An input/output controller for virtual pinball machines, with plunger position tracking, accelerometer-based nudge sensing, button input encoding, and feedback device control.

Dependencies:   USBDevice mbed FastAnalogIn FastIO FastPWM SimpleDMA

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

The Pinscape Controller is a special-purpose software project that I wrote for my virtual pinball machine.

New version: V2 is now available! The information below is for version 1, which will continue to be available for people who prefer the original setup.

What exactly is a virtual pinball machine? It's basically a video-game pinball emulator built to look like a real pinball machine. (The picture at right is the one I built.) You start with a standard pinball cabinet, either built from scratch or salvaged from a real machine. Inside, you install a PC motherboard to run the software, and install TVs in place of the playfield and backglass. Several Windows pinball programs can take advantage of this setup, including the open-source project Visual Pinball, which has hundreds of tables available. Building one of these makes a great DIY project, and it's a good way to add to your skills at woodworking, computers, and electronics. Check out the Cabinet Builders' Forum on vpforums.org for lots of examples and advice.

This controller project is a key piece in my setup that helps integrate the video game into the pinball cabinet. It handles several input/output tasks that are unique to virtual pinball machines. First, it lets you connect a mechanical plunger to the software, so you can launch the ball like on a real machine. Second, it sends "nudge" data to the software, based on readings from an accelerometer. This lets you interact with the game physically, which makes the playing experience more realistic and immersive. Third, the software can handle button input (for wiring flipper buttons and other cabinet buttons), and fourth, it can control output devices (for tactile feedback, button lights, flashers, and other special effects).

Documentation

The Hardware Build Guide (PDF) has detailed instructions on how to set up a Pinscape Controller for your own virtual pinball cabinet.

Update notes

December 2015 version: This version fully supports the new Expansion Board project, but it'll also run without it. The default configuration settings haven't changed, so existing setups should continue to work as before.

August 2015 version: Be sure to get the latest version of the Config Tool for windows if you're upgrading from an older version of the firmware. This update adds support for TSL1412R sensors (a version of the 1410 sensor with a slightly larger pixel array), and a config option to set the mounting orientation of the board in the firmware rather than in VP (for better support for FP and other pinball programs that don't have VP's flexibility for setting the rotation).

Feb/March 2015 software versions: If you have a CCD plunger that you've been using with the older versions, and the plunger stops working (or doesn't work as well) after you update to the latest version, you might need to increase the brightness of your light source slightly. Check the CCD exposure with the Windows config tool to see if it looks too dark. The new software reads the CCD much more quickly than the old versions did. This makes the "shutter speed" faster, which might require a little more light to get the same readings. The CCD is actually really tolerant of varying light levels, so you probably won't have to change anything for the update - I didn't. But if you do have any trouble, have a look at the exposure meter and try a slightly brighter light source if the exposure looks too dark.

Downloads

  • Config tool for Windows (.exe and C# source): this is a Windows program that lets you view the raw pixel data from the CCD sensor, trigger plunger calibration mode, and configure some of the software options on the controller.
  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP 9.9.1 and VP 10 releases, so you don't need my custom builds if you're using 9.9.1 or 10 or later. I don't think there's any reason to use my 9.9 instead of the official 9.9.1, but I'm leaving it here just in case. In the official VP releases, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. (There's no checkbox in my custom builds, though; the filter is simply always on in those.)
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed for each output driver, if you want to use the LedWiz emulator feature. Note that quantities in the cart are for one output channel, so multiply everything by the number of channels you plan to use, except that you only need one of the ULN2803 transistor array chips for each eight output circuits.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Features

  • Plunger position sensing, using a TAOS TSL 1410R CCD linear array sensor. This sensor is a 1280 x 1 pixel array at 400 dpi, which makes it about 3" long - almost exactly the travel distance of a standard pinball plunger. The idea is that you install the sensor just above (within a few mm of) the shooter rod on the inside of the cabinet, with the CCD window facing down, aligned with and centered on the long axis of the shooter rod, and positioned so that the rest position of the tip is about 1/2" from one end of the window. As you pull back the plunger, the tip will travel down the length of the window, and the maximum retraction point will put the tip just about at the far end of the window. Put a light source below, facing the sensor - I'm using two typical 20 mA blue LEDs about 8" away (near the floor of the cabinet) with good results. The principle of operation is that the shooter rod casts a shadow on the CCD, so pixels behind the rod will register lower brightness than pixels that aren't in the shadow. We scan down the length of the sensor for the edge between darker and brighter, and this tells us how far back the rod has been pulled. We can read the CCD at about 25-30 ms intervals, so we can get rapid updates. We pass the readings reports to VP via our USB joystick reports.

