work in progress
Dependencies: FastAnalogIn FastIO USBDevice mbed FastPWM SimpleDMA
Fork of Pinscape_Controller by
main.cpp@4:02c7cd7b2183, 2014-07-24 (annotated)
- Committer:
- mjr
- Date:
- Thu Jul 24 05:50:36 2014 +0000
- Revision:
- 4:02c7cd7b2183
- Parent:
- 3:3514575d4f86
- Child:
- 5:a70c0bce770d
USB 3 connection problems fixed. Host power status reflected in diagnostic LEDs. Non-blocking initial connection.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 0:5acbbe3f4cf4 | 1 | #include "mbed.h" |
mjr | 0:5acbbe3f4cf4 | 2 | #include "USBJoystick.h" |
mjr | 0:5acbbe3f4cf4 | 3 | #include "MMA8451Q.h" |
mjr | 1:d913e0afb2ac | 4 | #include "tsl1410r.h" |
mjr | 1:d913e0afb2ac | 5 | #include "FreescaleIAP.h" |
mjr | 2:c174f9ee414a | 6 | #include "crc32.h" |
mjr | 2:c174f9ee414a | 7 | |
mjr | 2:c174f9ee414a | 8 | // customization of the joystick class to expose connect/suspend status |
mjr | 2:c174f9ee414a | 9 | class MyUSBJoystick: public USBJoystick |
mjr | 2:c174f9ee414a | 10 | { |
mjr | 2:c174f9ee414a | 11 | public: |
mjr | 2:c174f9ee414a | 12 | MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release) |
mjr | 4:02c7cd7b2183 | 13 | : USBJoystick(vendor_id, product_id, product_release, false) |
mjr | 2:c174f9ee414a | 14 | { |
mjr | 2:c174f9ee414a | 15 | suspended_ = false; |
mjr | 2:c174f9ee414a | 16 | } |
mjr | 2:c174f9ee414a | 17 | |
mjr | 3:3514575d4f86 | 18 | int isConnected() { return configured(); } |
mjr | 2:c174f9ee414a | 19 | int isSuspended() const { return suspended_; } |
mjr | 2:c174f9ee414a | 20 | |
mjr | 2:c174f9ee414a | 21 | protected: |
mjr | 2:c174f9ee414a | 22 | virtual void suspendStateChanged(unsigned int suspended) |
mjr | 2:c174f9ee414a | 23 | { suspended_ = suspended; } |
mjr | 2:c174f9ee414a | 24 | |
mjr | 2:c174f9ee414a | 25 | int suspended_; |
mjr | 2:c174f9ee414a | 26 | }; |
mjr | 0:5acbbe3f4cf4 | 27 | |
mjr | 4:02c7cd7b2183 | 28 | // On-board RGB LED elements - we use these for diagnostic displays. |
mjr | 4:02c7cd7b2183 | 29 | DigitalOut ledR(LED1), ledG(LED2), ledB(LED3); |
mjr | 0:5acbbe3f4cf4 | 30 | |
mjr | 1:d913e0afb2ac | 31 | // calibration button - switch input and LED output |
mjr | 1:d913e0afb2ac | 32 | DigitalIn calBtn(PTE29); |
mjr | 1:d913e0afb2ac | 33 | DigitalOut calBtnLed(PTE23); |
mjr | 0:5acbbe3f4cf4 | 34 | |
mjr | 0:5acbbe3f4cf4 | 35 | static int pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 36 | |
mjr | 0:5acbbe3f4cf4 | 37 | // on/off state for each LedWiz output |
mjr | 1:d913e0afb2ac | 38 | static uint8_t wizOn[32]; |
mjr | 0:5acbbe3f4cf4 | 39 | |
mjr | 0:5acbbe3f4cf4 | 40 | // profile (brightness/blink) state for each LedWiz output |
mjr | 1:d913e0afb2ac | 41 | static uint8_t wizVal[32] = { |
mjr | 0:5acbbe3f4cf4 | 42 | 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 0:5acbbe3f4cf4 | 43 | 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 0:5acbbe3f4cf4 | 44 | 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 0:5acbbe3f4cf4 | 45 | 0, 0, 0, 0, 0, 0, 0, 0 |
mjr | 0:5acbbe3f4cf4 | 46 | }; |
mjr | 0:5acbbe3f4cf4 | 47 | |
mjr | 1:d913e0afb2ac | 48 | static float wizState(int idx) |
mjr | 0:5acbbe3f4cf4 | 49 | { |
mjr | 1:d913e0afb2ac | 50 | if (wizOn[idx]) { |
mjr | 0:5acbbe3f4cf4 | 51 | // on - map profile brightness state to PWM level |
mjr | 1:d913e0afb2ac | 52 | uint8_t val = wizVal[idx]; |
mjr | 0:5acbbe3f4cf4 | 53 | if (val >= 1 && val <= 48) |
mjr | 0:5acbbe3f4cf4 | 54 | return 1.0 - val/48.0; |
mjr | 0:5acbbe3f4cf4 | 55 | else if (val >= 129 && val <= 132) |
mjr | 0:5acbbe3f4cf4 | 56 | return 0.0; |
mjr | 0:5acbbe3f4cf4 | 57 | else |
mjr | 0:5acbbe3f4cf4 | 58 | return 1.0; |
mjr | 0:5acbbe3f4cf4 | 59 | } |
mjr | 0:5acbbe3f4cf4 | 60 | else { |
mjr | 0:5acbbe3f4cf4 | 61 | // off |
mjr | 0:5acbbe3f4cf4 | 62 | return 1.0; |
mjr | 0:5acbbe3f4cf4 | 63 | } |
mjr | 0:5acbbe3f4cf4 | 64 | } |
mjr | 0:5acbbe3f4cf4 | 65 | |
mjr | 1:d913e0afb2ac | 66 | static void updateWizOuts() |
mjr | 1:d913e0afb2ac | 67 | { |
mjr | 4:02c7cd7b2183 | 68 | ledR = wizState(0); |
mjr | 4:02c7cd7b2183 | 69 | ledG = wizState(1); |
mjr | 4:02c7cd7b2183 | 70 | ledB = wizState(2); |
mjr | 1:d913e0afb2ac | 71 | } |
mjr | 1:d913e0afb2ac | 72 | |
mjr | 1:d913e0afb2ac | 73 | struct AccPrv |
mjr | 0:5acbbe3f4cf4 | 74 | { |
mjr | 1:d913e0afb2ac | 75 | AccPrv() : x(0), y(0) { } |
mjr | 1:d913e0afb2ac | 76 | float x; |
mjr | 1:d913e0afb2ac | 77 | float y; |
mjr | 1:d913e0afb2ac | 78 | |
mjr | 1:d913e0afb2ac | 79 | double dist(AccPrv &b) |
mjr | 1:d913e0afb2ac | 80 | { |
mjr | 1:d913e0afb2ac | 81 | float dx = x - b.x, dy = y - b.y; |
mjr | 1:d913e0afb2ac | 82 | return sqrt(dx*dx + dy*dy); |
mjr | 1:d913e0afb2ac | 83 | } |
mjr | 1:d913e0afb2ac | 84 | }; |
