test
Dependencies: mbed-dev-f303 FastPWM3
Diff: FOC/foc.cpp
- Revision:
- 47:e1196a851f76
- Parent:
- 46:2d4b1dafcfe3
- Child:
- 48:74a40481740c
diff -r 2d4b1dafcfe3 -r e1196a851f76 FOC/foc.cpp --- a/FOC/foc.cpp Thu Jul 12 02:50:34 2018 +0000 +++ b/FOC/foc.cpp Wed Dec 05 04:07:46 2018 +0000 @@ -34,12 +34,22 @@ /// u,v,w amplitude = v_bus for full modulation depth /// float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f; + *dtc_u = fminf(fmaxf(((u -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX); *dtc_v = fminf(fmaxf(((v -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX); - *dtc_w = fminf(fmaxf(((w -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX); + *dtc_w = fminf(fmaxf(((w -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX); + + /* + sinusoidal pwm + *dtc_u = fminf(fmaxf((u/v_bus + .5f), DTC_MIN), DTC_MAX); + *dtc_v = fminf(fmaxf((v/v_bus + .5f), DTC_MIN), DTC_MAX); + *dtc_w = fminf(fmaxf((w/v_bus + .5f), DTC_MIN), DTC_MAX); + */ + } + void zero_current(int *offset_1, int *offset_2){ // Measure zero-offset of the current sensors int adc1_offset = 0; int adc2_offset = 0; @@ -79,6 +89,7 @@ controller->d_int = 0; controller->v_q = 0; controller->v_d = 0; + } void limit_current_ref (ControllerStruct *controller){ @@ -88,11 +99,8 @@ } -void commutate(ControllerStruct *controller, ObserverStruct *observer, GPIOStruct *gpio, float theta){ - /// Observer Prediction /// - observer->i_d_est += DT*(observer->i_d_dot); - observer->i_q_est += DT*(observer->i_q_dot); - +void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){ + /// Commutation Loop /// controller->loop_count ++; if(PHASE_ORDER){ // Check current sensor ordering @@ -112,21 +120,8 @@ //controller->i_q = 0.6666667f*(-s*controller->i_a - (-0.86602540378f*c-.5f*s)*controller->i_b - (0.86602540378f*c-.5f*s)*controller->i_c); controller->i_q_filt = 0.95f*controller->i_q_filt + 0.05f*controller->i_q; - observer->i_d_m = controller->i_d; - observer->i_q_m = controller->i_q; - - observer->e_d = observer->i_d_m - observer->i_d_est; - observer->e_q = observer->i_q_m - observer->i_q_est; - observer->e_d_int += observer->e_d; - observer->e_q_int += observer->e_q; + controller->i_d_filt = 0.95f*controller->i_d_filt + 0.05f*controller->i_d; - observer->i_d_est += K_O*observer->e_d + .001f*observer->e_d_int; - observer->i_q_est += K_O*observer->e_q + .001f*observer->e_q_int; - - - //float scog12 = FastSin(12.0f*theta); - //float scog1 = s; - //float cogging_current = 0.25f*scog1 - 0.3f*scog12; // Filter the current references to the desired closed-loopbandwidth // Allows calculation of desired di/dt for inductance, etc @@ -137,32 +132,42 @@ controller->did_dt = (controller->i_d_ref_filt - controller->did_dt)/DT; controller->diq_dt = (controller->i_q_ref_filt - controller->diq_dt)/DT; + + /// Field Weakening /// + /* + controller->fw_int += .001*(0.5f*OVERMODULATION*controller->v_bus - controller->v_ref); + controller->fw_int = fmaxf(fminf(controller->fw_int, 0.0f), -I_MAX_FW); + controller->i_d_ref = controller->fw_int; + float i_cmd_mag_sq = controller->i_d_ref*controller->i_d_ref + controller->i_q_ref*controller->i_q_ref; + limit_norm(&controller->i_d_ref, &controller->i_q_ref, I_MAX); + + */ + /// PI Controller /// float i_d_error = controller->i_d_ref - controller->i_d; float i_q_error = controller->i_q_ref - controller->i_q;// + cogging_current; // Calculate