An input/output controller for virtual pinball machines, with plunger position tracking, accelerometer-based nudge sensing, button input encoding, and feedback device control.

Dependencies:   USBDevice mbed FastAnalogIn FastIO FastPWM SimpleDMA

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

The Pinscape Controller is a special-purpose software project that I wrote for my virtual pinball machine.

New version: V2 is now available! The information below is for version 1, which will continue to be available for people who prefer the original setup.

What exactly is a virtual pinball machine? It's basically a video-game pinball emulator built to look like a real pinball machine. (The picture at right is the one I built.) You start with a standard pinball cabinet, either built from scratch or salvaged from a real machine. Inside, you install a PC motherboard to run the software, and install TVs in place of the playfield and backglass. Several Windows pinball programs can take advantage of this setup, including the open-source project Visual Pinball, which has hundreds of tables available. Building one of these makes a great DIY project, and it's a good way to add to your skills at woodworking, computers, and electronics. Check out the Cabinet Builders' Forum on vpforums.org for lots of examples and advice.

This controller project is a key piece in my setup that helps integrate the video game into the pinball cabinet. It handles several input/output tasks that are unique to virtual pinball machines. First, it lets you connect a mechanical plunger to the software, so you can launch the ball like on a real machine. Second, it sends "nudge" data to the software, based on readings from an accelerometer. This lets you interact with the game physically, which makes the playing experience more realistic and immersive. Third, the software can handle button input (for wiring flipper buttons and other cabinet buttons), and fourth, it can control output devices (for tactile feedback, button lights, flashers, and other special effects).

Documentation

The Hardware Build Guide (PDF) has detailed instructions on how to set up a Pinscape Controller for your own virtual pinball cabinet.

Update notes

December 2015 version: This version fully supports the new Expansion Board project, but it'll also run without it. The default configuration settings haven't changed, so existing setups should continue to work as before.

August 2015 version: Be sure to get the latest version of the Config Tool for windows if you're upgrading from an older version of the firmware. This update adds support for TSL1412R sensors (a version of the 1410 sensor with a slightly larger pixel array), and a config option to set the mounting orientation of the board in the firmware rather than in VP (for better support for FP and other pinball programs that don't have VP's flexibility for setting the rotation).

Feb/March 2015 software versions: If you have a CCD plunger that you've been using with the older versions, and the plunger stops working (or doesn't work as well) after you update to the latest version, you might need to increase the brightness of your light source slightly. Check the CCD exposure with the Windows config tool to see if it looks too dark. The new software reads the CCD much more quickly than the old versions did. This makes the "shutter speed" faster, which might require a little more light to get the same readings. The CCD is actually really tolerant of varying light levels, so you probably won't have to change anything for the update - I didn't. But if you do have any trouble, have a look at the exposure meter and try a slightly brighter light source if the exposure looks too dark.

Downloads

  • Config tool for Windows (.exe and C# source): this is a Windows program that lets you view the raw pixel data from the CCD sensor, trigger plunger calibration mode, and configure some of the software options on the controller.
  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP 9.9.1 and VP 10 releases, so you don't need my custom builds if you're using 9.9.1 or 10 or later. I don't think there's any reason to use my 9.9 instead of the official 9.9.1, but I'm leaving it here just in case. In the official VP releases, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. (There's no checkbox in my custom builds, though; the filter is simply always on in those.)
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed for each output driver, if you want to use the LedWiz emulator feature. Note that quantities in the cart are for one output channel, so multiply everything by the number of channels you plan to use, except that you only need one of the ULN2803 transistor array chips for each eight output circuits.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Features

  • Plunger position sensing, using a TAOS TSL 1410R CCD linear array sensor. This sensor is a 1280 x 1 pixel array at 400 dpi, which makes it about 3" long - almost exactly the travel distance of a standard pinball plunger. The idea is that you install the sensor just above (within a few mm of) the shooter rod on the inside of the cabinet, with the CCD window facing down, aligned with and centered on the long axis of the shooter rod, and positioned so that the rest position of the tip is about 1/2" from one end of the window. As you pull back the plunger, the tip will travel down the length of the window, and the maximum retraction point will put the tip just about at the far end of the window. Put a light source below, facing the sensor - I'm using two typical 20 mA blue LEDs about 8" away (near the floor of the cabinet) with good results. The principle of operation is that the shooter rod casts a shadow on the CCD, so pixels behind the rod will register lower brightness than pixels that aren't in the shadow. We scan down the length of the sensor for the edge between darker and brighter, and this tells us how far back the rod has been pulled. We can read the CCD at about 25-30 ms intervals, so we can get rapid updates. We pass the readings reports to VP via our USB joystick reports.