mjr | 0:5acbbe3f4cf4 | 85 | |
mjr | 2:c174f9ee414a | 86 | // Non-volatile memory structure. We store persistent a small |
mjr | 2:c174f9ee414a | 87 | // amount of persistent data in flash memory to retain calibration |
mjr | 2:c174f9ee414a | 88 | // data between sessions. |
mjr | 2:c174f9ee414a | 89 | struct NVM |
mjr | 2:c174f9ee414a | 90 | { |
mjr | 2:c174f9ee414a | 91 | // checksum - we use this to determine if the flash record |
mjr | 2:c174f9ee414a | 92 | // has been initialized |
mjr | 2:c174f9ee414a | 93 | uint32_t checksum; |
mjr | 2:c174f9ee414a | 94 | |
mjr | 2:c174f9ee414a | 95 | // signature value |
mjr | 2:c174f9ee414a | 96 | static const uint32_t SIGNATURE = 0x4D4A522A; |
mjr | 2:c174f9ee414a | 97 | static const uint16_t VERSION = 0x0002; |
mjr | 2:c174f9ee414a | 98 | |
mjr | 2:c174f9ee414a | 99 | // stored data (excluding the checksum) |
mjr | 2:c174f9ee414a | 100 | struct |
mjr | 2:c174f9ee414a | 101 | { |
mjr | 2:c174f9ee414a | 102 | // signature and version - further verification that we have valid |
mjr | 2:c174f9ee414a | 103 | // initialized data |
mjr | 2:c174f9ee414a | 104 | uint32_t sig; |
mjr | 2:c174f9ee414a | 105 | uint16_t vsn; |
mjr | 2:c174f9ee414a | 106 | |
mjr | 2:c174f9ee414a | 107 | // direction - 0 means unknown, 1 means bright end is pixel 0, 2 means reversed |
mjr | 2:c174f9ee414a | 108 | uint8_t dir; |
mjr | 2:c174f9ee414a | 109 | |
mjr | 2:c174f9ee414a | 110 | // plunger calibration min and max |
mjr | 2:c174f9ee414a | 111 | int plungerMin; |
mjr | 2:c174f9ee414a | 112 | int plungerMax; |
mjr | 2:c174f9ee414a | 113 | } d; |
mjr | 2:c174f9ee414a | 114 | }; |
mjr | 2:c174f9ee414a | 115 | |
mjr | 3:3514575d4f86 | 116 | // Accelerometer handler |
mjr | 3:3514575d4f86 | 117 | const int MMA8451_I2C_ADDRESS = (0x1d<<1); |
mjr | 3:3514575d4f86 | 118 | class Accel |
mjr | 3:3514575d4f86 | 119 | { |
mjr | 3:3514575d4f86 | 120 | public: |
mjr | 3:3514575d4f86 | 121 | Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin) |
mjr | 3:3514575d4f86 | 122 | : mma_(sda, scl, i2cAddr), intIn_(irqPin) |
mjr | 3:3514575d4f86 | 123 | { |
mjr | 3:3514575d4f86 | 124 | // set the initial ball velocity to zero |
mjr | 3:3514575d4f86 | 125 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 126 | |
mjr | 3:3514575d4f86 | 127 | // set the initial raw acceleration reading to zero |
mjr | 3:3514575d4f86 | 128 | xRaw_ = yRaw_ = 0; |
mjr | 3:3514575d4f86 | 129 | |
mjr | 3:3514575d4f86 | 130 | // enable the interrupt |
mjr | 3:3514575d4f86 | 131 | mma_.setInterruptMode(irqPin == PTA14 ? 1 : 2); |
mjr | 3:3514575d4f86 | 132 | |
mjr | 3:3514575d4f86 | 133 | // set up the interrupt handler |
mjr | 3:3514575d4f86 | 134 | intIn_.rise(this, &Accel::isr); |
mjr | 3:3514575d4f86 | 135 | |
mjr | 3:3514575d4f86 | 136 | // read the current registers to clear the data ready flag |
mjr | 3:3514575d4f86 | 137 | float z; |
mjr | 3:3514575d4f86 | 138 | mma_.getAccXYZ(xRaw_, yRaw_, z); |
mjr | 3:3514575d4f86 | 139 | |
mjr | 3:3514575d4f86 | 140 | // start our timers |
mjr | 3:3514575d4f86 | 141 | tGet_.start(); |
mjr | 3:3514575d4f86 | 142 | tInt_.start(); |
mjr | 3:3514575d4f86 | 143 | } |
mjr | 3:3514575d4f86 | 144 | |
mjr | 3:3514575d4f86 | 145 | void get(float &x, float &y, float &rx, float &ry) |
mjr | 3:3514575d4f86 | 146 | { |
mjr | 3:3514575d4f86 | 147 | // disable interrupts while manipulating the shared data |
mjr | 3:3514575d4f86 | 148 | __disable_irq(); |
mjr | 3:3514575d4f86 | 149 | |
mjr | 3:3514575d4f86 | 150 | // read the shared data and store locally for calculations |
mjr | 3:3514575d4f86 | 151 | float vx = vx_, vy = vy_, xRaw = xRaw_, yRaw = yRaw_; |
mjr | 3:3514575d4f86 | 152 | |
mjr | 3:3514575d4f86 | 153 | // reset the velocity |
mjr | 3:3514575d4f86 | 154 | vx_ = vy_ = 0; |
mjr | 3:3514575d4f86 | 155 | |
mjr | 3:3514575d4f86 | 156 | // get the time since the last get() sample |
mjr | 3:3514575d4f86 | 157 | float dt = tGet_.read_us()/1.0e6; |
mjr | 3:3514575d4f86 | 158 | tGet_.reset(); |
mjr | 3:3514575d4f86 | 159 | |
mjr | 3:3514575d4f86 | 160 | // done manipulating the shared data |
mjr | 3:3514575d4f86 | 161 | __enable_irq(); |
mjr | 3:3514575d4f86 | 162 | |
mjr | 3:3514575d4f86 | 163 | // calculate the acceleration since the last get(): a = dv/dt |
mjr | 3:3514575d4f86 | 164 | x = vx/dt; |
mjr | 3:3514575d4f86 | 165 | y = vy/dt; |
mjr | 3:3514575d4f86 | 166 | |
mjr | 3:3514575d4f86 | 167 | // return the raw accelerometer data in rx,ry |
mjr | 3:3514575d4f86 | 168 | rx = xRaw; |
mjr | 3:3514575d4f86 | 169 | ry = yRaw; |
mjr | 3:3514575d4f86 | 170 | } |
mjr | 3:3514575d4f86 | 171 | |
mjr | 3:3514575d4f86 | 172 | private: |
mjr | 3:3514575d4f86 | 173 | // interrupt handler |
