4項目一応成功

Dependencies:   mbed

Fork of Estrela_v01 by Bot Furukawa

Committer:
TUATBM
Date:
Wed Aug 17 04:06:17 2016 +0000
Revision:
0:4013a9855dc8
8/17

Who changed what in which revision?

UserRevisionLine numberNew contents of line
TUATBM 0:4013a9855dc8 1 #ifndef MPU9250_H
TUATBM 0:4013a9855dc8 2 #define MPU9250_H
TUATBM 0:4013a9855dc8 3
TUATBM 0:4013a9855dc8 4 #include "mbed.h"
TUATBM 0:4013a9855dc8 5 #include "math.h"
TUATBM 0:4013a9855dc8 6
TUATBM 0:4013a9855dc8 7 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
TUATBM 0:4013a9855dc8 8 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
TUATBM 0:4013a9855dc8 9 //
TUATBM 0:4013a9855dc8 10 //Magnetometer Registers
TUATBM 0:4013a9855dc8 11 #define AK8963_ADDRESS 0x0C<<1
TUATBM 0:4013a9855dc8 12 #define WHO_AM_I_AK8963 0x00 // should return 0x48
TUATBM 0:4013a9855dc8 13 #define INFO 0x01
TUATBM 0:4013a9855dc8 14 #define AK8963_ST1 0x02 // data ready status bit 0
TUATBM 0:4013a9855dc8 15 #define AK8963_XOUT_L 0x03 // data
TUATBM 0:4013a9855dc8 16 #define AK8963_XOUT_H 0x04
TUATBM 0:4013a9855dc8 17 #define AK8963_YOUT_L 0x05
TUATBM 0:4013a9855dc8 18 #define AK8963_YOUT_H 0x06
TUATBM 0:4013a9855dc8 19 #define AK8963_ZOUT_L 0x07
TUATBM 0:4013a9855dc8 20 #define AK8963_ZOUT_H 0x08
TUATBM 0:4013a9855dc8 21 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
TUATBM 0:4013a9855dc8 22 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
TUATBM 0:4013a9855dc8 23 #define AK8963_ASTC 0x0C // Self test control
TUATBM 0:4013a9855dc8 24 #define AK8963_I2CDIS 0x0F // I2C disable
TUATBM 0:4013a9855dc8 25 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
TUATBM 0:4013a9855dc8 26 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
TUATBM 0:4013a9855dc8 27 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
TUATBM 0:4013a9855dc8 28
TUATBM 0:4013a9855dc8 29 #define SELF_TEST_X_GYRO 0x00
TUATBM 0:4013a9855dc8 30 #define SELF_TEST_Y_GYRO 0x01
TUATBM 0:4013a9855dc8 31 #define SELF_TEST_Z_GYRO 0x02
TUATBM 0:4013a9855dc8 32
TUATBM 0:4013a9855dc8 33 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
TUATBM 0:4013a9855dc8 34 #define Y_FINE_GAIN 0x04
TUATBM 0:4013a9855dc8 35 #define Z_FINE_GAIN 0x05
TUATBM 0:4013a9855dc8 36 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
TUATBM 0:4013a9855dc8 37 #define XA_OFFSET_L_TC 0x07
TUATBM 0:4013a9855dc8 38 #define YA_OFFSET_H 0x08
TUATBM 0:4013a9855dc8 39 #define YA_OFFSET_L_TC 0x09
TUATBM 0:4013a9855dc8 40 #define ZA_OFFSET_H 0x0A
TUATBM 0:4013a9855dc8 41 #define ZA_OFFSET_L_TC 0x0B */
TUATBM 0:4013a9855dc8 42
TUATBM 0:4013a9855dc8 43 #define SELF_TEST_X_ACCEL 0x0D
TUATBM 0:4013a9855dc8 44 #define SELF_TEST_Y_ACCEL 0x0E
TUATBM 0:4013a9855dc8 45 #define SELF_TEST_Z_ACCEL 0x0F
TUATBM 0:4013a9855dc8 46
TUATBM 0:4013a9855dc8 47 #define SELF_TEST_A 0x10
TUATBM 0:4013a9855dc8 48
TUATBM 0:4013a9855dc8 49 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
TUATBM 0:4013a9855dc8 50 #define XG_OFFSET_L 0x14
TUATBM 0:4013a9855dc8 51 #define YG_OFFSET_H 0x15
TUATBM 0:4013a9855dc8 52 #define YG_OFFSET_L 0x16
TUATBM 0:4013a9855dc8 53 #define ZG_OFFSET_H 0x17
TUATBM 0:4013a9855dc8 54 #define ZG_OFFSET_L 0x18
TUATBM 0:4013a9855dc8 55 #define SMPLRT_DIV 0x19
TUATBM 0:4013a9855dc8 56 #define CONFIG 0x1A
TUATBM 0:4013a9855dc8 57 #define GYRO_CONFIG 0x1B
TUATBM 0:4013a9855dc8 58 #define ACCEL_CONFIG 0x1C
TUATBM 0:4013a9855dc8 59 #define ACCEL_CONFIG2 0x1D
TUATBM 0:4013a9855dc8 60 #define LP_ACCEL_ODR 0x1E
TUATBM 0:4013a9855dc8 61 #define WOM_THR 0x1F
TUATBM 0:4013a9855dc8 62
TUATBM 0:4013a9855dc8 63 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
TUATBM 0:4013a9855dc8 64 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
TUATBM 0:4013a9855dc8 65 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
TUATBM 0:4013a9855dc8 66
TUATBM 0:4013a9855dc8 67 #define FIFO_EN 0x23
TUATBM 0:4013a9855dc8 68 #define I2C_MST_CTRL 0x24
TUATBM 0:4013a9855dc8 69 #define I2C_SLV0_ADDR 0x25
TUATBM 0:4013a9855dc8 70 #define I2C_SLV0_REG 0x26
TUATBM 0:4013a9855dc8 71 #define I2C_SLV0_CTRL 0x27
TUATBM 0:4013a9855dc8 72 #define I2C_SLV1_ADDR 0x28
TUATBM 0:4013a9855dc8 73 #define I2C_SLV1_REG 0x29
TUATBM 0:4013a9855dc8 74 #define I2C_SLV1_CTRL 0x2A
TUATBM 0:4013a9855dc8 75 #define I2C_SLV2_ADDR 0x2B
TUATBM 0:4013a9855dc8 76 #define I2C_SLV2_REG 0x2C
TUATBM 0:4013a9855dc8 77 #define I2C_SLV2_CTRL 0x2D
TUATBM 0:4013a9855dc8 78 #define I2C_SLV3_ADDR 0x2E
TUATBM 0:4013a9855dc8 79 #define I2C_SLV3_REG 0x2F
TUATBM 0:4013a9855dc8 80 #define I2C_SLV3_CTRL 0x30
TUATBM 0:4013a9855dc8 81 #define I2C_SLV4_ADDR 0x31
TUATBM 0:4013a9855dc8 82 #define I2C_SLV4_REG 0x32
TUATBM 0:4013a9855dc8 83 #define I2C_SLV4_DO 0x33
TUATBM 0:4013a9855dc8 84 #define I2C_SLV4_CTRL 0x34
TUATBM 0:4013a9855dc8 85 #define I2C_SLV4_DI 0x35
TUATBM 0:4013a9855dc8 86 #define I2C_MST_STATUS 0x36
TUATBM 0:4013a9855dc8 87 #define INT_PIN_CFG 0x37
TUATBM 0:4013a9855dc8 88 #define INT_ENABLE 0x38
TUATBM 0:4013a9855dc8 89 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
TUATBM 0:4013a9855dc8 90 #define INT_STATUS 0x3A
TUATBM 0:4013a9855dc8 91 #define ACCEL_XOUT_H 0x3B
TUATBM 0:4013a9855dc8 92 #define ACCEL_XOUT_L 0x3C
TUATBM 0:4013a9855dc8 93 #define ACCEL_YOUT_H 0x3D
TUATBM 0:4013a9855dc8 94 #define ACCEL_YOUT_L 0x3E
TUATBM 0:4013a9855dc8 95 #define ACCEL_ZOUT_H 0x3F
TUATBM 0:4013a9855dc8 96 #define ACCEL_ZOUT_L 0x40
TUATBM 0:4013a9855dc8 97 #define TEMP_OUT_H 0x41
TUATBM 0:4013a9855dc8 98 #define TEMP_OUT_L 0x42
TUATBM 0:4013a9855dc8 99 #define GYRO_XOUT_H 0x43
TUATBM 0:4013a9855dc8 100 #define GYRO_XOUT_L 0x44
TUATBM 0:4013a9855dc8 101 #define GYRO_YOUT_H 0x45
TUATBM 0:4013a9855dc8 102 #define GYRO_YOUT_L 0x46
TUATBM 0:4013a9855dc8 103 #define GYRO_ZOUT_H 0x47
TUATBM 0:4013a9855dc8 104 #define GYRO_ZOUT_L 0x48
TUATBM 0:4013a9855dc8 105 #define EXT_SENS_DATA_00 0x49
TUATBM 0:4013a9855dc8 106 #define EXT_SENS_DATA_01 0x4A
TUATBM 0:4013a9855dc8 107 #define EXT_SENS_DATA_02 0x4B
TUATBM 0:4013a9855dc8 108 #define EXT_SENS_DATA_03 0x4C
TUATBM 0:4013a9855dc8 109 #define EXT_SENS_DATA_04 0x4D
TUATBM 0:4013a9855dc8 110 #define EXT_SENS_DATA_05 0x4E
TUATBM 0:4013a9855dc8 111 #define EXT_SENS_DATA_06 0x4F
TUATBM 0:4013a9855dc8 112 #define EXT_SENS_DATA_07 0x50
TUATBM 0:4013a9855dc8 113 #define EXT_SENS_DATA_08 0x51
TUATBM 0:4013a9855dc8 114 #define EXT_SENS_DATA_09 0x52
