USB device stack, with KL25Z fixes for USB 3.0 hosts and sleep/resume interrupt handling

Dependents:   frdm_Slider_Keyboard idd_hw2_figlax_PanType idd_hw2_appachu_finger_chording idd_hw3_AngieWangAntonioDeLimaFernandesDanielLim_BladeSymphony ... more

Fork of USBDevice by mbed official

This is an overhauled version of the standard mbed USB device-side driver library, with bug fixes for KL25Z devices. It greatly improves reliability and stability of USB on the KL25Z, especially with devices using multiple endpoints concurrently.

I've had some nagging problems with the base mbed implementation for a long time, manifesting as occasional random disconnects that required rebooting the device. Recently (late 2015), I started implementing a USB device on the KL25Z that used multiple endpoints, and suddenly the nagging, occasional problems turned into frequent and predictable crashes. This forced me to delve into the USB stack and figure out what was really going on. Happily, the frequent crashes made it possible to track down and fix the problems. This new version is working very reliably in my testing - the random disconnects seem completely eradicated, even under very stressful conditions for the device.

Summary

  • Overall stability improvements
  • USB 3.0 host support
  • Stalled endpoint fixes
  • Sleep/resume notifications
  • Smaller memory footprint
  • General code cleanup

Update - 2/15/2016

My recent fixes introduced a new problem that made the initial connection fail most of the time on certain hosts. It's not clear if the common thread was a particular type of motherboard or USB chip set, or a specific version of Windows, or what, but several people ran into it. We tracked the problem down to the "stall" fixes in the earlier updates, which we now know weren't quite the right fixes after all. The latest update (2/15/2016) fixes this. It has new and improved "unstall" handling that so far works well with diverse hosts.

Race conditions and overall stability

The base mbed KL25Z implementation has a lot of problems with "race conditions" - timing problems that can happen when hardware interrupts occur at inopportune moments. The library shares a bunch of static variable data between interrupt handler context and regular application context. This isn't automatically a bad thing, but it does require careful coordination to make sure that the interrupt handler doesn't corrupt data that the other code was in the middle of updating when an interrupt occurs. The base mbed code, though, doesn't do any of the necessary coordination. This makes it kind of amazing that the base code worked at all for anyone, but I guess the interrupt rate is low enough in most applications that the glitch rate was below anyone's threshold to seriously investigate.

This overhaul adds the necessary coordination for the interrupt handlers to protect against these data corruptions. I think it's very solid now, and hopefully entirely free of the numerous race conditions in the old code. It's always hard to be certain that you've fixed every possible bug like this because they strike (effectively) at random, but I'm pretty confident: my test application was reliably able to trigger glitches in the base code in a matter of minutes, but the same application (with the overhauled library) now runs for days on end without dropping the connection.

Stalled endpoint fixes

USB has a standard way of handling communications errors called a "stall", which basically puts the connection into an error mode to let both sides know that they need to reset their internal states and sync up again. The original mbed version of the USB device library doesn't seem to have the necessary code to recover from this condition properly. The KL25Z hardware does some of the work, but it also seems to require the software to take some steps to "un-stall" the connection. (I keep saying "seems to" because the hardware reference material is very sketchy about all of this. Most of what I've figured out is from observing the device in action with a Windows host.) This new version adds code to do the necessary re-syncing and get the connection going again, automatically, and transparently to the user.

USB 3.0 Hosts

The original mbed code sometimes didn't work when connecting to hosts with USB 3.0 ports. This didn't affect every host, but it affected many of them. The common element seemed to be the Intel Haswell chip set on the host, but there may be other chip sets affected as well. In any case, the problem affected many PCs from the Windows 7 and 8 generation, as well as many Macs. It was possible to work around the problem by avoiding USB 3.0 ports - you could use a USB 2 port on the host, or plug a USB 2 hub between the host and device. But I wanted to just fix the problem and eliminate the need for such workarounds. This modified version of the library has such a fix, which so far has worked for everyone who's tried.

Sleep/resume notifications

This modified version also contains an innocuous change to the KL25Z USB HAL code to handle sleep and resume interrupts with calls to suspendStateChanged(). The original KL25Z code omitted these calls (and in fact didn't even enable the interrupts), but I think this was an unintentional oversight - the notifier function is part of the generic API, and other supported boards all implement it. I use this feature in my own application so that I can distinguish sleep mode from actual disconnects and handle the two conditions correctly.

Smaller memory footprint

The base mbed version of the code allocates twice as much memory for USB buffers as it really needed to. It looks like the original developers intended to implement the KL25Z USB hardware's built-in double-buffering mechanism, but they ultimately abandoned that effort. But they left in the double memory allocation. This version removes that and allocates only what's actually needed. The USB buffers aren't that big (128 bytes per endpoint), so this doesn't save a ton of memory, but even a little memory is pretty precious on this machine given that it only has 16K.

(I did look into adding the double-buffering support that the original developers abandoned, but after some experimentation I decided they were right to skip it. It just doesn't seem to mesh well with the design of the rest of the mbed USB code. I think it would take a major rewrite to make it work, and it doesn't seem worth the effort given that most applications don't need it - it would only benefit applications that are moving so much data through USB that they're pushing the limits of the CPU. And even for those, I think it would be a lot simpler to build a purely software-based buffer rotation mechanism.)

General code cleanup

The KL25Z HAL code in this version has greatly expanded commentary and a lot of general cleanup. Some of the hardware constants were given the wrong symbolic names (e.g., EVEN and ODD were reversed), and many were just missing (written as hard-coded numbers without explanation). I fixed the misnomers and added symbolic names for formerly anonymous numbers. Hopefully the next person who has to overhaul this code will at least have an easier time understanding what I thought I was doing!