mjr | 3:3514575d4f86 | 174 | void isr() |
mjr | 3:3514575d4f86 | 175 | { |
mjr | 3:3514575d4f86 | 176 | // Read the axes. Note that we have to read all three axes |
mjr | 3:3514575d4f86 | 177 | // (even though we only really use x and y) in order to clear |
mjr | 3:3514575d4f86 | 178 | // the "data ready" status bit in the accelerometer. The |
mjr | 3:3514575d4f86 | 179 | // interrupt only occurs when the "ready" bit transitions from |
mjr | 3:3514575d4f86 | 180 | // off to on, so we have to make sure it's off. |
mjr | 3:3514575d4f86 | 181 | float z; |
mjr | 3:3514575d4f86 | 182 | mma_.getAccXYZ(xRaw_, yRaw_, z); |
mjr | 3:3514575d4f86 | 183 | |
mjr | 3:3514575d4f86 | 184 | // calculate the time since the last interrupt |
mjr | 3:3514575d4f86 | 185 | float dt = tInt_.read_us()/1.0e6; |
mjr | 3:3514575d4f86 | 186 | tInt_.reset(); |
mjr | 3:3514575d4f86 | 187 | |
mjr | 3:3514575d4f86 | 188 | // Accelerate the model ball: v = a*dt. Assume that the raw |
mjr | 3:3514575d4f86 | 189 | // data from the accelerometer reflects the average physical |
mjr | 3:3514575d4f86 | 190 | // acceleration over the interval since the last sample. |
mjr | 3:3514575d4f86 | 191 | vx_ += xRaw_ * dt; |
mjr | 3:3514575d4f86 | 192 | vy_ += yRaw_ * dt; |
mjr | 3:3514575d4f86 | 193 | } |
mjr | 3:3514575d4f86 | 194 | |
mjr | 3:3514575d4f86 | 195 | // current modeled ball velocity |
mjr | 3:3514575d4f86 | 196 | float vx_, vy_; |
mjr | 3:3514575d4f86 | 197 | |
mjr | 3:3514575d4f86 | 198 | // last raw axis readings |
mjr | 3:3514575d4f86 | 199 | float xRaw_, yRaw_; |
mjr | 3:3514575d4f86 | 200 | |
mjr | 3:3514575d4f86 | 201 | // underlying accelerometer object |
mjr | 3:3514575d4f86 | 202 | MMA8451Q mma_; |
mjr | 3:3514575d4f86 | 203 | |
mjr | 3:3514575d4f86 | 204 | // interrupt router |
mjr | 3:3514575d4f86 | 205 | InterruptIn intIn_; |
mjr | 3:3514575d4f86 | 206 | |
mjr | 3:3514575d4f86 | 207 | // timer for measuring time between get() samples |
mjr | 3:3514575d4f86 | 208 | Timer tGet_; |
mjr | 3:3514575d4f86 | 209 | |
mjr | 3:3514575d4f86 | 210 | // timer for measuring time between interrupts |
mjr | 3:3514575d4f86 | 211 | Timer tInt_; |
mjr | 3:3514575d4f86 | 212 | }; |
mjr | 3:3514575d4f86 | 213 | |
mjr | 0:5acbbe3f4cf4 | 214 | int main(void) |
mjr | 0:5acbbe3f4cf4 | 215 | { |
mjr | 1:d913e0afb2ac | 216 | // turn off our on-board indicator LED |
mjr | 4:02c7cd7b2183 | 217 | ledR = 1; |
mjr | 4:02c7cd7b2183 | 218 | ledG = 1; |
mjr | 4:02c7cd7b2183 | 219 | ledB = 1; |
mjr | 1:d913e0afb2ac | 220 | |
mjr | 2:c174f9ee414a | 221 | // set up a flash memory controller |
mjr | 2:c174f9ee414a | 222 | FreescaleIAP iap; |
mjr | 2:c174f9ee414a | 223 | |
mjr | 2:c174f9ee414a | 224 | // use the last sector of flash for our non-volatile memory structure |
mjr | 2:c174f9ee414a | 225 | int flash_addr = (iap.flash_size() - SECTOR_SIZE); |
mjr | 2:c174f9ee414a | 226 | NVM *flash = (NVM *)flash_addr; |
mjr | 2:c174f9ee414a | 227 | NVM cfg; |
mjr | 2:c174f9ee414a | 228 | |
mjr | 2:c174f9ee414a | 229 | // check for valid flash |
mjr | 2:c174f9ee414a | 230 | bool flash_valid = (flash->d.sig == flash->SIGNATURE |
mjr | 2:c174f9ee414a | 231 | && flash->d.vsn == flash->VERSION |
mjr | 2:c174f9ee414a | 232 | && flash->checksum == CRC32(&flash->d, sizeof(flash->d))); |
mjr | 2:c174f9ee414a | 233 | |
mjr | 2:c174f9ee414a | 234 | // Number of pixels we read from the sensor on each frame. This can be |
mjr | 2:c174f9ee414a | 235 | // less than the physical pixel count if desired; we'll read every nth |
mjr | 2:c174f9ee414a | 236 | // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320, |
mjr | 2:c174f9ee414a | 237 | // we'll read every 4th pixel. VP doesn't seem to have very high |
mjr | 2:c174f9ee414a | 238 | // resolution internally for the plunger, so it's probably not necessary |
mjr | 2:c174f9ee414a | 239 | // to use the full resolution of the sensor - about 160 pixels seems |
mjr | 2:c174f9ee414a | 240 | // perfectly adequate. We can read the sensor faster (and thus provide |
mjr | 2:c174f9ee414a | 241 | // a higher refresh rate) if we read fewer pixels in each frame. |
mjr | 2:c174f9ee414a | 242 | const int npix = 160; |
mjr | 2:c174f9ee414a | 243 | |
mjr | 2:c174f9ee414a | 244 | // if the flash is valid, load it; otherwise initialize to defaults |
mjr | 2:c174f9ee414a | 245 | if (flash_valid) { |
mjr | 2:c174f9ee414a | 246 | memcpy(&cfg, flash, sizeof(cfg)); |
mjr | 2:c174f9ee414a | 247 | printf("Flash restored: plunger min=%d, max=%d\r\n", |
mjr | 2:c174f9ee414a | 248 | cfg.d.plungerMin, cfg.d.plungerMax); |
mjr | 2:c174f9ee414a | 249 | } |
mjr | 2:c174f9ee414a | 250 | else { |
mjr | 2:c174f9ee414a | 251 | printf("Factory reset\r\n"); |