TUATBM 0:4013a9855dc8 115 #define EXT_SENS_DATA_10 0x53
TUATBM 0:4013a9855dc8 116 #define EXT_SENS_DATA_11 0x54
TUATBM 0:4013a9855dc8 117 #define EXT_SENS_DATA_12 0x55
TUATBM 0:4013a9855dc8 118 #define EXT_SENS_DATA_13 0x56
TUATBM 0:4013a9855dc8 119 #define EXT_SENS_DATA_14 0x57
TUATBM 0:4013a9855dc8 120 #define EXT_SENS_DATA_15 0x58
TUATBM 0:4013a9855dc8 121 #define EXT_SENS_DATA_16 0x59
TUATBM 0:4013a9855dc8 122 #define EXT_SENS_DATA_17 0x5A
TUATBM 0:4013a9855dc8 123 #define EXT_SENS_DATA_18 0x5B
TUATBM 0:4013a9855dc8 124 #define EXT_SENS_DATA_19 0x5C
TUATBM 0:4013a9855dc8 125 #define EXT_SENS_DATA_20 0x5D
TUATBM 0:4013a9855dc8 126 #define EXT_SENS_DATA_21 0x5E
TUATBM 0:4013a9855dc8 127 #define EXT_SENS_DATA_22 0x5F
TUATBM 0:4013a9855dc8 128 #define EXT_SENS_DATA_23 0x60
TUATBM 0:4013a9855dc8 129 #define MOT_DETECT_STATUS 0x61
TUATBM 0:4013a9855dc8 130 #define I2C_SLV0_DO 0x63
TUATBM 0:4013a9855dc8 131 #define I2C_SLV1_DO 0x64
TUATBM 0:4013a9855dc8 132 #define I2C_SLV2_DO 0x65
TUATBM 0:4013a9855dc8 133 #define I2C_SLV3_DO 0x66
TUATBM 0:4013a9855dc8 134 #define I2C_MST_DELAY_CTRL 0x67
TUATBM 0:4013a9855dc8 135 #define SIGNAL_PATH_RESET 0x68
TUATBM 0:4013a9855dc8 136 #define MOT_DETECT_CTRL 0x69
TUATBM 0:4013a9855dc8 137 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
TUATBM 0:4013a9855dc8 138 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
TUATBM 0:4013a9855dc8 139 #define PWR_MGMT_2 0x6C
TUATBM 0:4013a9855dc8 140 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
TUATBM 0:4013a9855dc8 141 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
TUATBM 0:4013a9855dc8 142 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
TUATBM 0:4013a9855dc8 143 #define DMP_REG_1 0x70
TUATBM 0:4013a9855dc8 144 #define DMP_REG_2 0x71
TUATBM 0:4013a9855dc8 145 #define FIFO_COUNTH 0x72
TUATBM 0:4013a9855dc8 146 #define FIFO_COUNTL 0x73
TUATBM 0:4013a9855dc8 147 #define FIFO_R_W 0x74
TUATBM 0:4013a9855dc8 148 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
TUATBM 0:4013a9855dc8 149 #define XA_OFFSET_H 0x77
TUATBM 0:4013a9855dc8 150 #define XA_OFFSET_L 0x78
TUATBM 0:4013a9855dc8 151 #define YA_OFFSET_H 0x7A
TUATBM 0:4013a9855dc8 152 #define YA_OFFSET_L 0x7B
TUATBM 0:4013a9855dc8 153 #define ZA_OFFSET_H 0x7D
TUATBM 0:4013a9855dc8 154 #define ZA_OFFSET_L 0x7E
TUATBM 0:4013a9855dc8 155
TUATBM 0:4013a9855dc8 156 // Using the MSENSR-9250 breakout board, ADO is set to 0
TUATBM 0:4013a9855dc8 157 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
TUATBM 0:4013a9855dc8 158 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
TUATBM 0:4013a9855dc8 159 #define ADO 0
TUATBM 0:4013a9855dc8 160 #if ADO
TUATBM 0:4013a9855dc8 161 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
TUATBM 0:4013a9855dc8 162 #else
TUATBM 0:4013a9855dc8 163 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
TUATBM 0:4013a9855dc8 164 #endif
TUATBM 0:4013a9855dc8 165
TUATBM 0:4013a9855dc8 166 // Set initial input parameters
TUATBM 0:4013a9855dc8 167 enum Ascale {
TUATBM 0:4013a9855dc8 168 AFS_2G = 0,
TUATBM 0:4013a9855dc8 169 AFS_4G,
TUATBM 0:4013a9855dc8 170 AFS_8G,
TUATBM 0:4013a9855dc8 171 AFS_16G
TUATBM 0:4013a9855dc8 172 };
TUATBM 0:4013a9855dc8 173
TUATBM 0:4013a9855dc8 174 enum Gscale {
TUATBM 0:4013a9855dc8 175 GFS_250DPS = 0,
TUATBM 0:4013a9855dc8 176 GFS_500DPS,
TUATBM 0:4013a9855dc8 177 GFS_1000DPS,
TUATBM 0:4013a9855dc8 178 GFS_2000DPS
TUATBM 0:4013a9855dc8 179 };
TUATBM 0:4013a9855dc8 180
TUATBM 0:4013a9855dc8 181 enum Mscale {
TUATBM 0:4013a9855dc8 182 MFS_14BITS = 0, // 0.6 mG per LSB
TUATBM 0:4013a9855dc8 183 MFS_16BITS // 0.15 mG per LSB
TUATBM 0:4013a9855dc8 184 };
TUATBM 0:4013a9855dc8 185
TUATBM 0:4013a9855dc8 186 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
TUATBM 0:4013a9855dc8 187 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
TUATBM 0:4013a9855dc8 188 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
TUATBM 0:4013a9855dc8 189 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
TUATBM 0:4013a9855dc8 190 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
TUATBM 0:4013a9855dc8 191
TUATBM 0:4013a9855dc8 192 //Set up I2C, (SDA,SCL)
TUATBM 0:4013a9855dc8 193 //I2C i2c(I2C_SDA, I2C_SCL);
TUATBM 0:4013a9855dc8 194 I2C i2c(PC_9, PA_8);
TUATBM 0:4013a9855dc8 195
TUATBM 0:4013a9855dc8 196 DigitalOut myled(LED1);
TUATBM 0:4013a9855dc8 197
TUATBM 0:4013a9855dc8 198 // Pin definitions
TUATBM 0:4013a9855dc8 199 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
TUATBM 0:4013a9855dc8 200
TUATBM 0:4013a9855dc8 201 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
TUATBM 0:4013a9855dc8 202 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
TUATBM 0:4013a9855dc8 203 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
TUATBM 0:4013a9855dc8 204 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
TUATBM 0:4013a9855dc8 205 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
TUATBM 0:4013a9855dc8 206 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
TUATBM 0:4013a9855dc8 207 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
TUATBM 0:4013a9855dc8 208 float temperature;
TUATBM 0:4013a9855dc8 209 float SelfTest[6];
TUATBM 0:4013a9855dc8 210
TUATBM 0:4013a9855dc8 211 int delt_t = 0; // used to control display output rate
TUATBM 0:4013a9855dc8 212 int count = 0; // used to control display output rate
TUATBM 0:4013a9855dc8 213
TUATBM 0:4013a9855dc8 214 // parameters for 6 DoF sensor fusion calculations
TUATBM 0:4013a9855dc8 215 float PI = 3.14159265358979323846f;
TUATBM 0:4013a9855dc8 216 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
TUATBM 0:4013a9855dc8 217 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
TUATBM 0:4013a9855dc8 218 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
TUATBM 0:4013a9855dc8 219 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
TUATBM 0:4013a9855dc8 220 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
TUATBM 0:4013a9855dc8 221 #define Ki 0.0f
TUATBM 0:4013a9855dc8 222
TUATBM 0:4013a9855dc8 223 float pitch, yaw, roll;
TUATBM 0:4013a9855dc8 224 float deltat = 0.0f; // integration interval for both filter schemes
TUATBM 0:4013a9855dc8 225 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
TUATBM 0:4013a9855dc8 226 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
TUATBM 0:4013a9855dc8 227 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
TUATBM 0:4013a9855dc8 228
