Madeline Kistler / LSM9DS11
Committer:
mkistler
Date:
Mon Nov 30 21:24:59 2020 +0000
Revision:
0:7538ad2e54eb
Final;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mkistler 0:7538ad2e54eb 1 /******************************************************************************
mkistler 0:7538ad2e54eb 2 SFE_LSM9DS1.cpp
mkistler 0:7538ad2e54eb 3 SFE_LSM9DS1 Library Source File
mkistler 0:7538ad2e54eb 4 Jim Lindblom @ SparkFun Electronics
mkistler 0:7538ad2e54eb 5 Original Creation Date: February 27, 2015
mkistler 0:7538ad2e54eb 6 https://github.com/sparkfun/LSM9DS1_Breakout
mkistler 0:7538ad2e54eb 7
mkistler 0:7538ad2e54eb 8 This file implements all functions of the LSM9DS1 class. Functions here range
mkistler 0:7538ad2e54eb 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
mkistler 0:7538ad2e54eb 10 hardware reads and writes. Both SPI and I2C handler functions can be found
mkistler 0:7538ad2e54eb 11 towards the bottom of this file.
mkistler 0:7538ad2e54eb 12
mkistler 0:7538ad2e54eb 13 Development environment specifics:
mkistler 0:7538ad2e54eb 14 IDE: Arduino 1.6
mkistler 0:7538ad2e54eb 15 Hardware Platform: Arduino Uno
mkistler 0:7538ad2e54eb 16 LSM9DS1 Breakout Version: 1.0
mkistler 0:7538ad2e54eb 17
mkistler 0:7538ad2e54eb 18 This code is beerware; if you see me (or any other SparkFun employee) at the
mkistler 0:7538ad2e54eb 19 local, and you've found our code helpful, please buy us a round!
mkistler 0:7538ad2e54eb 20
mkistler 0:7538ad2e54eb 21 Distributed as-is; no warranty is given.
mkistler 0:7538ad2e54eb 22 ******************************************************************************/
mkistler 0:7538ad2e54eb 23
mkistler 0:7538ad2e54eb 24 #include "LSM9DS1.h"
mkistler 0:7538ad2e54eb 25 #include "LSM9DS1_Registers.h"
mkistler 0:7538ad2e54eb 26 #include "LSM9DS1_Types.h"
mkistler 0:7538ad2e54eb 27 //#include <Wire.h> // Wire library is used for I2C
mkistler 0:7538ad2e54eb 28 //#include <SPI.h> // SPI library is used for...SPI.
mkistler 0:7538ad2e54eb 29
mkistler 0:7538ad2e54eb 30 //#if defined(ARDUINO) && ARDUINO >= 100
mkistler 0:7538ad2e54eb 31 // #include "Arduino.h"
mkistler 0:7538ad2e54eb 32 //#else
mkistler 0:7538ad2e54eb 33 // #include "WProgram.h"
mkistler 0:7538ad2e54eb 34 //#endif
mkistler 0:7538ad2e54eb 35
mkistler 0:7538ad2e54eb 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
mkistler 0:7538ad2e54eb 37
mkistler 0:7538ad2e54eb 38 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
mkistler 0:7538ad2e54eb 39 extern Serial pc;
mkistler 0:7538ad2e54eb 40
mkistler 0:7538ad2e54eb 41 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
mkistler 0:7538ad2e54eb 42 :i2c(sda, scl)
mkistler 0:7538ad2e54eb 43 {
mkistler 0:7538ad2e54eb 44 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
mkistler 0:7538ad2e54eb 45 }
mkistler 0:7538ad2e54eb 46 /*
mkistler 0:7538ad2e54eb 47 LSM9DS1::LSM9DS1()
mkistler 0:7538ad2e54eb 48 {
mkistler 0:7538ad2e54eb 49 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
mkistler 0:7538ad2e54eb 50 }
mkistler 0:7538ad2e54eb 51
mkistler 0:7538ad2e54eb 52 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
mkistler 0:7538ad2e54eb 53 {
mkistler 0:7538ad2e54eb 54 init(interface, xgAddr, mAddr);
mkistler 0:7538ad2e54eb 55 }
mkistler 0:7538ad2e54eb 56 */
mkistler 0:7538ad2e54eb 57
mkistler 0:7538ad2e54eb 58 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
mkistler 0:7538ad2e54eb 59 {
mkistler 0:7538ad2e54eb 60 settings.device.commInterface = interface;
mkistler 0:7538ad2e54eb 61 settings.device.agAddress = xgAddr;
mkistler 0:7538ad2e54eb 62 settings.device.mAddress = mAddr;
mkistler 0:7538ad2e54eb 63
mkistler 0:7538ad2e54eb 64 settings.gyro.enabled = true;
mkistler 0:7538ad2e54eb 65 settings.gyro.enableX = true;
mkistler 0:7538ad2e54eb 66 settings.gyro.enableY = true;
mkistler 0:7538ad2e54eb 67 settings.gyro.enableZ = true;
mkistler 0:7538ad2e54eb 68 // gyro scale can be 245, 500, or 2000
mkistler 0:7538ad2e54eb 69 settings.gyro.scale = 245;
mkistler 0:7538ad2e54eb 70 // gyro sample rate: value between 1-6
mkistler 0:7538ad2e54eb 71 // 1 = 14.9 4 = 238
mkistler 0:7538ad2e54eb 72 // 2 = 59.5 5 = 476
mkistler 0:7538ad2e54eb 73 // 3 = 119 6 = 952
mkistler 0:7538ad2e54eb 74 settings.gyro.sampleRate = 6;
mkistler 0:7538ad2e54eb 75 // gyro cutoff frequency: value between 0-3
mkistler 0:7538ad2e54eb 76 // Actual value of cutoff frequency depends
mkistler 0:7538ad2e54eb 77 // on sample rate.
mkistler 0:7538ad2e54eb 78 settings.gyro.bandwidth = 0;
mkistler 0:7538ad2e54eb 79 settings.gyro.lowPowerEnable = false;
mkistler 0:7538ad2e54eb 80 settings.gyro.HPFEnable = false;
mkistler 0:7538ad2e54eb 81 // Gyro HPF cutoff frequency: value between 0-9
mkistler 0:7538ad2e54eb 82 // Actual value depends on sample rate. Only applies
mkistler 0:7538ad2e54eb 83 // if gyroHPFEnable is true.
mkistler 0:7538ad2e54eb 84 settings.gyro.HPFCutoff = 0;
mkistler 0:7538ad2e54eb 85 settings.gyro.flipX = false;
mkistler 0:7538ad2e54eb 86 settings.gyro.flipY = false;
mkistler 0:7538ad2e54eb 87 settings.gyro.flipZ = false;
mkistler 0:7538ad2e54eb 88 settings.gyro.orientation = 0;
mkistler 0:7538ad2e54eb 89 settings.gyro.latchInterrupt = true;
mkistler 0:7538ad2e54eb 90
mkistler 0:7538ad2e54eb 91 settings.accel.enabled = true;
mkistler 0:7538ad2e54eb 92 settings.accel.enableX = true;
mkistler 0:7538ad2e54eb 93 settings.accel.enableY = true;
mkistler 0:7538ad2e54eb 94 settings.accel.enableZ = true;
mkistler 0:7538ad2e54eb 95 // accel scale can be 2, 4, 8, or 16
mkistler 0:7538ad2e54eb 96 settings.accel.scale = 2;
mkistler 0:7538ad2e54eb 97 // accel sample rate can be 1-6
mkistler 0:7538ad2e54eb 98 // 1 = 10 Hz 4 = 238 Hz
mkistler 0:7538ad2e54eb 99 // 2 = 50 Hz 5 = 476 Hz
mkistler 0:7538ad2e54eb 100 // 3 = 119 Hz 6 = 952 Hz
mkistler 0:7538ad2e54eb 101 settings.accel.sampleRate = 6;
mkistler 0:7538ad2e54eb 102 // Accel cutoff freqeuncy can be any value between -1 - 3.
mkistler 0:7538ad2e54eb 103 // -1 = bandwidth determined by sample rate
mkistler 0:7538ad2e54eb 104 // 0 = 408 Hz 2 = 105 Hz
mkistler 0:7538ad2e54eb 105 // 1 = 211 Hz 3 = 50 Hz
mkistler 0:7538ad2e54eb 106 settings.accel.bandwidth = -1;
mkistler 0:7538ad2e54eb 107 settings.accel.highResEnable = false;
mkistler 0:7538ad2e54eb 108 // accelHighResBandwidth can be any value between 0-3
mkistler 0:7538ad2e54eb 109 // LP cutoff is set to a factor of sample rate
mkistler 0:7538ad2e54eb 110 // 0 = ODR/50 2 = ODR/9
mkistler 0:7538ad2e54eb 111 // 1 = ODR/100 3 = ODR/400
mkistler 0:7538ad2e54eb 112 settings.accel.highResBandwidth = 0;
mkistler 0:7538ad2e54eb 113
mkistler 0:7538ad2e54eb 114 settings.mag.enabled = true;
mkistler 0:7538ad2e54eb 115 // mag scale can be 4, 8, 12, or 16
mkistler 0:7538ad2e54eb 116 settings.mag.scale = 4;
mkistler 0:7538ad2e54eb 117 // mag data rate can be 0-7
mkistler 0:7538ad2e54eb 118 // 0 = 0.625 Hz 4 = 10 Hz
mkistler 0:7538ad2e54eb 119 // 1 = 1.25 Hz 5 = 20 Hz
mkistler 0:7538ad2e54eb 120 // 2 = 2.5 Hz 6 = 40 Hz
mkistler 0:7538ad2e54eb 121 // 3 = 5 Hz 7 = 80 Hz
mkistler 0:7538ad2e54eb 122 settings.mag.sampleRate = 7;
mkistler 0:7538ad2e54eb 123 settings.mag.tempCompensationEnable = false;
mkistler 0:7538ad2e54eb 124 // magPerformance can be any value between 0-3
mkistler 0:7538ad2e54eb 125 // 0 = Low power mode 2 = high performance
mkistler 0:7538ad2e54eb 126 // 1 = medium performance 3 = ultra-high performance
mkistler 0:7538ad2e54eb 127 settings.mag.XYPerformance = 3;
mkistler 0:7538ad2e54eb 128 settings.mag.ZPerformance = 3;
mkistler 0:7538ad2e54eb 129 settings.mag.lowPowerEnable = false;
mkistler 0:7538ad2e54eb 130 // magOperatingMode can be 0-2
mkistler 0:7538ad2e54eb 131 // 0 = continuous conversion
mkistler 0:7538ad2e54eb 132 // 1 = single-conversion
mkistler 0:7538ad2e54eb 133 // 2 = power down
mkistler 0:7538ad2e54eb 134 settings.mag.operatingMode = 0;
mkistler 0:7538ad2e54eb 135
mkistler 0:7538ad2e54eb 136 settings.temp.enabled = true;
mkistler 0:7538ad2e54eb 137 for (int i=0; i<3; i++)
mkistler 0:7538ad2e54eb 138 {
mkistler 0:7538ad2e54eb 139 gBias[i] = 0;
mkistler 0:7538ad2e54eb 140 aBias[i] = 0;
mkistler 0:7538ad2e54eb 141 mBias[i] = 0;
mkistler 0:7538ad2e54eb 142 gBiasRaw[i] = 0;
mkistler 0:7538ad2e54eb 143 aBiasRaw[i] = 0;
mkistler 0:7538ad2e54eb 144 mBiasRaw[i] = 0;
mkistler 0:7538ad2e54eb 145 }
mkistler 0:7538ad2e54eb 146 _autoCalc = false;
mkistler 0:7538ad2e54eb 147 }
mkistler 0:7538ad2e54eb 148
mkistler 0:7538ad2e54eb 149
mkistler 0:7538ad2e54eb 150 uint16_t LSM9DS1::begin()
mkistler 0:7538ad2e54eb 151 {
mkistler 0:7538ad2e54eb 152 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
mkistler 0:7538ad2e54eb 153 _xgAddress = settings.device.agAddress;
mkistler 0:7538ad2e54eb 154 _mAddress = settings.device.mAddress;
mkistler 0:7538ad2e54eb 155
mkistler 0:7538ad2e54eb 156 constrainScales();
mkistler 0:7538ad2e54eb 157 // Once we have the scale values, we can calculate the resolution
mkistler 0:7538ad2e54eb 158 // of each sensor. That's what these functions are for. One for each sensor
mkistler 0:7538ad2e54eb 159 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
mkistler 0:7538ad2e54eb 160 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
mkistler 0:7538ad2e54eb 161 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
mkistler 0:7538ad2e54eb 162
mkistler 0:7538ad2e54eb 163 // Now, initialize our hardware interface.