    The hardware build guide includes schematics showing how to wire the CCD to the KL25Z. It's pretty straightforward - five wires between the two devices, no external components needed. Two GPIO ports are used as outputs to send signals to the device and one is used as an ADC in to read the pixel brightness inputs. The config tool has a feature that lets you display the raw pixel readings across the array, so you can test that the CCD is working and adjust the light source to get the right exposure level.

    Alternatively, you can use a slide potentiometer as the plunger sensor. This is a cheaper and somewhat simpler option that seems to work quite nicely, as you can see in Lemming77's video of this setup in action. This option is also explained more fully in the build guide.
  • Nudge sensing via the KL25Z's on-board accelerometer. Mounting the board in your cabinet makes it feel the same accelerations the cabinet experiences when you nudge it. Visual Pinball already knows how to interpret accelerometer input as nudging, so we simply feed the acceleration readings to VP via the joystick interface.
  • Cabinet button wiring. Up to 24 pushbuttons and switches can be wired to the controller for input controls (for example, flipper buttons, the Start button, the tilt bob, coin slot switches, and service door buttons). These appear to Windows as joystick buttons. VP can map joystick buttons to pinball inputs via its keyboard preferences dialog. (You can raise the 24-button limit by editing the source code, but since all of the GPIO pins are allocated, you'll have to reassign pins currently used for other functions.)
  • LedWiz emulation (limited). In addition to emulating a joystick, the device emulates the LedWiz USB interface, so controllers on the PC side such as DirectOutput Framework can recognize it and send it commands to control lights, solenoids, and other feedback devices. 22 GPIO ports are assigned by default as feedback device outputs. This feature has some limitations. The big one is that the KL25Z hardware only has 10 PWM channels, which isn't enough for a fully decked-out cabinet. You also need to build some external power driver circuitry to use this feature, because of the paltry 4mA output capacity of the KL25Z GPIO ports. The build guide includes instructions for a simple and robust output circuit, including part numbers for the exact components you need. It's not hard if you know your way around a soldering iron, but just be aware that it'll take a little work.

Warning: This is not replacement software for the VirtuaPin plunger kit. If you bought the VirtuaPin kit, please don't try to install this software. The VP kit happens to use the same microcontroller board, but the rest of its hardware is incompatible. The VP kit uses a different type of sensor for its plunger and has completely different button wiring, so the Pinscape software won't work properly with it.