TUATBM 0:4013a9855dc8 229 class MPU9250 {
TUATBM 0:4013a9855dc8 230
TUATBM 0:4013a9855dc8 231 protected:
TUATBM 0:4013a9855dc8 232
TUATBM 0:4013a9855dc8 233 public:
TUATBM 0:4013a9855dc8 234 //===================================================================================================================
TUATBM 0:4013a9855dc8 235 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
TUATBM 0:4013a9855dc8 236 //===================================================================================================================
TUATBM 0:4013a9855dc8 237
TUATBM 0:4013a9855dc8 238 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
TUATBM 0:4013a9855dc8 239 {
TUATBM 0:4013a9855dc8 240 char data_write[2];
TUATBM 0:4013a9855dc8 241 data_write[0] = subAddress;
TUATBM 0:4013a9855dc8 242 data_write[1] = data;
TUATBM 0:4013a9855dc8 243 i2c.write(address, data_write, 2, 0);
TUATBM 0:4013a9855dc8 244 }
TUATBM 0:4013a9855dc8 245
TUATBM 0:4013a9855dc8 246 char readByte(uint8_t address, uint8_t subAddress)
TUATBM 0:4013a9855dc8 247 {
TUATBM 0:4013a9855dc8 248 char data[1]; // `data` will store the register data
TUATBM 0:4013a9855dc8 249 char data_write[1];
TUATBM 0:4013a9855dc8 250 data_write[0] = subAddress;
TUATBM 0:4013a9855dc8 251 i2c.write(address, data_write, 1, 1); // no stop
TUATBM 0:4013a9855dc8 252 i2c.read(address, data, 1, 0);
TUATBM 0:4013a9855dc8 253 return data[0];
TUATBM 0:4013a9855dc8 254 }
TUATBM 0:4013a9855dc8 255
TUATBM 0:4013a9855dc8 256 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
TUATBM 0:4013a9855dc8 257 {
TUATBM 0:4013a9855dc8 258 char data[14];
TUATBM 0:4013a9855dc8 259 char data_write[1];
TUATBM 0:4013a9855dc8 260 data_write[0] = subAddress;
TUATBM 0:4013a9855dc8 261 i2c.write(address, data_write, 1, 1); // no stop
TUATBM 0:4013a9855dc8 262 i2c.read(address, data, count, 0);
TUATBM 0:4013a9855dc8 263 for(int ii = 0; ii < count; ii++) {
TUATBM 0:4013a9855dc8 264 dest[ii] = data[ii];
TUATBM 0:4013a9855dc8 265 }
TUATBM 0:4013a9855dc8 266 }
TUATBM 0:4013a9855dc8 267
TUATBM 0:4013a9855dc8 268
TUATBM 0:4013a9855dc8 269 void getMres() {
TUATBM 0:4013a9855dc8 270 switch (Mscale)
TUATBM 0:4013a9855dc8 271 {
TUATBM 0:4013a9855dc8 272 // Possible magnetometer scales (and their register bit settings) are:
TUATBM 0:4013a9855dc8 273 // 14 bit resolution (0) and 16 bit resolution (1)
TUATBM 0:4013a9855dc8 274 case MFS_14BITS:
TUATBM 0:4013a9855dc8 275 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
TUATBM 0:4013a9855dc8 276 break;
TUATBM 0:4013a9855dc8 277 case MFS_16BITS:
TUATBM 0:4013a9855dc8 278 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
TUATBM 0:4013a9855dc8 279 break;
TUATBM 0:4013a9855dc8 280 }
TUATBM 0:4013a9855dc8 281 }
TUATBM 0:4013a9855dc8 282
TUATBM 0:4013a9855dc8 283
TUATBM 0:4013a9855dc8 284 void getGres() {
TUATBM 0:4013a9855dc8 285 switch (Gscale)
TUATBM 0:4013a9855dc8 286 {
TUATBM 0:4013a9855dc8 287 // Possible gyro scales (and their register bit settings) are:
TUATBM 0:4013a9855dc8 288 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
TUATBM 0:4013a9855dc8 289 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
TUATBM 0:4013a9855dc8 290 case GFS_250DPS:
TUATBM 0:4013a9855dc8 291 gRes = 250.0/32768.0;
TUATBM 0:4013a9855dc8 292 break;
TUATBM 0:4013a9855dc8 293 case GFS_500DPS:
TUATBM 0:4013a9855dc8 294 gRes = 500.0/32768.0;
TUATBM 0:4013a9855dc8 295 break;
TUATBM 0:4013a9855dc8 296 case GFS_1000DPS:
TUATBM 0:4013a9855dc8 297 gRes = 1000.0/32768.0;
TUATBM 0:4013a9855dc8 298 break;
TUATBM 0:4013a9855dc8 299 case GFS_2000DPS:
TUATBM 0:4013a9855dc8 300 gRes = 2000.0/32768.0;
TUATBM 0:4013a9855dc8 301 break;
TUATBM 0:4013a9855dc8 302 }
TUATBM 0:4013a9855dc8 303 }
TUATBM 0:4013a9855dc8 304
TUATBM 0:4013a9855dc8 305
TUATBM 0:4013a9855dc8 306 void getAres() {
TUATBM 0:4013a9855dc8 307 switch (Ascale)
TUATBM 0:4013a9855dc8 308 {
TUATBM 0:4013a9855dc8 309 // Possible accelerometer scales (and their register bit settings) are:
TUATBM 0:4013a9855dc8 310 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
TUATBM 0:4013a9855dc8 311 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
TUATBM 0:4013a9855dc8 312 case AFS_2G:
TUATBM 0:4013a9855dc8 313 aRes = 2.0/32768.0;
TUATBM 0:4013a9855dc8 314 break;
TUATBM 0:4013a9855dc8 315 case AFS_4G:
TUATBM 0:4013a9855dc8 316 aRes = 4.0/32768.0;
TUATBM 0:4013a9855dc8 317 break;
TUATBM 0:4013a9855dc8 318 case AFS_8G:
TUATBM 0:4013a9855dc8 319 aRes = 8.0/32768.0;
TUATBM 0:4013a9855dc8 320 break;
TUATBM 0:4013a9855dc8 321 case AFS_16G:
TUATBM 0:4013a9855dc8 322 aRes = 16.0/32768.0;
TUATBM 0:4013a9855dc8 323 break;
TUATBM 0:4013a9855dc8 324 }
TUATBM 0:4013a9855dc8 325 }
TUATBM 0:4013a9855dc8 326
TUATBM 0:4013a9855dc8 327
TUATBM 0:4013a9855dc8 328 void readAccelData(int16_t * destination)
TUATBM 0:4013a9855dc8 329 {
TUATBM 0:4013a9855dc8 330 uint8_t rawData[6]; // x/y/z accel register data stored here
TUATBM 0:4013a9855dc8 331 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
TUATBM 0:4013a9855dc8 332 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:4013a9855dc8 333 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:4013a9855dc8 334 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:4013a9855dc8 335 }
TUATBM 0:4013a9855dc8 336
TUATBM 0:4013a9855dc8 337 void readGyroData(int16_t * destination)
TUATBM 0:4013a9855dc8 338 {
TUATBM 0:4013a9855dc8 339 uint8_t rawData[6]; // x/y/z gyro register data stored here
TUATBM 0:4013a9855dc8 340 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
TUATBM 0:4013a9855dc8 341 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:4013a9855dc8 342 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:4013a9855dc8 343 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:4013a9855dc8 344 }
TUATBM 0:4013a9855dc8 345
TUATBM 0:4013a9855dc8 346 void readMagData(int16_t * destination)
TUATBM 0:4013a9855dc8 347 {
TUATBM 0:4013a9855dc8 348 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
TUATBM 0:4013a9855dc8 349 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
TUATBM 0:4013a9855dc8 350 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
TUATBM 0:4013a9855dc8 351 uint8_t c = rawData[6]; // End data read by reading ST2 register
TUATBM 0:4013a9855dc8 352 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