mkistler 0:7538ad2e54eb 164 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
mkistler 0:7538ad2e54eb 165 initI2C(); // Initialize I2C
mkistler 0:7538ad2e54eb 166 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
mkistler 0:7538ad2e54eb 167 initSPI(); // Initialize SPI
mkistler 0:7538ad2e54eb 168
mkistler 0:7538ad2e54eb 169 // To verify communication, we can read from the WHO_AM_I register of
mkistler 0:7538ad2e54eb 170 // each device. Store those in a variable so we can return them.
mkistler 0:7538ad2e54eb 171 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
mkistler 0:7538ad2e54eb 172 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
mkistler 0:7538ad2e54eb 173 pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
mkistler 0:7538ad2e54eb 174 uint16_t whoAmICombined = (xgTest << 8) | mTest;
mkistler 0:7538ad2e54eb 175
mkistler 0:7538ad2e54eb 176 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
mkistler 0:7538ad2e54eb 177 return 0;
mkistler 0:7538ad2e54eb 178
mkistler 0:7538ad2e54eb 179 // Gyro initialization stuff:
mkistler 0:7538ad2e54eb 180 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
mkistler 0:7538ad2e54eb 181
mkistler 0:7538ad2e54eb 182 // Accelerometer initialization stuff:
mkistler 0:7538ad2e54eb 183 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
mkistler 0:7538ad2e54eb 184
mkistler 0:7538ad2e54eb 185 // Magnetometer initialization stuff:
mkistler 0:7538ad2e54eb 186 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
mkistler 0:7538ad2e54eb 187
mkistler 0:7538ad2e54eb 188 // Once everything is initialized, return the WHO_AM_I registers we read:
mkistler 0:7538ad2e54eb 189 return whoAmICombined;
mkistler 0:7538ad2e54eb 190 }
mkistler 0:7538ad2e54eb 191
mkistler 0:7538ad2e54eb 192 void LSM9DS1::initGyro()
mkistler 0:7538ad2e54eb 193 {
mkistler 0:7538ad2e54eb 194 uint8_t tempRegValue = 0;
mkistler 0:7538ad2e54eb 195
mkistler 0:7538ad2e54eb 196 // CTRL_REG1_G (Default value: 0x00)
mkistler 0:7538ad2e54eb 197 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
mkistler 0:7538ad2e54eb 198 // ODR_G[2:0] - Output data rate selection
mkistler 0:7538ad2e54eb 199 // FS_G[1:0] - Gyroscope full-scale selection
mkistler 0:7538ad2e54eb 200 // BW_G[1:0] - Gyroscope bandwidth selection
mkistler 0:7538ad2e54eb 201
mkistler 0:7538ad2e54eb 202 // To disable gyro, set sample rate bits to 0. We'll only set sample
mkistler 0:7538ad2e54eb 203 // rate if the gyro is enabled.
mkistler 0:7538ad2e54eb 204 if (settings.gyro.enabled)
mkistler 0:7538ad2e54eb 205 {
mkistler 0:7538ad2e54eb 206 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
mkistler 0:7538ad2e54eb 207 }
mkistler 0:7538ad2e54eb 208 switch (settings.gyro.scale)
mkistler 0:7538ad2e54eb 209 {
mkistler 0:7538ad2e54eb 210 case 500:
mkistler 0:7538ad2e54eb 211 tempRegValue |= (0x1 << 3);
mkistler 0:7538ad2e54eb 212 break;
mkistler 0:7538ad2e54eb 213 case 2000:
mkistler 0:7538ad2e54eb 214 tempRegValue |= (0x3 << 3);
mkistler 0:7538ad2e54eb 215 break;
mkistler 0:7538ad2e54eb 216 // Otherwise we'll set it to 245 dps (0x0 << 4)
mkistler 0:7538ad2e54eb 217 }
mkistler 0:7538ad2e54eb 218 tempRegValue |= (settings.gyro.bandwidth & 0x3);
mkistler 0:7538ad2e54eb 219 xgWriteByte(CTRL_REG1_G, tempRegValue);
mkistler 0:7538ad2e54eb 220
mkistler 0:7538ad2e54eb 221 // CTRL_REG2_G (Default value: 0x00)
mkistler 0:7538ad2e54eb 222 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
mkistler 0:7538ad2e54eb 223 // INT_SEL[1:0] - INT selection configuration
mkistler 0:7538ad2e54eb 224 // OUT_SEL[1:0] - Out selection configuration
mkistler 0:7538ad2e54eb 225 xgWriteByte(CTRL_REG2_G, 0x00);
mkistler 0:7538ad2e54eb 226
mkistler 0:7538ad2e54eb 227 // CTRL_REG3_G (Default value: 0x00)
mkistler 0:7538ad2e54eb 228 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
mkistler 0:7538ad2e54eb 229 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
mkistler 0:7538ad2e54eb 230 // HP_EN - HPF enable (0:disabled, 1: enabled)
mkistler 0:7538ad2e54eb 231 // HPCF_G[3:0] - HPF cutoff frequency
mkistler 0:7538ad2e54eb 232 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
mkistler 0:7538ad2e54eb 233 if (settings.gyro.HPFEnable)
mkistler 0:7538ad2e54eb 234 {
mkistler 0:7538ad2e54eb 235 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
mkistler 0:7538ad2e54eb 236 }
mkistler 0:7538ad2e54eb 237 xgWriteByte(CTRL_REG3_G, tempRegValue);
mkistler 0:7538ad2e54eb 238
mkistler 0:7538ad2e54eb 239 // CTRL_REG4 (Default value: 0x38)
mkistler 0:7538ad2e54eb 240 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
mkistler 0:7538ad2e54eb 241 // Zen_G - Z-axis output enable (0:disable, 1:enable)
mkistler 0:7538ad2e54eb 242 // Yen_G - Y-axis output enable (0:disable, 1:enable)
mkistler 0:7538ad2e54eb 243 // Xen_G - X-axis output enable (0:disable, 1:enable)
mkistler 0:7538ad2e54eb 244 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
mkistler 0:7538ad2e54eb 245 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
mkistler 0:7538ad2e54eb 246 tempRegValue = 0;
mkistler 0:7538ad2e54eb 247 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
mkistler 0:7538ad2e54eb 248 if (settings.gyro.enableY) tempRegValue |= (1<<4);
mkistler 0:7538ad2e54eb 249 if (settings.gyro.enableX) tempRegValue |= (1<<3);
mkistler 0:7538ad2e54eb 250 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
mkistler 0:7538ad2e54eb 251 xgWriteByte(CTRL_REG4, tempRegValue);
mkistler 0:7538ad2e54eb 252
mkistler 0:7538ad2e54eb 253 // ORIENT_CFG_G (Default value: 0x00)
mkistler 0:7538ad2e54eb 254 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
mkistler 0:7538ad2e54eb 255 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
mkistler 0:7538ad2e54eb 256 // Orient [2:0] - Directional user orientation selection
mkistler 0:7538ad2e54eb 257 tempRegValue = 0;
mkistler 0:7538ad2e54eb 258 if (settings.gyro.flipX) tempRegValue |= (1<<5);
mkistler 0:7538ad2e54eb 259 if (settings.gyro.flipY) tempRegValue |= (1<<4);
mkistler 0:7538ad2e54eb 260 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
mkistler 0:7538ad2e54eb 261 xgWriteByte(ORIENT_CFG_G, tempRegValue);
mkistler 0:7538ad2e54eb 262 }
mkistler 0:7538ad2e54eb 263
mkistler 0:7538ad2e54eb 264 void LSM9DS1::initAccel()
mkistler 0:7538ad2e54eb 265 {
mkistler 0:7538ad2e54eb 266 uint8_t tempRegValue = 0;
mkistler 0:7538ad2e54eb 267
mkistler 0:7538ad2e54eb 268 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
mkistler 0:7538ad2e54eb 269 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
mkistler 0:7538ad2e54eb 270 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
mkistler 0:7538ad2e54eb 271 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
mkistler 0:7538ad2e54eb 272 // Zen_XL - Z-axis output enabled
mkistler 0:7538ad2e54eb 273 // Yen_XL - Y-axis output enabled
mkistler 0:7538ad2e54eb 274 // Xen_XL - X-axis output enabled
mkistler 0:7538ad2e54eb 275 if (settings.accel.enableZ) tempRegValue |= (1<<5);
mkistler 0:7538ad2e54eb 276 if (settings.accel.enableY) tempRegValue |= (1<<4);
mkistler 0:7538ad2e54eb 277 if (settings.accel.enableX) tempRegValue |= (1<<3);
mkistler 0:7538ad2e54eb 278
mkistler 0:7538ad2e54eb 279 xgWriteByte(CTRL_REG5_XL, tempRegValue);
mkistler 0:7538ad2e54eb 280
mkistler 0:7538ad2e54eb 281 // CTRL_REG6_XL (0x20) (Default value: 0x00)
mkistler 0:7538ad2e54eb 282 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
mkistler 0:7538ad2e54eb 283 // ODR_XL[2:0] - Output data rate & power mode selection
mkistler 0:7538ad2e54eb 284 // FS_XL[1:0] - Full-scale selection
mkistler 0:7538ad2e54eb 285 // BW_SCAL_ODR - Bandwidth selection
mkistler 0:7538ad2e54eb 286 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
mkistler 0:7538ad2e54eb 287 tempRegValue = 0;
mkistler 0:7538ad2e54eb 288 // To disable the accel, set the sampleRate bits to 0.