Committer:
samux
Date:
Tue Jul 17 14:30:29 2012 +0000
Revision:
1:80ab0d068708
Child:
3:6d85e04fb59f
Update USBDevice lib

Who changed what in which revision?

UserRevisionLine numberNew contents of line
samux 1:80ab0d068708 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
samux 1:80ab0d068708 2 *
samux 1:80ab0d068708 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
samux 1:80ab0d068708 4 * and associated documentation files (the "Software"), to deal in the Software without
samux 1:80ab0d068708 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
samux 1:80ab0d068708 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
samux 1:80ab0d068708 7 * Software is furnished to do so, subject to the following conditions:
samux 1:80ab0d068708 8 *
samux 1:80ab0d068708 9 * The above copyright notice and this permission notice shall be included in all copies or
samux 1:80ab0d068708 10 * substantial portions of the Software.
samux 1:80ab0d068708 11 *
samux 1:80ab0d068708 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
samux 1:80ab0d068708 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
samux 1:80ab0d068708 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
samux 1:80ab0d068708 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
samux 1:80ab0d068708 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
samux 1:80ab0d068708 17 */
samux 1:80ab0d068708 18
samux 1:80ab0d068708 19 #include "stdint.h"
samux 1:80ab0d068708 20 #include "USBMSD.h"
samux 1:80ab0d068708 21
samux 1:80ab0d068708 22 #define DISK_OK 0x00
samux 1:80ab0d068708 23 #define NO_INIT 0x01
samux 1:80ab0d068708 24 #define NO_DISK 0x02
samux 1:80ab0d068708 25 #define WRITE_PROTECT 0x04
samux 1:80ab0d068708 26
samux 1:80ab0d068708 27 #define CBW_Signature 0x43425355
samux 1:80ab0d068708 28 #define CSW_Signature 0x53425355
samux 1:80ab0d068708 29
samux 1:80ab0d068708 30 // SCSI Commands
samux 1:80ab0d068708 31 #define TEST_UNIT_READY 0x00
samux 1:80ab0d068708 32 #define REQUEST_SENSE 0x03
samux 1:80ab0d068708 33 #define FORMAT_UNIT 0x04
samux 1:80ab0d068708 34 #define INQUIRY 0x12
samux 1:80ab0d068708 35 #define MODE_SELECT6 0x15
samux 1:80ab0d068708 36 #define MODE_SENSE6 0x1A
samux 1:80ab0d068708 37 #define START_STOP_UNIT 0x1B
samux 1:80ab0d068708 38 #define MEDIA_REMOVAL 0x1E
samux 1:80ab0d068708 39 #define READ_FORMAT_CAPACITIES 0x23
samux 1:80ab0d068708 40 #define READ_CAPACITY 0x25
samux 1:80ab0d068708 41 #define READ10 0x28
samux 1:80ab0d068708 42 #define WRITE10 0x2A
samux 1:80ab0d068708 43 #define VERIFY10 0x2F
samux 1:80ab0d068708 44 #define READ12 0xA8
samux 1:80ab0d068708 45 #define WRITE12 0xAA
samux 1:80ab0d068708 46 #define MODE_SELECT10 0x55
samux 1:80ab0d068708 47 #define MODE_SENSE10 0x5A
samux 1:80ab0d068708 48
samux 1:80ab0d068708 49 // MSC class specific requests
samux 1:80ab0d068708 50 #define MSC_REQUEST_RESET 0xFF
samux 1:80ab0d068708 51 #define MSC_REQUEST_GET_MAX_LUN 0xFE
samux 1:80ab0d068708 52
samux 1:80ab0d068708 53 #define DEFAULT_CONFIGURATION (1)
samux 1:80ab0d068708 54
samux 1:80ab0d068708 55 // max packet size
samux 1:80ab0d068708 56 #define MAX_PACKET MAX_PACKET_SIZE_EPBULK
samux 1:80ab0d068708 57
samux 1:80ab0d068708 58 // CSW Status
samux 1:80ab0d068708 59 enum Status {
samux 1:80ab0d068708 60 CSW_PASSED,
samux 1:80ab0d068708 61 CSW_FAILED,
samux 1:80ab0d068708 62 CSW_ERROR,
samux 1:80ab0d068708 63 };
samux 1:80ab0d068708 64
samux 1:80ab0d068708 65
samux 1:80ab0d068708 66 USBMSD::USBMSD(uint16_t vendor_id, uint16_t product_id, uint16_t product_release): USBDevice(vendor_id, product_id, product_release) {
samux 1:80ab0d068708 67 }
samux 1:80ab0d068708 68
samux 1:80ab0d068708 69
samux 1:80ab0d068708 70
samux 1:80ab0d068708 71 // Called in ISR context to process a class specific request
samux 1:80ab0d068708 72 bool USBMSD::USBCallback_request(void) {
samux 1:80ab0d068708 73
samux 1:80ab0d068708 74 bool success = false;
samux 1:80ab0d068708 75 CONTROL_TRANSFER * transfer = getTransferPtr();
samux 1:80ab0d068708 76 static uint8_t maxLUN[1] = {0};
samux 1:80ab0d068708 77