TUATBM 0:4013a9855dc8 353 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:4013a9855dc8 354 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
TUATBM 0:4013a9855dc8 355 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
TUATBM 0:4013a9855dc8 356 }
TUATBM 0:4013a9855dc8 357 }
TUATBM 0:4013a9855dc8 358 }
TUATBM 0:4013a9855dc8 359
TUATBM 0:4013a9855dc8 360 int16_t readTempData()
TUATBM 0:4013a9855dc8 361 {
TUATBM 0:4013a9855dc8 362 uint8_t rawData[2]; // x/y/z gyro register data stored here
TUATBM 0:4013a9855dc8 363 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
TUATBM 0:4013a9855dc8 364 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
TUATBM 0:4013a9855dc8 365 }
TUATBM 0:4013a9855dc8 366
TUATBM 0:4013a9855dc8 367
TUATBM 0:4013a9855dc8 368 void resetMPU9250() {
TUATBM 0:4013a9855dc8 369 // reset device
TUATBM 0:4013a9855dc8 370 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
TUATBM 0:4013a9855dc8 371 wait(0.1);
TUATBM 0:4013a9855dc8 372 }
TUATBM 0:4013a9855dc8 373
TUATBM 0:4013a9855dc8 374 void initAK8963(float * destination)
TUATBM 0:4013a9855dc8 375 {
TUATBM 0:4013a9855dc8 376 // First extract the factory calibration for each magnetometer axis
TUATBM 0:4013a9855dc8 377 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
TUATBM 0:4013a9855dc8 378 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
TUATBM 0:4013a9855dc8 379 wait(0.01);
TUATBM 0:4013a9855dc8 380 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
TUATBM 0:4013a9855dc8 381 wait(0.01);
TUATBM 0:4013a9855dc8 382 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
TUATBM 0:4013a9855dc8 383 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
TUATBM 0:4013a9855dc8 384 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
TUATBM 0:4013a9855dc8 385 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
TUATBM 0:4013a9855dc8 386 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
TUATBM 0:4013a9855dc8 387 wait(0.01);
TUATBM 0:4013a9855dc8 388 // Configure the magnetometer for continuous read and highest resolution
TUATBM 0:4013a9855dc8 389 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
TUATBM 0:4013a9855dc8 390 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
TUATBM 0:4013a9855dc8 391 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
TUATBM 0:4013a9855dc8 392 wait(0.01);
TUATBM 0:4013a9855dc8 393 }
TUATBM 0:4013a9855dc8 394
TUATBM 0:4013a9855dc8 395
TUATBM 0:4013a9855dc8 396 void initMPU9250()
TUATBM 0:4013a9855dc8 397 {
TUATBM 0:4013a9855dc8 398 // Initialize MPU9250 device
TUATBM 0:4013a9855dc8 399 // wake up device
TUATBM 0:4013a9855dc8 400 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
TUATBM 0:4013a9855dc8 401 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
TUATBM 0:4013a9855dc8 402
TUATBM 0:4013a9855dc8 403 // get stable time source
TUATBM 0:4013a9855dc8 404 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
TUATBM 0:4013a9855dc8 405
TUATBM 0:4013a9855dc8 406 // Configure Gyro and Accelerometer
TUATBM 0:4013a9855dc8 407 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
TUATBM 0:4013a9855dc8 408 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
TUATBM 0:4013a9855dc8 409 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
TUATBM 0:4013a9855dc8 410 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
TUATBM 0:4013a9855dc8 411
TUATBM 0:4013a9855dc8 412 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
TUATBM 0:4013a9855dc8 413 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
TUATBM 0:4013a9855dc8 414
TUATBM 0:4013a9855dc8 415 // Set gyroscope full scale range
TUATBM 0:4013a9855dc8 416 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
TUATBM 0:4013a9855dc8 417 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
TUATBM 0:4013a9855dc8 418 // c = c & ~0xE0; // Clear self-test bits [7:5]
TUATBM 0:4013a9855dc8 419 c = c & ~0x02; // Clear Fchoice bits [1:0]
TUATBM 0:4013a9855dc8 420 c = c & ~0x18; // Clear AFS bits [4:3]
TUATBM 0:4013a9855dc8 421 c = c | Gscale << 3; // Set full scale range for the gyro
TUATBM 0:4013a9855dc8 422 // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
TUATBM 0:4013a9855dc8 423 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
TUATBM 0:4013a9855dc8 424
TUATBM 0:4013a9855dc8 425 // Set accelerometer full-scale range configuration
TUATBM 0:4013a9855dc8 426 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
TUATBM 0:4013a9855dc8 427 // c = c & ~0xE0; // Clear self-test bits [7:5]
TUATBM 0:4013a9855dc8 428 c = c & ~0x18; // Clear AFS bits [4:3]
TUATBM 0:4013a9855dc8 429 c = c | Ascale << 3; // Set full scale range for the accelerometer
TUATBM 0:4013a9855dc8 430 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
TUATBM 0:4013a9855dc8 431
TUATBM 0:4013a9855dc8 432 // Set accelerometer sample rate configuration
TUATBM 0:4013a9855dc8 433 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
TUATBM 0:4013a9855dc8 434 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
TUATBM 0:4013a9855dc8 435 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
TUATBM 0:4013a9855dc8 436 c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
TUATBM 0:4013a9855dc8 437 c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
TUATBM 0:4013a9855dc8 438 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
TUATBM 0:4013a9855dc8 439
TUATBM 0:4013a9855dc8 440 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
TUATBM 0:4013a9855dc8 441 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
TUATBM 0:4013a9855dc8 442
TUATBM 0:4013a9855dc8 443 // Configure Interrupts and Bypass Enable
TUATBM 0:4013a9855dc8 444 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
TUATBM 0:4013a9855dc8 445 // can join the I2C bus and all can be controlled by the Arduino as master
TUATBM 0:4013a9855dc8 446 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
TUATBM 0:4013a9855dc8 447 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
TUATBM 0:4013a9855dc8 448 }
TUATBM 0:4013a9855dc8 449
TUATBM 0:4013a9855dc8 450 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
TUATBM 0:4013a9855dc8 451 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
TUATBM 0:4013a9855dc8 452 void calibrateMPU9250(float * dest1, float * dest2)
TUATBM 0:4013a9855dc8 453 {
TUATBM 0:4013a9855dc8 454 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
TUATBM 0:4013a9855dc8 455 uint16_t ii, packet_count, fifo_count;
TUATBM 0:4013a9855dc8 456 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