mkistler 0:7538ad2e54eb 289 if (settings.accel.enabled)
mkistler 0:7538ad2e54eb 290 {
mkistler 0:7538ad2e54eb 291 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
mkistler 0:7538ad2e54eb 292 }
mkistler 0:7538ad2e54eb 293 switch (settings.accel.scale)
mkistler 0:7538ad2e54eb 294 {
mkistler 0:7538ad2e54eb 295 case 4:
mkistler 0:7538ad2e54eb 296 tempRegValue |= (0x2 << 3);
mkistler 0:7538ad2e54eb 297 break;
mkistler 0:7538ad2e54eb 298 case 8:
mkistler 0:7538ad2e54eb 299 tempRegValue |= (0x3 << 3);
mkistler 0:7538ad2e54eb 300 break;
mkistler 0:7538ad2e54eb 301 case 16:
mkistler 0:7538ad2e54eb 302 tempRegValue |= (0x1 << 3);
mkistler 0:7538ad2e54eb 303 break;
mkistler 0:7538ad2e54eb 304 // Otherwise it'll be set to 2g (0x0 << 3)
mkistler 0:7538ad2e54eb 305 }
mkistler 0:7538ad2e54eb 306 if (settings.accel.bandwidth >= 0)
mkistler 0:7538ad2e54eb 307 {
mkistler 0:7538ad2e54eb 308 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
mkistler 0:7538ad2e54eb 309 tempRegValue |= (settings.accel.bandwidth & 0x03);
mkistler 0:7538ad2e54eb 310 }
mkistler 0:7538ad2e54eb 311 xgWriteByte(CTRL_REG6_XL, tempRegValue);
mkistler 0:7538ad2e54eb 312
mkistler 0:7538ad2e54eb 313 // CTRL_REG7_XL (0x21) (Default value: 0x00)
mkistler 0:7538ad2e54eb 314 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
mkistler 0:7538ad2e54eb 315 // HR - High resolution mode (0: disable, 1: enable)
mkistler 0:7538ad2e54eb 316 // DCF[1:0] - Digital filter cutoff frequency
mkistler 0:7538ad2e54eb 317 // FDS - Filtered data selection
mkistler 0:7538ad2e54eb 318 // HPIS1 - HPF enabled for interrupt function
mkistler 0:7538ad2e54eb 319 tempRegValue = 0;
mkistler 0:7538ad2e54eb 320 if (settings.accel.highResEnable)
mkistler 0:7538ad2e54eb 321 {
mkistler 0:7538ad2e54eb 322 tempRegValue |= (1<<7); // Set HR bit
mkistler 0:7538ad2e54eb 323 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
mkistler 0:7538ad2e54eb 324 }
mkistler 0:7538ad2e54eb 325 xgWriteByte(CTRL_REG7_XL, tempRegValue);
mkistler 0:7538ad2e54eb 326 }
mkistler 0:7538ad2e54eb 327
mkistler 0:7538ad2e54eb 328 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
mkistler 0:7538ad2e54eb 329 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
mkistler 0:7538ad2e54eb 330 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
mkistler 0:7538ad2e54eb 331 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
mkistler 0:7538ad2e54eb 332 // subtract the biases ourselves. This results in a more accurate measurement in general and can
mkistler 0:7538ad2e54eb 333 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
mkistler 0:7538ad2e54eb 334 // is good practice.
mkistler 0:7538ad2e54eb 335 void LSM9DS1::calibrate(bool autoCalc)
mkistler 0:7538ad2e54eb 336 {
mkistler 0:7538ad2e54eb 337 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
mkistler 0:7538ad2e54eb 338 ///////////////////////////////////////////set sample number to 500
mkistler 0:7538ad2e54eb 339 uint8_t samples = 1500;
mkistler 0:7538ad2e54eb 340 int ii;
mkistler 0:7538ad2e54eb 341 int32_t aBiasRawTemp[3] = {0, 0, 0};
mkistler 0:7538ad2e54eb 342 int32_t gBiasRawTemp[3] = {0, 0, 0};
mkistler 0:7538ad2e54eb 343
mkistler 0:7538ad2e54eb 344 // Turn on FIFO and set threshold to 32 samples
mkistler 0:7538ad2e54eb 345 enableFIFO(true);
mkistler 0:7538ad2e54eb 346 setFIFO(FIFO_THS, 0x1F);
mkistler 0:7538ad2e54eb 347 while (samples < 0x1F)
mkistler 0:7538ad2e54eb 348 {
mkistler 0:7538ad2e54eb 349 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
mkistler 0:7538ad2e54eb 350 }
mkistler 0:7538ad2e54eb 351 for(ii = 0; ii < samples ; ii++)
mkistler 0:7538ad2e54eb 352 { // Read the gyro data stored in the FIFO
mkistler 0:7538ad2e54eb 353 readGyro();
mkistler 0:7538ad2e54eb 354 gBiasRawTemp[0] += gx;
mkistler 0:7538ad2e54eb 355 gBiasRawTemp[1] += gy;
mkistler 0:7538ad2e54eb 356 gBiasRawTemp[2] += gz;
mkistler 0:7538ad2e54eb 357 readAccel();
mkistler 0:7538ad2e54eb 358 aBiasRawTemp[0] += ax;
mkistler 0:7538ad2e54eb 359 aBiasRawTemp[1] += ay;
mkistler 0:7538ad2e54eb 360 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
mkistler 0:7538ad2e54eb 361 }
mkistler 0:7538ad2e54eb 362 for (ii = 0; ii < 3; ii++)
mkistler 0:7538ad2e54eb 363 {
mkistler 0:7538ad2e54eb 364 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
mkistler 0:7538ad2e54eb 365 gBias[ii] = calcGyro(gBiasRaw[ii]);
mkistler 0:7538ad2e54eb 366 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
mkistler 0:7538ad2e54eb 367 aBias[ii] = calcAccel(aBiasRaw[ii]);
mkistler 0:7538ad2e54eb 368 }
mkistler 0:7538ad2e54eb 369
mkistler 0:7538ad2e54eb 370 enableFIFO(false);
mkistler 0:7538ad2e54eb 371 setFIFO(FIFO_OFF, 0x00);
mkistler 0:7538ad2e54eb 372
mkistler 0:7538ad2e54eb 373 if (autoCalc) _autoCalc = true;
mkistler 0:7538ad2e54eb 374 }
mkistler 0:7538ad2e54eb 375
mkistler 0:7538ad2e54eb 376 void LSM9DS1::calibrateMag(bool loadIn)
mkistler 0:7538ad2e54eb 377 {
mkistler 0:7538ad2e54eb 378 int i, j;
mkistler 0:7538ad2e54eb 379 int16_t magMin[3] = {0, 0, 0};
mkistler 0:7538ad2e54eb 380 int16_t magMax[3] = {0, 0, 0}; // The road warrior
mkistler 0:7538ad2e54eb 381 ////////////////////////////increase sample size to 1500
mkistler 0:7538ad2e54eb 382 for (i=0; i<1500; i++)
mkistler 0:7538ad2e54eb 383 {
mkistler 0:7538ad2e54eb 384 while (!magAvailable())
mkistler 0:7538ad2e54eb 385 ;
mkistler 0:7538ad2e54eb 386 readMag();
mkistler 0:7538ad2e54eb 387 int16_t magTemp[3] = {0, 0, 0};
mkistler 0:7538ad2e54eb 388 magTemp[0] = mx;
mkistler 0:7538ad2e54eb 389 magTemp[1] = my;
mkistler 0:7538ad2e54eb 390 magTemp[2] = mz;
mkistler 0:7538ad2e54eb 391 for (j = 0; j < 3; j++)
mkistler 0:7538ad2e54eb 392 {
mkistler 0:7538ad2e54eb 393 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
mkistler 0:7538ad2e54eb 394 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
mkistler 0:7538ad2e54eb 395 }
mkistler 0:7538ad2e54eb 396 }
mkistler 0:7538ad2e54eb 397 for (j = 0; j < 3; j++)
mkistler 0:7538ad2e54eb 398 {
mkistler 0:7538ad2e54eb 399 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
mkistler 0:7538ad2e54eb 400 mBias[j] = calcMag(mBiasRaw[j]);
mkistler 0:7538ad2e54eb 401 if (loadIn)
mkistler 0:7538ad2e54eb 402 magOffset(j, mBiasRaw[j]);
mkistler 0:7538ad2e54eb 403 }
mkistler 0:7538ad2e54eb 404
mkistler 0:7538ad2e54eb 405 }
mkistler 0:7538ad2e54eb 406 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
mkistler 0:7538ad2e54eb 407 {
mkistler 0:7538ad2e54eb 408 if (axis > 2)
mkistler 0:7538ad2e54eb 409 return;
mkistler 0:7538ad2e54eb 410 uint8_t msb, lsb;
mkistler 0:7538ad2e54eb 411 msb = (offset & 0xFF00) >> 8;
mkistler 0:7538ad2e54eb 412 lsb = offset & 0x00FF;
mkistler 0:7538ad2e54eb 413 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
mkistler 0:7538ad2e54eb 414 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
mkistler 0:7538ad2e54eb 415 }
mkistler 0:7538ad2e54eb 416
mkistler 0:7538ad2e54eb 417 void LSM9DS1::initMag()
mkistler 0:7538ad2e54eb 418 {
mkistler 0:7538ad2e54eb 419 uint8_t tempRegValue = 0;
mkistler 0:7538ad2e54eb 420
mkistler 0:7538ad2e54eb 421 // CTRL_REG1_M (Default value: 0x10)
mkistler 0:7538ad2e54eb 422 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
mkistler 0:7538ad2e54eb 423 // TEMP_COMP - Temperature compensation
mkistler 0:7538ad2e54eb 424 // OM[1:0] - X & Y axes op mode selection
mkistler 0:7538ad2e54eb 425 // 00:low-power, 01:medium performance
mkistler 0:7538ad2e54eb 426 // 10: high performance, 11:ultra-high performance
mkistler 0:7538ad2e54eb 427 // DO[2:0] - Output data rate selection
mkistler 0:7538ad2e54eb 428 // ST - Self-test enable
mkistler 0:7538ad2e54eb 429 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
mkistler 0:7538ad2e54eb 430 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
mkistler 0:7538ad2e54eb 431 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
mkistler 0:7538ad2e54eb 432 mWriteByte(CTRL_REG1_M, tempRegValue);
mkistler 0:7538ad2e54eb 433
mkistler 0:7538ad2e54eb 434 // CTRL_REG2_M (Default value 0x00)
mkistler 0:7538ad2e54eb 435 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
mkistler 0:7538ad2e54eb 436 // FS[1:0] - Full-scale configuration
mkistler 0:7538ad2e54eb 437 // REBOOT - Reboot memory content (0:normal, 1:reboot)
mkistler 0:7538ad2e54eb 438 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
mkistler 0:7538ad2e54eb 439 tempRegValue = 0;
mkistler 0:7538ad2e54eb 440 switch (settings.mag.scale)
mkistler 0:7538ad2e54eb 441 {
mkistler 0:7538ad2e54eb 442 case 8:
mkistler 0:7538ad2e54eb 443 tempRegValue |= (0x1 << 5);
mkistler 0:7538ad2e54eb 444 break;
mkistler 0:7538ad2e54eb 445 case 12:
mkistler 0:7538ad2e54eb 446 tempRegValue |= (0x2 << 5);
mkistler 0:7538ad2e54eb 447 break;
mkistler 0:7538ad2e54eb 448 case 16:
