Junaid Ahmed
/
202A_hw1_maxrate
Generate the maximum sampling rate
TSI/TSISensor.cpp
- Committer:
- mja054
- Date:
- 2014-02-15
- Revision:
- 1:478b36058c92
- Parent:
- 0:d62b58e30f71
File content as of revision 1:478b36058c92:
/* Freescale Semiconductor Inc. * (c) Copyright 2004-2005 Freescale Semiconductor, Inc. * (c) Copyright 2001-2004 Motorola, Inc. * * mbed Microcontroller Library * (c) Copyright 2009-2012 ARM Limited. * * Permission is hereby granted, free of charge, to any person obtaining a copy of this software * and associated documentation files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or * substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "mbed.h" #include "TSISensor.h" #define NO_TOUCH 0 #define SLIDER_LENGTH 40 //LENGTH in mm #define TOTAL_ELECTRODE 3 #define TSI0a 0 #define TSI1 1 #define TSI2 2 #define TSI3 3 #define TSI4 4 #define TSI5 5 #define TSI6 6 #define TSI7 7 #define TSI8 8 #define TSI9 9 #define TSI10 10 #define TSI11 11 #define TSI12 12 #define TSI13 13 #define TSI14 14 #define TSI15 15 /*Chose the correct TSI channel for the electrode number*/ #define ELECTRODE0 TSI9 #define ELECTRODE1 TSI10 #define ELECTRODE2 TSI0a #define ELECTRODE3 TSI1 #define ELECTRODE4 TSI2 #define ELECTRODE5 TSI3 #define ELECTRODE6 TSI4 #define ELECTRODE7 TSI5 #define ELECTRODE8 TSI6 #define ELECTRODE9 TSI7 #define ELECTRODE10 TSI8 #define ELECTRODE11 TSI11 #define ELECTRODE12 TSI12 #define ELECTRODE13 TSI13 #define ELECTRODE14 TSI14 #define ELECTRODE15 TSI15 #define THRESHOLD0 100 #define THRESHOLD1 100 #define THRESHOLD2 100 #define THRESHOLD3 100 #define THRESHOLD4 100 #define THRESHOLD5 100 #define THRESHOLD6 100 #define THRESHOLD7 100 #define THRESHOLD8 100 #define THRESHOLD9 100 #define THRESHOLD10 100 #define THRESHOLD11 100 #define THRESHOLD12 100 #define THRESHOLD13 100 #define THRESHOLD14 100 #define THRESHOLD15 100 static uint8_t total_electrode = TOTAL_ELECTRODE; static uint8_t elec_array[16]={ELECTRODE0,ELECTRODE1,ELECTRODE2,ELECTRODE3,ELECTRODE4,ELECTRODE5, ELECTRODE6,ELECTRODE7,ELECTRODE8,ELECTRODE9,ELECTRODE10,ELECTRODE11, ELECTRODE12,ELECTRODE13,ELECTRODE14,ELECTRODE15}; static uint16_t gu16TSICount[16]; static uint16_t gu16Baseline[16]; static uint16_t gu16Threshold[16]={THRESHOLD0,THRESHOLD1,THRESHOLD2,THRESHOLD3,THRESHOLD4,THRESHOLD5, THRESHOLD6,THRESHOLD7,THRESHOLD8,THRESHOLD9,THRESHOLD10,THRESHOLD11, THRESHOLD12,THRESHOLD13,THRESHOLD14,THRESHOLD15}; static uint16_t gu16Delta[16]; static uint8_t ongoing_elec; static uint8_t end_flag = 1; static uint8_t SliderPercentegePosition[2] = {NO_TOUCH,NO_TOUCH}; static uint8_t SliderDistancePosition[2] = {NO_TOUCH,NO_TOUCH}; static uint32_t AbsolutePercentegePosition = NO_TOUCH; static uint32_t AbsoluteDistancePosition = NO_TOUCH; static void tsi_irq(); TSISensor::TSISensor() { SIM->SCGC5 |= SIM_SCGC5_PORTB_MASK; SIM->SCGC5 |= SIM_SCGC5_TSI_MASK; TSI0->GENCS |= (TSI_GENCS_ESOR_MASK | TSI_GENCS_MODE(0) | TSI_GENCS_REFCHRG(4) | TSI_GENCS_DVOLT(0) | TSI_GENCS_EXTCHRG(7) | TSI_GENCS_PS(4) | TSI_GENCS_NSCN(11) | TSI_GENCS_TSIIEN_MASK | TSI_GENCS_STPE_MASK ); TSI0->GENCS |= TSI_GENCS_TSIEN_MASK; NVIC_SetVector(TSI0_IRQn, (uint32_t)&tsi_irq); NVIC_EnableIRQ(TSI0_IRQn); selfCalibration(); } void