TUATBM 0:4013a9855dc8 457
TUATBM 0:4013a9855dc8 458 // reset device, reset all registers, clear gyro and accelerometer bias registers
TUATBM 0:4013a9855dc8 459 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
TUATBM 0:4013a9855dc8 460 wait(0.1);
TUATBM 0:4013a9855dc8 461
TUATBM 0:4013a9855dc8 462 // get stable time source
TUATBM 0:4013a9855dc8 463 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
TUATBM 0:4013a9855dc8 464 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
TUATBM 0:4013a9855dc8 465 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
TUATBM 0:4013a9855dc8 466 wait(0.2);
TUATBM 0:4013a9855dc8 467
TUATBM 0:4013a9855dc8 468 // Configure device for bias calculation
TUATBM 0:4013a9855dc8 469 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
TUATBM 0:4013a9855dc8 470 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
TUATBM 0:4013a9855dc8 471 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
TUATBM 0:4013a9855dc8 472 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
TUATBM 0:4013a9855dc8 473 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
TUATBM 0:4013a9855dc8 474 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
TUATBM 0:4013a9855dc8 475 wait(0.015);
TUATBM 0:4013a9855dc8 476
TUATBM 0:4013a9855dc8 477 // Configure MPU9250 gyro and accelerometer for bias calculation
TUATBM 0:4013a9855dc8 478 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
TUATBM 0:4013a9855dc8 479 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
TUATBM 0:4013a9855dc8 480 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
TUATBM 0:4013a9855dc8 481 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
TUATBM 0:4013a9855dc8 482
TUATBM 0:4013a9855dc8 483 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
TUATBM 0:4013a9855dc8 484 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
TUATBM 0:4013a9855dc8 485
TUATBM 0:4013a9855dc8 486 // Configure FIFO to capture accelerometer and gyro data for bias calculation
TUATBM 0:4013a9855dc8 487 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
TUATBM 0:4013a9855dc8 488 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
TUATBM 0:4013a9855dc8 489 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
TUATBM 0:4013a9855dc8 490
TUATBM 0:4013a9855dc8 491 // At end of sample accumulation, turn off FIFO sensor read
TUATBM 0:4013a9855dc8 492 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
TUATBM 0:4013a9855dc8 493 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
TUATBM 0:4013a9855dc8 494 fifo_count = ((uint16_t)data[0] << 8) | data[1];
TUATBM 0:4013a9855dc8 495 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
TUATBM 0:4013a9855dc8 496
TUATBM 0:4013a9855dc8 497 for (ii = 0; ii < packet_count; ii++) {
TUATBM 0:4013a9855dc8 498 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
TUATBM 0:4013a9855dc8 499 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
TUATBM 0:4013a9855dc8 500 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
TUATBM 0:4013a9855dc8 501 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
TUATBM 0:4013a9855dc8 502 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
TUATBM 0:4013a9855dc8 503 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
TUATBM 0:4013a9855dc8 504 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
TUATBM 0:4013a9855dc8 505 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
TUATBM 0:4013a9855dc8 506
TUATBM 0:4013a9855dc8 507 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
TUATBM 0:4013a9855dc8 508 accel_bias[1] += (int32_t) accel_temp[1];
TUATBM 0:4013a9855dc8 509 accel_bias[2] += (int32_t) accel_temp[2];
TUATBM 0:4013a9855dc8 510 gyro_bias[0] += (int32_t) gyro_temp[0];
TUATBM 0:4013a9855dc8 511 gyro_bias[1] += (int32_t) gyro_temp[1];
TUATBM 0:4013a9855dc8 512 gyro_bias[2] += (int32_t) gyro_temp[2];
TUATBM 0:4013a9855dc8 513
TUATBM 0:4013a9855dc8 514 }
TUATBM 0:4013a9855dc8 515 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
TUATBM 0:4013a9855dc8 516 accel_bias[1] /= (int32_t) packet_count;
TUATBM 0:4013a9855dc8 517 accel_bias[2] /= (int32_t) packet_count;
TUATBM 0:4013a9855dc8 518 gyro_bias[0] /= (int32_t) packet_count;
TUATBM 0:4013a9855dc8 519 gyro_bias[1] /= (int32_t) packet_count;
TUATBM 0:4013a9855dc8 520 gyro_bias[2] /= (int32_t) packet_count;
TUATBM 0:4013a9855dc8 521
TUATBM 0:4013a9855dc8 522 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
TUATBM 0:4013a9855dc8 523 else {accel_bias[2] += (int32_t) accelsensitivity;}
TUATBM 0:4013a9855dc8 524
TUATBM 0:4013a9855dc8 525 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
TUATBM 0:4013a9855dc8 526 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
TUATBM 0:4013a9855dc8 527 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
TUATBM 0:4013a9855dc8 528 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
TUATBM 0:4013a9855dc8 529 data[3] = (-gyro_bias[1]/4) & 0xFF;
TUATBM 0:4013a9855dc8 530 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
TUATBM 0:4013a9855dc8 531 data[5] = (-gyro_bias[2]/4) & 0xFF;
TUATBM 0:4013a9855dc8 532
TUATBM 0:4013a9855dc8 533 /// Push gyro biases to hardware registers
TUATBM 0:4013a9855dc8 534 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
TUATBM 0:4013a9855dc8 535 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
TUATBM 0:4013a9855dc8 536 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
TUATBM 0:4013a9855dc8 537 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
TUATBM 0:4013a9855dc8 538 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
TUATBM 0:4013a9855dc8 539 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
TUATBM 0:4013a9855dc8 540 */
TUATBM 0:4013a9855dc8 541 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
TUATBM 0:4013a9855dc8 542 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
TUATBM 0:4013a9855dc8 543 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
TUATBM 0:4013a9855dc8 544
TUATBM 0:4013a9855dc8 545 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
TUATBM 0:4013a9855dc8 546 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
TUATBM 0:4013a9855dc8 547 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
TUATBM 0:4013a9855dc8 548 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
TUATBM 0:4013a9855dc8 549 // the accelerometer biases calculated above must be divided by 8.