mjr | 2:c174f9ee414a | 252 | cfg.d.sig = cfg.SIGNATURE; |
mjr | 2:c174f9ee414a | 253 | cfg.d.vsn = cfg.VERSION; |
mjr | 2:c174f9ee414a | 254 | cfg.d.plungerMin = 0; |
mjr | 2:c174f9ee414a | 255 | cfg.d.plungerMax = npix; |
mjr | 2:c174f9ee414a | 256 | } |
mjr | 1:d913e0afb2ac | 257 | |
mjr | 1:d913e0afb2ac | 258 | // plunger calibration button debounce timer |
mjr | 1:d913e0afb2ac | 259 | Timer calBtnTimer; |
mjr | 1:d913e0afb2ac | 260 | calBtnTimer.start(); |
mjr | 1:d913e0afb2ac | 261 | int calBtnDownTime = 0; |
mjr | 1:d913e0afb2ac | 262 | int calBtnLit = false; |
mjr | 1:d913e0afb2ac | 263 | |
mjr | 1:d913e0afb2ac | 264 | // Calibration button state: |
mjr | 1:d913e0afb2ac | 265 | // 0 = not pushed |
mjr | 1:d913e0afb2ac | 266 | // 1 = pushed, not yet debounced |
mjr | 1:d913e0afb2ac | 267 | // 2 = pushed, debounced, waiting for hold time |
mjr | 1:d913e0afb2ac | 268 | // 3 = pushed, hold time completed - in calibration mode |
mjr | 1:d913e0afb2ac | 269 | int calBtnState = 0; |
mjr | 1:d913e0afb2ac | 270 | |
mjr | 1:d913e0afb2ac | 271 | // set up a timer for our heartbeat indicator |
mjr | 1:d913e0afb2ac | 272 | Timer hbTimer; |
mjr | 1:d913e0afb2ac | 273 | hbTimer.start(); |
mjr | 1:d913e0afb2ac | 274 | int t0Hb = hbTimer.read_ms(); |
mjr | 1:d913e0afb2ac | 275 | int hb = 0; |
mjr | 1:d913e0afb2ac | 276 | |
mjr | 1:d913e0afb2ac | 277 | // set a timer for accelerometer auto-centering |
mjr | 1:d913e0afb2ac | 278 | Timer acTimer; |
mjr | 1:d913e0afb2ac | 279 | acTimer.start(); |
mjr | 1:d913e0afb2ac | 280 | int t0ac = acTimer.read_ms(); |
mjr | 1:d913e0afb2ac | 281 | |
mjr | 4:02c7cd7b2183 | 282 | // Create the joystick USB client |
mjr | 3:3514575d4f86 | 283 | MyUSBJoystick js(0xFAFA, 0x00F7, 0x0003); |
mjr | 2:c174f9ee414a | 284 | |
mjr | 0:5acbbe3f4cf4 | 285 | // create the accelerometer object |
mjr | 3:3514575d4f86 | 286 | Accel accel(PTE25, PTE24, MMA8451_I2C_ADDRESS, PTA15); |
mjr | 0:5acbbe3f4cf4 | 287 | |
mjr | 0:5acbbe3f4cf4 | 288 | // create the CCD array object |
mjr | 1:d913e0afb2ac | 289 | TSL1410R ccd(PTE20, PTE21, PTB0); |
mjr | 2:c174f9ee414a | 290 | |
mjr | 1:d913e0afb2ac | 291 | // recent accelerometer readings, for auto centering |
mjr | 1:d913e0afb2ac | 292 | int iAccPrv = 0, nAccPrv = 0; |
mjr | 1:d913e0afb2ac | 293 | const int maxAccPrv = 5; |
mjr | 1:d913e0afb2ac | 294 | AccPrv accPrv[maxAccPrv]; |
mjr | 0:5acbbe3f4cf4 | 295 | |
mjr | 1:d913e0afb2ac | 296 | // last accelerometer report, in mouse coordinates |
mjr | 1:d913e0afb2ac | 297 | int x = 127, y = 127, z = 0; |
mjr | 2:c174f9ee414a | 298 | |
mjr | 1:d913e0afb2ac | 299 | // raw accelerator centerpoint, on the unit interval (-1.0 .. +1.0) |
mjr | 1:d913e0afb2ac | 300 | float xCenter = 0.0, yCenter = 0.0; |
mjr | 2:c174f9ee414a | 301 | |
mjr | 2:c174f9ee414a | 302 | // start the first CCD integration cycle |
mjr | 2:c174f9ee414a | 303 | ccd.clear(); |
mjr | 1:d913e0afb2ac | 304 | |
mjr | 1:d913e0afb2ac | 305 | // we're all set up - now just loop, processing sensor reports and |
mjr | 1:d913e0afb2ac | 306 | // host requests |
mjr | 0:5acbbe3f4cf4 | 307 | for (;;) |
mjr | 0:5acbbe3f4cf4 | 308 | { |
mjr | 0:5acbbe3f4cf4 | 309 | // Look for an incoming report. Continue processing input as |
mjr | 0:5acbbe3f4cf4 | 310 | // long as there's anything pending - this ensures that we |
mjr | 0:5acbbe3f4cf4 | 311 | // handle input in as timely a fashion as possible by deferring |
mjr | 0:5acbbe3f4cf4 | 312 | // output tasks as long as there's input to process. |
mjr | 0:5acbbe3f4cf4 | 313 | HID_REPORT report; |
mjr | 0:5acbbe3f4cf4 | 314 | while (js.readNB(&report) && report.length == 8) |
mjr | 0:5acbbe3f4cf4 | 315 | { |
mjr | 0:5acbbe3f4cf4 | 316 | uint8_t *data = report.data; |
mjr | 1:d913e0afb2ac | 317 | if (data[0] == 64) |
mjr | 1:d913e0afb2ac | 318 | { |
mjr | 0:5acbbe3f4cf4 | 319 | // LWZ-SBA - first four bytes are bit-packed on/off flags |
mjr | 0:5acbbe3f4cf4 | 320 | // for the outputs; 5th byte is the pulse speed (0-7) |
mjr | 0:5acbbe3f4cf4 | 321 | //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n", |
mjr | 0:5acbbe3f4cf4 | 322 | // data[1], data[2], data[3], data[4], data[5]); |
mjr | 0:5acbbe3f4cf4 | 323 | |
mjr | 0:5acbbe3f4cf4 | 324 | // update all on/off states |
mjr | 0:5acbbe3f4cf4 | 325 | for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1) |
mjr | 0:5acbbe3f4cf4 | 326 | { |
mjr | 0:5acbbe3f4cf4 | 327 | if (bit == 0x100) { |
mjr | 0:5acbbe3f4cf4 | 328 | bit = 1; |
mjr | 0:5acbbe3f4cf4 | 329 | ++ri; |
mjr | 0:5acbbe3f4cf4 | 330 | } |
mjr | 1:d913e0afb2ac | 331 | wizOn[i] = ((data[ri] & bit) != 0); |
mjr | 0:5acbbe3f4cf4 | 332 | } |
mjr | 0:5acbbe3f4cf4 | 333 | |
mjr | 1:d913e0afb2ac | 334 | // update the physical outputs |