mkistler 0:7538ad2e54eb 449 tempRegValue |= (0x3 << 5);
mkistler 0:7538ad2e54eb 450 break;
mkistler 0:7538ad2e54eb 451 // Otherwise we'll default to 4 gauss (00)
mkistler 0:7538ad2e54eb 452 }
mkistler 0:7538ad2e54eb 453 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
mkistler 0:7538ad2e54eb 454
mkistler 0:7538ad2e54eb 455 // CTRL_REG3_M (Default value: 0x03)
mkistler 0:7538ad2e54eb 456 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
mkistler 0:7538ad2e54eb 457 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
mkistler 0:7538ad2e54eb 458 // LP - Low-power mode cofiguration (1:enable)
mkistler 0:7538ad2e54eb 459 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
mkistler 0:7538ad2e54eb 460 // MD[1:0] - Operating mode
mkistler 0:7538ad2e54eb 461 // 00:continuous conversion, 01:single-conversion,
mkistler 0:7538ad2e54eb 462 // 10,11: Power-down
mkistler 0:7538ad2e54eb 463 tempRegValue = 0;
mkistler 0:7538ad2e54eb 464 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
mkistler 0:7538ad2e54eb 465 tempRegValue |= (settings.mag.operatingMode & 0x3);
mkistler 0:7538ad2e54eb 466 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
mkistler 0:7538ad2e54eb 467
mkistler 0:7538ad2e54eb 468 // CTRL_REG4_M (Default value: 0x00)
mkistler 0:7538ad2e54eb 469 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
mkistler 0:7538ad2e54eb 470 // OMZ[1:0] - Z-axis operative mode selection
mkistler 0:7538ad2e54eb 471 // 00:low-power mode, 01:medium performance
mkistler 0:7538ad2e54eb 472 // 10:high performance, 10:ultra-high performance
mkistler 0:7538ad2e54eb 473 // BLE - Big/little endian data
mkistler 0:7538ad2e54eb 474 tempRegValue = 0;
mkistler 0:7538ad2e54eb 475 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
mkistler 0:7538ad2e54eb 476 mWriteByte(CTRL_REG4_M, tempRegValue);
mkistler 0:7538ad2e54eb 477
mkistler 0:7538ad2e54eb 478 // CTRL_REG5_M (Default value: 0x00)
mkistler 0:7538ad2e54eb 479 // [0][BDU][0][0][0][0][0][0]
mkistler 0:7538ad2e54eb 480 // BDU - Block data update for magnetic data
mkistler 0:7538ad2e54eb 481 // 0:continuous, 1:not updated until MSB/LSB are read
mkistler 0:7538ad2e54eb 482 tempRegValue = 0;
mkistler 0:7538ad2e54eb 483 mWriteByte(CTRL_REG5_M, tempRegValue);
mkistler 0:7538ad2e54eb 484 }
mkistler 0:7538ad2e54eb 485
mkistler 0:7538ad2e54eb 486 uint8_t LSM9DS1::accelAvailable()
mkistler 0:7538ad2e54eb 487 {
mkistler 0:7538ad2e54eb 488 uint8_t status = xgReadByte(STATUS_REG_1);
mkistler 0:7538ad2e54eb 489
mkistler 0:7538ad2e54eb 490 return (status & (1<<0));
mkistler 0:7538ad2e54eb 491 }
mkistler 0:7538ad2e54eb 492
mkistler 0:7538ad2e54eb 493 uint8_t LSM9DS1::gyroAvailable()
mkistler 0:7538ad2e54eb 494 {
mkistler 0:7538ad2e54eb 495 uint8_t status = xgReadByte(STATUS_REG_1);
mkistler 0:7538ad2e54eb 496
mkistler 0:7538ad2e54eb 497 return ((status & (1<<1)) >> 1);
mkistler 0:7538ad2e54eb 498 }
mkistler 0:7538ad2e54eb 499
mkistler 0:7538ad2e54eb 500 uint8_t LSM9DS1::tempAvailable()
mkistler 0:7538ad2e54eb 501 {
mkistler 0:7538ad2e54eb 502 uint8_t status = xgReadByte(STATUS_REG_1);
mkistler 0:7538ad2e54eb 503
mkistler 0:7538ad2e54eb 504 return ((status & (1<<2)) >> 2);
mkistler 0:7538ad2e54eb 505 }
mkistler 0:7538ad2e54eb 506
mkistler 0:7538ad2e54eb 507 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
mkistler 0:7538ad2e54eb 508 {
mkistler 0:7538ad2e54eb 509 uint8_t status;
mkistler 0:7538ad2e54eb 510 status = mReadByte(STATUS_REG_M);
mkistler 0:7538ad2e54eb 511
mkistler 0:7538ad2e54eb 512 return ((status & (1<<axis)) >> axis);
mkistler 0:7538ad2e54eb 513 }
mkistler 0:7538ad2e54eb 514
mkistler 0:7538ad2e54eb 515 void LSM9DS1::readAccel()
mkistler 0:7538ad2e54eb 516 {
mkistler 0:7538ad2e54eb 517 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
mkistler 0:7538ad2e54eb 518 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
mkistler 0:7538ad2e54eb 519 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
mkistler 0:7538ad2e54eb 520 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
mkistler 0:7538ad2e54eb 521 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
mkistler 0:7538ad2e54eb 522 if (_autoCalc)
mkistler 0:7538ad2e54eb 523 {
mkistler 0:7538ad2e54eb 524 ax -= aBiasRaw[X_AXIS];
mkistler 0:7538ad2e54eb 525 ay -= aBiasRaw[Y_AXIS];
mkistler 0:7538ad2e54eb 526 az -= aBiasRaw[Z_AXIS];
mkistler 0:7538ad2e54eb 527 }
mkistler 0:7538ad2e54eb 528 }
mkistler 0:7538ad2e54eb 529
mkistler 0:7538ad2e54eb 530 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
mkistler 0:7538ad2e54eb 531 {
mkistler 0:7538ad2e54eb 532 uint8_t temp[2];
mkistler 0:7538ad2e54eb 533 int16_t value;
mkistler 0:7538ad2e54eb 534 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
mkistler 0:7538ad2e54eb 535 value = (temp[1] << 8) | temp[0];
mkistler 0:7538ad2e54eb 536
mkistler 0:7538ad2e54eb 537 if (_autoCalc)
mkistler 0:7538ad2e54eb 538 value -= aBiasRaw[axis];
mkistler 0:7538ad2e54eb 539
mkistler 0:7538ad2e54eb 540 return value;
mkistler 0:7538ad2e54eb 541 }
mkistler 0:7538ad2e54eb 542
mkistler 0:7538ad2e54eb 543 void LSM9DS1::readMag()
mkistler 0:7538ad2e54eb 544 {
mkistler 0:7538ad2e54eb 545 uint8_t temp[6]; // We'll read six bytes from the mag into temp
mkistler 0:7538ad2e54eb 546 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
mkistler 0:7538ad2e54eb 547 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
mkistler 0:7538ad2e54eb 548 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
mkistler 0:7538ad2e54eb 549 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
mkistler 0:7538ad2e54eb 550 }
mkistler 0:7538ad2e54eb 551
mkistler 0:7538ad2e54eb 552 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
mkistler 0:7538ad2e54eb 553 {
mkistler 0:7538ad2e54eb 554 uint8_t temp[2];
mkistler 0:7538ad2e54eb 555 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
mkistler 0:7538ad2e54eb 556 return (temp[1] << 8) | temp[0];
mkistler 0:7538ad2e54eb 557 }
mkistler 0:7538ad2e54eb 558
mkistler 0:7538ad2e54eb 559 void LSM9DS1::readTemp()
mkistler 0:7538ad2e54eb 560 {
mkistler 0:7538ad2e54eb 561 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
mkistler 0:7538ad2e54eb 562 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
mkistler 0:7538ad2e54eb 563 temperature = ((int16_t)temp[1] << 8) | temp[0];
mkistler 0:7538ad2e54eb 564 }
mkistler 0:7538ad2e54eb 565
mkistler 0:7538ad2e54eb 566 void LSM9DS1::readGyro()
mkistler 0:7538ad2e54eb 567 {
mkistler 0:7538ad2e54eb 568 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
mkistler 0:7538ad2e54eb 569 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
mkistler 0:7538ad2e54eb 570 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
mkistler 0:7538ad2e54eb 571 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
mkistler 0:7538ad2e54eb 572 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
mkistler 0:7538ad2e54eb 573 if (_autoCalc)
mkistler 0:7538ad2e54eb 574 {
mkistler 0:7538ad2e54eb 575 gx -= gBiasRaw[X_AXIS];
mkistler 0:7538ad2e54eb 576 gy -= gBiasRaw[Y_AXIS];
mkistler 0:7538ad2e54eb 577 gz -= gBiasRaw[Z_AXIS];
mkistler 0:7538ad2e54eb 578 }
mkistler 0:7538ad2e54eb 579 }
mkistler 0:7538ad2e54eb 580
mkistler 0:7538ad2e54eb 581 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
mkistler 0:7538ad2e54eb 582 {
mkistler 0:7538ad2e54eb 583 uint8_t temp[2];
mkistler 0:7538ad2e54eb 584 int16_t value;
mkistler 0:7538ad2e54eb 585
mkistler 0:7538ad2e54eb 586 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
mkistler 0:7538ad2e54eb 587
mkistler 0:7538ad2e54eb 588 value = (temp[1] << 8) | temp[0];
mkistler 0:7538ad2e54eb 589
mkistler 0:7538ad2e54eb 590 if (_autoCalc)
mkistler 0:7538ad2e54eb 591 value -= gBiasRaw[axis];
mkistler 0:7538ad2e54eb 592
mkistler 0:7538ad2e54eb 593 return value;
mkistler 0:7538ad2e54eb 594 }
mkistler 0:7538ad2e54eb 595
mkistler 0:7538ad2e54eb 596 float LSM9DS1::calcGyro(int16_t gyro)
mkistler 0:7538ad2e54eb 597 {
mkistler 0:7538ad2e54eb 598 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
mkistler 0:7538ad2e54eb 599 return gRes * gyro;
mkistler 0:7538ad2e54eb 600 }
mkistler 0:7538ad2e54eb 601
mkistler 0:7538ad2e54eb 602 float LSM9DS1::calcAccel(int16_t accel)
mkistler 0:7538ad2e54eb 603 {
mkistler 0:7538ad2e54eb 604 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
mkistler 0:7538ad2e54eb 605 return aRes * accel;
mkistler 0:7538ad2e54eb 606 }
mkistler 0:7538ad2e54eb 607
mkistler 0:7538ad2e54eb 608 float LSM9DS1::calcMag(int16_t mag)
mkistler 0:7538ad2e54eb 609 {
mkistler 0:7538ad2e54eb 610 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
mkistler 0:7538ad2e54eb 611 return mRes * mag;
mkistler 0:7538ad2e54eb 612 }
mkistler 0:7538ad2e54eb 613
mkistler 0:7538ad2e54eb 614 void LSM9DS1::setGyroScale(uint16_t gScl)
mkistler 0:7538ad2e54eb 615 {