samux 1:80ab0d068708 78 if (transfer->setup.bmRequestType.Type == CLASS_TYPE) {
samux 1:80ab0d068708 79 switch (transfer->setup.bRequest) {
samux 1:80ab0d068708 80 case MSC_REQUEST_RESET:
samux 1:80ab0d068708 81 reset();
samux 1:80ab0d068708 82 success = true;
samux 1:80ab0d068708 83 break;
samux 1:80ab0d068708 84 case MSC_REQUEST_GET_MAX_LUN:
samux 1:80ab0d068708 85 transfer->remaining = 1;
samux 1:80ab0d068708 86 transfer->ptr = maxLUN;
samux 1:80ab0d068708 87 transfer->direction = DEVICE_TO_HOST;
samux 1:80ab0d068708 88 success = true;
samux 1:80ab0d068708 89 break;
samux 1:80ab0d068708 90 default:
samux 1:80ab0d068708 91 break;
samux 1:80ab0d068708 92 }
samux 1:80ab0d068708 93 }
samux 1:80ab0d068708 94
samux 1:80ab0d068708 95 return success;
samux 1:80ab0d068708 96 }
samux 1:80ab0d068708 97
samux 1:80ab0d068708 98
samux 1:80ab0d068708 99 bool USBMSD::connect() {
samux 1:80ab0d068708 100
samux 1:80ab0d068708 101 //disk initialization
samux 1:80ab0d068708 102 if (disk_status() & NO_INIT) {
samux 1:80ab0d068708 103 if (disk_initialize()) {
samux 1:80ab0d068708 104 return false;
samux 1:80ab0d068708 105 }
samux 1:80ab0d068708 106 }
samux 1:80ab0d068708 107
samux 1:80ab0d068708 108 // get number of blocks
samux 1:80ab0d068708 109 BlockCount = disk_sectors();
samux 1:80ab0d068708 110
samux 1:80ab0d068708 111 // get memory size
samux 1:80ab0d068708 112 MemorySize = disk_size();
samux 1:80ab0d068708 113
samux 1:80ab0d068708 114 if (BlockCount >= 0) {
samux 1:80ab0d068708 115 BlockSize = MemorySize / BlockCount;
samux 1:80ab0d068708 116 if (BlockSize != 0) {
samux 1:80ab0d068708 117 page = (uint8_t *)malloc(BlockSize * sizeof(uint8_t));
samux 1:80ab0d068708 118 if (page == NULL)
samux 1:80ab0d068708 119 return false;
samux 1:80ab0d068708 120 }
samux 1:80ab0d068708 121 } else {
samux 1:80ab0d068708 122 return false;
samux 1:80ab0d068708 123 }
samux 1:80ab0d068708 124
samux 1:80ab0d068708 125 //connect the device
samux 1:80ab0d068708 126 USBDevice::connect();
samux 1:80ab0d068708 127 return true;
samux 1:80ab0d068708 128 }
samux 1:80ab0d068708 129
samux 1:80ab0d068708 130
samux 1:80ab0d068708 131 void USBMSD::reset() {
samux 1:80ab0d068708 132 stage = READ_CBW;
samux 1:80ab0d068708 133 }
samux 1:80ab0d068708 134
samux 1:80ab0d068708 135
samux 1:80ab0d068708 136 // Called in ISR context called when a data is received
samux 1:80ab0d068708 137 bool USBMSD::EP2_OUT_callback() {
samux 1:80ab0d068708 138 uint32_t size = 0;
samux 1:80ab0d068708 139 uint8_t buf[MAX_PACKET_SIZE_EPBULK];
samux 1:80ab0d068708 140 readEP(EPBULK_OUT, buf, &size, MAX_PACKET_SIZE_EPBULK);
samux 1:80ab0d068708 141 switch (stage) {
samux 1:80ab0d068708 142 // the device has to decode the CBW received
samux 1:80ab0d068708 143 case READ_CBW:
samux 1:80ab0d068708 144 CBWDecode(buf, size);
samux 1:80ab0d068708 145 break;
samux 1:80ab0d068708 146
samux 1:80ab0d068708 147 // the device has to receive data from the host
samux 1:80ab0d068708 148 case PROCESS_CBW:
samux 1:80ab0d068708 149 switch (cbw.CB[0]) {
samux 1:80ab0d068708 150 case WRITE10:
samux 1:80ab0d068708 151 case WRITE12:
samux 1:80ab0d068708 152 memoryWrite(buf, size);
samux 1:80ab0d068708 153 break;
samux 1:80ab0d068708 154 case VERIFY10:
samux 1:80ab0d068708 155 memoryVerify(buf, size);
samux 1:80ab0d068708 156 break;
samux 1:80ab0d068708 157 }
samux 1:80ab0d068708 158 break;
samux 1:80ab0d068708 159
samux 1:80ab0d068708 160 // an error has occured: stall endpoint and send CSW
samux 1:80ab0d068708 161 default:
samux 1:80ab0d068708 162 stallEndpoint(EPBULK_OUT);
samux 1:80ab0d068708 163 csw.Status = CSW_ERROR;
samux 1:80ab0d068708 164 sendCSW();
samux 1:80ab0d068708 165 break;
samux 1:80ab0d068708 166 }
samux 1:80ab0d068708 167
samux 1:80ab0d068708 168 //reactivate readings on the OUT bulk endpoint
samux 1:80ab0d068708 169 readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
samux 1:80ab0d068708 170 return true;
samux 1:80ab0d068708 171 }
samux 1:80ab0d068708 172
samux 1:80ab0d068708 173 // Called in ISR context when a data has been transferred