mjr | 1:d913e0afb2ac | 335 | updateWizOuts(); |
mjr | 0:5acbbe3f4cf4 | 336 | |
mjr | 0:5acbbe3f4cf4 | 337 | // reset the PBA counter |
mjr | 0:5acbbe3f4cf4 | 338 | pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 339 | } |
mjr | 1:d913e0afb2ac | 340 | else |
mjr | 1:d913e0afb2ac | 341 | { |
mjr | 0:5acbbe3f4cf4 | 342 | // LWZ-PBA - full state dump; each byte is one output |
mjr | 0:5acbbe3f4cf4 | 343 | // in the current bank. pbaIdx keeps track of the bank; |
mjr | 0:5acbbe3f4cf4 | 344 | // this is incremented implicitly by each PBA message. |
mjr | 0:5acbbe3f4cf4 | 345 | //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n", |
mjr | 0:5acbbe3f4cf4 | 346 | // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); |
mjr | 0:5acbbe3f4cf4 | 347 | |
mjr | 0:5acbbe3f4cf4 | 348 | // update all output profile settings |
mjr | 0:5acbbe3f4cf4 | 349 | for (int i = 0 ; i < 8 ; ++i) |
mjr | 1:d913e0afb2ac | 350 | wizVal[pbaIdx + i] = data[i]; |
mjr | 0:5acbbe3f4cf4 | 351 | |
mjr | 0:5acbbe3f4cf4 | 352 | // update the physical LED state if this is the last bank |
mjr | 0:5acbbe3f4cf4 | 353 | if (pbaIdx == 24) |
mjr | 1:d913e0afb2ac | 354 | updateWizOuts(); |
mjr | 0:5acbbe3f4cf4 | 355 | |
mjr | 0:5acbbe3f4cf4 | 356 | // advance to the next bank |
mjr | 0:5acbbe3f4cf4 | 357 | pbaIdx = (pbaIdx + 8) & 31; |
mjr | 0:5acbbe3f4cf4 | 358 | } |
mjr | 0:5acbbe3f4cf4 | 359 | } |
mjr | 1:d913e0afb2ac | 360 | |
mjr | 1:d913e0afb2ac | 361 | // check for plunger calibration |
mjr | 1:d913e0afb2ac | 362 | if (!calBtn) |
mjr | 0:5acbbe3f4cf4 | 363 | { |
mjr | 1:d913e0afb2ac | 364 | // check the state |
mjr | 1:d913e0afb2ac | 365 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 366 | { |
mjr | 1:d913e0afb2ac | 367 | case 0: |
mjr | 1:d913e0afb2ac | 368 | // button not yet pushed - start debouncing |
mjr | 1:d913e0afb2ac | 369 | calBtnTimer.reset(); |
mjr | 1:d913e0afb2ac | 370 | calBtnDownTime = calBtnTimer.read_ms(); |
mjr | 1:d913e0afb2ac | 371 | calBtnState = 1; |
mjr | 1:d913e0afb2ac | 372 | break; |
mjr | 1:d913e0afb2ac | 373 | |
mjr | 1:d913e0afb2ac | 374 | case 1: |
mjr | 1:d913e0afb2ac | 375 | // pushed, not yet debounced - if the debounce time has |
mjr | 1:d913e0afb2ac | 376 | // passed, start the hold period |
mjr | 1:d913e0afb2ac | 377 | if (calBtnTimer.read_ms() - calBtnDownTime > 50) |
mjr | 1:d913e0afb2ac | 378 | calBtnState = 2; |
mjr | 1:d913e0afb2ac | 379 | break; |
mjr | 1:d913e0afb2ac | 380 | |
mjr | 1:d913e0afb2ac | 381 | case 2: |
mjr | 1:d913e0afb2ac | 382 | // in the hold period - if the button has been held down |
mjr | 1:d913e0afb2ac | 383 | // for the entire hold period, move to calibration mode |
mjr | 1:d913e0afb2ac | 384 | if (calBtnTimer.read_ms() - calBtnDownTime > 2050) |
mjr | 1:d913e0afb2ac | 385 | { |
mjr | 1:d913e0afb2ac | 386 | // enter calibration mode |
mjr | 1:d913e0afb2ac | 387 | calBtnState = 3; |
mjr | 1:d913e0afb2ac | 388 | |
mjr | 1:d913e0afb2ac | 389 | // reset the calibration limits |
mjr | 2:c174f9ee414a | 390 | cfg.d.plungerMax = 0; |
mjr | 2:c174f9ee414a | 391 | cfg.d.plungerMin = npix; |
mjr | 1:d913e0afb2ac | 392 | } |
mjr | 1:d913e0afb2ac | 393 | break; |
mjr | 2:c174f9ee414a | 394 | |
mjr | 2:c174f9ee414a | 395 | case 3: |
mjr | 2:c174f9ee414a | 396 | // Already in calibration mode - pushing the button in this |
mjr | 2:c174f9ee414a | 397 | // state doesn't change the current state, but we won't leave |
mjr | 2:c174f9ee414a | 398 | // this state as long as it's held down. We can simply do |
mjr | 2:c174f9ee414a | 399 | // nothing here. |
mjr | 2:c174f9ee414a | 400 | break; |
mjr | 0:5acbbe3f4cf4 | 401 | } |
mjr | 0:5acbbe3f4cf4 | 402 | } |
mjr | 1:d913e0afb2ac | 403 | else |
mjr | 1:d913e0afb2ac | 404 | { |
mjr | 2:c174f9ee414a | 405 | // Button released. If we're in calibration mode, and |
mjr | 2:c174f9ee414a | 406 | // the calibration time has elapsed, end the calibration |
mjr | 2:c174f9ee414a | 407 | // and save the results to flash. |
mjr | 2:c174f9ee414a | 408 | // |
mjr | 2:c174f9ee414a | 409 | // Otherwise, return to the base state without saving anything. |
mjr | 2:c174f9ee414a | 410 | // If the button is released before we make it to calibration |
mjr | 2:c174f9ee414a | 411 | // mode, it simply cancels the attempt. |
mjr | 2:c174f9ee414a | 412 | if (calBtnState == 3 |
mjr | 2:c174f9ee414a | 413 | && calBtnTimer.read_ms() - calBtnDownTime > 17500) |
mjr | 2:c174f9ee414a | 414 | { |
mjr | 2:c174f9ee414a | 415 | // exit calibration mode |
mjr | 1:d913e0afb2ac | 416 | calBtnState = 0; |
mjr | 2:c174f9ee414a | 417 | |
mjr | 2:c174f9ee414a | 418 | // Save the current configuration state to flash, so that it |
