd48af6 6786 * @param[in] *pSrcReal points to the real input vector
mturner5 0:b7116bd48af6 6787 * @param[out] *pCmplxDst points to the complex output vector
mturner5 0:b7116bd48af6 6788 * @param[in] numSamples number of samples in each vector
mturner5 0:b7116bd48af6 6789 * @return none.
mturner5 0:b7116bd48af6 6790 */
mturner5 0:b7116bd48af6 6791
mturner5 0:b7116bd48af6 6792 void arm_cmplx_mult_real_q31(
mturner5 0:b7116bd48af6 6793 q31_t * pSrcCmplx,
mturner5 0:b7116bd48af6 6794 q31_t * pSrcReal,
mturner5 0:b7116bd48af6 6795 q31_t * pCmplxDst,
mturner5 0:b7116bd48af6 6796 uint32_t numSamples);
mturner5 0:b7116bd48af6 6797
mturner5 0:b7116bd48af6 6798 /**
mturner5 0:b7116bd48af6 6799 * @brief Floating-point complex-by-real multiplication
mturner5 0:b7116bd48af6 6800 * @param[in] *pSrcCmplx points to the complex input vector
mturner5 0:b7116bd48af6 6801 * @param[in] *pSrcReal points to the real input vector
mturner5 0:b7116bd48af6 6802 * @param[out] *pCmplxDst points to the complex output vector
mturner5 0:b7116bd48af6 6803 * @param[in] numSamples number of samples in each vector
mturner5 0:b7116bd48af6 6804 * @return none.
mturner5 0:b7116bd48af6 6805 */
mturner5 0:b7116bd48af6 6806
mturner5 0:b7116bd48af6 6807 void arm_cmplx_mult_real_f32(
mturner5 0:b7116bd48af6 6808 float32_t * pSrcCmplx,
mturner5 0:b7116bd48af6 6809 float32_t * pSrcReal,
mturner5 0:b7116bd48af6 6810 float32_t * pCmplxDst,
mturner5 0:b7116bd48af6 6811 uint32_t numSamples);
mturner5 0:b7116bd48af6 6812
mturner5 0:b7116bd48af6 6813 /**
mturner5 0:b7116bd48af6 6814 * @brief Minimum value of a Q7 vector.
mturner5 0:b7116bd48af6 6815 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6816 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6817 * @param[out] *result is output pointer
mturner5 0:b7116bd48af6 6818 * @param[in] index is the array index of the minimum value in the input buffer.
mturner5 0:b7116bd48af6 6819 * @return none.
mturner5 0:b7116bd48af6 6820 */
mturner5 0:b7116bd48af6 6821
mturner5 0:b7116bd48af6 6822 void arm_min_q7(
mturner5 0:b7116bd48af6 6823 q7_t * pSrc,
mturner5 0:b7116bd48af6 6824 uint32_t blockSize,
mturner5 0:b7116bd48af6 6825 q7_t * result,
mturner5 0:b7116bd48af6 6826 uint32_t * index);
mturner5 0:b7116bd48af6 6827
mturner5 0:b7116bd48af6 6828 /**
mturner5 0:b7116bd48af6 6829 * @brief Minimum value of a Q15 vector.
mturner5 0:b7116bd48af6 6830 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6831 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6832 * @param[out] *pResult is output pointer
mturner5 0:b7116bd48af6 6833 * @param[in] *pIndex is the array index of the minimum value in the input buffer.
mturner5 0:b7116bd48af6 6834 * @return none.
mturner5 0:b7116bd48af6 6835 */
mturner5 0:b7116bd48af6 6836
mturner5 0:b7116bd48af6 6837 void arm_min_q15(
mturner5 0:b7116bd48af6 6838 q15_t * pSrc,
mturner5 0:b7116bd48af6 6839 uint32_t blockSize,
mturner5 0:b7116bd48af6 6840 q15_t * pResult,
mturner5 0:b7116bd48af6 6841 uint32_t * pIndex);
mturner5 0:b7116bd48af6 6842
mturner5 0:b7116bd48af6 6843 /**
mturner5 0:b7116bd48af6 6844 * @brief Minimum value of a Q31 vector.
mturner5 0:b7116bd48af6 6845 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6846 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6847 * @param[out] *pResult is output pointer
mturner5 0:b7116bd48af6 6848 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
mturner5 0:b7116bd48af6 6849 * @return none.
mturner5 0:b7116bd48af6 6850 */
mturner5 0:b7116bd48af6 6851 void arm_min_q31(
mturner5 0:b7116bd48af6 6852 q31_t * pSrc,
mturner5 0:b7116bd48af6 6853 uint32_t blockSize,
mturner5 0:b7116bd48af6 6854 q31_t * pResult,
mturner5 0:b7116bd48af6 6855 uint32_t * pIndex);
mturner5 0:b7116bd48af6 6856
mturner5 0:b7116bd48af6 6857 /**
mturner5 0:b7116bd48af6 6858 * @brief Minimum value of a floating-point vector.
mturner5 0:b7116bd48af6 6859 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 6860 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 6861 * @param[out] *pResult is output pointer
mturner5 0:b7116bd48af6 6862 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
mturner5 0:b7116bd48af6 6863 * @return none.
mturner5 0:b7116bd48af6 6864 */
mturner5 0:b7116bd48af6 6865
mturner5 0:b7116bd48af6 6866 void arm_min_f32(
mturner5 0:b7116bd48af6 6867 float32_t * pSrc,
mturner5 0:b7116bd48af6 6868 uint32_t blockSize,
mturner5 0:b7116bd48af6 6869 float32_t * pResult,
mturner5 0:b7116bd48af6 6870 uint32_t * pIndex);
mturner5 0:b7116bd48af6 6871
mturner5 0:b7116bd48af6 6872 /**
mturner5 0:b7116bd48af6 6873 * @brief Maximum value of a Q7 vector.
mturner5 0:b7116bd48af6 6874 * @param[in] *pSrc points to the input buffer
mturner5 0:b7116bd48af6 6875 * @param[in] blockSize length of the input vector
mturner5 0:b7116bd48af6 6876 * @param[out] *pResult maximum value returned here
mturner5 0:b7116bd48af6 6877 * @param[out] *pIndex index of maximum value returned here
mturner5 0:b7116bd48af6 6878 * @return none.
mturner5 0:b7116bd48af6 6879 */
mturner5 0:b7116bd48af6 6880
mturner5 0:b7116bd48af6 6881 void arm_max_q7(
mturner5 0:b7116bd48af6 6882 q7_t * pSrc,
mturner5 0:b7116bd48af6 6883 uint32_t blockSize,
mturner5 0:b7116bd48af6 6884 q7_t * pResult,
mturner5 0:b7116bd48af6 6885 uint32_t * pIndex);
mturner5 0:b7116bd48af6 6886
mturner5 0:b7116bd48af6 6887 /**
mturner5 0:b7116bd48af6 6888 * @brief Maximum value of a Q15 vector.