samux 1:80ab0d068708 174 bool USBMSD::EP2_IN_callback() {
samux 1:80ab0d068708 175 switch (stage) {
samux 1:80ab0d068708 176
samux 1:80ab0d068708 177 // the device has to send data to the host
samux 1:80ab0d068708 178 case PROCESS_CBW:
samux 1:80ab0d068708 179 switch (cbw.CB[0]) {
samux 1:80ab0d068708 180 case READ10:
samux 1:80ab0d068708 181 case READ12:
samux 1:80ab0d068708 182 memoryRead();
samux 1:80ab0d068708 183 break;
samux 1:80ab0d068708 184 }
samux 1:80ab0d068708 185 break;
samux 1:80ab0d068708 186
samux 1:80ab0d068708 187 //the device has to send a CSW
samux 1:80ab0d068708 188 case SEND_CSW:
samux 1:80ab0d068708 189 sendCSW();
samux 1:80ab0d068708 190 break;
samux 1:80ab0d068708 191
samux 1:80ab0d068708 192 // an error has occured
samux 1:80ab0d068708 193 case ERROR:
samux 1:80ab0d068708 194 stallEndpoint(EPBULK_IN);
samux 1:80ab0d068708 195 sendCSW();
samux 1:80ab0d068708 196 break;
samux 1:80ab0d068708 197
samux 1:80ab0d068708 198 // the host has received the CSW -> we wait a CBW
samux 1:80ab0d068708 199 case WAIT_CSW:
samux 1:80ab0d068708 200 stage = READ_CBW;
samux 1:80ab0d068708 201 break;
samux 1:80ab0d068708 202 }
samux 1:80ab0d068708 203 return true;
samux 1:80ab0d068708 204 }
samux 1:80ab0d068708 205
samux 1:80ab0d068708 206
samux 1:80ab0d068708 207 void USBMSD::memoryWrite (uint8_t * buf, uint16_t size) {
samux 1:80ab0d068708 208
samux 1:80ab0d068708 209 if ((addr + size) > MemorySize) {
samux 1:80ab0d068708 210 size = MemorySize - addr;
samux 1:80ab0d068708 211 stage = ERROR;
samux 1:80ab0d068708 212 stallEndpoint(EPBULK_OUT);
samux 1:80ab0d068708 213 }
samux 1:80ab0d068708 214
samux 1:80ab0d068708 215 // we fill an array in RAM of 1 block before writing it in memory
samux 1:80ab0d068708 216 for (int i = 0; i < size; i++)
samux 1:80ab0d068708 217 page[addr%BlockSize + i] = buf[i];
samux 1:80ab0d068708 218
samux 1:80ab0d068708 219 // if the array is filled, write it in memory
samux 1:80ab0d068708 220 if (!((addr + size)%BlockSize)) {
samux 1:80ab0d068708 221 if (!(disk_status() & WRITE_PROTECT)) {
samux 1:80ab0d068708 222 disk_write((const char *)page, addr/BlockSize);
samux 1:80ab0d068708 223 }
samux 1:80ab0d068708 224 }
samux 1:80ab0d068708 225
samux 1:80ab0d068708 226 addr += size;
samux 1:80ab0d068708 227 length -= size;
samux 1:80ab0d068708 228 csw.DataResidue -= size;
samux 1:80ab0d068708 229
samux 1:80ab0d068708 230 if ((!length) || (stage != PROCESS_CBW)) {
samux 1:80ab0d068708 231 csw.Status = (stage == ERROR) ? CSW_FAILED : CSW_PASSED;
samux 1:80ab0d068708 232 sendCSW();
samux 1:80ab0d068708 233 }
samux 1:80ab0d068708 234 }
samux 1:80ab0d068708 235
samux 1:80ab0d068708 236 void USBMSD::memoryVerify (uint8_t * buf, uint16_t size) {
samux 1:80ab0d068708 237 uint32_t n;
samux 1:80ab0d068708 238
samux 1:80ab0d068708 239 if ((addr + size) > MemorySize) {
samux 1:80ab0d068708 240 size = MemorySize - addr;
samux 1:80ab0d068708 241 stage = ERROR;
samux 1:80ab0d068708 242 stallEndpoint(EPBULK_OUT);
samux 1:80ab0d068708 243 }
samux 1:80ab0d068708 244
samux 1:80ab0d068708 245 // beginning of a new block -> load a whole block in RAM
samux 1:80ab0d068708 246 if (!(addr%BlockSize))
samux 1:80ab0d068708 247 disk_read((char *)page, addr/BlockSize);
samux 1:80ab0d068708 248
samux 1:80ab0d068708 249 // info are in RAM -> no need to re-read memory
samux 1:80ab0d068708 250 for (n = 0; n < size; n++) {
samux 1:80ab0d068708 251 if (page[addr%BlockSize + n] != buf[n]) {
samux 1:80ab0d068708 252 memOK = false;
samux 1:80ab0d068708 253 break;
samux 1:80ab0d068708 254 }
samux 1:80ab0d068708 255 }
samux 1:80ab0d068708 256
samux 1:80ab0d068708 257 addr += size;
samux 1:80ab0d068708 258 length -= size;
samux 1:80ab0d068708 259 csw.DataResidue -= size;
samux 1:80ab0d068708 260
samux 1:80ab0d068708 261 if ( !length || (stage != PROCESS_CBW)) {
samux 1:80ab0d068708 262 csw.Status = (memOK && (stage == PROCESS_CBW)) ? CSW_PASSED : CSW_FAILED;
samux 1:80ab0d068708 263 sendCSW();
samux 1:80ab0d068708 264 }
samux 1:80ab0d068708 265 }
samux 1:80ab0d068708 266
samux 1:80ab0d068708 267