TUATBM 0:4013a9855dc8 550
TUATBM 0:4013a9855dc8 551 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
TUATBM 0:4013a9855dc8 552 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
TUATBM 0:4013a9855dc8 553 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
TUATBM 0:4013a9855dc8 554 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
TUATBM 0:4013a9855dc8 555 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
TUATBM 0:4013a9855dc8 556 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
TUATBM 0:4013a9855dc8 557 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
TUATBM 0:4013a9855dc8 558
TUATBM 0:4013a9855dc8 559 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
TUATBM 0:4013a9855dc8 560 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
TUATBM 0:4013a9855dc8 561
TUATBM 0:4013a9855dc8 562 for(ii = 0; ii < 3; ii++) {
TUATBM 0:4013a9855dc8 563 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
TUATBM 0:4013a9855dc8 564 }
TUATBM 0:4013a9855dc8 565
TUATBM 0:4013a9855dc8 566 // Construct total accelerometer bias, including calculated average accelerometer bias from above
TUATBM 0:4013a9855dc8 567 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
TUATBM 0:4013a9855dc8 568 accel_bias_reg[1] -= (accel_bias[1]/8);
TUATBM 0:4013a9855dc8 569 accel_bias_reg[2] -= (accel_bias[2]/8);
TUATBM 0:4013a9855dc8 570
TUATBM 0:4013a9855dc8 571 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
TUATBM 0:4013a9855dc8 572 data[1] = (accel_bias_reg[0]) & 0xFF;
TUATBM 0:4013a9855dc8 573 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
TUATBM 0:4013a9855dc8 574 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
TUATBM 0:4013a9855dc8 575 data[3] = (accel_bias_reg[1]) & 0xFF;
TUATBM 0:4013a9855dc8 576 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
TUATBM 0:4013a9855dc8 577 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
TUATBM 0:4013a9855dc8 578 data[5] = (accel_bias_reg[2]) & 0xFF;
TUATBM 0:4013a9855dc8 579 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
TUATBM 0:4013a9855dc8 580
TUATBM 0:4013a9855dc8 581 // Apparently this is not working for the acceleration biases in the MPU-9250
TUATBM 0:4013a9855dc8 582 // Are we handling the temperature correction bit properly?
TUATBM 0:4013a9855dc8 583 // Push accelerometer biases to hardware registers
TUATBM 0:4013a9855dc8 584 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
TUATBM 0:4013a9855dc8 585 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
TUATBM 0:4013a9855dc8 586 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
TUATBM 0:4013a9855dc8 587 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
TUATBM 0:4013a9855dc8 588 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
TUATBM 0:4013a9855dc8 589 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
TUATBM 0:4013a9855dc8 590 */
TUATBM 0:4013a9855dc8 591 // Output scaled accelerometer biases for manual subtraction in the main program
TUATBM 0:4013a9855dc8 592 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
TUATBM 0:4013a9855dc8 593 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
TUATBM 0:4013a9855dc8 594 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
TUATBM 0:4013a9855dc8 595 }
TUATBM 0:4013a9855dc8 596
TUATBM 0:4013a9855dc8 597
TUATBM 0:4013a9855dc8 598 // Accelerometer and gyroscope self test; check calibration wrt factory settings
TUATBM 0:4013a9855dc8 599 void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
TUATBM 0:4013a9855dc8 600 {
TUATBM 0:4013a9855dc8 601 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
TUATBM 0:4013a9855dc8 602 uint8_t selfTest[6];
TUATBM 0:4013a9855dc8 603 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
TUATBM 0:4013a9855dc8 604 float factoryTrim[6];
TUATBM 0:4013a9855dc8 605 uint8_t FS = 0;
TUATBM 0:4013a9855dc8 606
TUATBM 0:4013a9855dc8 607 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
TUATBM 0:4013a9855dc8 608 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
TUATBM 0:4013a9855dc8 609 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
TUATBM 0:4013a9855dc8 610 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
TUATBM 0:4013a9855dc8 611 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
TUATBM 0:4013a9855dc8 612
TUATBM 0:4013a9855dc8 613 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
TUATBM 0:4013a9855dc8 614
TUATBM 0:4013a9855dc8 615 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
TUATBM 0:4013a9855dc8 616 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:4013a9855dc8 617 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:4013a9855dc8 618 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:4013a9855dc8 619
TUATBM 0:4013a9855dc8 620 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
TUATBM 0:4013a9855dc8 621 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:4013a9855dc8 622 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:4013a9855dc8 623 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:4013a9855dc8 624 }
TUATBM 0:4013a9855dc8 625
TUATBM 0:4013a9855dc8 626 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
TUATBM 0:4013a9855dc8 627 aAvg[ii] /= 200;
TUATBM 0:4013a9855dc8 628 gAvg[ii] /= 200;
TUATBM 0:4013a9855dc8 629 }
TUATBM 0:4013a9855dc8 630
TUATBM 0:4013a9855dc8 631 // Configure the accelerometer for self-test
TUATBM 0:4013a9855dc8 632 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
TUATBM 0:4013a9855dc8 633 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
TUATBM 0:4013a9855dc8 634 //delay(55); // Delay a while to let the device stabilize
TUATBM 0:4013a9855dc8 635
TUATBM 0:4013a9855dc8 636 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
TUATBM 0:4013a9855dc8 637
TUATBM 0:4013a9855dc8 638 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
TUATBM 0:4013a9855dc8 639 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:4013a9855dc8 640 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:4013a9855dc8 641 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:4013a9855dc8 642
TUATBM 0:4013a9855dc8 643 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
TUATBM 0:4013a9855dc8 644 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
TUATBM 0:4013a9855dc8 645 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
TUATBM 0:4013a9855dc8 646 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
TUATBM 0:4013a9855dc8 647 }
TUATBM 0:4013a9855dc8 648
TUATBM 0:4013a9855dc8 649 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
TUATBM 0:4013a9855dc8 650 aSTAvg[ii] /= 200;
TUATBM 0:4013a9855dc8 651 gSTAvg[ii] /= 200;
TUATBM 0:4013a9855dc8 652 }
TUATBM 0:4013a9855dc8 653
TUATBM 0:4013a9855dc8 654 // Configure the gyro and accelerometer for normal operation
TUATBM 0:4013a9855dc8 655 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
TUATBM 0:4013a9855dc8 656 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
TUATBM 0:4013a9855dc8 657 //delay(45); // Delay a while to let the device stabilize
TUATBM 0:4013a9855dc8 658
TUATBM 0:4013a9855dc8 659 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