mturner5 0:b7116bd48af6 6889 * @param[in] *pSrc points to the input buffer
mturner5 0:b7116bd48af6 6890 * @param[in] blockSize length of the input vector
mturner5 0:b7116bd48af6 6891 * @param[out] *pResult maximum value returned here
mturner5 0:b7116bd48af6 6892 * @param[out] *pIndex index of maximum value returned here
mturner5 0:b7116bd48af6 6893 * @return none.
mturner5 0:b7116bd48af6 6894 */
mturner5 0:b7116bd48af6 6895
mturner5 0:b7116bd48af6 6896 void arm_max_q15(
mturner5 0:b7116bd48af6 6897 q15_t * pSrc,
mturner5 0:b7116bd48af6 6898 uint32_t blockSize,
mturner5 0:b7116bd48af6 6899 q15_t * pResult,
mturner5 0:b7116bd48af6 6900 uint32_t * pIndex);
mturner5 0:b7116bd48af6 6901
mturner5 0:b7116bd48af6 6902 /**
mturner5 0:b7116bd48af6 6903 * @brief Maximum value of a Q31 vector.
mturner5 0:b7116bd48af6 6904 * @param[in] *pSrc points to the input buffer
mturner5 0:b7116bd48af6 6905 * @param[in] blockSize length of the input vector
mturner5 0:b7116bd48af6 6906 * @param[out] *pResult maximum value returned here
mturner5 0:b7116bd48af6 6907 * @param[out] *pIndex index of maximum value returned here
mturner5 0:b7116bd48af6 6908 * @return none.
mturner5 0:b7116bd48af6 6909 */
mturner5 0:b7116bd48af6 6910
mturner5 0:b7116bd48af6 6911 void arm_max_q31(
mturner5 0:b7116bd48af6 6912 q31_t * pSrc,
mturner5 0:b7116bd48af6 6913 uint32_t blockSize,
mturner5 0:b7116bd48af6 6914 q31_t * pResult,
mturner5 0:b7116bd48af6 6915 uint32_t * pIndex);
mturner5 0:b7116bd48af6 6916
mturner5 0:b7116bd48af6 6917 /**
mturner5 0:b7116bd48af6 6918 * @brief Maximum value of a floating-point vector.
mturner5 0:b7116bd48af6 6919 * @param[in] *pSrc points to the input buffer
mturner5 0:b7116bd48af6 6920 * @param[in] blockSize length of the input vector
mturner5 0:b7116bd48af6 6921 * @param[out] *pResult maximum value returned here
mturner5 0:b7116bd48af6 6922 * @param[out] *pIndex index of maximum value returned here
mturner5 0:b7116bd48af6 6923 * @return none.
mturner5 0:b7116bd48af6 6924 */
mturner5 0:b7116bd48af6 6925
mturner5 0:b7116bd48af6 6926 void arm_max_f32(
mturner5 0:b7116bd48af6 6927 float32_t * pSrc,
mturner5 0:b7116bd48af6 6928 uint32_t blockSize,
mturner5 0:b7116bd48af6 6929 float32_t * pResult,
mturner5 0:b7116bd48af6 6930 uint32_t * pIndex);
mturner5 0:b7116bd48af6 6931
mturner5 0:b7116bd48af6 6932 /**
mturner5 0:b7116bd48af6 6933 * @brief Q15 complex-by-complex multiplication
mturner5 0:b7116bd48af6 6934 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 6935 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 6936 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 6937 * @param[in] numSamples number of complex samples in each vector
mturner5 0:b7116bd48af6 6938 * @return none.
mturner5 0:b7116bd48af6 6939 */
mturner5 0:b7116bd48af6 6940
mturner5 0:b7116bd48af6 6941 void arm_cmplx_mult_cmplx_q15(
mturner5 0:b7116bd48af6 6942 q15_t * pSrcA,
mturner5 0:b7116bd48af6 6943 q15_t * pSrcB,
mturner5 0:b7116bd48af6 6944 q15_t * pDst,
mturner5 0:b7116bd48af6 6945 uint32_t numSamples);
mturner5 0:b7116bd48af6 6946
mturner5 0:b7116bd48af6 6947 /**
mturner5 0:b7116bd48af6 6948 * @brief Q31 complex-by-complex multiplication
mturner5 0:b7116bd48af6 6949 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 6950 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 6951 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 6952 * @param[in] numSamples number of complex samples in each vector
mturner5 0:b7116bd48af6 6953 * @return none.
mturner5 0:b7116bd48af6 6954 */
mturner5 0:b7116bd48af6 6955
mturner5 0:b7116bd48af6 6956 void arm_cmplx_mult_cmplx_q31(
mturner5 0:b7116bd48af6 6957 q31_t * pSrcA,
mturner5 0:b7116bd48af6 6958 q31_t * pSrcB,
mturner5 0:b7116bd48af6 6959 q31_t * pDst,
mturner5 0:b7116bd48af6 6960 uint32_t numSamples);
mturner5 0:b7116bd48af6 6961
mturner5 0:b7116bd48af6 6962 /**
mturner5 0:b7116bd48af6 6963 * @brief Floating-point complex-by-complex multiplication
mturner5 0:b7116bd48af6 6964 * @param[in] *pSrcA points to the first input vector
mturner5 0:b7116bd48af6 6965 * @param[in] *pSrcB points to the second input vector
mturner5 0:b7116bd48af6 6966 * @param[out] *pDst points to the output vector
mturner5 0:b7116bd48af6 6967 * @param[in] numSamples number of complex samples in each vector
mturner5 0:b7116bd48af6 6968 * @return none.
mturner5 0:b7116bd48af6 6969 */
mturner5 0:b7116bd48af6 6970
mturner5 0:b7116bd48af6 6971 void arm_cmplx_mult_cmplx_f32(
mturner5 0:b7116bd48af6 6972 float32_t * pSrcA,
mturner5 0:b7116bd48af6 6973 float32_t * pSrcB,
mturner5 0:b7116bd48af6 6974 float32_t * pDst,
mturner5 0:b7116bd48af6 6975 uint32_t numSamples);
mturner5 0:b7116bd48af6 6976
mturner5 0:b7116bd48af6 6977 /**
mturner5 0:b7116bd48af6 6978 * @brief Converts the elements of the floating-point vector to Q31 vector.