mkistler 0:7538ad2e54eb 616 // Read current value of CTRL_REG1_G:
mkistler 0:7538ad2e54eb 617 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
mkistler 0:7538ad2e54eb 618 // Mask out scale bits (3 & 4):
mkistler 0:7538ad2e54eb 619 ctrl1RegValue &= 0xE7;
mkistler 0:7538ad2e54eb 620 switch (gScl)
mkistler 0:7538ad2e54eb 621 {
mkistler 0:7538ad2e54eb 622 case 500:
mkistler 0:7538ad2e54eb 623 ctrl1RegValue |= (0x1 << 3);
mkistler 0:7538ad2e54eb 624 settings.gyro.scale = 500;
mkistler 0:7538ad2e54eb 625 break;
mkistler 0:7538ad2e54eb 626 case 2000:
mkistler 0:7538ad2e54eb 627 ctrl1RegValue |= (0x3 << 3);
mkistler 0:7538ad2e54eb 628 settings.gyro.scale = 2000;
mkistler 0:7538ad2e54eb 629 break;
mkistler 0:7538ad2e54eb 630 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
mkistler 0:7538ad2e54eb 631 settings.gyro.scale = 245;
mkistler 0:7538ad2e54eb 632 break;
mkistler 0:7538ad2e54eb 633 }
mkistler 0:7538ad2e54eb 634 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
mkistler 0:7538ad2e54eb 635
mkistler 0:7538ad2e54eb 636 calcgRes();
mkistler 0:7538ad2e54eb 637 }
mkistler 0:7538ad2e54eb 638
mkistler 0:7538ad2e54eb 639 void LSM9DS1::setAccelScale(uint8_t aScl)
mkistler 0:7538ad2e54eb 640 {
mkistler 0:7538ad2e54eb 641 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
mkistler 0:7538ad2e54eb 642 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
mkistler 0:7538ad2e54eb 643 // Mask out accel scale bits:
mkistler 0:7538ad2e54eb 644 tempRegValue &= 0xE7;
mkistler 0:7538ad2e54eb 645
mkistler 0:7538ad2e54eb 646 switch (aScl)
mkistler 0:7538ad2e54eb 647 {
mkistler 0:7538ad2e54eb 648 case 4:
mkistler 0:7538ad2e54eb 649 tempRegValue |= (0x2 << 3);
mkistler 0:7538ad2e54eb 650 settings.accel.scale = 4;
mkistler 0:7538ad2e54eb 651 break;
mkistler 0:7538ad2e54eb 652 case 8:
mkistler 0:7538ad2e54eb 653 tempRegValue |= (0x3 << 3);
mkistler 0:7538ad2e54eb 654 settings.accel.scale = 8;
mkistler 0:7538ad2e54eb 655 break;
mkistler 0:7538ad2e54eb 656 case 16:
mkistler 0:7538ad2e54eb 657 tempRegValue |= (0x1 << 3);
mkistler 0:7538ad2e54eb 658 settings.accel.scale = 16;
mkistler 0:7538ad2e54eb 659 break;
mkistler 0:7538ad2e54eb 660 default: // Otherwise it'll be set to 2g (0x0 << 3)
mkistler 0:7538ad2e54eb 661 settings.accel.scale = 2;
mkistler 0:7538ad2e54eb 662 break;
mkistler 0:7538ad2e54eb 663 }
mkistler 0:7538ad2e54eb 664 xgWriteByte(CTRL_REG6_XL, tempRegValue);
mkistler 0:7538ad2e54eb 665
mkistler 0:7538ad2e54eb 666 // Then calculate a new aRes, which relies on aScale being set correctly:
mkistler 0:7538ad2e54eb 667 calcaRes();
mkistler 0:7538ad2e54eb 668 }
mkistler 0:7538ad2e54eb 669
mkistler 0:7538ad2e54eb 670 void LSM9DS1::setMagScale(uint8_t mScl)
mkistler 0:7538ad2e54eb 671 {
mkistler 0:7538ad2e54eb 672 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
mkistler 0:7538ad2e54eb 673 uint8_t temp = mReadByte(CTRL_REG2_M);
mkistler 0:7538ad2e54eb 674 // Then mask out the mag scale bits:
mkistler 0:7538ad2e54eb 675 temp &= 0xFF^(0x3 << 5);
mkistler 0:7538ad2e54eb 676
mkistler 0:7538ad2e54eb 677 switch (mScl)
mkistler 0:7538ad2e54eb 678 {
mkistler 0:7538ad2e54eb 679 case 8:
mkistler 0:7538ad2e54eb 680 temp |= (0x1 << 5);
mkistler 0:7538ad2e54eb 681 settings.mag.scale = 8;
mkistler 0:7538ad2e54eb 682 break;
mkistler 0:7538ad2e54eb 683 case 12:
mkistler 0:7538ad2e54eb 684 temp |= (0x2 << 5);
mkistler 0:7538ad2e54eb 685 settings.mag.scale = 12;
mkistler 0:7538ad2e54eb 686 break;
mkistler 0:7538ad2e54eb 687 case 16:
mkistler 0:7538ad2e54eb 688 temp |= (0x3 << 5);
mkistler 0:7538ad2e54eb 689 settings.mag.scale = 16;
mkistler 0:7538ad2e54eb 690 break;
mkistler 0:7538ad2e54eb 691 default: // Otherwise we'll default to 4 gauss (00)
mkistler 0:7538ad2e54eb 692 settings.mag.scale = 4;
mkistler 0:7538ad2e54eb 693 break;
mkistler 0:7538ad2e54eb 694 }
mkistler 0:7538ad2e54eb 695
mkistler 0:7538ad2e54eb 696 // And write the new register value back into CTRL_REG6_XM:
mkistler 0:7538ad2e54eb 697 mWriteByte(CTRL_REG2_M, temp);
mkistler 0:7538ad2e54eb 698
mkistler 0:7538ad2e54eb 699 // We've updated the sensor, but we also need to update our class variables
mkistler 0:7538ad2e54eb 700 // First update mScale:
mkistler 0:7538ad2e54eb 701 //mScale = mScl;
mkistler 0:7538ad2e54eb 702 // Then calculate a new mRes, which relies on mScale being set correctly:
mkistler 0:7538ad2e54eb 703 calcmRes();
mkistler 0:7538ad2e54eb 704 }
mkistler 0:7538ad2e54eb 705
mkistler 0:7538ad2e54eb 706 void LSM9DS1::setGyroODR(uint8_t gRate)
mkistler 0:7538ad2e54eb 707 {
mkistler 0:7538ad2e54eb 708 // Only do this if gRate is not 0 (which would disable the gyro)
mkistler 0:7538ad2e54eb 709 if ((gRate & 0x07) != 0)
mkistler 0:7538ad2e54eb 710 {
mkistler 0:7538ad2e54eb 711 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
mkistler 0:7538ad2e54eb 712 uint8_t temp = xgReadByte(CTRL_REG1_G);
mkistler 0:7538ad2e54eb 713 // Then mask out the gyro ODR bits:
mkistler 0:7538ad2e54eb 714 temp &= 0xFF^(0x7 << 5);
mkistler 0:7538ad2e54eb 715 temp |= (gRate & 0x07) << 5;
mkistler 0:7538ad2e54eb 716 // Update our settings struct
mkistler 0:7538ad2e54eb 717 settings.gyro.sampleRate = gRate & 0x07;
mkistler 0:7538ad2e54eb 718 // And write the new register value back into CTRL_REG1_G:
mkistler 0:7538ad2e54eb 719 xgWriteByte(CTRL_REG1_G, temp);
mkistler 0:7538ad2e54eb 720 }
mkistler 0:7538ad2e54eb 721 }
mkistler 0:7538ad2e54eb 722
mkistler 0:7538ad2e54eb 723 void LSM9DS1::setAccelODR(uint8_t aRate)
mkistler 0:7538ad2e54eb 724 {
mkistler 0:7538ad2e54eb 725 // Only do this if aRate is not 0 (which would disable the accel)
mkistler 0:7538ad2e54eb 726 if ((aRate & 0x07) != 0)
mkistler 0:7538ad2e54eb 727 {
mkistler 0:7538ad2e54eb 728 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
mkistler 0:7538ad2e54eb 729 uint8_t temp = xgReadByte(CTRL_REG6_XL);
mkistler 0:7538ad2e54eb 730 // Then mask out the accel ODR bits:
mkistler 0:7538ad2e54eb 731 temp &= 0x1F;
mkistler 0:7538ad2e54eb 732 // Then shift in our new ODR bits:
mkistler 0:7538ad2e54eb 733 temp |= ((aRate & 0x07) << 5);
mkistler 0:7538ad2e54eb 734 settings.accel.sampleRate = aRate & 0x07;
mkistler 0:7538ad2e54eb 735 // And write the new register value back into CTRL_REG1_XM:
mkistler 0:7538ad2e54eb 736 xgWriteByte(CTRL_REG6_XL, temp);
mkistler 0:7538ad2e54eb 737 }
mkistler 0:7538ad2e54eb 738 }
mkistler 0:7538ad2e54eb 739
mkistler 0:7538ad2e54eb 740 void LSM9DS1::setMagODR(uint8_t mRate)
mkistler 0:7538ad2e54eb 741 {
mkistler 0:7538ad2e54eb 742 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
mkistler 0:7538ad2e54eb 743 uint8_t temp = mReadByte(CTRL_REG1_M);
mkistler 0:7538ad2e54eb 744 // Then mask out the mag ODR bits:
mkistler 0:7538ad2e54eb 745 temp &= 0xFF^(0x7 << 2);
mkistler 0:7538ad2e54eb 746 // Then shift in our new ODR bits:
mkistler 0:7538ad2e54eb 747 temp |= ((mRate & 0x07) << 2);
mkistler 0:7538ad2e54eb 748 settings.mag.sampleRate = mRate & 0x07;
mkistler 0:7538ad2e54eb 749 // And write the new register value back into CTRL_REG5_XM:
mkistler 0:7538ad2e54eb 750 mWriteByte(CTRL_REG1_M, temp);
mkistler 0:7538ad2e54eb 751 }
mkistler 0:7538ad2e54eb 752
mkistler 0:7538ad2e54eb 753 void LSM9DS1::calcgRes()
mkistler 0:7538ad2e54eb 754 {
mkistler 0:7538ad2e54eb 755 gRes = ((float) settings.gyro.scale) / 32768.0;
mkistler 0:7538ad2e54eb 756 }
mkistler 0:7538ad2e54eb 757
mkistler 0:7538ad2e54eb 758 void LSM9DS1::calcaRes()
mkistler 0:7538ad2e54eb 759 {
mkistler 0:7538ad2e54eb 760 aRes = ((float) settings.accel.scale) / 32768.0;
mkistler 0:7538ad2e54eb 761 }
mkistler 0:7538ad2e54eb 762
mkistler 0:7538ad2e54eb 763 void LSM9DS1::calcmRes()
mkistler 0:7538ad2e54eb 764 {
mkistler 0:7538ad2e54eb 765 //mRes = ((float) settings.mag.scale) / 32768.0;
mkistler 0:7538ad2e54eb 766 switch (settings.mag.scale)
mkistler 0:7538ad2e54eb 767 {
mkistler 0:7538ad2e54eb 768 case 4:
mkistler 0:7538ad2e54eb 769 mRes = magSensitivity[0];
mkistler 0:7538ad2e54eb 770 break;
mkistler 0:7538ad2e54eb 771 case 8:
mkistler 0:7538ad2e54eb 772 mRes = magSensitivity[1];
mkistler 0:7538ad2e54eb 773 break;
mkistler 0:7538ad2e54eb 774 case 12:
mkistler 0:7538ad2e54eb 775 mRes = magSensitivity[2];
mkistler 0:7538ad2e54eb 776 break;
mkistler 0:7538ad2e54eb 777 case 16:
mkistler 0:7538ad2e54eb 778 mRes = magSensitivity[3];
mkistler 0:7538ad2e54eb 779 break;
mkistler 0:7538ad2e54eb 780 }
mkistler 0:7538ad2e54eb 781
mkistler 0:7538ad2e54eb 782 }
mkistler 0:7538ad2e54eb 783
mkistler 0:7538ad2e54eb 784 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
mkistler 0:7538ad2e54eb 785 h_lactive activeLow, pp_od pushPull)
mkistler 0:7538ad2e54eb 786 {
mkistler 0:7538ad2e54eb 787 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
mkistler 0:7538ad2e54eb 788 // those two values.