Committer:
mjr
Date:
Fri Sep 25 18:49:53 2015 +0000
Revision:
29:582472d0bc57
Parent:
25:e22b88bd783a
Child:
33:d832bcab089e
Test of direct bit writes instead of SPI.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 21:5048e16cc9ef 25 // Length of our joystick reports. Important: This must be kept in sync
mjr 21:5048e16cc9ef 26 // with the actual joystick report format sent in update().
mjr 21:5048e16cc9ef 27 const int reportLen = 14;
mjr 21:5048e16cc9ef 28
mjr 21:5048e16cc9ef 29 #ifdef ENABLE_JOYSTICK
mjr 11:bd9da7088e6e 30 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 31 {
mjr 3:3514575d4f86 32 _x = x;
mjr 3:3514575d4f86 33 _y = y;
mjr 3:3514575d4f86 34 _z = z;
mjr 11:bd9da7088e6e 35 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 36 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 37 _status = status;
mjr 3:3514575d4f86 38
mjr 3:3514575d4f86 39 // send the report
mjr 3:3514575d4f86 40 return update();
mjr 3:3514575d4f86 41 }
mjr 3:3514575d4f86 42
mjr 11:bd9da7088e6e 43 bool USBJoystick::update()
mjr 11:bd9da7088e6e 44 {
mjr 3:3514575d4f86 45 HID_REPORT report;
mjr 11:bd9da7088e6e 46
mjr 3:3514575d4f86 47 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 48 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 10:976666ffa4ef 49 put(0, _status);
mjr 10:976666ffa4ef 50 put(2, 0); // second byte of status isn't used in normal reports
mjr 11:bd9da7088e6e 51 put(4, _buttonsLo);
mjr 11:bd9da7088e6e 52 put(6, _buttonsHi);
mjr 11:bd9da7088e6e 53 put(8, _x);
mjr 11:bd9da7088e6e 54 put(10, _y);
mjr 11:bd9da7088e6e 55 put(12, _z);
mjr 21:5048e16cc9ef 56
mjr 21:5048e16cc9ef 57 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 58 // the reports we build here
mjr 11:bd9da7088e6e 59 report.length = reportLen;
mjr 3:3514575d4f86 60
mjr 5:a70c0bce770d 61 // send the report
mjr 10:976666ffa4ef 62 return sendTO(&report, 100);
mjr 10:976666ffa4ef 63 }
mjr 10:976666ffa4ef 64
mjr 10:976666ffa4ef 65 bool USBJoystick::updateExposure(int &idx, int npix, const uint16_t *pix)
mjr 10:976666ffa4ef 66 {
mjr 10:976666ffa4ef 67 HID_REPORT report;
mjr 10:976666ffa4ef 68
mjr 10:976666ffa4ef 69 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 70 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 71 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 72 uint16_t s = idx | 0x8000;
mjr 10:976666ffa4ef 73 put(0, s);
mjr 25:e22b88bd783a 74
mjr 25:e22b88bd783a 75 // start at the second byte
mjr 25:e22b88bd783a 76 int ofs = 2;
mjr 25:e22b88bd783a 77
mjr 25:e22b88bd783a 78 // in the first report, add the total pixel count as the next two bytes
mjr 25:e22b88bd783a 79 if (idx == 0)
mjr 25:e22b88bd783a 80 {
mjr 25:e22b88bd783a 81 put(ofs, npix);
mjr 25:e22b88bd783a 82 ofs += 2;
mjr 25:e22b88bd783a 83 }
mjr 10:976666ffa4ef 84
mjr 10:976666ffa4ef 85 // now fill out the remaining words with exposure values
mjr 11:bd9da7088e6e 86 report.length = reportLen;
mjr 25:e22b88bd783a 87 for ( ; ofs + 1 < report.length ; ofs += 2)
mjr 10:976666ffa4ef 88 {
mjr 10:976666ffa4ef 89 uint16_t p = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 90 put(ofs, p);
mjr 10:976666ffa4ef 91 }
mjr 10:976666ffa4ef 92
mjr 10:976666ffa4ef 93 // send the report
mjr 10:976666ffa4ef 94 return send(&report);
mjr 3:3514575d4f86 95 }
mjr 9:fd65b0a94720 96
mjr 3:3514575d4f86 97 bool USBJoystick::move(int16_t x, int16_t y) {
mjr 3:3514575d4f86 98 _x = x;
mjr 3:3514575d4f86 99 _y = y;
mjr 3:3514575d4f86 100 return update();
mjr 3:3514575d4f86 101 }
mjr 3:3514575d4f86 102
mjr 3:3514575d4f86 103 bool USBJoystick::setZ(int16_t z) {
mjr 3:3514575d4f86 104 _z = z;
mjr 3:3514575d4f86 105 return update();
mjr 3:3514575d4f86 106 }
mjr 3:3514575d4f86 107
mjr 11:bd9da7088e6e 108 bool USBJoystick::buttons(uint32_t buttons) {