mturner5 0:b7116bd48af6 6979 * @param[in] *pSrc points to the floating-point input vector
mturner5 0:b7116bd48af6 6980 * @param[out] *pDst points to the Q31 output vector
mturner5 0:b7116bd48af6 6981 * @param[in] blockSize length of the input vector
mturner5 0:b7116bd48af6 6982 * @return none.
mturner5 0:b7116bd48af6 6983 */
mturner5 0:b7116bd48af6 6984 void arm_float_to_q31(
mturner5 0:b7116bd48af6 6985 float32_t * pSrc,
mturner5 0:b7116bd48af6 6986 q31_t * pDst,
mturner5 0:b7116bd48af6 6987 uint32_t blockSize);
mturner5 0:b7116bd48af6 6988
mturner5 0:b7116bd48af6 6989 /**
mturner5 0:b7116bd48af6 6990 * @brief Converts the elements of the floating-point vector to Q15 vector.
mturner5 0:b7116bd48af6 6991 * @param[in] *pSrc points to the floating-point input vector
mturner5 0:b7116bd48af6 6992 * @param[out] *pDst points to the Q15 output vector
mturner5 0:b7116bd48af6 6993 * @param[in] blockSize length of the input vector
mturner5 0:b7116bd48af6 6994 * @return none
mturner5 0:b7116bd48af6 6995 */
mturner5 0:b7116bd48af6 6996 void arm_float_to_q15(
mturner5 0:b7116bd48af6 6997 float32_t * pSrc,
mturner5 0:b7116bd48af6 6998 q15_t * pDst,
mturner5 0:b7116bd48af6 6999 uint32_t blockSize);
mturner5 0:b7116bd48af6 7000
mturner5 0:b7116bd48af6 7001 /**
mturner5 0:b7116bd48af6 7002 * @brief Converts the elements of the floating-point vector to Q7 vector.
mturner5 0:b7116bd48af6 7003 * @param[in] *pSrc points to the floating-point input vector
mturner5 0:b7116bd48af6 7004 * @param[out] *pDst points to the Q7 output vector
mturner5 0:b7116bd48af6 7005 * @param[in] blockSize length of the input vector
mturner5 0:b7116bd48af6 7006 * @return none
mturner5 0:b7116bd48af6 7007 */
mturner5 0:b7116bd48af6 7008 void arm_float_to_q7(
mturner5 0:b7116bd48af6 7009 float32_t * pSrc,
mturner5 0:b7116bd48af6 7010 q7_t * pDst,
mturner5 0:b7116bd48af6 7011 uint32_t blockSize);
mturner5 0:b7116bd48af6 7012
mturner5 0:b7116bd48af6 7013
mturner5 0:b7116bd48af6 7014 /**
mturner5 0:b7116bd48af6 7015 * @brief Converts the elements of the Q31 vector to Q15 vector.
mturner5 0:b7116bd48af6 7016 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 7017 * @param[out] *pDst is output pointer
mturner5 0:b7116bd48af6 7018 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 7019 * @return none.
mturner5 0:b7116bd48af6 7020 */
mturner5 0:b7116bd48af6 7021 void arm_q31_to_q15(
mturner5 0:b7116bd48af6 7022 q31_t * pSrc,
mturner5 0:b7116bd48af6 7023 q15_t * pDst,
mturner5 0:b7116bd48af6 7024 uint32_t blockSize);
mturner5 0:b7116bd48af6 7025
mturner5 0:b7116bd48af6 7026 /**
mturner5 0:b7116bd48af6 7027 * @brief Converts the elements of the Q31 vector to Q7 vector.
mturner5 0:b7116bd48af6 7028 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 7029 * @param[out] *pDst is output pointer
mturner5 0:b7116bd48af6 7030 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 7031 * @return none.
mturner5 0:b7116bd48af6 7032 */
mturner5 0:b7116bd48af6 7033 void arm_q31_to_q7(
mturner5 0:b7116bd48af6 7034 q31_t * pSrc,
mturner5 0:b7116bd48af6 7035 q7_t * pDst,
mturner5 0:b7116bd48af6 7036 uint32_t blockSize);
mturner5 0:b7116bd48af6 7037
mturner5 0:b7116bd48af6 7038 /**
mturner5 0:b7116bd48af6 7039 * @brief Converts the elements of the Q15 vector to floating-point vector.
mturner5 0:b7116bd48af6 7040 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 7041 * @param[out] *pDst is output pointer
mturner5 0:b7116bd48af6 7042 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 7043 * @return none.
mturner5 0:b7116bd48af6 7044 */
mturner5 0:b7116bd48af6 7045 void arm_q15_to_float(
mturner5 0:b7116bd48af6 7046 q15_t * pSrc,
mturner5 0:b7116bd48af6 7047 float32_t * pDst,
mturner5 0:b7116bd48af6 7048 uint32_t blockSize);
mturner5 0:b7116bd48af6 7049
mturner5 0:b7116bd48af6 7050
mturner5 0:b7116bd48af6 7051 /**
mturner5 0:b7116bd48af6 7052 * @brief Converts the elements of the Q15 vector to Q31 vector.
mturner5 0:b7116bd48af6 7053 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 7054 * @param[out] *pDst is output pointer
mturner5 0:b7116bd48af6 7055 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 7056 * @return none.
mturner5 0:b7116bd48af6 7057 */
mturner5 0:b7116bd48af6 7058 void arm_q15_to_q31(
mturner5 0:b7116bd48af6 7059 q15_t * pSrc,
mturner5 0:b7116bd48af6 7060 q31_t * pDst,
mturner5 0:b7116bd48af6 7061 uint32_t blockSize);
mturner5 0:b7116bd48af6 7062
mturner5 0:b7116bd48af6 7063
mturner5 0:b7116bd48af6 7064 /**
mturner5 0:b7116bd48af6 7065 * @brief Converts the elements of the Q15 vector to Q7 vector.
mturner5 0:b7116bd48af6 7066 * @param[in] *pSrc is input pointer
mturner5 0:b7116bd48af6 7067 * @param[out] *pDst is output pointer
mturner5 0:b7116bd48af6 7068 * @param[in] blockSize is the number of samples to process
mturner5 0:b7116bd48af6 7069 * @return none.
mturner5 0:b7116bd48af6 7070 */
mturner5 0:b7116bd48af6 7071 void arm_q15_to_q7(
mturner5 0:b7116bd48af6 7072 q15_t * pSrc,
mturner5 0:b7116bd48af6 7073 q7_t * pDst,
mturner5 0:b7116bd48af6 7074 uint32_t blockSize);
mturner5 0:b7116bd48af6 7075
mturner5 0:b7116bd48af6 7076
mturner5 0:b7116bd48af6 7077 /**
mturner5 0:b7116bd48af6 7078 * @ingroup groupInterpolation
mturner5 0:b7116bd48af6 7079 */
mturner5 0:b7116bd48af6 7080
mturner5 0:b7116bd48af6 7081 /**
mturner5 0:b7116bd48af6 7082 * @defgroup BilinearInterpolate Bilinear Interpolation
mturner5 0:b7116bd48af6 7083 *
mturner5 0:b7116bd48af6 7084 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
mturner5 0:b7116bd48af6 7085 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
mturner5 0:b7116bd48af6 7086 * determines values between the grid points.
