Changes to support L152
Fork of mbed-rtos by
rtx/rt_CMSIS.c
- Committer:
- emilmont
- Date:
- 2013-04-24
- Revision:
- 10:fcb1f103f7a1
- Parent:
- 6:350b53afb889
- Child:
- 11:db1fc233faa9
File content as of revision 10:fcb1f103f7a1:
/*---------------------------------------------------------------------------- * RL-ARM - RTX *---------------------------------------------------------------------------- * Name: rt_CMSIS.c * Purpose: CMSIS RTOS API * Rev.: V4.60 *---------------------------------------------------------------------------- * * Copyright (c) 1999-2009 KEIL, 2009-2012 ARM Germany GmbH * All rights reserved. * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *---------------------------------------------------------------------------*/ #define __CMSIS_GENERIC #if defined (__CORTEX_M4) || defined (__CORTEX_M4F) #include "core_cm4.h" #elif defined (__CORTEX_M3) #include "core_cm3.h" #elif defined (__CORTEX_M0) #include "core_cm0.h" #elif defined (__CORTEX_M0PLUS) #include "core_cm0plus.h" #else #error "Missing __CORTEX_Mx definition" #endif #include "rt_TypeDef.h" #include "RTX_Config.h" #include "rt_System.h" #include "rt_Task.h" #include "rt_Event.h" #include "rt_List.h" #include "rt_Time.h" #include "rt_Mutex.h" #include "rt_Semaphore.h" #include "rt_Mailbox.h" #include "rt_MemBox.h" #include "rt_HAL_CM.h" #define os_thread_cb OS_TCB #include "cmsis_os.h" #if (osFeature_Signals != 16) #error Invalid "osFeature_Signals" value! #endif #if (osFeature_Semaphore > 65535) #error Invalid "osFeature_Semaphore" value! #endif #if (osFeature_Wait != 0) #error osWait not supported! #endif // ==== Enumeration, structures, defines ==== // Service Calls defines #if defined (__CC_ARM) /* ARM Compiler */ #define __NO_RETURN __declspec(noreturn) #define osEvent_type osEvent #define osEvent_ret_status ret #define osEvent_ret_value ret #define osEvent_ret_msg ret #define osEvent_ret_mail ret #define osCallback_type osCallback #define osCallback_ret ret #define SVC_0_1(f,t,...) \ __svc_indirect(0) t _##f (t(*)()); \ t f (void); \ __attribute__((always_inline)) \ static __inline t __##f (void) { \ return _##f(f); \ } #define SVC_1_1(f,t,t1,...) \ __svc_indirect(0) t _##f (t(*)(t1),t1); \ t f (t1 a1); \ __attribute__((always_inline)) \ static __inline t __##f (t1 a1) { \ return _##f(f,a1); \ } #define SVC_2_1(f,t,t1,t2,...) \ __svc_indirect(0) t _##f (t(*)(t1,t2),t1,t2); \ t f (t1 a1, t2 a2); \ __attribute__((always_inline)) \ static __inline t __##f (t1 a1, t2 a2) { \ return _##f(f,a1,a2); \ } #define SVC_3_1(f,t,t1,t2,t3,...) \ __svc_indirect(0) t _##f (t(*)(t1,t2,t3),t1,t2,t3); \ t f (t1 a1, t2 a2, t3 a3); \ __attribute__((always_inline)) \ static __inline t __##f (t1 a1, t2 a2, t3 a3) { \ return _##f(f,a1,a2,a3); \ } #define SVC_4_1(f,t,t1,t2,t3,t4,...) \ __svc_indirect(0) t _##f (t(*)(t1,t2,t3,t4),t1,t2,t3,t4); \ t f (t1 a1, t2 a2, t3 a3, t4 a4); \ __attribute__((always_inline)) \ static __inline t __##f (t1 a1, t2 a2, t3 a3, t4 a4) { \ return _##f(f,a1,a2,a3,a4); \ } #define SVC_1_2 SVC_1_1 #define SVC_1_3 SVC_1_1 #define SVC_2_3 SVC_2_1 #elif defined (__GNUC__) /* GNU Compiler */ #define __NO_RETURN __attribute__((noreturn)) typedef uint32_t __attribute__((vector_size(8))) ret64; typedef uint32_t __attribute__((vector_size(16))) ret128; #define RET_pointer __r0 #define RET_int32_t __r0 #define RET_osStatus __r0 #define RET_osPriority __r0 #define RET_osEvent {(osStatus)__r0, {(uint32_t)__r1}, {(void *)__r2}} #define RET_osCallback {(void *)__r0, (void *)__r1} #define osEvent_type ret128 #define osEvent_ret_status (ret128){ret.status} #define osEvent_ret_value (ret128){ret.status, ret.value.v} #define osEvent_ret_msg (ret128){ret.status, ret.value.v, (uint32_t)ret.def.message_id} #define osEvent_ret_mail (ret128){ret.status, ret.value.v, (uint32_t)ret.def.mail_id} #define osCallback_type ret64 #define osCallback_ret (ret64) {(uint32_t)ret.fp, (uint32_t)ret.arg} #define SVC_ArgN(n) \ register int __r##n __asm("r"#n); #define SVC_ArgR(n,t,a) \ register t __r##n __asm("r"#n) = a; #define SVC_Arg0() \ SVC_ArgN(0) \ SVC_ArgN(1) \ SVC_ArgN(2) \ SVC_ArgN(3) #define SVC_Arg1(t1) \ SVC_ArgR(0,t1,a1) \ SVC_ArgN(1) \ SVC_ArgN(2) \ SVC_ArgN(3) #define SVC_Arg2(t1,t2) \ SVC_ArgR(0,t1,a1) \ SVC_ArgR(1,t2,a2) \ SVC_ArgN(2) \ SVC_ArgN(3) #define SVC_Arg3(t1,t2,t3) \ SVC_ArgR(0,t1,a1) \ SVC_ArgR(1,t2,a2) \ SVC_ArgR(2,t3,a3) \ SVC_ArgN(3) #define SVC_Arg4(t1,t2,t3,t4) \ SVC_ArgR(0,t1,a1) \ SVC_ArgR(1,t2,a2) \ SVC_ArgR(2,t3,a3) \ SVC_ArgR(3,t4,a4) #if (defined (__CORTEX_M0)) || defined (__CORTEX_M0PLUS) #define SVC_Call(f) \ __asm volatile \ ( \ "ldr r7,="#f"\n\t" \ "mov r12,r7\n\t" \ "svc 0" \ : "=r" (__r0), "=r" (__r1), "=r" (__r2), "=r" (__r3) \ : "r" (__r0), "r" (__r1), "r" (__r2), "r" (__r3) \ : "r7", "r12", "lr", "cc" \ ); #else #define SVC_Call(f) \ __asm volatile \ ( \ "ldr r12,="#f"\n\t" \ "svc 0" \ : "=r" (__r0), "=r" (__r1), "=r" (__r2), "=r" (__r3) \ : "r" (__r0), "r" (__r1), "r" (__r2), "r" (__r3) \ : "r12", "lr", "cc" \ ); #endif #define SVC_0_1(f,t,rv) \ __attribute__((always_inline)) \ static inline t __##f (void) { \ SVC_Arg0(); \ SVC_Call(f); \ return (t) rv; \ } #define SVC_1_1(f,t,t1,rv) \ __attribute__((always_inline)) \ static inline t __##f (t1 a1) { \ SVC_Arg1(t1); \ SVC_Call(f); \ return (t) rv; \ } #define SVC_2_1(f,t,t1,t2,rv) \ __attribute__((always_inline)) \ static inline t __##f (t1 a1, t2 a2) { \ SVC_Arg2(t1,t2); \ SVC_Call(f); \ return (t) rv; \ } #define SVC_3_1(f,t,t1,t2,t3,rv) \ __attribute__((always_inline)) \ static inline t __##f (t1 a1, t2 a2, t3 a3) { \ SVC_Arg3(t1,t2,t3); \ SVC_Call(f); \ return (t) rv; \ } #define