TUATBM 0:4013a9855dc8 660 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
TUATBM 0:4013a9855dc8 661 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
TUATBM 0:4013a9855dc8 662 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
TUATBM 0:4013a9855dc8 663 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
TUATBM 0:4013a9855dc8 664 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
TUATBM 0:4013a9855dc8 665 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
TUATBM 0:4013a9855dc8 666
TUATBM 0:4013a9855dc8 667 // Retrieve factory self-test value from self-test code reads
TUATBM 0:4013a9855dc8 668 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
TUATBM 0:4013a9855dc8 669 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
TUATBM 0:4013a9855dc8 670 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
TUATBM 0:4013a9855dc8 671 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
TUATBM 0:4013a9855dc8 672 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
TUATBM 0:4013a9855dc8 673 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
TUATBM 0:4013a9855dc8 674
TUATBM 0:4013a9855dc8 675 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
TUATBM 0:4013a9855dc8 676 // To get percent, must multiply by 100
TUATBM 0:4013a9855dc8 677 for (int i = 0; i < 3; i++) {
TUATBM 0:4013a9855dc8 678 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
TUATBM 0:4013a9855dc8 679 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
TUATBM 0:4013a9855dc8 680 }
TUATBM 0:4013a9855dc8 681
TUATBM 0:4013a9855dc8 682 }
TUATBM 0:4013a9855dc8 683
TUATBM 0:4013a9855dc8 684
TUATBM 0:4013a9855dc8 685
TUATBM 0:4013a9855dc8 686 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
TUATBM 0:4013a9855dc8 687 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
TUATBM 0:4013a9855dc8 688 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
TUATBM 0:4013a9855dc8 689 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
TUATBM 0:4013a9855dc8 690 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
TUATBM 0:4013a9855dc8 691 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
TUATBM 0:4013a9855dc8 692 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
TUATBM 0:4013a9855dc8 693 {
TUATBM 0:4013a9855dc8 694 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
TUATBM 0:4013a9855dc8 695 float norm;
TUATBM 0:4013a9855dc8 696 float hx, hy, _2bx, _2bz;
TUATBM 0:4013a9855dc8 697 float s1, s2, s3, s4;
TUATBM 0:4013a9855dc8 698 float qDot1, qDot2, qDot3, qDot4;
TUATBM 0:4013a9855dc8 699
TUATBM 0:4013a9855dc8 700 // Auxiliary variables to avoid repeated arithmetic
TUATBM 0:4013a9855dc8 701 float _2q1mx;
TUATBM 0:4013a9855dc8 702 float _2q1my;
TUATBM 0:4013a9855dc8 703 float _2q1mz;
TUATBM 0:4013a9855dc8 704 float _2q2mx;
TUATBM 0:4013a9855dc8 705 float _4bx;
TUATBM 0:4013a9855dc8 706 float _4bz;
TUATBM 0:4013a9855dc8 707 float _2q1 = 2.0f * q1;
TUATBM 0:4013a9855dc8 708 float _2q2 = 2.0f * q2;
TUATBM 0:4013a9855dc8 709 float _2q3 = 2.0f * q3;
TUATBM 0:4013a9855dc8 710 float _2q4 = 2.0f * q4;
TUATBM 0:4013a9855dc8 711 float _2q1q3 = 2.0f * q1 * q3;
TUATBM 0:4013a9855dc8 712 float _2q3q4 = 2.0f * q3 * q4;
TUATBM 0:4013a9855dc8 713 float q1q1 = q1 * q1;
TUATBM 0:4013a9855dc8 714 float q1q2 = q1 * q2;
TUATBM 0:4013a9855dc8 715 float q1q3 = q1 * q3;
TUATBM 0:4013a9855dc8 716 float q1q4 = q1 * q4;
TUATBM 0:4013a9855dc8 717 float q2q2 = q2 * q2;
TUATBM 0:4013a9855dc8 718 float q2q3 = q2 * q3;
TUATBM 0:4013a9855dc8 719 float q2q4 = q2 * q4;
TUATBM 0:4013a9855dc8 720 float q3q3 = q3 * q3;
TUATBM 0:4013a9855dc8 721 float q3q4 = q3 * q4;
TUATBM 0:4013a9855dc8 722 float q4q4 = q4 * q4;
TUATBM 0:4013a9855dc8 723
TUATBM 0:4013a9855dc8 724 // Normalise accelerometer measurement
TUATBM 0:4013a9855dc8 725 norm = sqrt(ax * ax + ay * ay + az * az);
TUATBM 0:4013a9855dc8 726 if (norm == 0.0f) return; // handle NaN
TUATBM 0:4013a9855dc8 727 norm = 1.0f/norm;
TUATBM 0:4013a9855dc8 728 ax *= norm;
TUATBM 0:4013a9855dc8 729 ay *= norm;
TUATBM 0:4013a9855dc8 730 az *= norm;
TUATBM 0:4013a9855dc8 731
TUATBM 0:4013a9855dc8 732 // Normalise magnetometer measurement
TUATBM 0:4013a9855dc8 733 norm = sqrt(mx * mx + my * my + mz * mz);
TUATBM 0:4013a9855dc8 734 if (norm == 0.0f) return; // handle NaN
TUATBM 0:4013a9855dc8 735 norm = 1.0f/norm;
TUATBM 0:4013a9855dc8 736 mx *= norm;
TUATBM 0:4013a9855dc8 737 my *= norm;
TUATBM 0:4013a9855dc8 738 mz *= norm;
TUATBM 0:4013a9855dc8 739
TUATBM 0:4013a9855dc8 740 // Reference direction of Earth's magnetic field
TUATBM 0:4013a9855dc8 741 _2q1mx = 2.0f * q1 * mx;
TUATBM 0:4013a9855dc8 742 _2q1my = 2.0f * q1 * my;
TUATBM 0:4013a9855dc8 743 _2q1mz = 2.0f * q1 * mz;
TUATBM 0:4013a9855dc8 744 _2q2mx = 2.0f * q2 * mx;
TUATBM 0:4013a9855dc8 745 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
TUATBM 0:4013a9855dc8 746 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
TUATBM 0:4013a9855dc8 747 _2bx = sqrt(hx * hx + hy * hy);
TUATBM 0:4013a9855dc8 748 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
TUATBM 0:4013a9855dc8 749 _4bx = 2.0f * _2bx;
TUATBM 0:4013a9855dc8 750 _4bz = 2.0f * _2bz;
TUATBM 0:4013a9855dc8 751
TUATBM 0:4013a9855dc8 752 // Gradient decent algorithm corrective step
TUATBM 0:4013a9855dc8 753 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
TUATBM 0:4013a9855dc8 754 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
TUATBM 0:4013a9855dc8 755 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
TUATBM 0:4013a9855dc8 756 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
TUATBM 0:4013a9855dc8 757 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
TUATBM 0:4013a9855dc8 758 norm = 1.0f/norm;
TUATBM 0:4013a9855dc8 759 s1 *= norm;
TUATBM 0:4013a9855dc8 760 s2 *= norm;
TUATBM 0:4013a9855dc8 761 s3 *= norm;
TUATBM 0:4013a9855dc8 762 s4 *= norm;
TUATBM 0:4013a9855dc8 763
TUATBM 0:4013a9855dc8 764 // Compute rate of change of quaternion
TUATBM 0:4013a9855dc8 765 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
TUATBM 0:4013a9855dc8 766 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
TUATBM 0:4013a9855dc8 767 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
TUATBM 0:4013a9855dc8 768 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
TUATBM 0:4013a9855dc8 769
TUATBM 0:4013a9855dc8 770 // Integrate to yield quaternion
TUATBM 0:4013a9855dc8 771 q1 += qDot1 * deltat;
TUATBM 0:4013a9855dc8 772 q2 += qDot2 * deltat;
TUATBM 0:4013a9855dc8 773 q3 += qDot3 * deltat;
TUATBM 0:4013a9855dc8 774 q4 += qDot4 * deltat;
TUATBM 0:4013a9855dc8 775 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
TUATBM 0:4013a9855dc8 776 norm = 1.0f/norm;
TUATBM 0:4013a9855dc8 777 q[0] = q1 * norm;
TUATBM 0:4013a9855dc8 778 q[1] = q2 * norm;
TUATBM 0:4013a9855dc8 779 q[2] = q3 * norm;
TUATBM 0:4013a9855dc8 780 q[3] = q4 * norm;
TUATBM 0:4013a9855dc8 781
TUATBM 0:4013a9855dc8 782 }
TUATBM 0:4013a9855dc8 783
TUATBM 0:4013a9855dc8 784
TUATBM 0:4013a9855dc8 785
TUATBM 0:4013a9855dc8 786 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
TUATBM 0:4013a9855dc8 787 // measured ones.