mturner5 0:b7116bd48af6 7087 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
mturner5 0:b7116bd48af6 7088 * Bilinear interpolation is often used in image processing to rescale images.
mturner5 0:b7116bd48af6 7089 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
mturner5 0:b7116bd48af6 7090 *
mturner5 0:b7116bd48af6 7091 * <b>Algorithm</b>
mturner5 0:b7116bd48af6 7092 * \par
mturner5 0:b7116bd48af6 7093 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
mturner5 0:b7116bd48af6 7094 * For floating-point, the instance structure is defined as:
mturner5 0:b7116bd48af6 7095 * <pre>
mturner5 0:b7116bd48af6 7096 * typedef struct
mturner5 0:b7116bd48af6 7097 * {
mturner5 0:b7116bd48af6 7098 * uint16_t numRows;
mturner5 0:b7116bd48af6 7099 * uint16_t numCols;
mturner5 0:b7116bd48af6 7100 * float32_t *pData;
mturner5 0:b7116bd48af6 7101 * } arm_bilinear_interp_instance_f32;
mturner5 0:b7116bd48af6 7102 * </pre>
mturner5 0:b7116bd48af6 7103 *
mturner5 0:b7116bd48af6 7104 * \par
mturner5 0:b7116bd48af6 7105 * where <code>numRows</code> specifies the number of rows in the table;
mturner5 0:b7116bd48af6 7106 * <code>numCols</code> specifies the number of columns in the table;
mturner5 0:b7116bd48af6 7107 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
mturner5 0:b7116bd48af6 7108 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
mturner5 0:b7116bd48af6 7109 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
mturner5 0:b7116bd48af6 7110 *
mturner5 0:b7116bd48af6 7111 * \par
mturner5 0:b7116bd48af6 7112 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
mturner5 0:b7116bd48af6 7113 * <pre>
mturner5 0:b7116bd48af6 7114 * XF = floor(x)
mturner5 0:b7116bd48af6 7115 * YF = floor(y)
mturner5 0:b7116bd48af6 7116 * </pre>
mturner5 0:b7116bd48af6 7117 * \par
mturner5 0:b7116bd48af6 7118 * The interpolated output point is computed as:
mturner5 0:b7116bd48af6 7119 * <pre>
mturner5 0:b7116bd48af6 7120 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
mturner5 0:b7116bd48af6 7121 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
mturner5 0:b7116bd48af6 7122 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
mturner5 0:b7116bd48af6 7123 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
mturner5 0:b7116bd48af6 7124 * </pre>
mturner5 0:b7116bd48af6 7125 * Note that the coordinates (x, y) contain integer and fractional components.
mturner5 0:b7116bd48af6 7126 * The integer components specify which portion of the table to use while the
mturner5 0:b7116bd48af6 7127 * fractional components control the interpolation processor.
mturner5 0:b7116bd48af6 7128 *
mturner5 0:b7116bd48af6 7129 * \par
mturner5 0:b7116bd48af6 7130 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
mturner5 0:b7116bd48af6 7131 */
mturner5 0:b7116bd48af6 7132
mturner5 0:b7116bd48af6 7133 /**
mturner5 0:b7116bd48af6 7134 * @addtogroup BilinearInterpolate
mturner5 0:b7116bd48af6 7135 * @{
mturner5 0:b7116bd48af6 7136 */
mturner5 0:b7116bd48af6 7137
mturner5 0:b7116bd48af6 7138 /**
mturner5 0:b7116bd48af6 7139 *
mturner5 0:b7116bd48af6 7140 * @brief Floating-point bilinear interpolation.
mturner5 0:b7116bd48af6 7141 * @param[in,out] *S points to an instance of the interpolation structure.
mturner5 0:b7116bd48af6 7142 * @param[in] X interpolation coordinate.
mturner5 0:b7116bd48af6 7143 * @param[in] Y interpolation coordinate.
mturner5 0:b7116bd48af6 7144 * @return out interpolated value.
mturner5 0:b7116bd48af6 7145 */
mturner5 0:b7116bd48af6 7146
mturner5 0:b7116bd48af6 7147
mturner5 0:b7116bd48af6 7148 static __INLINE float32_t arm_bilinear_interp_f32(
mturner5 0:b7116bd48af6 7149 const arm_bilinear_interp_instance_f32 * S,
mturner5 0:b7116bd48af6 7150 float32_t X,
mturner5 0:b7116bd48af6 7151 float32_t Y)
mturner5 0:b7116bd48af6 7152 {
mturner5 0:b7116bd48af6 7153 float32_t out;
mturner5 0:b7116bd48af6 7154 float32_t f00, f01, f10, f11;
mturner5 0:b7116bd48af6 7155 float32_t *pData = S->pData;
mturner5 0:b7116bd48af6 7156 int32_t xIndex, yIndex, index;
mturner5 0:b7116bd48af6 7157 float32_t xdiff, ydiff;
mturner5 0:b7116bd48af6 7158 float32_t b1, b2, b3, b4;
mturner5 0:b7116bd48af6 7159
mturner5 0:b7116bd48af6 7160 xIndex = (int32_t) X;
mturner5 0:b7116bd48af6 7161 yIndex = (int32_t) Y;
mturner5 0:b7116bd48af6 7162
mturner5 0:b7116bd48af6 7163 /* Care taken for table outside boundary */
mturner5 0:b7116bd48af6 7164 /* Returns zero output when values are outside table boundary */
mturner5 0:b7116bd48af6 7165 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
mturner5 0:b7116bd48af6 7166 || yIndex > (S->numCols - 1))
mturner5 0:b7116bd48af6 7167 {
mturner5 0:b7116bd48af6 7168 return (0);
mturner5 0:b7116bd48af6 7169 }
mturner5 0:b7116bd48af6 7170
mturner5 0:b7116bd48af6 7171 /* Calculation of index for two nearest points in X-direction */
mturner5 0:b7116bd48af6 7172 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
mturner5 0:b7116bd48af6 7173
mturner5 0:b7116bd48af6 7174
mturner5 0:b7116bd48af6 7175 /* Read two nearest points in X-direction */
mturner5 0:b7116bd48af6 7176 f00 = pData[index];
mturner5 0:b7116bd48af6 7177 f01 = pData[index + 1];
mturner5 0:b7116bd48af6 7178
mturner5 0:b7116bd48af6 7179 /* Calculation of index for two nearest points in Y-direction */
mturner5 0:b7116bd48af6 7180 index = (xIndex - 1) + (yIndex) * S->numCols;
mturner5 0:b7116bd48af6 7181
mturner5 0:b7116bd48af6 7182
mturner5 0:b7116bd48af6 7183 /* Read two nearest points in Y-direction */
mturner5 0:b7116bd48af6 7184 f10 = pData[index];
mturner5 0:b7116bd48af6 7185 f11 = pData[index + 1];
mturner5 0:b7116bd48af6 7186