    The hardware build guide includes schematics showing how to wire the CCD to the KL25Z. It's pretty straightforward - five wires between the two devices, no external components needed. Two GPIO ports are used as outputs to send signals to the device and one is used as an ADC in to read the pixel brightness inputs. The config tool has a feature that lets you display the raw pixel readings across the array, so you can test that the CCD is working and adjust the light source to get the right exposure level.

    Alternatively, you can use a slide potentiometer as the plunger sensor. This is a cheaper and somewhat simpler option that seems to work quite nicely, as you can see in Lemming77's video of this setup in action. This option is also explained more fully in the build guide.
  • Nudge sensing via the KL25Z's on-board accelerometer. Mounting the board in your cabinet makes it feel the same accelerations the cabinet experiences when you nudge it. Visual Pinball already knows how to interpret accelerometer input as nudging, so we simply feed the acceleration readings to VP via the joystick interface.
  • Cabinet button wiring. Up to 24 pushbuttons and switches can be wired to the controller for input controls (for example, flipper buttons, the Start button, the tilt bob, coin slot switches, and service door buttons). These appear to Windows as joystick buttons. VP can map joystick buttons to pinball inputs via its keyboard preferences dialog. (You can raise the 24-button limit by editing the source code, but since all of the GPIO pins are allocated, you'll have to reassign pins currently used for other functions.)
  • LedWiz emulation (limited). In addition to emulating a joystick, the device emulates the LedWiz USB interface, so controllers on the PC side such as DirectOutput Framework can recognize it and send it commands to control lights, solenoids, and other feedback devices. 22 GPIO ports are assigned by default as feedback device outputs. This feature has some limitations. The big one is that the KL25Z hardware only has 10 PWM channels, which isn't enough for a fully decked-out cabinet. You also need to build some external power driver circuitry to use this feature, because of the paltry 4mA output capacity of the KL25Z GPIO ports. The build guide includes instructions for a simple and robust output circuit, including part numbers for the exact components you need. It's not hard if you know your way around a soldering iron, but just be aware that it'll take a little work.

Warning: This is not replacement software for the VirtuaPin plunger kit. If you bought the VirtuaPin kit, please don't try to install this software. The VP kit happens to use the same microcontroller board, but the rest of its hardware is incompatible. The VP kit uses a different type of sensor for its plunger and has completely different button wiring, so the Pinscape software won't work properly with it.