mkistler 0:7538ad2e54eb 789 // [generator] should be an OR'd list of values from the interrupt_generators enum
mkistler 0:7538ad2e54eb 790 xgWriteByte(interrupt, generator);
mkistler 0:7538ad2e54eb 791
mkistler 0:7538ad2e54eb 792 // Configure CTRL_REG8
mkistler 0:7538ad2e54eb 793 uint8_t temp;
mkistler 0:7538ad2e54eb 794 temp = xgReadByte(CTRL_REG8);
mkistler 0:7538ad2e54eb 795
mkistler 0:7538ad2e54eb 796 if (activeLow) temp |= (1<<5);
mkistler 0:7538ad2e54eb 797 else temp &= ~(1<<5);
mkistler 0:7538ad2e54eb 798
mkistler 0:7538ad2e54eb 799 if (pushPull) temp &= ~(1<<4);
mkistler 0:7538ad2e54eb 800 else temp |= (1<<4);
mkistler 0:7538ad2e54eb 801
mkistler 0:7538ad2e54eb 802 xgWriteByte(CTRL_REG8, temp);
mkistler 0:7538ad2e54eb 803 }
mkistler 0:7538ad2e54eb 804
mkistler 0:7538ad2e54eb 805 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
mkistler 0:7538ad2e54eb 806 {
mkistler 0:7538ad2e54eb 807 uint8_t temp = 0;
mkistler 0:7538ad2e54eb 808
mkistler 0:7538ad2e54eb 809 temp = threshold & 0x7F;
mkistler 0:7538ad2e54eb 810 if (sleepOn) temp |= (1<<7);
mkistler 0:7538ad2e54eb 811 xgWriteByte(ACT_THS, temp);
mkistler 0:7538ad2e54eb 812
mkistler 0:7538ad2e54eb 813 xgWriteByte(ACT_DUR, duration);
mkistler 0:7538ad2e54eb 814 }
mkistler 0:7538ad2e54eb 815
mkistler 0:7538ad2e54eb 816 uint8_t LSM9DS1::getInactivity()
mkistler 0:7538ad2e54eb 817 {
mkistler 0:7538ad2e54eb 818 uint8_t temp = xgReadByte(STATUS_REG_0);
mkistler 0:7538ad2e54eb 819 temp &= (0x10);
mkistler 0:7538ad2e54eb 820 return temp;
mkistler 0:7538ad2e54eb 821 }
mkistler 0:7538ad2e54eb 822
mkistler 0:7538ad2e54eb 823 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
mkistler 0:7538ad2e54eb 824 {
mkistler 0:7538ad2e54eb 825 // Use variables from accel_interrupt_generator, OR'd together to create
mkistler 0:7538ad2e54eb 826 // the [generator]value.
mkistler 0:7538ad2e54eb 827 uint8_t temp = generator;
mkistler 0:7538ad2e54eb 828 if (andInterrupts) temp |= 0x80;
mkistler 0:7538ad2e54eb 829 xgWriteByte(INT_GEN_CFG_XL, temp);
mkistler 0:7538ad2e54eb 830 }
mkistler 0:7538ad2e54eb 831
mkistler 0:7538ad2e54eb 832 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
mkistler 0:7538ad2e54eb 833 {
mkistler 0:7538ad2e54eb 834 // Write threshold value to INT_GEN_THS_?_XL.
mkistler 0:7538ad2e54eb 835 // axis will be 0, 1, or 2 (x, y, z respectively)
mkistler 0:7538ad2e54eb 836 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
mkistler 0:7538ad2e54eb 837
mkistler 0:7538ad2e54eb 838 // Write duration and wait to INT_GEN_DUR_XL
mkistler 0:7538ad2e54eb 839 uint8_t temp;
mkistler 0:7538ad2e54eb 840 temp = (duration & 0x7F);
mkistler 0:7538ad2e54eb 841 if (wait) temp |= 0x80;
mkistler 0:7538ad2e54eb 842 xgWriteByte(INT_GEN_DUR_XL, temp);
mkistler 0:7538ad2e54eb 843 }
mkistler 0:7538ad2e54eb 844
mkistler 0:7538ad2e54eb 845 uint8_t LSM9DS1::getAccelIntSrc()
mkistler 0:7538ad2e54eb 846 {
mkistler 0:7538ad2e54eb 847 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
mkistler 0:7538ad2e54eb 848
mkistler 0:7538ad2e54eb 849 // Check if the IA_XL (interrupt active) bit is set
mkistler 0:7538ad2e54eb 850 if (intSrc & (1<<6))
mkistler 0:7538ad2e54eb 851 {
mkistler 0:7538ad2e54eb 852 return (intSrc & 0x3F);
mkistler 0:7538ad2e54eb 853 }
mkistler 0:7538ad2e54eb 854
mkistler 0:7538ad2e54eb 855 return 0;
mkistler 0:7538ad2e54eb 856 }
mkistler 0:7538ad2e54eb 857
mkistler 0:7538ad2e54eb 858 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
mkistler 0:7538ad2e54eb 859 {
mkistler 0:7538ad2e54eb 860 // Use variables from accel_interrupt_generator, OR'd together to create
mkistler 0:7538ad2e54eb 861 // the [generator]value.
mkistler 0:7538ad2e54eb 862 uint8_t temp = generator;
mkistler 0:7538ad2e54eb 863 if (aoi) temp |= 0x80;
mkistler 0:7538ad2e54eb 864 if (latch) temp |= 0x40;
mkistler 0:7538ad2e54eb 865 xgWriteByte(INT_GEN_CFG_G, temp);
mkistler 0:7538ad2e54eb 866 }
mkistler 0:7538ad2e54eb 867
mkistler 0:7538ad2e54eb 868 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
mkistler 0:7538ad2e54eb 869 {
mkistler 0:7538ad2e54eb 870 uint8_t buffer[2];
mkistler 0:7538ad2e54eb 871 buffer[0] = (threshold & 0x7F00) >> 8;
mkistler 0:7538ad2e54eb 872 buffer[1] = (threshold & 0x00FF);
mkistler 0:7538ad2e54eb 873 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
mkistler 0:7538ad2e54eb 874 // axis will be 0, 1, or 2 (x, y, z respectively)
mkistler 0:7538ad2e54eb 875 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
mkistler 0:7538ad2e54eb 876 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
mkistler 0:7538ad2e54eb 877
mkistler 0:7538ad2e54eb 878 // Write duration and wait to INT_GEN_DUR_XL
mkistler 0:7538ad2e54eb 879 uint8_t temp;
mkistler 0:7538ad2e54eb 880 temp = (duration & 0x7F);
mkistler 0:7538ad2e54eb 881 if (wait) temp |= 0x80;
mkistler 0:7538ad2e54eb 882 xgWriteByte(INT_GEN_DUR_G, temp);
mkistler 0:7538ad2e54eb 883 }
mkistler 0:7538ad2e54eb 884
mkistler 0:7538ad2e54eb 885 uint8_t LSM9DS1::getGyroIntSrc()
mkistler 0:7538ad2e54eb 886 {
mkistler 0:7538ad2e54eb 887 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
mkistler 0:7538ad2e54eb 888
mkistler 0:7538ad2e54eb 889 // Check if the IA_G (interrupt active) bit is set
mkistler 0:7538ad2e54eb 890 if (intSrc & (1<<6))
mkistler 0:7538ad2e54eb 891 {
mkistler 0:7538ad2e54eb 892 return (intSrc & 0x3F);
mkistler 0:7538ad2e54eb 893 }
mkistler 0:7538ad2e54eb 894
mkistler 0:7538ad2e54eb 895 return 0;
mkistler 0:7538ad2e54eb 896 }
mkistler 0:7538ad2e54eb 897
mkistler 0:7538ad2e54eb 898 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
mkistler 0:7538ad2e54eb 899 {
mkistler 0:7538ad2e54eb 900 // Mask out non-generator bits (0-4)
mkistler 0:7538ad2e54eb 901 uint8_t config = (generator & 0xE0);
mkistler 0:7538ad2e54eb 902 // IEA bit is 0 for active-low, 1 for active-high.