mturner5 0:b7116bd48af6 7187 /* Calculation of intermediate values */
mturner5 0:b7116bd48af6 7188 b1 = f00;
mturner5 0:b7116bd48af6 7189 b2 = f01 - f00;
mturner5 0:b7116bd48af6 7190 b3 = f10 - f00;
mturner5 0:b7116bd48af6 7191 b4 = f00 - f01 - f10 + f11;
mturner5 0:b7116bd48af6 7192
mturner5 0:b7116bd48af6 7193 /* Calculation of fractional part in X */
mturner5 0:b7116bd48af6 7194 xdiff = X - xIndex;
mturner5 0:b7116bd48af6 7195
mturner5 0:b7116bd48af6 7196 /* Calculation of fractional part in Y */
mturner5 0:b7116bd48af6 7197 ydiff = Y - yIndex;
mturner5 0:b7116bd48af6 7198
mturner5 0:b7116bd48af6 7199 /* Calculation of bi-linear interpolated output */
mturner5 0:b7116bd48af6 7200 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
mturner5 0:b7116bd48af6 7201
mturner5 0:b7116bd48af6 7202 /* return to application */
mturner5 0:b7116bd48af6 7203 return (out);
mturner5 0:b7116bd48af6 7204
mturner5 0:b7116bd48af6 7205 }
mturner5 0:b7116bd48af6 7206
mturner5 0:b7116bd48af6 7207 /**
mturner5 0:b7116bd48af6 7208 *
mturner5 0:b7116bd48af6 7209 * @brief Q31 bilinear interpolation.
mturner5 0:b7116bd48af6 7210 * @param[in,out] *S points to an instance of the interpolation structure.
mturner5 0:b7116bd48af6 7211 * @param[in] X interpolation coordinate in 12.20 format.
mturner5 0:b7116bd48af6 7212 * @param[in] Y interpolation coordinate in 12.20 format.
mturner5 0:b7116bd48af6 7213 * @return out interpolated value.
mturner5 0:b7116bd48af6 7214 */
mturner5 0:b7116bd48af6 7215
mturner5 0:b7116bd48af6 7216 static __INLINE q31_t arm_bilinear_interp_q31(
mturner5 0:b7116bd48af6 7217 arm_bilinear_interp_instance_q31 * S,
mturner5 0:b7116bd48af6 7218 q31_t X,
mturner5 0:b7116bd48af6 7219 q31_t Y)
mturner5 0:b7116bd48af6 7220 {
mturner5 0:b7116bd48af6 7221 q31_t out; /* Temporary output */
mturner5 0:b7116bd48af6 7222 q31_t acc = 0; /* output */
mturner5 0:b7116bd48af6 7223 q31_t xfract, yfract; /* X, Y fractional parts */
mturner5 0:b7116bd48af6 7224 q31_t x1, x2, y1, y2; /* Nearest output values */
mturner5 0:b7116bd48af6 7225 int32_t rI, cI; /* Row and column indices */
mturner5 0:b7116bd48af6 7226 q31_t *pYData = S->pData; /* pointer to output table values */
mturner5 0:b7116bd48af6 7227 uint32_t nCols = S->numCols; /* num of rows */
mturner5 0:b7116bd48af6 7228
mturner5 0:b7116bd48af6 7229
mturner5 0:b7116bd48af6 7230 /* Input is in 12.20 format */
mturner5 0:b7116bd48af6 7231 /* 12 bits for the table index */
mturner5 0:b7116bd48af6 7232 /* Index value calculation */
mturner5 0:b7116bd48af6 7233 rI = ((X & 0xFFF00000) >> 20u);
mturner5 0:b7116bd48af6 7234
mturner5 0:b7116bd48af6 7235 /* Input is in 12.20 format */
mturner5 0:b7116bd48af6 7236 /* 12 bits for the table index */
mturner5 0:b7116bd48af6 7237 /* Index value calculation */
mturner5 0:b7116bd48af6 7238 cI = ((Y & 0xFFF00000) >> 20u);
mturner5 0:b7116bd48af6 7239
mturner5 0:b7116bd48af6 7240 /* Care taken for table outside boundary */
mturner5 0:b7116bd48af6 7241 /* Returns zero output when values are outside table boundary */
mturner5 0:b7116bd48af6 7242 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
mturner5 0:b7116bd48af6 7243 {
mturner5 0:b7116bd48af6 7244 return (0);
mturner5 0:b7116bd48af6 7245 }
mturner5 0:b7116bd48af6 7246
mturner5 0:b7116bd48af6 7247 /* 20 bits for the fractional part */
mturner5 0:b7116bd48af6 7248 /* shift left xfract by 11 to keep 1.31 format */
mturner5 0:b7116bd48af6 7249 xfract = (X & 0x000FFFFF) << 11u;
mturner5 0:b7116bd48af6 7250
mturner5 0:b7116bd48af6 7251 /* Read two nearest output values from the index */
mturner5 0:b7116bd48af6 7252 x1 = pYData[(rI) + nCols * (cI)];
mturner5 0:b7116bd48af6 7253 x2 = pYData[(rI) + nCols * (cI) + 1u];
mturner5 0:b7116bd48af6 7254
mturner5 0:b7116bd48af6 7255 /* 20 bits for the fractional part */
mturner5 0:b7116bd48af6 7256 /* shift left yfract by 11 to keep 1.31 format */
mturner5 0:b7116bd48af6 7257 yfract = (Y & 0x000FFFFF) << 11u;
mturner5 0:b7116bd48af6 7258
mturner5 0:b7116bd48af6 7259 /* Read two nearest output values from the index */
mturner5 0:b7116bd48af6 7260 y1 = pYData[(rI) + nCols * (cI + 1)];
mturner5 0:b7116bd48af6 7261 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
mturner5 0:b7116bd48af6 7262
mturner5 0:b7116bd48af6 7263 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
mturner5 0:b7116bd48af6 7264 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
mturner5 0:b7116bd48af6 7265 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
mturner5 0:b7116bd48af6 7266
mturner5 0:b7116bd48af6 7267 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
mturner5 0:b7116bd48af6 7268 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
mturner5 0:b7116bd48af6 7269 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
mturner5 0:b7116bd48af6 7270
mturner5 0:b7116bd48af6 7271 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
mturner5 0:b7116bd48af6 7272 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
mturner5 0:b7116bd48af6 7273 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
mturner5 0:b7116bd48af6 7274
mturner5 0:b7116bd48af6 7275 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
mturner5 0:b7116bd48af6 7276 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
mturner5 0:b7116bd48af6 7277 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
mturner5 0:b7116bd48af6 7278
mturner5 0:b7116bd48af6 7279 /* Convert acc to 1.31(q31) format */
mturner5 0:b7116bd48af6 7280 return (acc << 2u);
mturner5 0:b7116bd48af6 7281
mturner5 0:b7116bd48af6 7282 }
mturner5 0:b7116bd48af6 7283
mturner5 0:b7116bd48af6 7284 /**
mturner5 0:b7116bd48af6 7285 * @brief Q15 bilinear interpolation.