samux 1:80ab0d068708 268 bool USBMSD::inquiryRequest (void) {
samux 1:80ab0d068708 269 uint8_t inquiry[] = { 0x00, 0x80, 0x00, 0x01,
samux 1:80ab0d068708 270 36 - 4, 0x80, 0x00, 0x00,
samux 1:80ab0d068708 271 'M', 'B', 'E', 'D', '.', 'O', 'R', 'G',
samux 1:80ab0d068708 272 'M', 'B', 'E', 'D', ' ', 'U', 'S', 'B', ' ', 'D', 'I', 'S', 'K', ' ', ' ', ' ',
samux 1:80ab0d068708 273 '1', '.', '0', ' ',
samux 1:80ab0d068708 274 };
samux 1:80ab0d068708 275 if (!write(inquiry, sizeof(inquiry))) {
samux 1:80ab0d068708 276 return false;
samux 1:80ab0d068708 277 }
samux 1:80ab0d068708 278 return true;
samux 1:80ab0d068708 279 }
samux 1:80ab0d068708 280
samux 1:80ab0d068708 281
samux 1:80ab0d068708 282 bool USBMSD::readFormatCapacity() {
samux 1:80ab0d068708 283 uint8_t capacity[] = { 0x00, 0x00, 0x00, 0x08,
samux 1:80ab0d068708 284 (BlockCount >> 24) & 0xff,
samux 1:80ab0d068708 285 (BlockCount >> 16) & 0xff,
samux 1:80ab0d068708 286 (BlockCount >> 8) & 0xff,
samux 1:80ab0d068708 287 (BlockCount >> 0) & 0xff,
samux 1:80ab0d068708 288
samux 1:80ab0d068708 289 0x02,
samux 1:80ab0d068708 290 (BlockSize >> 16) & 0xff,
samux 1:80ab0d068708 291 (BlockSize >> 8) & 0xff,
samux 1:80ab0d068708 292 (BlockSize >> 0) & 0xff,
samux 1:80ab0d068708 293 };
samux 1:80ab0d068708 294 if (!write(capacity, sizeof(capacity))) {
samux 1:80ab0d068708 295 return false;
samux 1:80ab0d068708 296 }
samux 1:80ab0d068708 297 return true;
samux 1:80ab0d068708 298 }
samux 1:80ab0d068708 299
samux 1:80ab0d068708 300
samux 1:80ab0d068708 301 bool USBMSD::readCapacity (void) {
samux 1:80ab0d068708 302 uint8_t capacity[] = {
samux 1:80ab0d068708 303 ((BlockCount - 1) >> 24) & 0xff,
samux 1:80ab0d068708 304 ((BlockCount - 1) >> 16) & 0xff,
samux 1:80ab0d068708 305 ((BlockCount - 1) >> 8) & 0xff,
samux 1:80ab0d068708 306 ((BlockCount - 1) >> 0) & 0xff,
samux 1:80ab0d068708 307
samux 1:80ab0d068708 308 (BlockSize >> 24) & 0xff,
samux 1:80ab0d068708 309 (BlockSize >> 16) & 0xff,
samux 1:80ab0d068708 310 (BlockSize >> 8) & 0xff,
samux 1:80ab0d068708 311 (BlockSize >> 0) & 0xff,
samux 1:80ab0d068708 312 };
samux 1:80ab0d068708 313 if (!write(capacity, sizeof(capacity))) {
samux 1:80ab0d068708 314 return false;
samux 1:80ab0d068708 315 }
samux 1:80ab0d068708 316 return true;
samux 1:80ab0d068708 317 }
samux 1:80ab0d068708 318
samux 1:80ab0d068708 319 bool USBMSD::write (uint8_t * buf, uint16_t size) {
samux 1:80ab0d068708 320
samux 1:80ab0d068708 321 if (size >= cbw.DataLength) {
samux 1:80ab0d068708 322 size = cbw.DataLength;
samux 1:80ab0d068708 323 }
samux 1:80ab0d068708 324 stage = SEND_CSW;
samux 1:80ab0d068708 325
samux 1:80ab0d068708 326 if (!writeNB(EPBULK_IN, buf, size, MAX_PACKET_SIZE_EPBULK)) {
samux 1:80ab0d068708 327 return false;
samux 1:80ab0d068708 328 }
samux 1:80ab0d068708 329
samux 1:80ab0d068708 330 csw.DataResidue -= size;
samux 1:80ab0d068708 331 csw.Status = CSW_PASSED;
samux 1:80ab0d068708 332 return true;
samux 1:80ab0d068708 333 }
samux 1:80ab0d068708 334
samux 1:80ab0d068708 335
samux 1:80ab0d068708 336 bool USBMSD::modeSense6 (void) {
samux 1:80ab0d068708 337 uint8_t sense6[] = { 0x03, 0x00, 0x00, 0x00 };
samux 1:80ab0d068708 338 if (!write(sense6, sizeof(sense6))) {
samux 1:80ab0d068708 339 return false;
samux 1:80ab0d068708 340 }
samux 1:80ab0d068708 341 return true;
samux 1:80ab0d068708 342 }
samux 1:80ab0d068708 343
samux 1:80ab0d068708 344 void USBMSD::sendCSW() {
samux 1:80ab0d068708 345 csw.Signature = CSW_Signature;
samux 1:80ab0d068708 346 writeNB(EPBULK_IN, (uint8_t *)&csw, sizeof(CSW), MAX_PACKET_SIZE_EPBULK);
samux 1:80ab0d068708 347 stage = WAIT_CSW;
samux 1:80ab0d068708 348 }
samux 1:80ab0d068708 349
samux 1:80ab0d068708 350 bool USBMSD::requestSense (void) {
samux 1:80ab0d068708 351 uint8_t request_sense[] = {
samux 1:80ab0d068708 352 0x70,
samux 1:80ab0d068708 353 0x00,
samux 1:80ab0d068708 354 0x05, // Sense Key: illegal request
samux 1:80ab0d068708 355 0x00,
samux 1:80ab0d068708 356 0x00,
samux 1:80ab0d068708 357 0x00,
samux 1:80ab0d068708 358 0x00,
samux 1:80ab0d068708 359 0x0A,
samux 1:80ab0d068708 360 0x00,