Committer:
mjr
Date:
Sat Mar 28 07:59:47 2015 +0000
Revision:
21:5048e16cc9ef
Parent:
11:bd9da7088e6e
Child:
25:e22b88bd783a
New No-Joystick configuration option (for secondary devices that only act as output controllers)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 3:3514575d4f86 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
mjr 3:3514575d4f86 2 * Modified Mouse code for Joystick - WH 2012
mjr 3:3514575d4f86 3 *
mjr 3:3514575d4f86 4 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 3:3514575d4f86 5 * and associated documentation files (the "Software"), to deal in the Software without
mjr 3:3514575d4f86 6 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 3:3514575d4f86 7 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 3:3514575d4f86 8 * Software is furnished to do so, subject to the following conditions:
mjr 3:3514575d4f86 9 *
mjr 3:3514575d4f86 10 * The above copyright notice and this permission notice shall be included in all copies or
mjr 3:3514575d4f86 11 * substantial portions of the Software.
mjr 3:3514575d4f86 12 *
mjr 3:3514575d4f86 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 3:3514575d4f86 14 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 3:3514575d4f86 15 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 3:3514575d4f86 16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 3:3514575d4f86 17 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 3:3514575d4f86 18 */
mjr 3:3514575d4f86 19
mjr 3:3514575d4f86 20 #include "stdint.h"
mjr 3:3514575d4f86 21 #include "USBJoystick.h"
mjr 21:5048e16cc9ef 22
mjr 21:5048e16cc9ef 23 #include "config.h" // Pinscape configuration
mjr 21:5048e16cc9ef 24
mjr 21:5048e16cc9ef 25 // Length of our joystick reports. Important: This must be kept in sync
mjr 21:5048e16cc9ef 26 // with the actual joystick report format sent in update().
mjr 21:5048e16cc9ef 27 const int reportLen = 14;
mjr 21:5048e16cc9ef 28
mjr 21:5048e16cc9ef 29 #ifdef ENABLE_JOYSTICK
mjr 11:bd9da7088e6e 30 bool USBJoystick::update(int16_t x, int16_t y, int16_t z, uint32_t buttons, uint16_t status)
mjr 3:3514575d4f86 31 {
mjr 3:3514575d4f86 32 _x = x;
mjr 3:3514575d4f86 33 _y = y;
mjr 3:3514575d4f86 34 _z = z;
mjr 11:bd9da7088e6e 35 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 36 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 10:976666ffa4ef 37 _status = status;
mjr 3:3514575d4f86 38
mjr 3:3514575d4f86 39 // send the report
mjr 3:3514575d4f86 40 return update();
mjr 3:3514575d4f86 41 }
mjr 3:3514575d4f86 42
mjr 11:bd9da7088e6e 43 bool USBJoystick::update()
mjr 11:bd9da7088e6e 44 {
mjr 3:3514575d4f86 45 HID_REPORT report;
mjr 11:bd9da7088e6e 46
mjr 3:3514575d4f86 47 // Fill the report according to the Joystick Descriptor
mjr 6:cc35eb643e8f 48 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 10:976666ffa4ef 49 put(0, _status);
mjr 10:976666ffa4ef 50 put(2, 0); // second byte of status isn't used in normal reports
mjr 11:bd9da7088e6e 51 put(4, _buttonsLo);
mjr 11:bd9da7088e6e 52 put(6, _buttonsHi);
mjr 11:bd9da7088e6e 53 put(8, _x);
mjr 11:bd9da7088e6e 54 put(10, _y);
mjr 11:bd9da7088e6e 55 put(12, _z);
mjr 21:5048e16cc9ef 56
mjr 21:5048e16cc9ef 57 // important: keep reportLen in sync with the actual byte length of
mjr 21:5048e16cc9ef 58 // the reports we build here
mjr 11:bd9da7088e6e 59 report.length = reportLen;
mjr 3:3514575d4f86 60
mjr 5:a70c0bce770d 61 // send the report
mjr 10:976666ffa4ef 62 return sendTO(&report, 100);
mjr 10:976666ffa4ef 63 }
mjr 10:976666ffa4ef 64
mjr 10:976666ffa4ef 65 bool USBJoystick::updateExposure(int &idx, int npix, const uint16_t *pix)