mturner5 0:b7116bd48af6 7286 * @param[in,out] *S points to an instance of the interpolation structure.
mturner5 0:b7116bd48af6 7287 * @param[in] X interpolation coordinate in 12.20 format.
mturner5 0:b7116bd48af6 7288 * @param[in] Y interpolation coordinate in 12.20 format.
mturner5 0:b7116bd48af6 7289 * @return out interpolated value.
mturner5 0:b7116bd48af6 7290 */
mturner5 0:b7116bd48af6 7291
mturner5 0:b7116bd48af6 7292 static __INLINE q15_t arm_bilinear_interp_q15(
mturner5 0:b7116bd48af6 7293 arm_bilinear_interp_instance_q15 * S,
mturner5 0:b7116bd48af6 7294 q31_t X,
mturner5 0:b7116bd48af6 7295 q31_t Y)
mturner5 0:b7116bd48af6 7296 {
mturner5 0:b7116bd48af6 7297 q63_t acc = 0; /* output */
mturner5 0:b7116bd48af6 7298 q31_t out; /* Temporary output */
mturner5 0:b7116bd48af6 7299 q15_t x1, x2, y1, y2; /* Nearest output values */
mturner5 0:b7116bd48af6 7300 q31_t xfract, yfract; /* X, Y fractional parts */
mturner5 0:b7116bd48af6 7301 int32_t rI, cI; /* Row and column indices */
mturner5 0:b7116bd48af6 7302 q15_t *pYData = S->pData; /* pointer to output table values */
mturner5 0:b7116bd48af6 7303 uint32_t nCols = S->numCols; /* num of rows */
mturner5 0:b7116bd48af6 7304
mturner5 0:b7116bd48af6 7305 /* Input is in 12.20 format */
mturner5 0:b7116bd48af6 7306 /* 12 bits for the table index */
mturner5 0:b7116bd48af6 7307 /* Index value calculation */
mturner5 0:b7116bd48af6 7308 rI = ((X & 0xFFF00000) >> 20);
mturner5 0:b7116bd48af6 7309
mturner5 0:b7116bd48af6 7310 /* Input is in 12.20 format */
mturner5 0:b7116bd48af6 7311 /* 12 bits for the table index */
mturner5 0:b7116bd48af6 7312 /* Index value calculation */
mturner5 0:b7116bd48af6 7313 cI = ((Y & 0xFFF00000) >> 20);
mturner5 0:b7116bd48af6 7314
mturner5 0:b7116bd48af6 7315 /* Care taken for table outside boundary */
mturner5 0:b7116bd48af6 7316 /* Returns zero output when values are outside table boundary */
mturner5 0:b7116bd48af6 7317 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
mturner5 0:b7116bd48af6 7318 {
mturner5 0:b7116bd48af6 7319 return (0);
mturner5 0:b7116bd48af6 7320 }
mturner5 0:b7116bd48af6 7321
mturner5 0:b7116bd48af6 7322 /* 20 bits for the fractional part */
mturner5 0:b7116bd48af6 7323 /* xfract should be in 12.20 format */
mturner5 0:b7116bd48af6 7324 xfract = (X & 0x000FFFFF);
mturner5 0:b7116bd48af6 7325
mturner5 0:b7116bd48af6 7326 /* Read two nearest output values from the index */
mturner5 0:b7116bd48af6 7327 x1 = pYData[(rI) + nCols * (cI)];
mturner5 0:b7116bd48af6 7328 x2 = pYData[(rI) + nCols * (cI) + 1u];
mturner5 0:b7116bd48af6 7329
mturner5 0:b7116bd48af6 7330
mturner5 0:b7116bd48af6 7331 /* 20 bits for the fractional part */
mturner5 0:b7116bd48af6 7332 /* yfract should be in 12.20 format */
mturner5 0:b7116bd48af6 7333 yfract = (Y & 0x000FFFFF);
mturner5 0:b7116bd48af6 7334
mturner5 0:b7116bd48af6 7335 /* Read two nearest output values from the index */
mturner5 0:b7116bd48af6 7336 y1 = pYData[(rI) + nCols * (cI + 1)];
mturner5 0:b7116bd48af6 7337 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
mturner5 0:b7116bd48af6 7338
mturner5 0:b7116bd48af6 7339 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
mturner5 0:b7116bd48af6 7340
mturner5 0:b7116bd48af6 7341 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
mturner5 0:b7116bd48af6 7342 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
mturner5 0:b7116bd48af6 7343 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
mturner5 0:b7116bd48af6 7344 acc = ((q63_t) out * (0xFFFFF - yfract));
mturner5 0:b7116bd48af6 7345
mturner5 0:b7116bd48af6 7346 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
mturner5 0:b7116bd48af6 7347 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
mturner5 0:b7116bd48af6 7348 acc += ((q63_t) out * (xfract));
mturner5 0:b7116bd48af6 7349
mturner5 0:b7116bd48af6 7350 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
mturner5 0:b7116bd48af6 7351 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
mturner5 0:b7116bd48af6 7352 acc += ((q63_t) out * (yfract));
mturner5 0:b7116bd48af6 7353
mturner5 0:b7116bd48af6 7354 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
mturner5 0:b7116bd48af6 7355 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
mturner5 0:b7116bd48af6 7356 acc += ((q63_t) out * (yfract));
mturner5 0:b7116bd48af6 7357
mturner5 0:b7116bd48af6 7358 /* acc is in 13.51 format and down shift acc by 36 times */
mturner5 0:b7116bd48af6 7359 /* Convert out to 1.15 format */
mturner5 0:b7116bd48af6 7360 return (acc >> 36);
mturner5 0:b7116bd48af6 7361
mturner5 0:b7116bd48af6 7362 }
mturner5 0:b7116bd48af6 7363
mturner5 0:b7116bd48af6 7364 /**
mturner5 0:b7116bd48af6 7365 * @brief Q7 bilinear interpolation.