samux 1:80ab0d068708 361 0x00,
samux 1:80ab0d068708 362 0x00,
samux 1:80ab0d068708 363 0x00,
samux 1:80ab0d068708 364 0x30,
samux 1:80ab0d068708 365 0x01,
samux 1:80ab0d068708 366 0x00,
samux 1:80ab0d068708 367 0x00,
samux 1:80ab0d068708 368 0x00,
samux 1:80ab0d068708 369 0x00,
samux 1:80ab0d068708 370 };
samux 1:80ab0d068708 371
samux 1:80ab0d068708 372 if (!write(request_sense, sizeof(request_sense))) {
samux 1:80ab0d068708 373 return false;
samux 1:80ab0d068708 374 }
samux 1:80ab0d068708 375
samux 1:80ab0d068708 376 return true;
samux 1:80ab0d068708 377 }
samux 1:80ab0d068708 378
samux 1:80ab0d068708 379 void USBMSD::fail() {
samux 1:80ab0d068708 380 csw.Status = CSW_FAILED;
samux 1:80ab0d068708 381 sendCSW();
samux 1:80ab0d068708 382 }
samux 1:80ab0d068708 383
samux 1:80ab0d068708 384
samux 1:80ab0d068708 385 void USBMSD::CBWDecode(uint8_t * buf, uint16_t size) {
samux 1:80ab0d068708 386 if (size == sizeof(cbw)) {
samux 1:80ab0d068708 387 memcpy((uint8_t *)&cbw, buf, size);
samux 1:80ab0d068708 388 if (cbw.Signature == CBW_Signature) {
samux 1:80ab0d068708 389 csw.Tag = cbw.Tag;
samux 1:80ab0d068708 390 csw.DataResidue = cbw.DataLength;
samux 1:80ab0d068708 391 if ((cbw.CBLength < 1) || (cbw.CBLength > 16) ) {
samux 1:80ab0d068708 392 fail();
samux 1:80ab0d068708 393 } else {
samux 1:80ab0d068708 394 switch (cbw.CB[0]) {
samux 1:80ab0d068708 395 case TEST_UNIT_READY:
samux 1:80ab0d068708 396 testUnitReady();
samux 1:80ab0d068708 397 break;
samux 1:80ab0d068708 398 case REQUEST_SENSE:
samux 1:80ab0d068708 399 requestSense();
samux 1:80ab0d068708 400 break;
samux 1:80ab0d068708 401 case INQUIRY:
samux 1:80ab0d068708 402 inquiryRequest();
samux 1:80ab0d068708 403 break;
samux 1:80ab0d068708 404 case MODE_SENSE6:
samux 1:80ab0d068708 405 modeSense6();
samux 1:80ab0d068708 406 break;
samux 1:80ab0d068708 407 case READ_FORMAT_CAPACITIES:
samux 1:80ab0d068708 408 readFormatCapacity();
samux 1:80ab0d068708 409 break;
samux 1:80ab0d068708 410 case READ_CAPACITY:
samux 1:80ab0d068708 411 readCapacity();
samux 1:80ab0d068708 412 break;
samux 1:80ab0d068708 413 case READ10:
samux 1:80ab0d068708 414 case READ12:
samux 1:80ab0d068708 415 if (infoTransfer()) {
samux 1:80ab0d068708 416 if ((cbw.Flags & 0x80)) {
samux 1:80ab0d068708 417 stage = PROCESS_CBW;
samux 1:80ab0d068708 418 memoryRead();
samux 1:80ab0d068708 419 } else {
samux 1:80ab0d068708 420 stallEndpoint(EPBULK_OUT);
samux 1:80ab0d068708 421 csw.Status = CSW_ERROR;
samux 1:80ab0d068708 422 sendCSW();
samux 1:80ab0d068708 423 }
samux 1:80ab0d068708 424 }
samux 1:80ab0d068708 425 break;
samux 1:80ab0d068708 426 case WRITE10:
samux 1:80ab0d068708 427 case WRITE12:
samux 1:80ab0d068708 428 if (infoTransfer()) {
samux 1:80ab0d068708 429 if (!(cbw.Flags & 0x80)) {
samux 1:80ab0d068708 430 stage = PROCESS_CBW;
samux 1:80ab0d068708 431 } else {
samux 1:80ab0d068708 432 stallEndpoint(EPBULK_IN);
samux 1:80ab0d068708 433 csw.Status = CSW_ERROR;
samux 1:80ab0d068708 434 sendCSW();
samux 1:80ab0d068708 435 }
samux 1:80ab0d068708 436 }
samux 1:80ab0d068708 437 break;
samux 1:80ab0d068708 438 case VERIFY10:
samux 1:80ab0d068708 439 if (!(cbw.CB[1] & 0x02)) {
samux 1:80ab0d068708 440 csw.Status = CSW_PASSED;
samux 1:80ab0d068708 441 sendCSW();
samux 1:80ab0d068708 442 break;
samux 1:80ab0d068708 443 }
samux 1:80ab0d068708 444 if (infoTransfer()) {
samux 1:80ab0d068708 445 if (!(cbw.Flags & 0x80)) {
samux 1:80ab0d068708 446 stage = PROCESS_CBW;
samux 1:80ab0d068708 447 memOK = true;
samux 1:80ab0d068708 448 } else {
samux 1:80ab0d068708 449 stallEndpoint(EPBULK_IN);
samux 1:80ab0d068708 450 csw.Status = CSW_ERROR;
samux 1:80ab0d068708 451 sendCSW();
samux 1:80ab0d068708 452 }
samux 1:80ab0d068708 453 }
samux 1:80ab0d068708 454 break;
samux 1:80ab0d068708 455 default:
samux 1:80ab0d068708 456 fail();
samux 1:80ab0d068708 457 break;
samux 1:80ab0d068708 458 }
samux 1:80ab0d068708 459 }
samux 1:80ab0d068708 460 }
samux 1:80ab0d068708 461 }
samux 1:80ab0d068708 462 }
samux 1:80ab0d068708 463
samux 1:80ab0d068708 464 void USBMSD::testUnitReady (void) {