mjr 10:976666ffa4ef 66 {
mjr 10:976666ffa4ef 67 HID_REPORT report;
mjr 10:976666ffa4ef 68
mjr 10:976666ffa4ef 69 // Set the special status bits to indicate it's an exposure report.
mjr 10:976666ffa4ef 70 // The high 5 bits of the status word are set to 10000, and the
mjr 10:976666ffa4ef 71 // low 11 bits are the current pixel index.
mjr 10:976666ffa4ef 72 uint16_t s = idx | 0x8000;
mjr 10:976666ffa4ef 73 put(0, s);
mjr 10:976666ffa4ef 74
mjr 10:976666ffa4ef 75 // now fill out the remaining words with exposure values
mjr 11:bd9da7088e6e 76 report.length = reportLen;
mjr 10:976666ffa4ef 77 for (int ofs = 2 ; ofs + 1 < report.length ; ofs += 2)
mjr 10:976666ffa4ef 78 {
mjr 10:976666ffa4ef 79 uint16_t p = (idx < npix ? pix[idx++] : 0);
mjr 10:976666ffa4ef 80 put(ofs, p);
mjr 10:976666ffa4ef 81 }
mjr 10:976666ffa4ef 82
mjr 10:976666ffa4ef 83 // send the report
mjr 10:976666ffa4ef 84 return send(&report);
mjr 3:3514575d4f86 85 }
mjr 9:fd65b0a94720 86
mjr 3:3514575d4f86 87 bool USBJoystick::move(int16_t x, int16_t y) {
mjr 3:3514575d4f86 88 _x = x;
mjr 3:3514575d4f86 89 _y = y;
mjr 3:3514575d4f86 90 return update();
mjr 3:3514575d4f86 91 }
mjr 3:3514575d4f86 92
mjr 3:3514575d4f86 93 bool USBJoystick::setZ(int16_t z) {
mjr 3:3514575d4f86 94 _z = z;
mjr 3:3514575d4f86 95 return update();
mjr 3:3514575d4f86 96 }
mjr 3:3514575d4f86 97
mjr 11:bd9da7088e6e 98 bool USBJoystick::buttons(uint32_t buttons) {
mjr 11:bd9da7088e6e 99 _buttonsLo = (uint16_t)(buttons & 0xffff);
mjr 11:bd9da7088e6e 100 _buttonsHi = (uint16_t)((buttons >> 16) & 0xffff);
mjr 3:3514575d4f86 101 return update();
mjr 3:3514575d4f86 102 }
mjr 21:5048e16cc9ef 103
mjr 21:5048e16cc9ef 104 #else /* ENABLE_JOYSTICK */
mjr 21:5048e16cc9ef 105
mjr 21:5048e16cc9ef 106 bool USBJoystick::updateStatus(uint32_t status)
mjr 21:5048e16cc9ef 107 {
mjr 21:5048e16cc9ef 108 HID_REPORT report;
mjr 21:5048e16cc9ef 109
mjr 21:5048e16cc9ef 110 // Fill the report according to the Joystick Descriptor
mjr 21:5048e16cc9ef 111 #define put(idx, val) (report.data[idx] = (val) & 0xff, report.data[(idx)+1] = ((val) >> 8) & 0xff)
mjr 21:5048e16cc9ef 112 memset(report.data, 0, reportLen);
mjr 21:5048e16cc9ef 113 put(0, status);
mjr 21:5048e16cc9ef 114 report.length = reportLen;
mjr 21:5048e16cc9ef 115
mjr 21:5048e16cc9ef 116 // send the report
mjr 21:5048e16cc9ef 117 return sendTO(&report, 100);
mjr 21:5048e16cc9ef 118 }
mjr 21:5048e16cc9ef 119
mjr 21:5048e16cc9ef 120 #endif /* ENABLE_JOYSTICK */
mjr 3:3514575d4f86 121
mjr 3:3514575d4f86 122
mjr 3:3514575d4f86 123 void USBJoystick::_init() {
mjr 3:3514575d4f86 124
mjr 3:3514575d4f86 125 _x = 0;
mjr 3:3514575d4f86 126 _y = 0;
mjr 3:3514575d4f86 127 _z = 0;
mjr 11:bd9da7088e6e 128 _buttonsLo = 0x0000;
mjr 11:bd9da7088e6e 129 _buttonsHi = 0x0000;
mjr 9:fd65b0a94720 130 _status = 0;
mjr 3:3514575d4f86 131 }
mjr 3:3514575d4f86 132
mjr 3:3514575d4f86 133
mjr 3:3514575d4f86 134 uint8_t * USBJoystick::reportDesc()
mjr 3:3514575d4f86 135 {
mjr 21:5048e16cc9ef 136 #ifdef ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 137 // Joystick reports are enabled. Use the full joystick report
mjr 21:5048e16cc9ef 138 // format.
mjr 3:3514575d4f86 139 static uint8_t reportDescriptor[] =
mjr 3:3514575d4f86 140 {
mjr 3:3514575d4f86 141 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 3:3514575d4f86 142 USAGE(1), 0x04, // Joystick
mjr 3:3514575d4f86 143
mjr 3:3514575d4f86 144 COLLECTION(1), 0x01, // Application
mjr 9:fd65b0a94720 145
mjr 9:fd65b0a94720 146 // NB - the canonical joystick has a nested collection at this
mjr 9:fd65b0a94720 147 // point. We remove the inner collection to enable the LedWiz