mjr 11:bd9da7088e6e 109 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 110 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 111 return update();
mjr 3:3514575d4f86 112 }
mjr 21:5048e16cc9ef 113
mjr 21:5048e16cc9ef 114 #else /* ENABLE_JOYSTICK */
mjr 21:5048e16cc9ef 115
mjr 21:5048e16cc9ef 116 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 117 {
mjr 21:5048e16cc9ef 118 HID_REPORT report;
mjr 21:5048e16cc9ef 119
mjr 21:5048e16cc9ef 120 // Fill the report according to the Joystick Descriptor
mjr 21:5048e16cc9ef 121 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 21:5048e16cc9ef 122 memset(report.data, 0, reportLen);
mjr 21:5048e16cc9ef 123 put(0, status);
mjr 21:5048e16cc9ef 124 report.length = reportLen;
mjr 21:5048e16cc9ef 125
mjr 21:5048e16cc9ef 126 // send the report
mjr 21:5048e16cc9ef 127 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 128 }
mjr 21:5048e16cc9ef 129
mjr 21:5048e16cc9ef 130 #endif /* ENABLE_JOYSTICK */
mjr 3:3514575d4f86 131
mjr 3:3514575d4f86 132
mjr 3:3514575d4f86 133 void USBJoystick::_init() {
mjr 3:3514575d4f86 134
mjr 3:3514575d4f86 135 _x = 0;
mjr 3:3514575d4f86 136 _y = 0;
mjr 3:3514575d4f86 137 _z = 0;
mjr 11:bd9da7088e6e 138 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 139 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 140 _status = 0;
mjr 3:3514575d4f86 141 }
mjr 3:3514575d4f86 142
mjr 3:3514575d4f86 143
mjr 3:3514575d4f86 144 uint8_t * USBJoystick::reportDesc()
mjr 3:3514575d4f86 145 {
mjr 21:5048e16cc9ef 146 #ifdef ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 147 // Joystick reports are enabled. Use the full joystick report
mjr 21:5048e16cc9ef 148 // format.
mjr 3:3514575d4f86 149 static uint8_t reportDescriptor[] =
mjr 3:3514575d4f86 150 {
mjr 3:3514575d4f86 151 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 3:3514575d4f86 152 USAGE(1), 0x04, // Joystick
mjr 3:3514575d4f86 153 COLLECTION(1), 0x01, // Application
mjr 9:fd65b0a94720 154
mjr 9:fd65b0a94720 155 // input report (device to host)
mjr 10:976666ffa4ef 156
mjr 10:976666ffa4ef 157 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 10:976666ffa4ef 158 USAGE(1), 0x00, // undefined device control
mjr 10:976666ffa4ef 159 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 10:976666ffa4ef 160 LOGICAL_MAXIMUM(1), 0xFF,
mjr 10:976666ffa4ef 161 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 10:976666ffa4ef 162 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 10:976666ffa4ef 163 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 10:976666ffa4ef 164
mjr 3:3514575d4f86 165 USAGE_PAGE(1), 0x09, // Buttons
mjr 3:3514575d4f86 166 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 11:bd9da7088e6e 167 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 3:3514575d4f86 168 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 3:3514575d4f86 169 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 3:3514575d4f86 170 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 11:bd9da7088e6e 171 REPORT_COUNT(1), 0x20, // 32 reports
mjr 3:3514575d4f86 172 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 3:3514575d4f86 173 UNIT(1), 0x00, // Unit (None)
mjr 3:3514575d4f86 174 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 3:3514575d4f86 175
mjr 3:3514575d4f86 176 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 9:fd65b0a94720 177 USAGE(1), 0x30, // X axis
mjr 9:fd65b0a94720 178 USAGE(1), 0x31, // Y axis
mjr 9:fd65b0a94720 179 USAGE(1), 0x32, // Z axis
mjr 6:cc35eb643e8f 180 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 6:cc35eb643e8f 181 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 6:cc35eb643e8f 182 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 9:fd65b0a94720 183 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 9:fd65b0a94720 184 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 9:fd65b0a94720 185