samux 1:80ab0d068708 465
samux 1:80ab0d068708 466 if (cbw.DataLength != 0) {
samux 1:80ab0d068708 467 if ((cbw.Flags & 0x80) != 0) {
samux 1:80ab0d068708 468 stallEndpoint(EPBULK_IN);
samux 1:80ab0d068708 469 } else {
samux 1:80ab0d068708 470 stallEndpoint(EPBULK_OUT);
samux 1:80ab0d068708 471 }
samux 1:80ab0d068708 472 }
samux 1:80ab0d068708 473
samux 1:80ab0d068708 474 csw.Status = CSW_PASSED;
samux 1:80ab0d068708 475 sendCSW();
samux 1:80ab0d068708 476 }
samux 1:80ab0d068708 477
samux 1:80ab0d068708 478
samux 1:80ab0d068708 479 void USBMSD::memoryRead (void) {
samux 1:80ab0d068708 480 uint32_t n;
samux 1:80ab0d068708 481
samux 1:80ab0d068708 482 n = (length > MAX_PACKET) ? MAX_PACKET : length;
samux 1:80ab0d068708 483
samux 1:80ab0d068708 484 if ((addr + n) > MemorySize) {
samux 1:80ab0d068708 485 n = MemorySize - addr;
samux 1:80ab0d068708 486 stage = ERROR;
samux 1:80ab0d068708 487 }
samux 1:80ab0d068708 488
samux 1:80ab0d068708 489 // we read an entire block
samux 1:80ab0d068708 490 if (!(addr%BlockSize))
samux 1:80ab0d068708 491 disk_read((char *)page, addr/BlockSize);
samux 1:80ab0d068708 492
samux 1:80ab0d068708 493 // write data which are in RAM
samux 1:80ab0d068708 494 writeNB(EPBULK_IN, &page[addr%BlockSize], n, MAX_PACKET_SIZE_EPBULK);
samux 1:80ab0d068708 495
samux 1:80ab0d068708 496 addr += n;
samux 1:80ab0d068708 497 length -= n;
samux 1:80ab0d068708 498
samux 1:80ab0d068708 499 csw.DataResidue -= n;
samux 1:80ab0d068708 500
samux 1:80ab0d068708 501 if ( !length || (stage != PROCESS_CBW)) {
samux 1:80ab0d068708 502 csw.Status = (stage == PROCESS_CBW) ? CSW_PASSED : CSW_FAILED;
samux 1:80ab0d068708 503 stage = (stage == PROCESS_CBW) ? SEND_CSW : stage;
samux 1:80ab0d068708 504 }
samux 1:80ab0d068708 505 }
samux 1:80ab0d068708 506
samux 1:80ab0d068708 507
samux 1:80ab0d068708 508 bool USBMSD::infoTransfer (void) {
samux 1:80ab0d068708 509 uint32_t n;
samux 1:80ab0d068708 510
samux 1:80ab0d068708 511 // Logical Block Address of First Block
samux 1:80ab0d068708 512 n = (cbw.CB[2] << 24) | (cbw.CB[3] << 16) | (cbw.CB[4] << 8) | (cbw.CB[5] << 0);
samux 1:80ab0d068708 513
samux 1:80ab0d068708 514 addr = n * BlockSize;
samux 1:80ab0d068708 515
samux 1:80ab0d068708 516 // Number of Blocks to transfer
samux 1:80ab0d068708 517 switch (cbw.CB[0]) {
samux 1:80ab0d068708 518 case READ10:
samux 1:80ab0d068708 519 case WRITE10:
samux 1:80ab0d068708 520 case VERIFY10:
samux 1:80ab0d068708 521 n = (cbw.CB[7] << 8) | (cbw.CB[8] << 0);
samux 1:80ab0d068708 522 break;
samux 1:80ab0d068708 523
samux 1:80ab0d068708 524 case READ12:
samux 1:80ab0d068708 525 case WRITE12:
samux 1:80ab0d068708 526 n = (cbw.CB[6] << 24) | (cbw.CB[7] << 16) | (cbw.CB[8] << 8) | (cbw.CB[9] << 0);
samux 1:80ab0d068708 527 break;
samux 1:80ab0d068708 528 }
samux 1:80ab0d068708 529
samux 1:80ab0d068708 530 length = n * BlockSize;
samux 1:80ab0d068708 531
samux 1:80ab0d068708 532 if (!cbw.DataLength) { // host requests no data
samux 1:80ab0d068708 533 csw.Status = CSW_FAILED;
samux 1:80ab0d068708 534 sendCSW();
samux 1:80ab0d068708 535 return false;
samux 1:80ab0d068708 536 }
samux 1:80ab0d068708 537
samux 1:80ab0d068708 538 if (cbw.DataLength != length) {
samux 1:80ab0d068708 539 if ((cbw.Flags & 0x80) != 0) {
samux 1:80ab0d068708 540 stallEndpoint(EPBULK_IN);
samux 1:80ab0d068708 541 } else {
samux 1:80ab0d068708 542 stallEndpoint(EPBULK_OUT);
samux 1:80ab0d068708 543 }
samux 1:80ab0d068708 544
samux 1:80ab0d068708 545 csw.Status = CSW_FAILED;
samux 1:80ab0d068708 546 sendCSW();
samux 1:80ab0d068708 547 return false;
samux 1:80ab0d068708 548 }
samux 1:80ab0d068708 549
samux 1:80ab0d068708 550 return true;
samux 1:80ab0d068708 551 }
samux 1:80ab0d068708 552
samux 1:80ab0d068708 553
samux 1:80ab0d068708 554
samux 1:80ab0d068708 555
samux 1:80ab0d068708 556
samux 1:80ab0d068708 557 // Called in ISR context
samux 1:80ab0d068708 558 // Set configuration. Return false if the
samux 1:80ab0d068708 559 // configuration is not supported.
samux 1:80ab0d068708 560 bool USBMSD::USBCallback_setConfiguration(uint8_t configuration) {