mturner5 0:b7116bd48af6 7366 * @param[in,out] *S points to an instance of the interpolation structure.
mturner5 0:b7116bd48af6 7367 * @param[in] X interpolation coordinate in 12.20 format.
mturner5 0:b7116bd48af6 7368 * @param[in] Y interpolation coordinate in 12.20 format.
mturner5 0:b7116bd48af6 7369 * @return out interpolated value.
mturner5 0:b7116bd48af6 7370 */
mturner5 0:b7116bd48af6 7371
mturner5 0:b7116bd48af6 7372 static __INLINE q7_t arm_bilinear_interp_q7(
mturner5 0:b7116bd48af6 7373 arm_bilinear_interp_instance_q7 * S,
mturner5 0:b7116bd48af6 7374 q31_t X,
mturner5 0:b7116bd48af6 7375 q31_t Y)
mturner5 0:b7116bd48af6 7376 {
mturner5 0:b7116bd48af6 7377 q63_t acc = 0; /* output */
mturner5 0:b7116bd48af6 7378 q31_t out; /* Temporary output */
mturner5 0:b7116bd48af6 7379 q31_t xfract, yfract; /* X, Y fractional parts */
mturner5 0:b7116bd48af6 7380 q7_t x1, x2, y1, y2; /* Nearest output values */
mturner5 0:b7116bd48af6 7381 int32_t rI, cI; /* Row and column indices */
mturner5 0:b7116bd48af6 7382 q7_t *pYData = S->pData; /* pointer to output table values */
mturner5 0:b7116bd48af6 7383 uint32_t nCols = S->numCols; /* num of rows */
mturner5 0:b7116bd48af6 7384
mturner5 0:b7116bd48af6 7385 /* Input is in 12.20 format */
mturner5 0:b7116bd48af6 7386 /* 12 bits for the table index */
mturner5 0:b7116bd48af6 7387 /* Index value calculation */
mturner5 0:b7116bd48af6 7388 rI = ((X & 0xFFF00000) >> 20);
mturner5 0:b7116bd48af6 7389
mturner5 0:b7116bd48af6 7390 /* Input is in 12.20 format */
mturner5 0:b7116bd48af6 7391 /* 12 bits for the table index */
mturner5 0:b7116bd48af6 7392 /* Index value calculation */
mturner5 0:b7116bd48af6 7393 cI = ((Y & 0xFFF00000) >> 20);
mturner5 0:b7116bd48af6 7394
mturner5 0:b7116bd48af6 7395 /* Care taken for table outside boundary */
mturner5 0:b7116bd48af6 7396 /* Returns zero output when values are outside table boundary */
mturner5 0:b7116bd48af6 7397 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
mturner5 0:b7116bd48af6 7398 {
mturner5 0:b7116bd48af6 7399 return (0);
mturner5 0:b7116bd48af6 7400 }
mturner5 0:b7116bd48af6 7401
mturner5 0:b7116bd48af6 7402 /* 20 bits for the fractional part */
mturner5 0:b7116bd48af6 7403 /* xfract should be in 12.20 format */
mturner5 0:b7116bd48af6 7404 xfract = (X & 0x000FFFFF);
mturner5 0:b7116bd48af6 7405
mturner5 0:b7116bd48af6 7406 /* Read two nearest output values from the index */
mturner5 0:b7116bd48af6 7407 x1 = pYData[(rI) + nCols * (cI)];
mturner5 0:b7116bd48af6 7408 x2 = pYData[(rI) + nCols * (cI) + 1u];
mturner5 0:b7116bd48af6 7409
mturner5 0:b7116bd48af6 7410
mturner5 0:b7116bd48af6 7411 /* 20 bits for the fractional part */
mturner5 0:b7116bd48af6 7412 /* yfract should be in 12.20 format */
mturner5 0:b7116bd48af6 7413 yfract = (Y & 0x000FFFFF);
mturner5 0:b7116bd48af6 7414
mturner5 0:b7116bd48af6 7415 /* Read two nearest output values from the index */
mturner5 0:b7116bd48af6 7416 y1 = pYData[(rI) + nCols * (cI + 1)];
mturner5 0:b7116bd48af6 7417 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
mturner5 0:b7116bd48af6 7418
mturner5 0:b7116bd48af6 7419 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
mturner5 0:b7116bd48af6 7420 out = ((x1 * (0xFFFFF - xfract)));
mturner5 0:b7116bd48af6 7421 acc = (((q63_t) out * (0xFFFFF - yfract)));
mturner5 0:b7116bd48af6 7422
mturner5 0:b7116bd48af6 7423 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
mturner5 0:b7116bd48af6 7424 out = ((x2 * (0xFFFFF - yfract)));
mturner5 0:b7116bd48af6 7425 acc += (((q63_t) out * (xfract)));
mturner5 0:b7116bd48af6 7426
mturner5 0:b7116bd48af6 7427 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
mturner5 0:b7116bd48af6 7428 out = ((y1 * (0xFFFFF - xfract)));
mturner5 0:b7116bd48af6 7429 acc += (((q63_t) out * (yfract)));
mturner5 0:b7116bd48af6 7430
mturner5 0:b7116bd48af6 7431 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
mturner5 0:b7116bd48af6 7432 out = ((y2 * (yfract)));
mturner5 0:b7116bd48af6 7433 acc += (((q63_t) out * (xfract)));
mturner5 0:b7116bd48af6 7434
mturner5 0:b7116bd48af6 7435 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
mturner5 0:b7116bd48af6 7436 return (acc >> 40);
mturner5 0:b7116bd48af6 7437
mturner5 0:b7116bd48af6 7438 }
mturner5 0:b7116bd48af6 7439
mturner5 0:b7116bd48af6 7440 /**
mturner5 0:b7116bd48af6 7441 * @} end of BilinearInterpolate group
mturner5 0:b7116bd48af6 7442 */
mturner5 0:b7116bd48af6 7443
mturner5 0:b7116bd48af6 7444
mturner5 0:b7116bd48af6 7445 //SMMLAR
mturner5 0:b7116bd48af6 7446 #define multAcc_32x32_keep32_R(a, x, y) \
mturner5 0:b7116bd48af6 7447 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
mturner5 0:b7116bd48af6 7448
mturner5 0:b7116bd48af6 7449 //SMMLSR
mturner5 0:b7116bd48af6 7450 #define multSub_32x32_keep32_R(a, x, y) \
mturner5 0:b7116bd48af6 7451 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
mturner5 0:b7116bd48af6 7452
mturner5 0:b7116bd48af6 7453 //SMMULR
mturner5 0:b7116bd48af6 7454 #define mult_32x32_keep32_R(a, x, y) \
mturner5 0:b7116bd48af6 7455 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
mturner5 0:b7116bd48af6 7456
mturner5 0:b7116bd48af6 7457 //SMMLA