mjr 9:fd65b0a94720 148 // emulation. The LedWiz API implementation on the PC side
mjr 9:fd65b0a94720 149 // appears to use the collection structure as part of the
mjr 9:fd65b0a94720 150 // device signature, and the real LedWiz descriptor has just
mjr 9:fd65b0a94720 151 // one top-level collection. The built-in Windows HID drivers
mjr 9:fd65b0a94720 152 // don't appear to care whether this collection is present or
mjr 9:fd65b0a94720 153 // not for the purposes of recognizing a joystick, so it seems
mjr 9:fd65b0a94720 154 // to make everyone happy to leave it out.
mjr 9:fd65b0a94720 155 //
mjr 9:fd65b0a94720 156 // All of the reference material for USB joystick device builders
mjr 9:fd65b0a94720 157 // does use the inner collection, so it's possible that omitting
mjr 9:fd65b0a94720 158 // it will create an incompatibility with some non-Windows hosts.
mjr 9:fd65b0a94720 159 // But that seems largely moot in that VP only runs on Windows.
mjr 9:fd65b0a94720 160 // If you're you're trying to adapt this code for a different
mjr 9:fd65b0a94720 161 // device and run into problems connecting to a non-Windows host,
mjr 9:fd65b0a94720 162 // try restoring the inner collection. You probably won't
mjr 9:fd65b0a94720 163 // care about LedWiz compatibility in such a situation so there
mjr 9:fd65b0a94720 164 // should be no reason not to return to the standard structure.
mjr 6:cc35eb643e8f 165 // COLLECTION(1), 0x00, // Physical
mjr 3:3514575d4f86 166
mjr 9:fd65b0a94720 167 // input report (device to host)
mjr 10:976666ffa4ef 168
mjr 10:976666ffa4ef 169 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 10:976666ffa4ef 170 USAGE(1), 0x00, // undefined device control
mjr 10:976666ffa4ef 171 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 10:976666ffa4ef 172 LOGICAL_MAXIMUM(1), 0xFF,
mjr 10:976666ffa4ef 173 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 10:976666ffa4ef 174 REPORT_COUNT(1), 0x04, // 4 reports (4 bytes)
mjr 10:976666ffa4ef 175 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 10:976666ffa4ef 176
mjr 3:3514575d4f86 177 USAGE_PAGE(1), 0x09, // Buttons
mjr 3:3514575d4f86 178 USAGE_MINIMUM(1), 0x01, // { buttons }
mjr 11:bd9da7088e6e 179 USAGE_MAXIMUM(1), 0x20, // { 1-32 }
mjr 3:3514575d4f86 180 LOGICAL_MINIMUM(1), 0x00, // 1-bit buttons - 0...
mjr 3:3514575d4f86 181 LOGICAL_MAXIMUM(1), 0x01, // ...to 1
mjr 3:3514575d4f86 182 REPORT_SIZE(1), 0x01, // 1 bit per report
mjr 11:bd9da7088e6e 183 REPORT_COUNT(1), 0x20, // 32 reports
mjr 3:3514575d4f86 184 UNIT_EXPONENT(1), 0x00, // Unit_Exponent (0)
mjr 3:3514575d4f86 185 UNIT(1), 0x00, // Unit (None)
mjr 3:3514575d4f86 186 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 3:3514575d4f86 187
mjr 3:3514575d4f86 188 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 9:fd65b0a94720 189 USAGE(1), 0x30, // X axis
mjr 9:fd65b0a94720 190 USAGE(1), 0x31, // Y axis
mjr 9:fd65b0a94720 191 USAGE(1), 0x32, // Z axis
mjr 6:cc35eb643e8f 192 LOGICAL_MINIMUM(2), 0x00,0xF0, // each value ranges -4096
mjr 6:cc35eb643e8f 193 LOGICAL_MAXIMUM(2), 0x00,0x10, // ...to +4096
mjr 6:cc35eb643e8f 194 REPORT_SIZE(1), 0x10, // 16 bits per report
mjr 9:fd65b0a94720 195 REPORT_COUNT(1), 0x03, // 3 reports (X, Y, Z)
mjr 9:fd65b0a94720 196 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 9:fd65b0a94720 197
mjr 9:fd65b0a94720 198 // output report (host to device)
mjr 9:fd65b0a94720 199 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 9:fd65b0a94720 200 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 3:3514575d4f86 201 0x09, 0x01, // usage
mjr 3:3514575d4f86 202 0x91, 0x01, // Output (array)