samux 1:80ab0d068708 561 if (configuration != DEFAULT_CONFIGURATION) {
samux 1:80ab0d068708 562 return false;
samux 1:80ab0d068708 563 }
samux 1:80ab0d068708 564
samux 1:80ab0d068708 565 // Configure endpoints > 0
samux 1:80ab0d068708 566 addEndpoint(EPBULK_IN, MAX_PACKET_SIZE_EPBULK);
samux 1:80ab0d068708 567 addEndpoint(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
samux 1:80ab0d068708 568
samux 1:80ab0d068708 569 //activate readings
samux 1:80ab0d068708 570 readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
samux 1:80ab0d068708 571 return true;
samux 1:80ab0d068708 572 }
samux 1:80ab0d068708 573
samux 1:80ab0d068708 574
samux 1:80ab0d068708 575 uint8_t * USBMSD::stringIinterfaceDesc() {
samux 1:80ab0d068708 576 static uint8_t stringIinterfaceDescriptor[] = {
samux 1:80ab0d068708 577 0x08, //bLength
samux 1:80ab0d068708 578 STRING_DESCRIPTOR, //bDescriptorType 0x03
samux 1:80ab0d068708 579 'M',0,'S',0,'D',0 //bString iInterface - MSD
samux 1:80ab0d068708 580 };
samux 1:80ab0d068708 581 return stringIinterfaceDescriptor;
samux 1:80ab0d068708 582 }
samux 1:80ab0d068708 583
samux 1:80ab0d068708 584 uint8_t * USBMSD::stringIproductDesc() {
samux 1:80ab0d068708 585 static uint8_t stringIproductDescriptor[] = {
samux 1:80ab0d068708 586 0x12, //bLength
samux 1:80ab0d068708 587 STRING_DESCRIPTOR, //bDescriptorType 0x03
samux 1:80ab0d068708 588 'M',0,'b',0,'e',0,'d',0,' ',0,'M',0,'S',0,'D',0 //bString iProduct - Mbed Audio
samux 1:80ab0d068708 589 };
samux 1:80ab0d068708 590 return stringIproductDescriptor;
samux 1:80ab0d068708 591 }
samux 1:80ab0d068708 592
samux 1:80ab0d068708 593
samux 1:80ab0d068708 594 uint8_t * USBMSD::configurationDesc() {
samux 1:80ab0d068708 595 static uint8_t configDescriptor[] = {
samux 1:80ab0d068708 596
samux 1:80ab0d068708 597 // Configuration 1
samux 1:80ab0d068708 598 9, // bLength
samux 1:80ab0d068708 599 2, // bDescriptorType
samux 1:80ab0d068708 600 LSB(9 + 9 + 7 + 7), // wTotalLength
samux 1:80ab0d068708 601 MSB(9 + 9 + 7 + 7),
samux 1:80ab0d068708 602 0x01, // bNumInterfaces
samux 1:80ab0d068708 603 0x01, // bConfigurationValue: 0x01 is used to select this configuration
samux 1:80ab0d068708 604 0x00, // iConfiguration: no string to describe this configuration
samux 1:80ab0d068708 605 0xC0, // bmAttributes
samux 1:80ab0d068708 606 100, // bMaxPower, device power consumption is 100 mA
samux 1:80ab0d068708 607
samux 1:80ab0d068708 608 // Interface 0, Alternate Setting 0, MSC Class
samux 1:80ab0d068708 609 9, // bLength
samux 1:80ab0d068708 610 4, // bDescriptorType
samux 1:80ab0d068708 611 0x00, // bInterfaceNumber
samux 1:80ab0d068708 612 0x00, // bAlternateSetting
samux 1:80ab0d068708 613 0x02, // bNumEndpoints
samux 1:80ab0d068708 614 0x08, // bInterfaceClass
samux 1:80ab0d068708 615 0x06, // bInterfaceSubClass
samux 1:80ab0d068708 616 0x50, // bInterfaceProtocol
samux 1:80ab0d068708 617 0x04, // iInterface
samux 1:80ab0d068708 618
samux 1:80ab0d068708 619 // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
samux 1:80ab0d068708 620 7, // bLength
samux 1:80ab0d068708 621 5, // bDescriptorType
samux 1:80ab0d068708 622 PHY_TO_DESC(EPBULK_IN), // bEndpointAddress
samux 1:80ab0d068708 623 0x02, // bmAttributes (0x02=bulk)
samux 1:80ab0d068708 624 LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB)
samux 1:80ab0d068708 625 MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB)
samux 1:80ab0d068708 626 0, // bInterval
samux 1:80ab0d068708 627
samux 1:80ab0d068708 628 // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
samux 1:80ab0d068708 629 7, // bLength
samux 1:80ab0d068708 630 5, // bDescriptorType
samux 1:80ab0d068708 631 PHY_TO_DESC(EPBULK_OUT), // bEndpointAddress
samux 1:80ab0d068708 632 0x02, // bmAttributes (0x02=bulk)
samux 1:80ab0d068708 633 LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB)
samux 1:80ab0d068708 634 MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB)
samux 1:80ab0d068708 635 0 // bInterval
samux 1:80ab0d068708 636 };
samux 1:80ab0d068708 637 return configDescriptor;
samux 1:80ab0d068708 638 }