mjr | 2:c174f9ee414a | 419 | // will be preserved through power off. Update the checksum |
mjr | 2:c174f9ee414a | 420 | // first so that we recognize the flash record as valid. |
mjr | 2:c174f9ee414a | 421 | cfg.checksum = CRC32(&cfg.d, sizeof(cfg.d)); |
mjr | 2:c174f9ee414a | 422 | iap.erase_sector(flash_addr); |
mjr | 2:c174f9ee414a | 423 | iap.program_flash(flash_addr, &cfg, sizeof(cfg)); |
mjr | 2:c174f9ee414a | 424 | |
mjr | 2:c174f9ee414a | 425 | // the flash state is now valid |
mjr | 2:c174f9ee414a | 426 | flash_valid = true; |
mjr | 2:c174f9ee414a | 427 | } |
mjr | 2:c174f9ee414a | 428 | else if (calBtnState != 3) |
mjr | 2:c174f9ee414a | 429 | { |
mjr | 2:c174f9ee414a | 430 | // didn't make it to calibration mode - cancel the operation |
mjr | 1:d913e0afb2ac | 431 | calBtnState = 0; |
mjr | 2:c174f9ee414a | 432 | } |
mjr | 1:d913e0afb2ac | 433 | } |
mjr | 1:d913e0afb2ac | 434 | |
mjr | 1:d913e0afb2ac | 435 | // light/flash the calibration button light, if applicable |
mjr | 1:d913e0afb2ac | 436 | int newCalBtnLit = calBtnLit; |
mjr | 1:d913e0afb2ac | 437 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 438 | { |
mjr | 1:d913e0afb2ac | 439 | case 2: |
mjr | 1:d913e0afb2ac | 440 | // in the hold period - flash the light |
mjr | 1:d913e0afb2ac | 441 | newCalBtnLit = (((calBtnTimer.read_ms() - calBtnDownTime)/250) & 1); |
mjr | 1:d913e0afb2ac | 442 | break; |
mjr | 1:d913e0afb2ac | 443 | |
mjr | 1:d913e0afb2ac | 444 | case 3: |
mjr | 1:d913e0afb2ac | 445 | // calibration mode - show steady on |
mjr | 1:d913e0afb2ac | 446 | newCalBtnLit = true; |
mjr | 1:d913e0afb2ac | 447 | break; |
mjr | 1:d913e0afb2ac | 448 | |
mjr | 1:d913e0afb2ac | 449 | default: |
mjr | 1:d913e0afb2ac | 450 | // not calibrating/holding - show steady off |
mjr | 1:d913e0afb2ac | 451 | newCalBtnLit = false; |
mjr | 1:d913e0afb2ac | 452 | break; |
mjr | 1:d913e0afb2ac | 453 | } |
mjr | 3:3514575d4f86 | 454 | |
mjr | 3:3514575d4f86 | 455 | // light or flash the external calibration button LED, and |
mjr | 3:3514575d4f86 | 456 | // do the same with the on-board blue LED |
mjr | 1:d913e0afb2ac | 457 | if (calBtnLit != newCalBtnLit) |
mjr | 1:d913e0afb2ac | 458 | { |
mjr | 1:d913e0afb2ac | 459 | calBtnLit = newCalBtnLit; |
mjr | 2:c174f9ee414a | 460 | if (calBtnLit) { |
mjr | 2:c174f9ee414a | 461 | calBtnLed = 1; |
mjr | 4:02c7cd7b2183 | 462 | ledR = 1; |
mjr | 4:02c7cd7b2183 | 463 | ledG = 1; |
mjr | 4:02c7cd7b2183 | 464 | ledB = 1; |
mjr | 2:c174f9ee414a | 465 | } |
mjr | 2:c174f9ee414a | 466 | else { |
mjr | 2:c174f9ee414a | 467 | calBtnLed = 0; |
mjr | 4:02c7cd7b2183 | 468 | ledR = 1; |
mjr | 4:02c7cd7b2183 | 469 | ledG = 1; |
mjr | 4:02c7cd7b2183 | 470 | ledB = 0; |
mjr | 2:c174f9ee414a | 471 | } |
mjr | 1:d913e0afb2ac | 472 | } |
mjr | 1:d913e0afb2ac | 473 | |
mjr | 1:d913e0afb2ac | 474 | // read the plunger sensor |
mjr | 1:d913e0afb2ac | 475 | int znew = z; |
mjr | 2:c174f9ee414a | 476 | uint16_t pix[npix]; |
mjr | 2:c174f9ee414a | 477 | ccd.read(pix, npix); |
mjr | 2:c174f9ee414a | 478 | |
mjr | 2:c174f9ee414a | 479 | // get the average brightness at each end of the sensor |
mjr | 2:c174f9ee414a | 480 | long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5; |
mjr | 2:c174f9ee414a | 481 | long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5; |
mjr | 2:c174f9ee414a | 482 | |
mjr | 2:c174f9ee414a | 483 | // figure the midpoint in the brightness; multiply by 3 so that we can |
mjr | 2:c174f9ee414a | 484 | // compare sums of three pixels at a time to smooth out noise |
mjr | 2:c174f9ee414a | 485 | long midpt = (avg1 + avg2)/2 * 3; |
mjr | 2:c174f9ee414a | 486 | |
mjr | 2:c174f9ee414a | 487 | // Work from the bright end to the dark end. VP interprets the |
mjr | 2:c174f9ee414a | 488 | // Z axis value as the amount the plunger is pulled: the minimum |
mjr | 2:c174f9ee414a | 489 | // is the rest position, the maximum is fully pulled. So we |
mjr | 2:c174f9ee414a | 490 | // essentially want to report how much of the sensor is lit, |
mjr | 2:c174f9ee414a | 491 | // since this increases as the plunger is pulled back. |
mjr | 2:c174f9ee414a | 492 | int si = 1, di = 1; |
mjr | 2:c174f9ee414a | 493 | if (avg1 < avg2) |
mjr | 2:c174f9ee414a | 494 | si = npix - 2, di = -1; |
mjr | 2:c174f9ee414a | 495 | |
mjr | 2:c174f9ee414a | 496 | // scan for the midpoint |
mjr | 2:c174f9ee414a | 497 | uint16_t *pixp = pix + si; |
mjr | 2:c174f9ee414a | 498 | for (int n = 1 ; n < npix - 1 ; ++n, pixp += di) |
mjr | 1:d913e0afb2ac | 499 | { |
mjr | 2:c174f9ee414a | 500 | // if we've crossed the midpoint, report this position |
mjr | 2:c174f9ee414a | 501 | if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt) |
mjr | 1:d913e0afb2ac | 502 | { |