mjr 9:fd65b0a94720 186 // output report (host to device)
mjr 9:fd65b0a94720 187 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 29:582472d0bc57 188 REPORT_COUNT(1), 0x08, // output report count - 8-byte LedWiz format
mjr 3:3514575d4f86 189 0x09, 0x01, // usage
mjr 3:3514575d4f86 190 0x91, 0x01, // Output (array)
mjr 3:3514575d4f86 191
mjr 3:3514575d4f86 192 END_COLLECTION(0)
mjr 29:582472d0bc57 193
mjr 3:3514575d4f86 194 };
mjr 21:5048e16cc9ef 195 #else /* defined(ENABLE_JOYSTICK) */
mjr 21:5048e16cc9ef 196
mjr 21:5048e16cc9ef 197 // Joystick reports are disabled. We still want to appear
mjr 21:5048e16cc9ef 198 // as a USB device for the LedWiz output emulation, but we
mjr 21:5048e16cc9ef 199 // don't want to appear as a joystick.
mjr 21:5048e16cc9ef 200
mjr 21:5048e16cc9ef 201 static uint8_t reportDescriptor[] =
mjr 21:5048e16cc9ef 202 {
mjr 21:5048e16cc9ef 203 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 21:5048e16cc9ef 204 USAGE(1), 0x00, // Undefined
mjr 21:5048e16cc9ef 205
mjr 21:5048e16cc9ef 206 COLLECTION(1), 0x01, // Application
mjr 21:5048e16cc9ef 207
mjr 21:5048e16cc9ef 208 // input report (device to host)
mjr 21:5048e16cc9ef 209 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 21:5048e16cc9ef 210 USAGE(1), 0x00, // undefined device control
mjr 21:5048e16cc9ef 211 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 21:5048e16cc9ef 212 LOGICAL_MAXIMUM(1), 0xFF,
mjr 21:5048e16cc9ef 213 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 21:5048e16cc9ef 214 REPORT_COUNT(1), reportLen, // standard report length (same as if we were in joystick mode)
mjr 21:5048e16cc9ef 215 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 21:5048e16cc9ef 216
mjr 21:5048e16cc9ef 217 // output report (host to device)
mjr 21:5048e16cc9ef 218 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 21:5048e16cc9ef 219 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 21:5048e16cc9ef 220 0x09, 0x01, // usage
mjr 21:5048e16cc9ef 221 0x91, 0x01, // Output (array)
mjr 21:5048e16cc9ef 222
mjr 21:5048e16cc9ef 223 END_COLLECTION(0)
mjr 21:5048e16cc9ef 224 };
mjr 3:3514575d4f86 225
mjr 21:5048e16cc9ef 226 #endif /* defined(ENABLE_JOYSTICK) */
mjr 21:5048e16cc9ef 227
mjr 3:3514575d4f86 228 reportLength = sizeof(reportDescriptor);
mjr 3:3514575d4f86 229 return reportDescriptor;
mjr 3:3514575d4f86 230 }
mjr 3:3514575d4f86 231
mjr 3:3514575d4f86 232 uint8_t * USBJoystick::stringImanufacturerDesc() {
mjr 3:3514575d4f86 233 static uint8_t stringImanufacturerDescriptor[] = {
mjr 3:3514575d4f86 234 0x10, /*bLength*/
mjr 3:3514575d4f86 235 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 236 'm',0,'j',0,'r',0,'c',0,'o',0,'r',0,'p',0 /*bString iManufacturer - mjrcorp*/
mjr 3:3514575d4f86 237 };
mjr 3:3514575d4f86 238 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 239 }
mjr 3:3514575d4f86 240
mjr 3:3514575d4f86 241 uint8_t * USBJoystick::stringIserialDesc() {
mjr 3:3514575d4f86 242 static uint8_t stringIserialDescriptor[] = {
mjr 3:3514575d4f86 243 0x16, /*bLength*/
mjr 3:3514575d4f86 244 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 245 '0',0,'1',0,'2',0,'3',0,'4',0,'5',0,'6',0,'7',0,'8',0,'9',0, /*bString iSerial - 0123456789*/
mjr 3:3514575d4f86 246 };
mjr 3:3514575d4f86 247 return stringIserialDescriptor;
mjr 3:3514575d4f86 248 }
mjr 3:3514575d4f86 249
mjr 3:3514575d4f86 250 uint8_t * USBJoystick::stringIproductDesc() {
mjr 3:3514575d4f86 251 static uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 252 0x28, /*bLength*/
mjr 3:3514575d4f86 253 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 254 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 255 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 256 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 257 };
mjr 3:3514575d4f86 258 return stringIproductDescriptor;
mjr 3:3514575d4f86 259 }