SVC_4_1(f,t,t1,t2,t3,t4,rv) \ __attribute__((always_inline)) \ static inline t __##f (t1 a1, t2 a2, t3 a3, t4 a4) { \ SVC_Arg4(t1,t2,t3,t4); \ SVC_Call(f); \ return (t) rv; \ } #define SVC_1_2 SVC_1_1 #define SVC_1_3 SVC_1_1 #define SVC_2_3 SVC_2_1 #elif defined (__ICCARM__) /* IAR Compiler */ #define __NO_RETURN __noreturn #define RET_osEvent "=r"(ret.status), "=r"(ret.value), "=r"(ret.def) #define RET_osCallback "=r"(ret.fp), "=r"(ret.arg) #define osEvent_type osEvent #define osEvent_ret_status ret #define osEvent_ret_value ret #define osEvent_ret_msg ret #define osEvent_ret_mail ret #define osCallback_type uint64_t #define osCallback_ret ((uint64_t)ret.fp | ((uint64_t)ret.arg)<<32) #define SVC_Setup(f) \ __asm( \ "mov r12,%0\n" \ :: "r"(&f): "r12" \ ); #define SVC_Ret3() \ __asm( \ "ldr r0,[sp,#0]\n" \ "ldr r1,[sp,#4]\n" \ "ldr r2,[sp,#8]\n" \ ); #define SVC_0_1(f,t,...) \ t f (void); \ _Pragma("swi_number=0") __swi t _##f (void); \ static inline t __##f (void) { \ SVC_Setup(f); \ return _##f(); \ } #define SVC_1_1(f,t,t1,...) \ t f (t1 a1); \ _Pragma("swi_number=0") __swi t _##f (t1 a1); \ static inline t __##f (t1 a1) { \ SVC_Setup(f); \ return _##f(a1); \ } #define SVC_2_1(f,t,t1,t2,...) \ t f (t1 a1, t2 a2); \ _Pragma("swi_number=0") __swi t _##f (t1 a1, t2 a2); \ static inline t __##f (t1 a1, t2 a2) { \ SVC_Setup(f); \ return _##f(a1,a2); \ } #define SVC_3_1(f,t,t1,t2,t3,...) \ t f (t1 a1, t2 a2, t3 a3); \ _Pragma("swi_number=0") __swi t _##f (t1 a1, t2 a2, t3 a3); \ static inline t __##f (t1 a1, t2 a2, t3 a3) { \ SVC_Setup(f); \ return _##f(a1,a2,a3); \ } #define SVC_4_1(f,t,t1,t2,t3,t4,...) \ t f (t1 a1, t2 a2, t3 a3, t4 a4); \ _Pragma("swi_number=0") __swi t _##f (t1 a1, t2 a2, t3 a3, t4 a4); \ static inline t __##f (t1 a1, t2 a2, t3 a3, t4 a4) { \ SVC_Setup(f); \ return _##f(a1,a2,a3,a4); \ } #define SVC_1_2(f,t,t1,rr) \ uint64_t f (t1 a1); \ _Pragma("swi_number=0") __swi uint64_t _##f (t1 a1); \ static inline t __##f (t1 a1) { \ t ret; \ SVC_Setup(f); \ _##f(a1); \ __asm("" : rr : :); \ return ret; \ } #define SVC_1_3(f,t,t1,rr) \ t f (t1 a1); \ void f##_ (t1 a1) { \ f(a1); \ SVC_Ret3(); \ } \ _Pragma("swi_number=0") __swi void _##f (t1 a1); \ static inline t __##f (t1 a1) { \ t ret; \ SVC_Setup(f##_); \ _##f(a1); \ __asm("" : rr : :); \ return ret; \ } #define SVC_2_3(f,t,t1,t2,rr) \ t f (t1 a1, t2 a2); \ void f##_ (t1 a1, t2 a2) { \ f(a1,a2); \ SVC_Ret3(); \ } \ _Pragma("swi_number=0") __swi void _##f (t1 a1, t2 a2); \ static inline t __##f (t1 a1, t2 a2) { \ t ret; \ SVC_Setup(f##_); \ _##f(a1,a2); \ __asm("" : rr : :); \ return ret; \ } #endif // Callback structure typedef struct { void *fp; // Function pointer void *arg; // Function argument } osCallback; // OS Section definitions #ifdef OS_SECTIONS_LINK_INFO extern const uint32_t os_section_id$$Base; extern const uint32_t os_section_id$$Limit; #endif // OS Timers external resources extern osThreadDef_t os_thread_def_osTimerThread; extern osThreadId osThreadId_osTimerThread; extern osMessageQDef_t os_messageQ_def_osTimerMessageQ; extern osMessageQId osMessageQId_osTimerMessageQ; // ==== Helper Functions ==== /// Convert timeout in millisec to system ticks static uint32_t rt_ms2tick (uint32_t millisec) { uint32_t tick; if (millisec == osWaitForever) return 0xFFFF; // Indefinite timeout if (millisec > 4000000) return 0xFFFE; // Max ticks supported tick = ((1000 * millisec) + os_clockrate - 1) / os_clockrate; if (tick > 0xFFFE) return 0xFFFE; return tick; } /// Convert Thread ID to TCB pointer static P_TCB rt_tid2ptcb (osThreadId thread_id) { P_TCB ptcb; if (thread_id == NULL) return NULL; if ((uint32_t)thread_id & 3) return NULL; #ifdef OS_SECTIONS_LINK_INFO if ((os_section_id$$Base != 0) && (os_section_id$$Limit != 0)) { if (thread_id < (osThreadId)os_section_id$$Base) return NULL; if (thread_id >= (osThreadId)os_section_id$$Limit) return NULL; } #endif ptcb = thread_id; if (ptcb->cb_type != TCB) return NULL; return ptcb; } /// Convert ID pointer to Object pointer static void *rt_id2obj (void *id) { if ((uint32_t)id & 3) return NULL; #ifdef OS_SECTIONS_LINK_INFO if ((os_section_id$$Base != 0) && (os_section_id$$Limit != 0)) { if (id < (void *)os_section_id$$Base) return NULL; if (id >= (void *)os_section_id$$Limit) return NULL; } #endif return id; } // ==== Kernel Control ==== uint8_t os_initialized; // Kernel Initialized flag uint8_t os_running; // Kernel Running flag // Kernel Control Service Calls declarations SVC_0_1(svcKernelInitialize, osStatus, RET_osStatus) SVC_0_1(svcKernelStart, osStatus, RET_osStatus) SVC_0_1(svcKernelRunning, int32_t, RET_int32_t) extern void sysThreadError (osStatus status); osThreadId svcThreadCreate (osThreadDef_t *thread_def, void *argument); osMessageQId svcMessageCreate (osMessageQDef_t *queue_def, osThreadId thread_id); // Kernel Control Service Calls /// Initialize the RTOS Kernel for creating objects osStatus svcKernelInitialize (void) { if (os_initialized) return osOK; rt_sys_init(); // RTX System Initialization os_tsk.run->prio = 255; // Highest priority sysThreadError(osOK); os_initialized = 1; return osOK; } /// Start the RTOS Kernel osStatus svcKernelStart (void) { if (os_running) return osOK; // Create OS Timers resources (Message Queue & Thread) osMessageQId_osTimerMessageQ = svcMessageCreate (&os_messageQ_def_osTimerMessageQ, NULL); osThreadId_osTimerThread = svcThreadCreate(&os_thread_def_osTimerThread, NULL); rt_tsk_prio(0, 0); // Lowest priority __set_PSP(os_tsk.run->tsk_stack + 8*4); // New context os_tsk.run = NULL; // Force context switch rt_sys_start(); os_running = 1; return osOK; } /// Check if the RTOS kernel is already started int32_t