mjr | 2:c174f9ee414a | 503 | // note the new position |
mjr | 2:c174f9ee414a | 504 | int pos = n; |
mjr | 2:c174f9ee414a | 505 | |
mjr | 2:c174f9ee414a | 506 | // if the bright end and dark end don't differ by enough, skip this |
mjr | 2:c174f9ee414a | 507 | // reading entirely - we must have an overexposed or underexposed frame |
mjr | 2:c174f9ee414a | 508 | if (labs(avg1 - avg2) < 0x3333) |
mjr | 2:c174f9ee414a | 509 | break; |
mjr | 2:c174f9ee414a | 510 | |
mjr | 2:c174f9ee414a | 511 | // Calibrate, or apply calibration, depending on the mode. |
mjr | 2:c174f9ee414a | 512 | // In either case, normalize to a 0-127 range. VP appears to |
mjr | 2:c174f9ee414a | 513 | // ignore negative Z axis values. |
mjr | 2:c174f9ee414a | 514 | if (calBtnState == 3) |
mjr | 1:d913e0afb2ac | 515 | { |
mjr | 2:c174f9ee414a | 516 | // calibrating - note if we're expanding the calibration envelope |
mjr | 2:c174f9ee414a | 517 | if (pos < cfg.d.plungerMin) |
mjr | 2:c174f9ee414a | 518 | cfg.d.plungerMin = pos; |
mjr | 2:c174f9ee414a | 519 | if (pos > cfg.d.plungerMax) |
mjr | 2:c174f9ee414a | 520 | cfg.d.plungerMax = pos; |
mjr | 2:c174f9ee414a | 521 | |
mjr | 2:c174f9ee414a | 522 | // normalize to the full physical range while calibrating |
mjr | 2:c174f9ee414a | 523 | znew = int(float(pos)/npix * 127); |
mjr | 1:d913e0afb2ac | 524 | } |
mjr | 2:c174f9ee414a | 525 | else |
mjr | 2:c174f9ee414a | 526 | { |
mjr | 2:c174f9ee414a | 527 | // running normally - normalize to the calibration range |
mjr | 2:c174f9ee414a | 528 | if (pos < cfg.d.plungerMin) |
mjr | 2:c174f9ee414a | 529 | pos = cfg.d.plungerMin; |
mjr | 2:c174f9ee414a | 530 | if (pos > cfg.d.plungerMax) |
mjr | 2:c174f9ee414a | 531 | pos = cfg.d.plungerMax; |
mjr | 2:c174f9ee414a | 532 | znew = int(float(pos - cfg.d.plungerMin) |
mjr | 2:c174f9ee414a | 533 | / (cfg.d.plungerMax - cfg.d.plungerMin + 1) * 127); |
mjr | 2:c174f9ee414a | 534 | } |
mjr | 2:c174f9ee414a | 535 | |
mjr | 2:c174f9ee414a | 536 | // done |
mjr | 2:c174f9ee414a | 537 | break; |
mjr | 1:d913e0afb2ac | 538 | } |
mjr | 2:c174f9ee414a | 539 | } |
mjr | 1:d913e0afb2ac | 540 | |
mjr | 1:d913e0afb2ac | 541 | // read the accelerometer |
mjr | 3:3514575d4f86 | 542 | float xa, ya, rxa, rya; |
mjr | 3:3514575d4f86 | 543 | accel.get(xa, ya, rxa, rya); |
mjr | 1:d913e0afb2ac | 544 | |
mjr | 1:d913e0afb2ac | 545 | // check for auto-centering every so often |
mjr | 1:d913e0afb2ac | 546 | if (acTimer.read_ms() - t0ac > 1000) |
mjr | 1:d913e0afb2ac | 547 | { |
mjr | 1:d913e0afb2ac | 548 | // add the sample to the history list |
mjr | 1:d913e0afb2ac | 549 | accPrv[iAccPrv].x = xa; |
mjr | 1:d913e0afb2ac | 550 | accPrv[iAccPrv].y = ya; |
mjr | 1:d913e0afb2ac | 551 | |
mjr | 1:d913e0afb2ac | 552 | // store the slot |
mjr | 1:d913e0afb2ac | 553 | iAccPrv += 1; |
mjr | 1:d913e0afb2ac | 554 | iAccPrv %= maxAccPrv; |
mjr | 1:d913e0afb2ac | 555 | nAccPrv += 1; |
mjr | 1:d913e0afb2ac | 556 | |
mjr | 1:d913e0afb2ac | 557 | // If we have a full complement, check for stability. The |
mjr | 1:d913e0afb2ac | 558 | // raw accelerometer input is in the rnage -4096 to 4096, but |
mjr | 1:d913e0afb2ac | 559 | // the class cover normalizes to a unit interval (-1.0 .. +1.0). |
mjr | 1:d913e0afb2ac | 560 | const float accTol = .005; |
mjr | 1:d913e0afb2ac | 561 | if (nAccPrv >= maxAccPrv |
mjr | 1:d913e0afb2ac | 562 | && accPrv[0].dist(accPrv[1]) < accTol |
mjr | 1:d913e0afb2ac | 563 | && accPrv[0].dist(accPrv[2]) < accTol |
mjr | 1:d913e0afb2ac | 564 | && accPrv[0].dist(accPrv[3]) < accTol |
mjr | 1:d913e0afb2ac | 565 | && accPrv[0].dist(accPrv[4]) < accTol) |
mjr | 1:d913e0afb2ac | 566 | { |
mjr | 1:d913e0afb2ac | 567 | // figure the new center |
mjr | 1:d913e0afb2ac | 568 | xCenter = (accPrv[0].x + accPrv[1].x + accPrv[2].x + accPrv[3].x + accPrv[4].x)/5.0; |
mjr | 1:d913e0afb2ac | 569 | yCenter = (accPrv[0].y + accPrv[1].y + accPrv[2].y + accPrv[3].y + accPrv[4].y)/5.0; |
mjr | 1:d913e0afb2ac | 570 | } |
mjr | 1:d913e0afb2ac | 571 | |
mjr | 1:d913e0afb2ac | 572 | // reset the auto-center timer |
mjr | 1:d913e0afb2ac | 573 | acTimer.reset(); |
mjr | 1:d913e0afb2ac | 574 | t0ac = acTimer.read_ms(); |
mjr | 1:d913e0afb2ac | 575 | } |
mjr | 1:d913e0afb2ac | 576 | |
mjr | 1:d913e0afb2ac | 577 | // adjust for our auto centering |
mjr | 1:d913e0afb2ac | 578 | xa -= xCenter; |
mjr | 1:d913e0afb2ac | 579 | ya -= yCenter; |
mjr | 1:d913e0afb2ac | 580 | |
mjr | 1:d913e0afb2ac | 581 | // confine to the unit interval |
mjr | 1:d913e0afb2ac | 582 | if (xa < -1.0) xa = -1.0; |
mjr | 1:d913e0afb2ac | 583 | if (xa > 1.0) xa = 1.0; |
mjr | 1:d913e0afb2ac | 584 | if (ya < -1.0) ya = -1.0; |
mjr | 1:d913e0afb2ac | 585 | if (ya > 1.0) ya = 1.0; |
mjr | 0:5acbbe3f4cf4 | 586 | |