mkistler 0:7538ad2e54eb 903 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
mkistler 0:7538ad2e54eb 904 // IEL bit is 0 for latched, 1 for not-latched
mkistler 0:7538ad2e54eb 905 if (!latch) config |= (1<<1);
mkistler 0:7538ad2e54eb 906 // As long as we have at least 1 generator, enable the interrupt
mkistler 0:7538ad2e54eb 907 if (generator != 0) config |= (1<<0);
mkistler 0:7538ad2e54eb 908
mkistler 0:7538ad2e54eb 909 mWriteByte(INT_CFG_M, config);
mkistler 0:7538ad2e54eb 910 }
mkistler 0:7538ad2e54eb 911
mkistler 0:7538ad2e54eb 912 void LSM9DS1::configMagThs(uint16_t threshold)
mkistler 0:7538ad2e54eb 913 {
mkistler 0:7538ad2e54eb 914 // Write high eight bits of [threshold] to INT_THS_H_M
mkistler 0:7538ad2e54eb 915 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
mkistler 0:7538ad2e54eb 916 // Write low eight bits of [threshold] to INT_THS_L_M
mkistler 0:7538ad2e54eb 917 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
mkistler 0:7538ad2e54eb 918 }
mkistler 0:7538ad2e54eb 919
mkistler 0:7538ad2e54eb 920 uint8_t LSM9DS1::getMagIntSrc()
mkistler 0:7538ad2e54eb 921 {
mkistler 0:7538ad2e54eb 922 uint8_t intSrc = mReadByte(INT_SRC_M);
mkistler 0:7538ad2e54eb 923
mkistler 0:7538ad2e54eb 924 // Check if the INT (interrupt active) bit is set
mkistler 0:7538ad2e54eb 925 if (intSrc & (1<<0))
mkistler 0:7538ad2e54eb 926 {
mkistler 0:7538ad2e54eb 927 return (intSrc & 0xFE);
mkistler 0:7538ad2e54eb 928 }
mkistler 0:7538ad2e54eb 929
mkistler 0:7538ad2e54eb 930 return 0;
mkistler 0:7538ad2e54eb 931 }
mkistler 0:7538ad2e54eb 932
mkistler 0:7538ad2e54eb 933 void LSM9DS1::sleepGyro(bool enable)
mkistler 0:7538ad2e54eb 934 {
mkistler 0:7538ad2e54eb 935 uint8_t temp = xgReadByte(CTRL_REG9);
mkistler 0:7538ad2e54eb 936 if (enable) temp |= (1<<6);
mkistler 0:7538ad2e54eb 937 else temp &= ~(1<<6);
mkistler 0:7538ad2e54eb 938 xgWriteByte(CTRL_REG9, temp);
mkistler 0:7538ad2e54eb 939 }
mkistler 0:7538ad2e54eb 940
mkistler 0:7538ad2e54eb 941 void LSM9DS1::enableFIFO(bool enable)
mkistler 0:7538ad2e54eb 942 {
mkistler 0:7538ad2e54eb 943 uint8_t temp = xgReadByte(CTRL_REG9);
mkistler 0:7538ad2e54eb 944 if (enable) temp |= (1<<1);
mkistler 0:7538ad2e54eb 945 else temp &= ~(1<<1);
mkistler 0:7538ad2e54eb 946 xgWriteByte(CTRL_REG9, temp);
mkistler 0:7538ad2e54eb 947 }
mkistler 0:7538ad2e54eb 948
mkistler 0:7538ad2e54eb 949 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
mkistler 0:7538ad2e54eb 950 {
mkistler 0:7538ad2e54eb 951 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
mkistler 0:7538ad2e54eb 952 // limit it to the maximum.
mkistler 0:7538ad2e54eb 953 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
mkistler 0:7538ad2e54eb 954 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
mkistler 0:7538ad2e54eb 955 }
mkistler 0:7538ad2e54eb 956
mkistler 0:7538ad2e54eb 957 uint8_t LSM9DS1::getFIFOSamples()
mkistler 0:7538ad2e54eb 958 {
mkistler 0:7538ad2e54eb 959 return (xgReadByte(FIFO_SRC) & 0x3F);
mkistler 0:7538ad2e54eb 960 }
mkistler 0:7538ad2e54eb 961
mkistler 0:7538ad2e54eb 962 void LSM9DS1::constrainScales()
mkistler 0:7538ad2e54eb 963 {
mkistler 0:7538ad2e54eb 964 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
mkistler 0:7538ad2e54eb 965 (settings.gyro.scale != 2000))
mkistler 0:7538ad2e54eb 966 {
mkistler 0:7538ad2e54eb 967 settings.gyro.scale = 245;
mkistler 0:7538ad2e54eb 968 }
mkistler 0:7538ad2e54eb 969
mkistler 0:7538ad2e54eb 970 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
mkistler 0:7538ad2e54eb 971 (settings.accel.scale != 8) && (settings.accel.scale != 16))
mkistler 0:7538ad2e54eb 972 {
mkistler 0:7538ad2e54eb 973 settings.accel.scale = 2;
mkistler 0:7538ad2e54eb 974 }
mkistler 0:7538ad2e54eb 975
mkistler 0:7538ad2e54eb 976 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
mkistler 0:7538ad2e54eb 977 (settings.mag.scale != 12) && (settings.mag.scale != 16))
mkistler 0:7538ad2e54eb 978 {
mkistler 0:7538ad2e54eb 979 settings.mag.scale = 4;
mkistler 0:7538ad2e54eb 980 }
mkistler 0:7538ad2e54eb 981 }
mkistler 0:7538ad2e54eb 982
mkistler 0:7538ad2e54eb 983 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
mkistler 0:7538ad2e54eb 984 {
mkistler 0:7538ad2e54eb 985 // Whether we're using I2C or SPI, write a byte using the
mkistler 0:7538ad2e54eb 986 // gyro-specific I2C address or SPI CS pin.
mkistler 0:7538ad2e54eb 987 if (settings.device.commInterface == IMU_MODE_I2C) {
mkistler 0:7538ad2e54eb 988 printf("yo");
mkistler 0:7538ad2e54eb 989 I2CwriteByte(_xgAddress, subAddress, data);
mkistler 0:7538ad2e54eb 990 } else if (settings.device.commInterface == IMU_MODE_SPI) {
mkistler 0:7538ad2e54eb 991 SPIwriteByte(_xgAddress, subAddress, data);
mkistler 0:7538ad2e54eb 992 }
mkistler 0:7538ad2e54eb 993 }
mkistler 0:7538ad2e54eb 994
mkistler 0:7538ad2e54eb 995 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
mkistler 0:7538ad2e54eb 996 {
mkistler 0:7538ad2e54eb 997 // Whether we're using I2C or SPI, write a byte using the
mkistler 0:7538ad2e54eb 998 // accelerometer-specific I2C address or SPI CS pin.
mkistler 0:7538ad2e54eb 999 if (settings.device.commInterface == IMU_MODE_I2C)
mkistler 0:7538ad2e54eb 1000 return I2CwriteByte(_mAddress, subAddress, data);
mkistler 0:7538ad2e54eb 1001 else if (settings.device.commInterface == IMU_MODE_SPI)
mkistler 0:7538ad2e54eb 1002 return SPIwriteByte(_mAddress, subAddress, data);
mkistler 0:7538ad2e54eb 1003 }
mkistler 0:7538ad2e54eb 1004
mkistler 0:7538ad2e54eb 1005 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
mkistler 0:7538ad2e54eb 1006 {
mkistler 0:7538ad2e54eb 1007 // Whether we're using I2C or SPI, read a byte using the
mkistler 0:7538ad2e54eb 1008 // gyro-specific I2C address or SPI CS pin.
mkistler 0:7538ad2e54eb 1009 if (settings.device.commInterface == IMU_MODE_I2C)
mkistler 0:7538ad2e54eb 1010 return I2CreadByte(_xgAddress, subAddress);
mkistler 0:7538ad2e54eb 1011 else if (settings.device.commInterface == IMU_MODE_SPI)
mkistler 0:7538ad2e54eb 1012 return SPIreadByte(_xgAddress, subAddress);
mkistler 0:7538ad2e54eb 1013 }
mkistler 0:7538ad2e54eb 1014
mkistler 0:7538ad2e54eb 1015 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
mkistler 0:7538ad2e54eb 1016 {
mkistler 0:7538ad2e54eb 1017 // Whether we're using I2C or SPI, read multiple bytes using the
mkistler 0:7538ad2e54eb 1018 // gyro-specific I2C address or SPI CS pin.
mkistler 0:7538ad2e54eb 1019 if (settings.device.commInterface == IMU_MODE_I2C) {
mkistler 0:7538ad2e54eb 1020 I2CreadBytes(_xgAddress, subAddress, dest, count);
mkistler 0:7538ad2e54eb 1021 } else if (settings.device.commInterface == IMU_MODE_SPI) {
mkistler 0:7538ad2e54eb 1022 SPIreadBytes(_xgAddress, subAddress, dest, count);
mkistler 0:7538ad2e54eb 1023 }
mkistler 0:7538ad2e54eb 1024 }
mkistler 0:7538ad2e54eb 1025
mkistler 0:7538ad2e54eb 1026 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
mkistler 0:7538ad2e54eb 1027 {
mkistler 0:7538ad2e54eb 1028 // Whether we're using I2C or SPI, read a byte using the
mkistler 0:7538ad2e54eb 1029 // accelerometer-specific I2C address or SPI CS pin.
mkistler 0:7538ad2e54eb 1030 if (settings.device.commInterface == IMU_MODE_I2C)
mkistler 0:7538ad2e54eb 1031 return I2CreadByte(_mAddress, subAddress);
mkistler 0:7538ad2e54eb 1032 else if (settings.device.commInterface == IMU_MODE_SPI)
mkistler 0:7538ad2e54eb 1033 return SPIreadByte(_mAddress, subAddress);
mkistler 0:7538ad2e54eb 1034 }
mkistler 0:7538ad2e54eb 1035
mkistler 0:7538ad2e54eb 1036 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
mkistler 0:7538ad2e54eb 1037 {
mkistler 0:7538ad2e54eb 1038 // Whether we're using I2C or SPI, read multiple bytes using the
mkistler 0:7538ad2e54eb 1039 // accelerometer-specific I2C address or SPI CS pin.
mkistler 0:7538ad2e54eb 1040 if (settings.device.commInterface == IMU_MODE_I2C)
mkistler 0:7538ad2e54eb 1041 I2CreadBytes(_mAddress, subAddress, dest, count);
mkistler 0:7538ad2e54eb 1042 else if (settings.device.commInterface == IMU_MODE_SPI)
mkistler 0:7538ad2e54eb 1043 SPIreadBytes(_mAddress, subAddress, dest, count);
mkistler 0:7538ad2e54eb 1044 }
mkistler 0:7538ad2e54eb 1045
mkistler 0:7538ad2e54eb 1046 void LSM9DS1::initSPI()
mkistler 0:7538ad2e54eb 1047 {
mkistler 0:7538ad2e54eb 1048 /*
mkistler 0:7538ad2e54eb 1049 pinMode(_xgAddress, OUTPUT);
mkistler 0:7538ad2e54eb 1050 digitalWrite(_xgAddress, HIGH);
mkistler 0:7538ad2e54eb 1051 pinMode(_mAddress, OUTPUT);
mkistler 0:7538ad2e54eb 1052 digitalWrite(_mAddress, HIGH);
mkistler 0:7538ad2e54eb 1053
mkistler 0:7538ad2e54eb 1054 SPI.begin();
mkistler 0:7538ad2e54eb 1055 // Maximum SPI frequency is 10MHz, could divide by 2 here:
mkistler 0:7538ad2e54eb 1056 SPI.setClockDivider(SPI_CLOCK_DIV2);
mkistler 0:7538ad2e54eb 1057 // Data is read and written MSb first.