svcKernelRunning(void) { return os_running; } // Kernel Control Public API /// Initialize the RTOS Kernel for creating objects osStatus osKernelInitialize (void) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR if ((__get_CONTROL() & 1) == 0) { // Privileged mode return svcKernelInitialize(); } else { return __svcKernelInitialize(); } } /// Start the RTOS Kernel osStatus osKernelStart (void) { uint32_t stack[8]; if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR switch (__get_CONTROL() & 0x03) { case 0x00: // Privileged Thread mode & MSP __set_PSP((uint32_t)(stack + 8)); // Initial PSP if (os_flags & 1) { __set_CONTROL(0x02); // Set Privileged Thread mode & PSP } else { __set_CONTROL(0x03); // Set Unprivileged Thread mode & PSP } __DSB(); __ISB(); break; case 0x01: // Unprivileged Thread mode & MSP return osErrorOS; case 0x02: // Privileged Thread mode & PSP if ((os_flags & 1) == 0) { // Unprivileged Thread mode requested __set_CONTROL(0x03); // Set Unprivileged Thread mode & PSP __DSB(); __ISB(); } break; case 0x03: // Unprivileged Thread mode & PSP if (os_flags & 1) return osErrorOS; // Privileged Thread mode requested break; } return __svcKernelStart(); } /// Check if the RTOS kernel is already started int32_t osKernelRunning(void) { if ((__get_IPSR() != 0) || ((__get_CONTROL() & 1) == 0)) { // in ISR or Privileged return os_running; } else { return __svcKernelRunning(); } } // ==== Thread Management ==== __NO_RETURN void osThreadExit (void); // Thread Service Calls declarations SVC_2_1(svcThreadCreate, osThreadId, osThreadDef_t *, void *, RET_pointer) SVC_0_1(svcThreadGetId, osThreadId, RET_pointer) SVC_1_1(svcThreadTerminate, osStatus, osThreadId, RET_osStatus) SVC_0_1(svcThreadYield, osStatus, RET_osStatus) SVC_2_1(svcThreadSetPriority, osStatus, osThreadId, osPriority, RET_osStatus) SVC_1_1(svcThreadGetPriority, osPriority, osThreadId, RET_osPriority) // Thread Service Calls extern OS_TID rt_get_TID (void); extern void rt_init_context (P_TCB p_TCB, U8 priority, FUNCP task_body); /// Create a thread and add it to Active Threads and set it to state READY osThreadId svcThreadCreate (osThreadDef_t *thread_def, void *argument) { P_TCB ptcb; if ((thread_def == NULL) || (thread_def->pthread == NULL) || (thread_def->tpriority < osPriorityIdle) || (thread_def->tpriority > osPriorityRealtime) || (thread_def->stacksize == 0) || (thread_def->stack_pointer == NULL) ) { sysThreadError(osErrorParameter); return NULL; } U8 priority = thread_def->tpriority - osPriorityIdle + 1; P_TCB task_context = &thread_def->tcb; /* If "size != 0" use a private user provided stack. */ task_context->stack = (U32*)thread_def->stack_pointer; task_context->priv_stack = thread_def->stacksize; /* Pass parameter 'argv' to 'rt_init_context' */ task_context->msg = argument; /* For 'size == 0' system allocates the user stack from the memory pool. */ rt_init_context (task_context, priority, (FUNCP)thread_def->pthread); /* Find a free entry in 'os_active_TCB' table. */ OS_TID tsk = rt_get_TID (); os_active_TCB[tsk-1] = task_context; task_context->task_id = tsk; DBG_TASK_NOTIFY(task_context, __TRUE); rt_dispatch (task_context); ptcb = (P_TCB)os_active_TCB[tsk - 1]; // TCB pointer *((uint32_t *)ptcb->tsk_stack + 13) = (uint32_t)osThreadExit; return ptcb; } /// Return the thread ID of the current running thread osThreadId svcThreadGetId (void) { OS_TID tsk; tsk = rt_tsk_self(); if (tsk == 0) return NULL; return (P_TCB)os_active_TCB[tsk - 1]; } /// Terminate execution of a thread and remove it from ActiveThreads osStatus svcThreadTerminate (osThreadId thread_id) { OS_RESULT res; P_TCB ptcb; ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer if (ptcb == NULL) return osErrorParameter; res = rt_tsk_delete(ptcb->task_id); // Delete task if (res == OS_R_NOK) return osErrorResource; // Delete task failed return osOK; } /// Pass control to next thread that is in state READY osStatus svcThreadYield (void) { rt_tsk_pass(); // Pass control to next task return osOK; } /// Change priority of an active thread osStatus svcThreadSetPriority (osThreadId thread_id, osPriority priority) { OS_RESULT res; P_TCB ptcb; ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer if (ptcb == NULL) return osErrorParameter; if ((priority < osPriorityIdle) || (priority > osPriorityRealtime)) { return osErrorValue; } res = rt_tsk_prio( // Change task priority ptcb->task_id, // Task ID priority - osPriorityIdle + 1 // New task priority ); if (res == OS_R_NOK) return osErrorResource; // Change task priority failed return osOK; } /// Get current priority of an active thread osPriority svcThreadGetPriority (osThreadId thread_id) { P_TCB ptcb; ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer if (ptcb == NULL) return osPriorityError; return (osPriority)(ptcb->prio - 1 + osPriorityIdle); } // Thread Public API /// Create a thread and add it to Active Threads and set it to state READY osThreadId osThreadCreate (osThreadDef_t *thread_def, void *argument) { if (__get_IPSR() != 0) return NULL; // Not allowed in ISR if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) { // Privileged and not running return svcThreadCreate(thread_def, argument); } else { return __svcThreadCreate(thread_def, argument); } } /// Return the thread ID of the current running thread osThreadId osThreadGetId (void) { if (__get_IPSR() != 0) return NULL; // Not allowed in ISR return __svcThreadGetId(); } /// Terminate execution of a thread and remove it from ActiveThreads osStatus osThreadTerminate (osThreadId thread_id) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcThreadTerminate(thread_id); } /// Pass control to next thread