mjr | 1:d913e0afb2ac | 587 | // figure the new mouse report data |
mjr | 1:d913e0afb2ac | 588 | int xnew = (int)(127 * xa); |
mjr | 1:d913e0afb2ac | 589 | int ynew = (int)(127 * ya); |
mjr | 2:c174f9ee414a | 590 | |
mjr | 2:c174f9ee414a | 591 | // store the updated joystick coordinates |
mjr | 2:c174f9ee414a | 592 | x = xnew; |
mjr | 2:c174f9ee414a | 593 | y = ynew; |
mjr | 2:c174f9ee414a | 594 | z = znew; |
mjr | 1:d913e0afb2ac | 595 | |
mjr | 2:c174f9ee414a | 596 | // if we're in USB suspend or disconnect mode, spin |
mjr | 2:c174f9ee414a | 597 | if (js.isSuspended() || !js.isConnected()) |
mjr | 0:5acbbe3f4cf4 | 598 | { |
mjr | 2:c174f9ee414a | 599 | // go dark (turn off the indicator LEDs) |
mjr | 4:02c7cd7b2183 | 600 | ledG = 1; |
mjr | 4:02c7cd7b2183 | 601 | ledB = 1; |
mjr | 4:02c7cd7b2183 | 602 | ledR = 1; |
mjr | 2:c174f9ee414a | 603 | |
mjr | 2:c174f9ee414a | 604 | // wait until we're connected and come out of suspend mode |
mjr | 4:02c7cd7b2183 | 605 | for (uint32_t n = 0 ; js.isSuspended() || !js.isConnected() ; ++n) |
mjr | 2:c174f9ee414a | 606 | { |
mjr | 2:c174f9ee414a | 607 | // spin for a bit |
mjr | 2:c174f9ee414a | 608 | wait(1); |
mjr | 2:c174f9ee414a | 609 | |
mjr | 4:02c7cd7b2183 | 610 | // if we're suspended, do a brief red flash; otherwise do a long red flash |
mjr | 4:02c7cd7b2183 | 611 | if (js.isSuspended()) |
mjr | 4:02c7cd7b2183 | 612 | { |
mjr | 4:02c7cd7b2183 | 613 | // suspended - flash briefly ever few seconds |
mjr | 4:02c7cd7b2183 | 614 | if (n % 3 == 0) |
mjr | 4:02c7cd7b2183 | 615 | { |
mjr | 4:02c7cd7b2183 | 616 | ledR = 0; |
mjr | 4:02c7cd7b2183 | 617 | wait(0.05); |
mjr | 4:02c7cd7b2183 | 618 | ledR = 1; |
mjr | 4:02c7cd7b2183 | 619 | } |
mjr | 4:02c7cd7b2183 | 620 | } |
mjr | 4:02c7cd7b2183 | 621 | else |
mjr | 4:02c7cd7b2183 | 622 | { |
mjr | 4:02c7cd7b2183 | 623 | // running, not connected - flash red |
mjr | 4:02c7cd7b2183 | 624 | ledR = !ledR; |
mjr | 4:02c7cd7b2183 | 625 | } |
mjr | 2:c174f9ee414a | 626 | } |
mjr | 2:c174f9ee414a | 627 | } |
mjr | 1:d913e0afb2ac | 628 | |
mjr | 3:3514575d4f86 | 629 | // Send the status report. It doesn't really matter what |
mjr | 3:3514575d4f86 | 630 | // coordinate system we use, since Visual Pinball has config |
mjr | 3:3514575d4f86 | 631 | // options for rotations and axis reversals, but reversing y |
mjr | 3:3514575d4f86 | 632 | // at the device level seems to produce the most intuitive |
mjr | 3:3514575d4f86 | 633 | // results for the Windows joystick control panel view, which |
mjr | 3:3514575d4f86 | 634 | // is an easy way to check that the device is working. |
mjr | 3:3514575d4f86 | 635 | js.update(x, -y, z, int(rxa*127), int(rya*127), 0); |
mjr | 1:d913e0afb2ac | 636 | |
mjr | 2:c174f9ee414a | 637 | // show a heartbeat flash in blue every so often if not in |
mjr | 2:c174f9ee414a | 638 | // calibration mode |
mjr | 2:c174f9ee414a | 639 | if (calBtnState < 2 && hbTimer.read_ms() - t0Hb > 1000) |
mjr | 1:d913e0afb2ac | 640 | { |
mjr | 2:c174f9ee414a | 641 | if (js.isSuspended()) |
mjr | 2:c174f9ee414a | 642 | { |
mjr | 2:c174f9ee414a | 643 | // suspended - turn off the LEDs entirely |
mjr | 4:02c7cd7b2183 | 644 | ledR = 1; |
mjr | 4:02c7cd7b2183 | 645 | ledG = 1; |
mjr | 4:02c7cd7b2183 | 646 | ledB = 1; |
mjr | 2:c174f9ee414a | 647 | } |
mjr | 2:c174f9ee414a | 648 | else if (!js.isConnected()) |
mjr | 2:c174f9ee414a | 649 | { |
mjr | 2:c174f9ee414a | 650 | // not connected - flash red |
mjr | 2:c174f9ee414a | 651 | hb = !hb; |
mjr | 4:02c7cd7b2183 | 652 | ledR = (hb ? 0 : 1); |
mjr | 4:02c7cd7b2183 | 653 | ledG = 1; |
mjr | 4:02c7cd7b2183 | 654 | ledB = 1; |
mjr | 2:c174f9ee414a | 655 | } |
mjr | 2:c174f9ee414a | 656 | else if (flash_valid) |
mjr | 2:c174f9ee414a | 657 | { |
mjr | 2:c174f9ee414a | 658 | // connected, NVM valid - flash blue/green |
mjr | 2:c174f9ee414a | 659 | hb = !hb; |
mjr | 4:02c7cd7b2183 | 660 | ledR = 1; |
mjr | 4:02c7cd7b2183 | 661 | ledG = (hb ? 0 : 1); |
mjr | 4:02c7cd7b2183 | 662 | ledB = (hb ? 1 : 0); |
mjr | 2:c174f9ee414a | 663 | } |
mjr | 2:c174f9ee414a | 664 | else |
mjr | 2:c174f9ee414a | 665 | { |
mjr | 2:c174f9ee414a | 666 | // connected, factory reset - flash yellow/green |
mjr | 2:c174f9ee414a | 667 | hb = !hb; |
mjr | 4:02c7cd7b2183 | 668 | ledR = (hb ? 0 : 1); |
mjr | 4:02c7cd7b2183 | 669 | ledG = 0; |
mjr | 4:02c7cd7b2183 | 670 | ledB = 1; |
mjr | 2:c174f9ee414a | 671 | } |
mjr | 1:d913e0afb2ac | 672 | |
mjr | 1:d913e0afb2ac | 673 | // reset the heartbeat timer |
mjr | 1:d913e0afb2ac | 674 | hbTimer.reset(); |
mjr | 1:d913e0afb2ac | 675 | t0Hb = hbTimer.read_ms(); |
mjr | 1:d913e0afb2ac | 676 | } |
mjr | 1:d913e0afb2ac | 677 | } |
mjr | 0:5acbbe3f4cf4 | 678 | } |