mkistler 0:7538ad2e54eb 1058 SPI.setBitOrder(MSBFIRST);
mkistler 0:7538ad2e54eb 1059 // Data is captured on rising edge of clock (CPHA = 0)
mkistler 0:7538ad2e54eb 1060 // Base value of the clock is HIGH (CPOL = 1)
mkistler 0:7538ad2e54eb 1061 SPI.setDataMode(SPI_MODE0);
mkistler 0:7538ad2e54eb 1062 */
mkistler 0:7538ad2e54eb 1063 }
mkistler 0:7538ad2e54eb 1064
mkistler 0:7538ad2e54eb 1065 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
mkistler 0:7538ad2e54eb 1066 {
mkistler 0:7538ad2e54eb 1067 /*
mkistler 0:7538ad2e54eb 1068 digitalWrite(csPin, LOW); // Initiate communication
mkistler 0:7538ad2e54eb 1069
mkistler 0:7538ad2e54eb 1070 // If write, bit 0 (MSB) should be 0
mkistler 0:7538ad2e54eb 1071 // If single write, bit 1 should be 0
mkistler 0:7538ad2e54eb 1072 SPI.transfer(subAddress & 0x3F); // Send Address
mkistler 0:7538ad2e54eb 1073 SPI.transfer(data); // Send data
mkistler 0:7538ad2e54eb 1074
mkistler 0:7538ad2e54eb 1075 digitalWrite(csPin, HIGH); // Close communication
mkistler 0:7538ad2e54eb 1076 */
mkistler 0:7538ad2e54eb 1077 }
mkistler 0:7538ad2e54eb 1078
mkistler 0:7538ad2e54eb 1079 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
mkistler 0:7538ad2e54eb 1080 {
mkistler 0:7538ad2e54eb 1081 uint8_t temp;
mkistler 0:7538ad2e54eb 1082 // Use the multiple read function to read 1 byte.
mkistler 0:7538ad2e54eb 1083 // Value is returned to `temp`.
mkistler 0:7538ad2e54eb 1084 SPIreadBytes(csPin, subAddress, &temp, 1);
mkistler 0:7538ad2e54eb 1085 return temp;
mkistler 0:7538ad2e54eb 1086 }
mkistler 0:7538ad2e54eb 1087
mkistler 0:7538ad2e54eb 1088 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
mkistler 0:7538ad2e54eb 1089 uint8_t * dest, uint8_t count)
mkistler 0:7538ad2e54eb 1090 {
mkistler 0:7538ad2e54eb 1091 // To indicate a read, set bit 0 (msb) of first byte to 1
mkistler 0:7538ad2e54eb 1092 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
mkistler 0:7538ad2e54eb 1093 // Mag SPI port is different. If we're reading multiple bytes,
mkistler 0:7538ad2e54eb 1094 // set bit 1 to 1. The remaining six bytes are the address to be read
mkistler 0:7538ad2e54eb 1095 if ((csPin == _mAddress) && count > 1)
mkistler 0:7538ad2e54eb 1096 rAddress |= 0x40;
mkistler 0:7538ad2e54eb 1097
mkistler 0:7538ad2e54eb 1098 /*
mkistler 0:7538ad2e54eb 1099 digitalWrite(csPin, LOW); // Initiate communication
mkistler 0:7538ad2e54eb 1100 SPI.transfer(rAddress);
mkistler 0:7538ad2e54eb 1101 for (int i=0; i<count; i++)
mkistler 0:7538ad2e54eb 1102 {
mkistler 0:7538ad2e54eb 1103 dest[i] = SPI.transfer(0x00); // Read into destination array
mkistler 0:7538ad2e54eb 1104 }
mkistler 0:7538ad2e54eb 1105 digitalWrite(csPin, HIGH); // Close communication
mkistler 0:7538ad2e54eb 1106 */
mkistler 0:7538ad2e54eb 1107 }
mkistler 0:7538ad2e54eb 1108
mkistler 0:7538ad2e54eb 1109 void LSM9DS1::initI2C()
mkistler 0:7538ad2e54eb 1110 {
mkistler 0:7538ad2e54eb 1111 /*
mkistler 0:7538ad2e54eb 1112 Wire.begin(); // Initialize I2C library
mkistler 0:7538ad2e54eb 1113 */
mkistler 0:7538ad2e54eb 1114
mkistler 0:7538ad2e54eb 1115 //already initialized in constructor!
mkistler 0:7538ad2e54eb 1116 }
mkistler 0:7538ad2e54eb 1117
mkistler 0:7538ad2e54eb 1118 // Wire.h read and write protocols
mkistler 0:7538ad2e54eb 1119 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
mkistler 0:7538ad2e54eb 1120 {
mkistler 0:7538ad2e54eb 1121 /*
mkistler 0:7538ad2e54eb 1122 Wire.beginTransmission(address); // Initialize the Tx buffer
mkistler 0:7538ad2e54eb 1123 Wire.write(subAddress); // Put slave register address in Tx buffer
mkistler 0:7538ad2e54eb 1124 Wire.write(data); // Put data in Tx buffer
mkistler 0:7538ad2e54eb 1125 Wire.endTransmission(); // Send the Tx buffer
mkistler 0:7538ad2e54eb 1126 */
mkistler 0:7538ad2e54eb 1127 char temp_data[2] = {subAddress, data};
mkistler 0:7538ad2e54eb 1128 i2c.write(address, temp_data, 2);
mkistler 0:7538ad2e54eb 1129 }
mkistler 0:7538ad2e54eb 1130
mkistler 0:7538ad2e54eb 1131 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
mkistler 0:7538ad2e54eb 1132 {
mkistler 0:7538ad2e54eb 1133 /*
mkistler 0:7538ad2e54eb 1134 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
mkistler 0:7538ad2e54eb 1135 uint8_t data; // `data` will store the register data
mkistler 0:7538ad2e54eb 1136
mkistler 0:7538ad2e54eb 1137 Wire.beginTransmission(address); // Initialize the Tx buffer
mkistler 0:7538ad2e54eb 1138 Wire.write(subAddress); // Put slave register address in Tx buffer
mkistler 0:7538ad2e54eb 1139 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
mkistler 0:7538ad2e54eb 1140 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
mkistler 0:7538ad2e54eb 1141 while ((Wire.available() < 1) && (timeout-- > 0))
mkistler 0:7538ad2e54eb 1142 delay(1);
mkistler 0:7538ad2e54eb 1143
mkistler 0:7538ad2e54eb 1144 if (timeout <= 0)
mkistler 0:7538ad2e54eb 1145 return 255; //! Bad! 255 will be misinterpreted as a good value.
mkistler 0:7538ad2e54eb 1146
mkistler 0:7538ad2e54eb 1147 data = Wire.read(); // Fill Rx buffer with result
mkistler 0:7538ad2e54eb 1148 return data; // Return data read from slave register
mkistler 0:7538ad2e54eb 1149 */
mkistler 0:7538ad2e54eb 1150 char data;
mkistler 0:7538ad2e54eb 1151 char temp[1] = {subAddress};
mkistler 0:7538ad2e54eb 1152
mkistler 0:7538ad2e54eb 1153 i2c.write(address, temp, 1);
mkistler 0:7538ad2e54eb 1154 //i2c.write(address & 0xFE);
mkistler 0:7538ad2e54eb 1155 temp[1] = 0x00;
mkistler 0:7538ad2e54eb 1156 i2c.write(address, temp, 1);
mkistler 0:7538ad2e54eb 1157 //i2c.write( address | 0x01);
mkistler 0:7538ad2e54eb 1158 int a = i2c.read(address, &data, 1);
mkistler 0:7538ad2e54eb 1159 return data;
mkistler 0:7538ad2e54eb 1160 }
mkistler 0:7538ad2e54eb 1161
mkistler 0:7538ad2e54eb 1162 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
mkistler 0:7538ad2e54eb 1163 {
mkistler 0:7538ad2e54eb 1164 /*
mkistler 0:7538ad2e54eb 1165 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
mkistler 0:7538ad2e54eb 1166 Wire.beginTransmission(address); // Initialize the Tx buffer
mkistler 0:7538ad2e54eb 1167 // Next send the register to be read. OR with 0x80 to indicate multi-read.
mkistler 0:7538ad2e54eb 1168 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
mkistler 0:7538ad2e54eb 1169
mkistler 0:7538ad2e54eb 1170 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
mkistler 0:7538ad2e54eb 1171 uint8_t i = 0;
mkistler 0:7538ad2e54eb 1172 Wire.requestFrom(address, count); // Read bytes from slave register address
mkistler 0:7538ad2e54eb 1173 while ((Wire.available() < count) && (timeout-- > 0))
mkistler 0:7538ad2e54eb 1174 delay(1);
mkistler 0:7538ad2e54eb 1175 if (timeout <= 0)
mkistler 0:7538ad2e54eb 1176 return -1;
mkistler 0:7538ad2e54eb 1177
mkistler 0:7538ad2e54eb 1178 for (int i=0; i<count;)
mkistler 0:7538ad2e54eb 1179 {
mkistler 0:7538ad2e54eb 1180 if (Wire.available())
mkistler 0:7538ad2e54eb 1181 {
mkistler 0:7538ad2e54eb 1182 dest[i++] = Wire.read();
mkistler 0:7538ad2e54eb 1183 }
mkistler 0:7538ad2e54eb 1184 }
mkistler 0:7538ad2e54eb 1185 return count;
mkistler 0:7538ad2e54eb 1186 */
mkistler 0:7538ad2e54eb 1187 int i;
mkistler 0:7538ad2e54eb 1188 char temp_dest[count];
mkistler 0:7538ad2e54eb 1189 char temp[1] = {subAddress};
mkistler 0:7538ad2e54eb 1190 i2c.write(address, temp, 1);
mkistler 0:7538ad2e54eb 1191 i2c.read(address, temp_dest, count);
mkistler 0:7538ad2e54eb 1192
mkistler 0:7538ad2e54eb 1193 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
mkistler 0:7538ad2e54eb 1194 for (i=0; i < count; i++) {
mkistler 0:7538ad2e54eb 1195 dest[i] = temp_dest[i];
mkistler 0:7538ad2e54eb 1196 }
mkistler 0:7538ad2e54eb 1197 return count;
mkistler 0:7538ad2e54eb 1198 }