mjr 3:3514575d4f86 203
mjr 6:cc35eb643e8f 204 // END_COLLECTION(0),
mjr 3:3514575d4f86 205 END_COLLECTION(0)
mjr 3:3514575d4f86 206 };
mjr 21:5048e16cc9ef 207 #else /* defined(ENABLE_JOYSTICK) */
mjr 21:5048e16cc9ef 208
mjr 21:5048e16cc9ef 209 // Joystick reports are disabled. We still want to appear
mjr 21:5048e16cc9ef 210 // as a USB device for the LedWiz output emulation, but we
mjr 21:5048e16cc9ef 211 // don't want to appear as a joystick.
mjr 21:5048e16cc9ef 212
mjr 21:5048e16cc9ef 213 static uint8_t reportDescriptor[] =
mjr 21:5048e16cc9ef 214 {
mjr 21:5048e16cc9ef 215 USAGE_PAGE(1), 0x01, // Generic desktop
mjr 21:5048e16cc9ef 216 USAGE(1), 0x00, // Undefined
mjr 21:5048e16cc9ef 217
mjr 21:5048e16cc9ef 218 COLLECTION(1), 0x01, // Application
mjr 21:5048e16cc9ef 219
mjr 21:5048e16cc9ef 220 // input report (device to host)
mjr 21:5048e16cc9ef 221 USAGE_PAGE(1), 0x06, // generic device controls - for config status
mjr 21:5048e16cc9ef 222 USAGE(1), 0x00, // undefined device control
mjr 21:5048e16cc9ef 223 LOGICAL_MINIMUM(1), 0x00, // 8-bit values
mjr 21:5048e16cc9ef 224 LOGICAL_MAXIMUM(1), 0xFF,
mjr 21:5048e16cc9ef 225 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 21:5048e16cc9ef 226 REPORT_COUNT(1), reportLen, // standard report length (same as if we were in joystick mode)
mjr 21:5048e16cc9ef 227 INPUT(1), 0x02, // Data, Variable, Absolute
mjr 21:5048e16cc9ef 228
mjr 21:5048e16cc9ef 229 // output report (host to device)
mjr 21:5048e16cc9ef 230 REPORT_SIZE(1), 0x08, // 8 bits per report
mjr 21:5048e16cc9ef 231 REPORT_COUNT(1), 0x08, // output report count (LEDWiz messages)
mjr 21:5048e16cc9ef 232 0x09, 0x01, // usage
mjr 21:5048e16cc9ef 233 0x91, 0x01, // Output (array)
mjr 21:5048e16cc9ef 234
mjr 21:5048e16cc9ef 235 END_COLLECTION(0)
mjr 21:5048e16cc9ef 236 };
mjr 3:3514575d4f86 237
mjr 21:5048e16cc9ef 238 #endif /* defined(ENABLE_JOYSTICK) */
mjr 21:5048e16cc9ef 239
mjr 3:3514575d4f86 240 reportLength = sizeof(reportDescriptor);
mjr 3:3514575d4f86 241 return reportDescriptor;
mjr 3:3514575d4f86 242 }
mjr 3:3514575d4f86 243
mjr 3:3514575d4f86 244 uint8_t * USBJoystick::stringImanufacturerDesc() {
mjr 3:3514575d4f86 245 static uint8_t stringImanufacturerDescriptor[] = {
mjr 3:3514575d4f86 246 0x10, /*bLength*/
mjr 3:3514575d4f86 247 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 248 'm',0,'j',0,'r',0,'c',0,'o',0,'r',0,'p',0 /*bString iManufacturer - mjrcorp*/
mjr 3:3514575d4f86 249 };
mjr 3:3514575d4f86 250 return stringImanufacturerDescriptor;
mjr 3:3514575d4f86 251 }
mjr 3:3514575d4f86 252
mjr 3:3514575d4f86 253 uint8_t * USBJoystick::stringIserialDesc() {
mjr 3:3514575d4f86 254 static uint8_t stringIserialDescriptor[] = {
mjr 3:3514575d4f86 255 0x16, /*bLength*/
mjr 3:3514575d4f86 256 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 257 '0',0,'1',0,'2',0,'3',0,'4',0,'5',0,'6',0,'7',0,'8',0,'9',0, /*bString iSerial - 0123456789*/
mjr 3:3514575d4f86 258 };
mjr 3:3514575d4f86 259 return stringIserialDescriptor;
mjr 3:3514575d4f86 260 }
mjr 3:3514575d4f86 261
mjr 3:3514575d4f86 262 uint8_t * USBJoystick::stringIproductDesc() {
mjr 3:3514575d4f86 263 static uint8_t stringIproductDescriptor[] = {
mjr 9:fd65b0a94720 264 0x28, /*bLength*/
mjr 3:3514575d4f86 265 STRING_DESCRIPTOR, /*bDescriptorType 0x03*/
mjr 3:3514575d4f86 266 'P',0,'i',0,'n',0,'s',0,'c',0,'a',0,'p',0,'e',0,
mjr 3:3514575d4f86 267 ' ',0,'C',0,'o',0,'n',0,'t',0,'r',0,'o',0,'l',0,
mjr 3:3514575d4f86 268 'l',0,'e',0,'r',0 /*String iProduct */
mjr 3:3514575d4f86 269 };
mjr 3:3514575d4f86 270 return stringIproductDescriptor;
mjr 3:3514575d4f86 271 }