TUATBM 0:4013a9855dc8 788 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
TUATBM 0:4013a9855dc8 789 {
TUATBM 0:4013a9855dc8 790 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
TUATBM 0:4013a9855dc8 791 float norm;
TUATBM 0:4013a9855dc8 792 float hx, hy, bx, bz;
TUATBM 0:4013a9855dc8 793 float vx, vy, vz, wx, wy, wz;
TUATBM 0:4013a9855dc8 794 float ex, ey, ez;
TUATBM 0:4013a9855dc8 795 float pa, pb, pc;
TUATBM 0:4013a9855dc8 796
TUATBM 0:4013a9855dc8 797 // Auxiliary variables to avoid repeated arithmetic
TUATBM 0:4013a9855dc8 798 float q1q1 = q1 * q1;
TUATBM 0:4013a9855dc8 799 float q1q2 = q1 * q2;
TUATBM 0:4013a9855dc8 800 float q1q3 = q1 * q3;
TUATBM 0:4013a9855dc8 801 float q1q4 = q1 * q4;
TUATBM 0:4013a9855dc8 802 float q2q2 = q2 * q2;
TUATBM 0:4013a9855dc8 803 float q2q3 = q2 * q3;
TUATBM 0:4013a9855dc8 804 float q2q4 = q2 * q4;
TUATBM 0:4013a9855dc8 805 float q3q3 = q3 * q3;
TUATBM 0:4013a9855dc8 806 float q3q4 = q3 * q4;
TUATBM 0:4013a9855dc8 807 float q4q4 = q4 * q4;
TUATBM 0:4013a9855dc8 808
TUATBM 0:4013a9855dc8 809 // Normalise accelerometer measurement
TUATBM 0:4013a9855dc8 810 norm = sqrt(ax * ax + ay * ay + az * az);
TUATBM 0:4013a9855dc8 811 if (norm == 0.0f) return; // handle NaN
TUATBM 0:4013a9855dc8 812 norm = 1.0f / norm; // use reciprocal for division
TUATBM 0:4013a9855dc8 813 ax *= norm;
TUATBM 0:4013a9855dc8 814 ay *= norm;
TUATBM 0:4013a9855dc8 815 az *= norm;
TUATBM 0:4013a9855dc8 816
TUATBM 0:4013a9855dc8 817 // Normalise magnetometer measurement
TUATBM 0:4013a9855dc8 818 norm = sqrt(mx * mx + my * my + mz * mz);
TUATBM 0:4013a9855dc8 819 if (norm == 0.0f) return; // handle NaN
TUATBM 0:4013a9855dc8 820 norm = 1.0f / norm; // use reciprocal for division
TUATBM 0:4013a9855dc8 821 mx *= norm;
TUATBM 0:4013a9855dc8 822 my *= norm;
TUATBM 0:4013a9855dc8 823 mz *= norm;
TUATBM 0:4013a9855dc8 824
TUATBM 0:4013a9855dc8 825 // Reference direction of Earth's magnetic field
TUATBM 0:4013a9855dc8 826 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
TUATBM 0:4013a9855dc8 827 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
TUATBM 0:4013a9855dc8 828 bx = sqrt((hx * hx) + (hy * hy));
TUATBM 0:4013a9855dc8 829 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
TUATBM 0:4013a9855dc8 830
TUATBM 0:4013a9855dc8 831 // Estimated direction of gravity and magnetic field
TUATBM 0:4013a9855dc8 832 vx = 2.0f * (q2q4 - q1q3);
TUATBM 0:4013a9855dc8 833 vy = 2.0f * (q1q2 + q3q4);
TUATBM 0:4013a9855dc8 834 vz = q1q1 - q2q2 - q3q3 + q4q4;
TUATBM 0:4013a9855dc8 835 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
TUATBM 0:4013a9855dc8 836 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
TUATBM 0:4013a9855dc8 837 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
TUATBM 0:4013a9855dc8 838
TUATBM 0:4013a9855dc8 839 // Error is cross product between estimated direction and measured direction of gravity
TUATBM 0:4013a9855dc8 840 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
TUATBM 0:4013a9855dc8 841 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
TUATBM 0:4013a9855dc8 842 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
TUATBM 0:4013a9855dc8 843 if (Ki > 0.0f)
TUATBM 0:4013a9855dc8 844 {
TUATBM 0:4013a9855dc8 845 eInt[0] += ex; // accumulate integral error
TUATBM 0:4013a9855dc8 846 eInt[1] += ey;
TUATBM 0:4013a9855dc8 847 eInt[2] += ez;
TUATBM 0:4013a9855dc8 848 }
TUATBM 0:4013a9855dc8 849 else
TUATBM 0:4013a9855dc8 850 {
TUATBM 0:4013a9855dc8 851 eInt[0] = 0.0f; // prevent integral wind up
TUATBM 0:4013a9855dc8 852 eInt[1] = 0.0f;
TUATBM 0:4013a9855dc8 853 eInt[2] = 0.0f;
TUATBM 0:4013a9855dc8 854 }
TUATBM 0:4013a9855dc8 855
TUATBM 0:4013a9855dc8 856 // Apply feedback terms
TUATBM 0:4013a9855dc8 857 gx = gx + Kp * ex + Ki * eInt[0];
TUATBM 0:4013a9855dc8 858 gy = gy + Kp * ey + Ki * eInt[1];
TUATBM 0:4013a9855dc8 859 gz = gz + Kp * ez + Ki * eInt[2];
TUATBM 0:4013a9855dc8 860
TUATBM 0:4013a9855dc8 861 // Integrate rate of change of quaternion
TUATBM 0:4013a9855dc8 862 pa = q2;
TUATBM 0:4013a9855dc8 863 pb = q3;
TUATBM 0:4013a9855dc8 864 pc = q4;
TUATBM 0:4013a9855dc8 865 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
TUATBM 0:4013a9855dc8 866 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
TUATBM 0:4013a9855dc8 867 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
TUATBM 0:4013a9855dc8 868 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
TUATBM 0:4013a9855dc8 869
TUATBM 0:4013a9855dc8 870 // Normalise quaternion
TUATBM 0:4013a9855dc8 871 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
TUATBM 0:4013a9855dc8 872 norm = 1.0f / norm;
TUATBM 0:4013a9855dc8 873 q[0] = q1 * norm;
TUATBM 0:4013a9855dc8 874 q[1] = q2 * norm;
TUATBM 0:4013a9855dc8 875 q[2] = q3 * norm;
TUATBM 0:4013a9855dc8 876 q[3] = q4 * norm;
TUATBM 0:4013a9855dc8 877
TUATBM 0:4013a9855dc8 878 }
TUATBM 0:4013a9855dc8 879 };
TUATBM 0:4013a9855dc8 880 #endif