that is in state READY osStatus osThreadYield (void) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcThreadYield(); } /// Change priority of an active thread osStatus osThreadSetPriority (osThreadId thread_id, osPriority priority) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcThreadSetPriority(thread_id, priority); } /// Get current priority of an active thread osPriority osThreadGetPriority (osThreadId thread_id) { if (__get_IPSR() != 0) return osPriorityError;// Not allowed in ISR return __svcThreadGetPriority(thread_id); } /// INTERNAL - Not Public /// Auto Terminate Thread on exit (used implicitly when thread exists) __NO_RETURN void osThreadExit (void) { __svcThreadTerminate(__svcThreadGetId()); for (;;); // Should never come here } // ==== Generic Wait Functions ==== // Generic Wait Service Calls declarations SVC_1_1(svcDelay, osStatus, uint32_t, RET_osStatus) #if osFeature_Wait != 0 SVC_1_3(svcWait, os_InRegs osEvent, uint32_t, RET_osEvent) #endif // Generic Wait Service Calls /// Wait for Timeout (Time Delay) osStatus svcDelay (uint32_t millisec) { if (millisec == 0) return osOK; rt_dly_wait(rt_ms2tick(millisec)); return osEventTimeout; } /// Wait for Signal, Message, Mail, or Timeout #if osFeature_Wait != 0 os_InRegs osEvent_type svcWait (uint32_t millisec) { osEvent ret; if (millisec == 0) { ret.status = osOK; return osEvent_ret_status; } /* To Do: osEventSignal, osEventMessage, osEventMail */ rt_dly_wait(rt_ms2tick(millisec)); ret.status = osEventTimeout; return osEvent_ret_status; } #endif // Generic Wait API /// Wait for Timeout (Time Delay) osStatus osDelay (uint32_t millisec) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcDelay(millisec); } /// Wait for Signal, Message, Mail, or Timeout os_InRegs osEvent osWait (uint32_t millisec) { osEvent ret; #if osFeature_Wait == 0 ret.status = osErrorOS; return ret; #else if (__get_IPSR() != 0) { // Not allowed in ISR ret.status = osErrorISR; return ret; } return __svcWait(millisec); #endif } // ==== Timer Management ==== // Timer definitions #define osTimerInvalid 0 #define osTimerStopped 1 #define osTimerRunning 2 // Timer structures typedef struct os_timer_cb_ { // Timer Control Block struct os_timer_cb_ *next; // Pointer to next active Timer uint8_t state; // Timer State uint8_t type; // Timer Type (Periodic/One-shot) uint16_t reserved; // Reserved uint16_t tcnt; // Timer Delay Count uint16_t icnt; // Timer Initial Count void *arg; // Timer Function Argument osTimerDef_t *timer; // Pointer to Timer definition } os_timer_cb; // Timer variables os_timer_cb *os_timer_head; // Pointer to first active Timer // Timer Helper Functions // Insert Timer into the list sorted by time static void rt_timer_insert (os_timer_cb *pt, uint32_t tcnt) { os_timer_cb *p, *prev; prev = NULL; p = os_timer_head; while (p != NULL) { if (tcnt < p->tcnt) break; tcnt -= p->tcnt; prev = p; p = p->next; } pt->next = p; pt->tcnt = (uint16_t)tcnt; if (p != NULL) { p->tcnt -= pt->tcnt; } if (prev != NULL) { prev->next = pt; } else { os_timer_head = pt; } } // Remove Timer from the list static int rt_timer_remove (os_timer_cb *pt) { os_timer_cb *p, *prev; prev = NULL; p = os_timer_head; while (p != NULL) { if (p == pt) break; prev = p; p = p->next; } if (p == NULL) return -1; if (prev != NULL) { prev->next = pt->next; } else { os_timer_head = pt->next; } if (pt->next != NULL) { pt->next->tcnt += pt->tcnt; } return 0; } // Timer Service Calls declarations SVC_3_1(svcTimerCreate, osTimerId, osTimerDef_t *, os_timer_type, void *, RET_pointer) SVC_2_1(svcTimerStart, osStatus, osTimerId, uint32_t, RET_osStatus) SVC_1_1(svcTimerStop, osStatus, osTimerId, RET_osStatus) SVC_1_1(svcTimerDelete, osStatus, osTimerId, RET_osStatus) SVC_1_2(svcTimerCall, os_InRegs osCallback, osTimerId, RET_osCallback) // Timer Management Service Calls /// Create timer osTimerId svcTimerCreate (osTimerDef_t *timer_def, os_timer_type type, void *argument) { os_timer_cb *pt; if ((timer_def == NULL) || (timer_def->ptimer == NULL)) { sysThreadError(osErrorParameter); return NULL; } pt = timer_def->timer; if (pt == NULL) { sysThreadError(osErrorParameter); return NULL; } if ((type != osTimerOnce) && (type != osTimerPeriodic)) { sysThreadError(osErrorValue); return NULL; } if (osThreadId_osTimerThread == NULL) { sysThreadError(osErrorResource); return NULL; } if (pt->state != osTimerInvalid){ sysThreadError(osErrorResource); return NULL; } pt->state = osTimerStopped; pt->type = (uint8_t)type; pt->arg = argument; pt->timer = timer_def; return (osTimerId)pt; } /// Start or restart timer osStatus svcTimerStart (osTimerId timer_id, uint32_t millisec) { os_timer_cb *pt; uint32_t tcnt; pt = rt_id2obj(timer_id); if (pt == NULL) return osErrorParameter; tcnt = rt_ms2tick(millisec); if (tcnt == 0) return osErrorValue; switch (pt->state) { case osTimerRunning: if (rt_timer_remove(pt) != 0) { return osErrorResource; } break; case osTimerStopped: pt->state = osTimerRunning; pt->icnt = (uint16_t)tcnt; break; default: return osErrorResource; } rt_timer_insert(pt, tcnt); return osOK; } /// Stop timer osStatus svcTimerStop (osTimerId timer_id) { os_timer_cb *pt; pt = rt_id2obj(timer_id); if (pt == NULL) return osErrorParameter; if (pt->state != osTimerRunning) return osErrorResource; pt->state = osTimerStopped; if (rt_timer_remove(pt) != 0) { return osErrorResource; } return osOK; } /// Delete timer osStatus svcTimerDelete (osTimerId timer_id) { os_timer_cb *pt; pt = rt_id2obj(timer_id); if (pt == NULL) return osErrorParameter; switch (pt->state) { case osTimerRunning: rt_timer_remove(pt); break; case osTimerStopped: break; default: return osErrorResource; } pt->state = osTimerInvalid; return osOK; } /// Get timer callback parameters os_InRegs osCallback_type svcTimerCall (osTimerId timer_id) { os_timer_cb *pt; osCallback ret; pt = rt_id2obj(timer_id); if (pt == NULL) { ret.fp = NULL; ret.arg = NULL; return osCallback_ret; } ret.fp = (void *)pt->timer->ptimer; ret.arg = pt->arg; return osCallback_ret; } static __INLINE osStatus isrMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec); /// Timer Tick (called each SysTick) void sysTimerTick (void) { os_timer_cb *pt, *p; p = os_timer_head; if (p == NULL) return; p->tcnt--; while ((p != NULL) && (p->tcnt == 0)) { pt = p; p = p->next; os_timer_head = p; isrMessagePut(osMessageQId_osTimerMessageQ, (uint32_t)pt, 0); if (pt->type == osTimerPeriodic) { rt_timer_insert(pt, pt->icnt); } else { pt->state = osTimerStopped; } } } // Timer Management Public API /// Create timer osTimerId osTimerCreate (osTimerDef_t *timer_def, os_timer_type type, void *argument) { if (__get_IPSR() != 0) return NULL; // Not allowed in ISR if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) { // Privileged and not running return svcTimerCreate(timer_def, type, argument); } else { return __svcTimerCreate(timer_def, type, argument); } } /// Start or restart timer osStatus osTimerStart (osTimerId timer_id, uint32_t millisec) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcTimerStart(timer_id, millisec); } /// Stop timer osStatus osTimerStop (osTimerId timer_id) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcTimerStop(timer_id); } /// Delete timer osStatus osTimerDelete (osTimerId timer_id) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcTimerDelete(timer_id); } /// INTERNAL - Not Public /// Get timer callback parameters (used by OS Timer Thread) os_InRegs osCallback osTimerCall (osTimerId timer_id) { return __svcTimerCall(timer_id); } // Timer Thread __NO_RETURN void osTimerThread (void const *argument) { osCallback cb; osEvent evt; for (;;) { evt = osMessageGet(osMessageQId_osTimerMessageQ, osWaitForever); if (evt.status == osEventMessage) { cb = osTimerCall(evt.value.p); if (cb.fp != NULL) { (*(os_ptimer)cb.fp)(cb.arg); } } } } // ==== Signal Management ==== // Signal Service Calls declarations SVC_2_1(svcSignalSet, int32_t, osThreadId, int32_t, RET_int32_t) SVC_2_1(svcSignalClear, int32_t, osThreadId, int32_t, RET_int32_t) SVC_1_1(svcSignalGet, int32_t, osThreadId, RET_int32_t) SVC_2_3(svcSignalWait, os_InRegs osEvent, int32_t, uint32_t, RET_osEvent) // Signal Service Calls /// Set the specified Signal Flags of an active thread int32_t svcSignalSet (osThreadId thread_id, int32_t signals) { P_TCB ptcb; int32_t sig; ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer if (ptcb == NULL) return 0x80000000; if (signals & (0xFFFFFFFF << osFeature_Signals)) return 0x80000000; sig = ptcb->events; // Previous signal flags rt_evt_set(signals, ptcb->task_id); // Set event flags return sig; } /// Clear the specified Signal Flags of an active thread int32_t svcSignalClear (osThreadId thread_id, int32_t signals) { P_TCB ptcb; int32_t sig; ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer if (ptcb == NULL) return 0x80000000; if (signals & (0xFFFFFFFF << osFeature_Signals)) return 0x80000000; sig = ptcb->events; // Previous signal flags rt_evt_clr(signals, ptcb->task_id); // Clear event flags return sig; } /// Get Signal Flags status of an active thread int32_t svcSignalGet (osThreadId thread_id) { P_TCB ptcb; ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer if (ptcb == NULL) return 0x80000000; return ptcb->events; // Return event flags } /// Wait for one or more Signal Flags to become signaled for the current RUNNING thread os_InRegs osEvent_type svcSignalWait (int32_t signals, uint32_t millisec) { OS_RESULT res; osEvent ret; if (signals & (0xFFFFFFFF << osFeature_Signals)) { ret.status = osErrorValue; return osEvent_ret_status; } if (signals != 0) { // Wait for all specified signals res = rt_evt_wait(signals, rt_ms2tick(millisec), __TRUE); } else { // Wait for any signal res = rt_evt_wait(0xFFFF, rt_ms2tick(millisec), __FALSE); } if (res == OS_R_EVT) { ret.status = osEventSignal; ret.value.signals = signals ? signals : os_tsk.run->waits; } else { ret.status = millisec ? osEventTimeout : osOK; ret.value.signals = 0; } return osEvent_ret_value; } // Signal ISR Calls /// Set the specified Signal Flags of an active thread static __INLINE int32_t isrSignalSet (osThreadId thread_id, int32_t signals) { P_TCB ptcb; int32_t sig; ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer if (ptcb == NULL) return 0x80000000; if (signals & (0xFFFFFFFF << osFeature_Signals)) return 0x80000000; sig = ptcb->events; // Previous signal flags isr_evt_set(signals, ptcb->task_id); // Set event flags return sig; } // Signal Public API /// Set the specified Signal Flags of an active thread int32_t osSignalSet (osThreadId thread_id, int32_t signals) { if (__get_IPSR() != 0) { // in ISR return isrSignalSet(thread_id, signals); } else { // in Thread return __svcSignalSet(thread_id, signals); } } /// Clear the specified Signal Flags of an active thread int32_t osSignalClear (osThreadId thread_id, int32_t signals) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcSignalClear(thread_id, signals); } /// Get Signal Flags status of an active thread int32_t osSignalGet (osThreadId thread_id) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcSignalGet(thread_id); } /// Wait for one or more Signal Flags to become signaled for the current RUNNING thread os_InRegs osEvent osSignalWait (int32_t signals, uint32_t millisec) { osEvent ret; if (__get_IPSR() != 0) { // Not allowed in ISR ret.status = osErrorISR; return ret; } return __svcSignalWait(signals, millisec); } // ==== Mutex Management ==== // Mutex Service Calls declarations SVC_1_1(svcMutexCreate, osMutexId, osMutexDef_t *, RET_pointer) SVC_2_1(svcMutexWait, osStatus, osMutexId, uint32_t, RET_osStatus) SVC_1_1(svcMutexRelease, osStatus, osMutexId, RET_osStatus) SVC_1_1(svcMutexDelete, osStatus, osMutexId, RET_osStatus) // Mutex Service Calls /// Create and Initialize a Mutex object osMutexId svcMutexCreate (osMutexDef_t *mutex_def) { OS_ID mut; if (mutex_def == NULL) { sysThreadError(osErrorParameter); return NULL; } mut = mutex_def->mutex; if (mut == NULL) { sysThreadError(osErrorParameter); return NULL; } if (((P_MUCB)mut)->cb_type != 0) { sysThreadError(osErrorParameter); return NULL; } rt_mut_init(mut); // Initialize Mutex return mut; } /// Wait until a Mutex becomes available osStatus svcMutexWait (osMutexId mutex_id, uint32_t millisec) { OS_ID mut; OS_RESULT res; mut = rt_id2obj(mutex_id); if (mut == NULL) return osErrorParameter; if (((P_MUCB)mut)->cb_type != MUCB) return osErrorParameter; res = rt_mut_wait(mut, rt_ms2tick(millisec)); // Wait for Mutex if (res == OS_R_TMO) { return (millisec ? osErrorTimeoutResource : osErrorResource); } return osOK; } /// Release a Mutex that was obtained with osMutexWait osStatus svcMutexRelease (osMutexId mutex_id) { OS_ID mut; OS_RESULT res; mut = rt_id2obj(mutex_id); if (mut == NULL) return osErrorParameter; if (((P_MUCB)mut)->cb_type != MUCB) return osErrorParameter; res = rt_mut_release(mut); // Release Mutex if (res == OS_R_NOK) return osErrorResource; // Thread not owner or Zero Counter return osOK; } /// Delete a Mutex that was created by osMutexCreate osStatus svcMutexDelete (osMutexId mutex_id) { OS_ID mut; mut = rt_id2obj(mutex_id); if (mut == NULL) return osErrorParameter; if (((P_MUCB)mut)->cb_type != MUCB) return osErrorParameter; rt_mut_delete(mut); // Release Mutex return osOK; } // Mutex Public API /// Create and Initialize a Mutex object osMutexId osMutexCreate (osMutexDef_t *mutex_def) { if (__get_IPSR() != 0) return NULL; // Not allowed in ISR if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) { // Privileged and not running return svcMutexCreate(mutex_def); } else { return __svcMutexCreate(mutex_def); } } /// Wait until a Mutex becomes available osStatus osMutexWait (osMutexId mutex_id, uint32_t millisec) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcMutexWait(mutex_id, millisec); } /// Release a Mutex that was obtained with osMutexWait osStatus osMutexRelease (osMutexId mutex_id) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcMutexRelease(mutex_id); } /// Delete a Mutex that was created by osMutexCreate osStatus osMutexDelete (osMutexId mutex_id) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcMutexDelete(mutex_id); } // ==== Semaphore Management ==== // Semaphore Service Calls declarations SVC_2_1(svcSemaphoreCreate, osSemaphoreId, const osSemaphoreDef_t *, int32_t, RET_pointer) SVC_2_1(svcSemaphoreWait, int32_t, osSemaphoreId, uint32_t, RET_int32_t) SVC_1_1(svcSemaphoreRelease, osStatus, osSemaphoreId, RET_osStatus) SVC_1_1(svcSemaphoreDelete, osStatus, osSemaphoreId, RET_osStatus) // Semaphore Service Calls /// Create and Initialize a Semaphore object osSemaphoreId svcSemaphoreCreate (const osSemaphoreDef_t *semaphore_def, int32_t count) { OS_ID sem; if (semaphore_def == NULL) { sysThreadError(osErrorParameter); return NULL; } sem = semaphore_def->semaphore; if (sem == NULL) { sysThreadError(osErrorParameter); return NULL; } if (((P_SCB)sem)->cb_type != 0) { sysThreadError(osErrorParameter); return NULL; } if (count > osFeature_Semaphore) { sysThreadError(osErrorValue); return NULL; } rt_sem_init(sem, count); // Initialize Semaphore return sem; } /// Wait until a Semaphore becomes available int32_t svcSemaphoreWait (osSemaphoreId semaphore_id, uint32_t millisec) { OS_ID sem; OS_RESULT res; sem = rt_id2obj(semaphore_id); if (sem == NULL) return -1; if (((P_SCB)sem)->cb_type != SCB) return -1; res = rt_sem_wait(sem, rt_ms2tick(millisec)); // Wait for Semaphore if (res == OS_R_TMO) return 0; // Timeout return (((P_SCB)sem)->tokens + 1); } /// Release a Semaphore osStatus svcSemaphoreRelease (osSemaphoreId semaphore_id) { OS_ID sem; sem = rt_id2obj(semaphore_id); if (sem == NULL) return osErrorParameter; if (((P_SCB)sem)->cb_type != SCB) return osErrorParameter; if (((P_SCB)sem)->tokens == osFeature_Semaphore) return osErrorResource; rt_sem_send(sem); // Release Semaphore return osOK; } /// Delete a Semaphore that was created by osSemaphoreCreate osStatus svcSemaphoreDelete (osSemaphoreId semaphore_id) { OS_ID sem; sem = rt_id2obj(semaphore_id); if (sem == NULL) return osErrorParameter; if (((P_SCB)sem)->cb_type != SCB) return osErrorParameter; rt_sem_delete(sem); // Delete Semaphore return osOK; } // Semaphore ISR Calls /// Release a Semaphore static __INLINE osStatus isrSemaphoreRelease (osSemaphoreId semaphore_id) { OS_ID sem; sem = rt_id2obj(semaphore_id); if (sem == NULL) return osErrorParameter; if (((P_SCB)sem)->cb_type != SCB) return osErrorParameter; if (((P_SCB)sem)->tokens == osFeature_Semaphore) return osErrorResource; isr_sem_send(sem); // Release Semaphore return osOK; } // Semaphore Public API /// Create and Initialize a Semaphore object osSemaphoreId osSemaphoreCreate (osSemaphoreDef_t *semaphore_def, int32_t count) { if (__get_IPSR() != 0) return NULL; // Not allowed in ISR if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) { // Privileged and not running return svcSemaphoreCreate(semaphore_def, count); } else { return __svcSemaphoreCreate(semaphore_def, count); } } /// Wait