mturner5 0:b7116bd48af6 7458 #define multAcc_32x32_keep32(a, x, y) \
mturner5 0:b7116bd48af6 7459 a += (q31_t) (((q63_t) x * y) >> 32)
mturner5 0:b7116bd48af6 7460
mturner5 0:b7116bd48af6 7461 //SMMLS
mturner5 0:b7116bd48af6 7462 #define multSub_32x32_keep32(a, x, y) \
mturner5 0:b7116bd48af6 7463 a -= (q31_t) (((q63_t) x * y) >> 32)
mturner5 0:b7116bd48af6 7464
mturner5 0:b7116bd48af6 7465 //SMMUL
mturner5 0:b7116bd48af6 7466 #define mult_32x32_keep32(a, x, y) \
mturner5 0:b7116bd48af6 7467 a = (q31_t) (((q63_t) x * y ) >> 32)
mturner5 0:b7116bd48af6 7468
mturner5 0:b7116bd48af6 7469
mturner5 0:b7116bd48af6 7470 #if defined ( __CC_ARM ) //Keil
mturner5 0:b7116bd48af6 7471
mturner5 0:b7116bd48af6 7472 //Enter low optimization region - place directly above function definition
mturner5 0:b7116bd48af6 7473 #ifdef ARM_MATH_CM4
mturner5 0:b7116bd48af6 7474 #define LOW_OPTIMIZATION_ENTER \
mturner5 0:b7116bd48af6 7475 _Pragma ("push") \
mturner5 0:b7116bd48af6 7476 _Pragma ("O1")
mturner5 0:b7116bd48af6 7477 #else
mturner5 0:b7116bd48af6 7478 #define LOW_OPTIMIZATION_ENTER
mturner5 0:b7116bd48af6 7479 #endif
mturner5 0:b7116bd48af6 7480
mturner5 0:b7116bd48af6 7481 //Exit low optimization region - place directly after end of function definition
mturner5 0:b7116bd48af6 7482 #ifdef ARM_MATH_CM4
mturner5 0:b7116bd48af6 7483 #define LOW_OPTIMIZATION_EXIT \
mturner5 0:b7116bd48af6 7484 _Pragma ("pop")
mturner5 0:b7116bd48af6 7485 #else
mturner5 0:b7116bd48af6 7486 #define LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7487 #endif
mturner5 0:b7116bd48af6 7488
mturner5 0:b7116bd48af6 7489 //Enter low optimization region - place directly above function definition
mturner5 0:b7116bd48af6 7490 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
mturner5 0:b7116bd48af6 7491
mturner5 0:b7116bd48af6 7492 //Exit low optimization region - place directly after end of function definition
mturner5 0:b7116bd48af6 7493 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7494
mturner5 0:b7116bd48af6 7495 #elif defined(__ICCARM__) //IAR
mturner5 0:b7116bd48af6 7496
mturner5 0:b7116bd48af6 7497 //Enter low optimization region - place directly above function definition
mturner5 0:b7116bd48af6 7498 #ifdef ARM_MATH_CM4
mturner5 0:b7116bd48af6 7499 #define LOW_OPTIMIZATION_ENTER \
mturner5 0:b7116bd48af6 7500 _Pragma ("optimize=low")
mturner5 0:b7116bd48af6 7501 #else
mturner5 0:b7116bd48af6 7502 #define LOW_OPTIMIZATION_ENTER
mturner5 0:b7116bd48af6 7503 #endif
mturner5 0:b7116bd48af6 7504
mturner5 0:b7116bd48af6 7505 //Exit low optimization region - place directly after end of function definition
mturner5 0:b7116bd48af6 7506 #define LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7507
mturner5 0:b7116bd48af6 7508 //Enter low optimization region - place directly above function definition
mturner5 0:b7116bd48af6 7509 #ifdef ARM_MATH_CM4
mturner5 0:b7116bd48af6 7510 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
mturner5 0:b7116bd48af6 7511 _Pragma ("optimize=low")
mturner5 0:b7116bd48af6 7512 #else
mturner5 0:b7116bd48af6 7513 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
mturner5 0:b7116bd48af6 7514 #endif
mturner5 0:b7116bd48af6 7515
mturner5 0:b7116bd48af6 7516 //Exit low optimization region - place directly after end of function definition
mturner5 0:b7116bd48af6 7517 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7518
mturner5 0:b7116bd48af6 7519 #elif defined(__GNUC__)
mturner5 0:b7116bd48af6 7520
mturner5 0:b7116bd48af6 7521 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
mturner5 0:b7116bd48af6 7522
mturner5 0:b7116bd48af6 7523 #define LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7524
mturner5 0:b7116bd48af6 7525 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
mturner5 0:b7116bd48af6 7526
mturner5 0:b7116bd48af6 7527 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7528
mturner5 0:b7116bd48af6 7529 #elif defined(__CSMC__) // Cosmic
mturner5 0:b7116bd48af6 7530
mturner5 0:b7116bd48af6 7531 #define LOW_OPTIMIZATION_ENTER
mturner5 0:b7116bd48af6 7532 #define LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7533 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
mturner5 0:b7116bd48af6 7534 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7535
mturner5 0:b7116bd48af6 7536 #elif defined(__TASKING__) // TASKING
mturner5 0:b7116bd48af6 7537
mturner5 0:b7116bd48af6 7538 #define LOW_OPTIMIZATION_ENTER
mturner5 0:b7116bd48af6 7539 #define LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7540 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
mturner5 0:b7116bd48af6 7541 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
mturner5 0:b7116bd48af6 7542
mturner5 0:b7116bd48af6 7543 #endif
mturner5 0:b7116bd48af6 7544
mturner5 0:b7116bd48af6 7545
mturner5 0:b7116bd48af6 7546 #ifdef __cplusplus
mturner5 0:b7116bd48af6 7547 }
mturner5 0:b7116bd48af6 7548 #endif
mturner5 0:b7116bd48af6 7549
mturner5 0:b7116bd48af6 7550
mturner5 0:b7116bd48af6 7551 #endif /* _ARM_MATH_H */
mturner5 0:b7116bd48af6 7552
mturner5 0:b7116bd48af6 7553 /**
mturner5 0:b7116bd48af6 7554 *
mturner5 0:b7116bd48af6 7555 * End of file.
mturner5 0:b7116bd48af6 7556 */