feed-forward voltages // - float v_d_ff = 2.0f*(0.0f*controller->i_d_ref*R_PHASE + 0.0f*L_D*controller->did_dt - controller->dtheta_elec*L_Q*controller->i_q); //feed-forward voltages - float v_q_ff = 2.0f*(0.0f*controller->i_q_ref*R_PHASE + 0.0f*L_Q*controller->diq_dt + controller->dtheta_elec*(L_D*controller->i_d + 0.0f*WB)); + float v_d_ff = 2.0f*(1.0f*controller->i_d_ref*R_PHASE - controller->dtheta_elec*L_Q*controller->i_q); //feed-forward voltages + float v_q_ff = 2.0f*(1.0f*controller->i_q_ref*R_PHASE + controller->dtheta_elec*(L_D*controller->i_d + 1.0f*WB)); // Integrate Error // - controller->d_int += i_d_error; - controller->q_int += i_q_error; - - limit_norm(&controller->d_int, &controller->q_int, V_BUS/(controller->k_q*controller->ki_q)); - controller->v_d = controller->k_d*(i_d_error + controller->ki_d*controller->d_int) + v_d_ff; - controller->v_q = controller->k_q*(i_q_error + controller->ki_q*controller->q_int) + v_q_ff; + controller->d_int += controller->k_d*controller->ki_d*i_d_error; + controller->q_int += controller->k_q*controller->ki_q*i_q_error; + + controller->d_int = fmaxf(fminf(controller->d_int, OVERMODULATION*controller->v_bus), - OVERMODULATION*controller->v_bus); + controller->q_int = fmaxf(fminf(controller->q_int, OVERMODULATION*controller->v_bus), - OVERMODULATION*controller->v_bus); + + //limit_norm(&controller->d_int, &controller->q_int, OVERMODULATION*controller->v_bus); + controller->v_d = controller->k_d*i_d_error + controller->d_int ;//+ v_d_ff; + controller->v_q = controller->k_q*i_q_error + controller->q_int ;//+ v_q_ff; + + controller->v_ref = sqrt(controller->v_d*controller->v_d + controller->v_q*controller->v_q); limit_norm(&controller->v_d, &controller->v_q, OVERMODULATION*controller->v_bus); // Normalize voltage vector to lie within curcle of radius v_bus - abc(controller->theta_elec + 0.5f*DT*controller->dtheta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages + abc(controller->theta_elec + 0.0f*DT*controller->dtheta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation - observer->i_d_dot = 0.5f*(controller->v_d - 2.0f*(observer->i_d_est*R_PHASE - controller->dtheta_elec*L_Q*observer->i_q_est))/L_D; //feed-forward voltage - observer->i_q_dot = 0.5f*(controller->v_q - 2.0f*(observer->i_q_est*R_PHASE + controller->dtheta_elec*(L_D*observer->i_d_est + WB)))/L_Q; - - //controller->dtc_u = 0.5f; - //controller->dtc_v = 0.6f; - //controller->dtc_w = 0.5f; if(PHASE_ORDER){ // Check which phase order to use, TIM1->CCR3 = (PWM_ARR)*(1.0f-controller->dtc_u); // Write duty cycles TIM1->CCR2 = (PWM_ARR)*(1.0f-controller->dtc_v); @@ -176,17 +181,6 @@ controller->theta_elec = theta; //For some reason putting this at the front breaks thins - - if(controller->loop_count >400){ - //controller->i_q_ref = -controller->i_q_ref; - controller->loop_count = 0; - - //printf("%.2f %.2f %.2f\n\r", controller->i_a, controller->i_b, controller->i_c); - //printf("%f\n\r", controller->dtheta_mech*GR); - //pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c); - printf("%f %f\n\r", v_q_ff, v_d_ff); - //pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw); - } } @@ -196,10 +190,4 @@ controller->i_q_ref = torque_ref/KT_OUT; controller->i_d_ref = 0.0f; } - - -/* -void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){ - - } -*/ \ No newline at end of file + \ No newline at end of file