until a Semaphore becomes available int32_t osSemaphoreWait (osSemaphoreId semaphore_id, uint32_t millisec) { if (__get_IPSR() != 0) return -1; // Not allowed in ISR return __svcSemaphoreWait(semaphore_id, millisec); } /// Release a Semaphore osStatus osSemaphoreRelease (osSemaphoreId semaphore_id) { if (__get_IPSR() != 0) { // in ISR return isrSemaphoreRelease(semaphore_id); } else { // in Thread return __svcSemaphoreRelease(semaphore_id); } } /// Delete a Semaphore that was created by osSemaphoreCreate osStatus osSemaphoreDelete (osSemaphoreId semaphore_id) { if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR return __svcSemaphoreDelete(semaphore_id); } // ==== Memory Management Functions ==== // Memory Management Helper Functions // Clear Memory Box (Zero init) static void rt_clr_box (void *box_mem, void *box) { uint32_t *p, n; if (box) { p = box; for (n = ((P_BM)box_mem)->blk_size; n; n -= 4) { *p++ = 0; } } } // Memory Management Service Calls declarations SVC_1_1(svcPoolCreate, osPoolId, const osPoolDef_t *, RET_pointer) SVC_2_1(sysPoolAlloc, void *, osPoolId, uint32_t, RET_pointer) SVC_2_1(sysPoolFree, osStatus, osPoolId, void *, RET_osStatus) // Memory Management Service & ISR Calls /// Create and Initialize memory pool osPoolId svcPoolCreate (const osPoolDef_t *pool_def) { uint32_t blk_sz; if ((pool_def == NULL) || (pool_def->pool_sz == 0) || (pool_def->item_sz == 0) || (pool_def->pool == NULL)) { sysThreadError(osErrorParameter); return NULL; } blk_sz = (pool_def->item_sz + 3) & ~3; _init_box(pool_def->pool, sizeof(struct OS_BM) + pool_def->pool_sz * blk_sz, blk_sz); return pool_def->pool; } /// Allocate a memory block from a memory pool void *sysPoolAlloc (osPoolId pool_id, uint32_t clr) { void *ptr; if (pool_id == NULL) return NULL; ptr = rt_alloc_box(pool_id); if (clr) { rt_clr_box(pool_id, ptr); } return ptr; } /// Return an allocated memory block back to a specific memory pool osStatus sysPoolFree (osPoolId pool_id, void *block) { int32_t res; if (pool_id == NULL) return osErrorParameter; res = rt_free_box(pool_id, block); if (res != 0) return osErrorValue; return osOK; } // Memory Management Public API /// Create and Initialize memory pool osPoolId osPoolCreate (osPoolDef_t *pool_def) { if (__get_IPSR() != 0) return NULL; // Not allowed in ISR if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) { // Privileged and not running return svcPoolCreate(pool_def); } else { return __svcPoolCreate(pool_def); } } /// Allocate a memory block from a memory pool void *osPoolAlloc (osPoolId pool_id) { if ((__get_IPSR() != 0) || ((__get_CONTROL() & 1) == 0)) { // in ISR or Privileged return sysPoolAlloc(pool_id, 0); } else { // in Thread return __sysPoolAlloc(pool_id, 0); } } /// Allocate a memory block from a memory pool and set memory block to zero void *osPoolCAlloc (osPoolId pool_id) { if ((__get_IPSR() != 0) || ((__get_CONTROL() & 1) == 0)) { // in ISR or Privileged return sysPoolAlloc(pool_id, 1); } else { // in Thread return __sysPoolAlloc(pool_id, 1); } } /// Return an allocated memory block back to a specific memory pool osStatus osPoolFree (osPoolId pool_id, void *block) { if ((__get_IPSR() != 0) || ((__get_CONTROL() & 1) == 0)) { // in ISR or Privileged return sysPoolFree(pool_id, block); } else { // in Thread return __sysPoolFree(pool_id, block); } } // ==== Message Queue Management Functions ==== // Message Queue Management Service Calls declarations SVC_2_1(svcMessageCreate, osMessageQId, osMessageQDef_t *, osThreadId, RET_pointer) SVC_3_1(svcMessagePut, osStatus, osMessageQId, uint32_t, uint32_t, RET_osStatus) SVC_2_3(svcMessageGet, os_InRegs osEvent, osMessageQId, uint32_t, RET_osEvent) // Message Queue Service Calls /// Create and Initialize Message Queue osMessageQId svcMessageCreate (osMessageQDef_t *queue_def, osThreadId thread_id) { if ((queue_def == NULL) || (queue_def->queue_sz == 0) || (queue_def->pool == NULL)) { sysThreadError(osErrorParameter); return NULL; } if (((P_MCB)queue_def->pool)->cb_type != 0) { sysThreadError(osErrorParameter); return NULL; } rt_mbx_init(queue_def->pool, 4*(queue_def->queue_sz + 4)); return queue_def->pool; } /// Put a Message to a Queue osStatus svcMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec) { OS_RESULT res; if (queue_id == NULL) return osErrorParameter; if (((P_MCB)queue_id)->cb_type != MCB) return osErrorParameter; res = rt_mbx_send(queue_id, (void *)info, rt_ms2tick(millisec)); if (res == OS_R_TMO) { return (millisec ? osErrorTimeoutResource : osErrorResource); } return osOK; } /// Get a Message or Wait for a Message from a Queue os_InRegs osEvent_type svcMessageGet (osMessageQId queue_id, uint32_t millisec) { OS_RESULT res; osEvent ret; if (queue_id == NULL) { ret.status = osErrorParameter; return osEvent_ret_status; } if (((P_MCB)queue_id)->cb_type != MCB) { ret.status = osErrorParameter; return osEvent_ret_status; } res = rt_mbx_wait(queue_id, &ret.value.p, rt_ms2tick(millisec)); if (res == OS_R_TMO) { ret.status = millisec ? osEventTimeout : osOK; return osEvent_ret_value; } ret.status = osEventMessage; return osEvent_ret_value; } // Message Queue ISR Calls /// Put a Message to a Queue static __INLINE osStatus isrMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec) { if ((queue_id == NULL) || (millisec != 0)) { return osErrorParameter; } if (((P_MCB)queue_id)->cb_type != MCB) return osErrorParameter; if (rt_mbx_check(queue_id) == 0) { // Check if Queue is full return osErrorResource; } isr_mbx_send(queue_id, (void *)info); return osOK; } /// Get a Message or Wait for a Message from a Queue static __INLINE os_InRegs osEvent isrMessageGet (osMessageQId queue_id, uint32_t millisec) { OS_RESULT res; osEvent ret; if ((queue_id == NULL) || (millisec != 0)) { ret.status = osErrorParameter; return ret; } if (((P_MCB)queue_id)->cb_type != MCB) { ret.status = osErrorParameter; return ret; } res = isr_mbx_receive(queue_id, &ret.value.p); if (res != OS_R_MBX) { ret.status = osOK; return ret; } ret.status = osEventMessage; return ret; } // Message Queue Management Public API /// Create and Initialize Message Queue osMessageQId osMessageCreate (osMessageQDef_t *queue_def, osThreadId thread_id) { if (__get_IPSR() != 0) return NULL; // Not allowed in ISR if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) { // Privileged and not running return svcMessageCreate(queue_def, thread_id); } else { return __svcMessageCreate(queue_def, thread_id); } } /// Put a Message to a Queue osStatus osMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec) { if (__get_IPSR() != 0) { // in ISR return isrMessagePut(queue_id, info, millisec); } else { // in Thread return __svcMessagePut(queue_id, info, millisec); } } /// Get a Message or Wait for a Message from a Queue os_InRegs osEvent osMessageGet (osMessageQId queue_id, uint32_t millisec) { if (__get_IPSR() != 0) { // in ISR return isrMessageGet(queue_id, millisec); } else { // in Thread return __svcMessageGet(queue_id, millisec); } } // ==== Mail Queue Management Functions ==== // Mail Queue Management Service Calls declarations SVC_2_1(svcMailCreate, osMailQId, osMailQDef_t *, osThreadId, RET_pointer) SVC_4_1(sysMailAlloc, void *, osMailQId, uint32_t, uint32_t, uint32_t, RET_pointer) SVC_3_1(sysMailFree, osStatus, osMailQId, void *, uint32_t, RET_osStatus) // Mail Queue Management Service & ISR Calls /// Create and Initialize mail queue osMailQId svcMailCreate (osMailQDef_t *queue_def, osThreadId thread_id) { uint32_t blk_sz; P_MCB pmcb; void *pool; if ((queue_def == NULL) || (queue_def->queue_sz == 0) || (queue_def->item_sz == 0) || (queue_def->pool == NULL)) { sysThreadError(osErrorParameter); return NULL; } pmcb = *(((void **)queue_def->pool) + 0); pool = *(((void **)queue_def->pool) + 1); if ((pool == NULL) || (pmcb == NULL) || (pmcb->cb_type != 0)) { sysThreadError(osErrorParameter); return NULL; } blk_sz = (queue_def->item_sz + 3) & ~3; _init_box(pool, sizeof(struct OS_BM) + queue_def->queue_sz * blk_sz, blk_sz); rt_mbx_init(pmcb, 4*(queue_def->queue_sz + 4)); return queue_def->pool; } /// Allocate a memory block from a mail void *sysMailAlloc (osMailQId queue_id, uint32_t millisec, uint32_t isr, uint32_t clr) { P_MCB pmcb; void *pool; void *mem; if (queue_id == NULL) return NULL; pmcb = *(((void **)queue_id) + 0); pool = *(((void **)queue_id) + 1); if ((pool == NULL) || (pmcb == NULL)) return NULL; if (isr && (millisec != 0)) return NULL; mem = rt_alloc_box(pool); if (clr) { rt_clr_box(pool, mem); } if ((mem == NULL) && (millisec != 0)) { // Put Task to sleep when Memory not available if (pmcb->p_lnk != NULL) { rt_put_prio((P_XCB)pmcb, os_tsk.run); } else { pmcb->p_lnk = os_tsk.run; os_tsk.run->p_lnk = NULL; os_tsk.run->p_rlnk = (P_TCB)pmcb; // Task is waiting to allocate a message pmcb->state = 3; } rt_block(rt_ms2tick(millisec), WAIT_MBX); } return mem; } /// Free a memory block from a mail osStatus sysMailFree (osMailQId queue_id, void *mail, uint32_t isr) { P_MCB pmcb; P_TCB ptcb; void *pool; void *mem; int32_t res; if (queue_id == NULL) return osErrorParameter; pmcb = *(((void **)queue_id) + 0); pool = *(((void **)queue_id) + 1); if ((pmcb == NULL) || (pool == NULL)) return osErrorParameter; res = rt_free_box(pool, mail); if (res != 0) return osErrorValue; if (pmcb->state == 3) { // Task is waiting to allocate a message if (isr) { rt_psq_enq (pmcb, (U32)pool); rt_psh_req (); } else { mem = rt_alloc_box(pool); if (mem != NULL) { ptcb = rt_get_first((P_XCB)pmcb); if (pmcb->p_lnk == NULL) { pmcb->state = 0; } rt_ret_val(ptcb, (U32)mem); rt_rmv_dly(ptcb); rt_dispatch(ptcb); } } } return osOK; } // Mail Queue Management Public API /// Create and Initialize mail queue osMailQId osMailCreate (osMailQDef_t *queue_def, osThreadId thread_id) { if (__get_IPSR() != 0) return NULL; // Not allowed in ISR if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) { // Privileged and not running return svcMailCreate(queue_def, thread_id); } else { return __svcMailCreate(queue_def, thread_id); } } /// Allocate a memory block from a mail void *osMailAlloc (osMailQId queue_id, uint32_t millisec) { if (__get_IPSR() != 0) { // in ISR return sysMailAlloc(queue_id, millisec, 1, 0); } else { // in Thread return __sysMailAlloc(queue_id, millisec, 0, 0); } } /// Allocate a memory block from a mail and set memory block to zero void *osMailCAlloc (osMailQId queue_id, uint32_t millisec) { if (__get_IPSR() != 0) { // in ISR return sysMailAlloc(queue_id, millisec, 1, 1); } else { // in Thread return __sysMailAlloc(queue_id, millisec, 0, 1); } } /// Free a memory block from a mail osStatus osMailFree (osMailQId queue_id, void *mail) { if (__get_IPSR() != 0) { // in ISR return sysMailFree(queue_id, mail, 1); } else { // in Thread return __sysMailFree(queue_id, mail, 0); } } /// Put a mail to a queue osStatus osMailPut (osMailQId queue_id, void *mail) { if (queue_id == NULL) return osErrorParameter; if (mail == NULL) return osErrorValue; return osMessagePut(*((void **)queue_id), (uint32_t)mail, 0); } /// Get a mail from a queue os_InRegs osEvent osMailGet (osMailQId queue_id, uint32_t millisec) { osEvent ret; if (queue_id == NULL) { ret.status = osErrorParameter; return ret; } ret = osMessageGet(*((void **)queue_id), millisec); if (ret.status == osEventMessage) ret.status = osEventMail; return ret; }