TSISensor::TSISensor_reset(void) { SIM->SCGC5 |= SIM_SCGC5_PORTB_MASK; SIM->SCGC5 |= SIM_SCGC5_TSI_MASK; TSI0->GENCS |= (TSI_GENCS_ESOR_MASK | TSI_GENCS_MODE(0) | TSI_GENCS_REFCHRG(4) | TSI_GENCS_DVOLT(0) | TSI_GENCS_EXTCHRG(7) | TSI_GENCS_PS(4) | TSI_GENCS_NSCN(11) | TSI_GENCS_TSIIEN_MASK | TSI_GENCS_STPE_MASK ); TSI0->GENCS |= TSI_GENCS_TSIEN_MASK; //NVIC_SetVector(TSI0_IRQn, (uint32_t)&tsi_irq); //NVIC_EnableIRQ(TSI0_IRQn); selfCalibration(); } void TSISensor::selfCalibration(void) { unsigned char cnt; unsigned char trigger_backup; TSI0->GENCS |= TSI_GENCS_EOSF_MASK; // Clear End of Scan Flag TSI0->GENCS &= ~TSI_GENCS_TSIEN_MASK; // Disable TSI module if(TSI0->GENCS & TSI_GENCS_STM_MASK) // Back-up TSI Trigger mode from Application trigger_backup = 1; else trigger_backup = 0; TSI0->GENCS &= ~TSI_GENCS_STM_MASK; // Use SW trigger TSI0->GENCS &= ~TSI_GENCS_TSIIEN_MASK; // Enable TSI interrupts TSI0->GENCS |= TSI_GENCS_TSIEN_MASK; // Enable TSI module for(cnt=0; cnt < total_electrode; cnt++) // Get Counts when Electrode not pressed { TSI0->DATA = ((elec_array[cnt] << TSI_DATA_TSICH_SHIFT) ); TSI0->DATA |= TSI_DATA_SWTS_MASK; while(!(TSI0->GENCS & TSI_GENCS_EOSF_MASK)); TSI0->GENCS |= TSI_GENCS_EOSF_MASK; gu16Baseline[cnt] = (TSI0->DATA & TSI_DATA_TSICNT_MASK); } TSI0->GENCS &= ~TSI_GENCS_TSIEN_MASK; // Disable TSI module TSI0->GENCS |= TSI_GENCS_TSIIEN_MASK; // Enale TSI interrupt if(trigger_backup) // Restore trigger mode TSI0->GENCS |= TSI_GENCS_STM_MASK; else TSI0->GENCS &= ~TSI_GENCS_STM_MASK; TSI0->GENCS |= TSI_GENCS_TSIEN_MASK; // Enable TSI module TSI0->DATA = ((elec_array[0]<<TSI_DATA_TSICH_SHIFT) ); TSI0->DATA |= TSI_DATA_SWTS_MASK; } void TSISensor::sliderRead(void ) { if(end_flag) { end_flag = 0; if((gu16Delta[0] > gu16Threshold[0])||(gu16Delta[1] > gu16Threshold[1])) { SliderPercentegePosition[0] = (gu16Delta[0]*100)/(gu16Delta[0]+gu16Delta[1]); SliderPercentegePosition[1] = (gu16Delta[1]*100)/(gu16Delta[0]+gu16Delta[1]); SliderDistancePosition[0] = (SliderPercentegePosition[0]* SLIDER_LENGTH)/100; SliderDistancePosition[1] = (SliderPercentegePosition[1]* SLIDER_LENGTH)/100; AbsolutePercentegePosition = ((100 - SliderPercentegePosition[0]) + SliderPercentegePosition[1])/2; AbsoluteDistancePosition = ((SLIDER_LENGTH - SliderDistancePosition[0]) + SliderDistancePosition[1])/2; } else { SliderPercentegePosition[0] = NO_TOUCH; SliderPercentegePosition[1] = NO_TOUCH; SliderDistancePosition[0] = NO_TOUCH; SliderDistancePosition[1] = NO_TOUCH; AbsolutePercentegePosition = NO_TOUCH; AbsoluteDistancePosition = NO_TOUCH; } } } float TSISensor::readPercentage() { sliderRead(); return (float)AbsolutePercentegePosition/100.0; } uint8_t TSISensor::readDistance() { sliderRead(); return AbsoluteDistancePosition; } uint16_t TSISensor::readValue(uint8_t index) { return gu16TSICount[index]; } static void changeElectrode(void) { int16_t u16temp_delta; gu16TSICount[ongoing_elec] = (TSI0->DATA & TSI_DATA_TSICNT_MASK); // Save Counts for current electrode u16temp_delta = gu16TSICount[ongoing_elec] - gu16Baseline[ongoing_elec]; // Obtains Counts Delta from callibration reference if(u16temp_delta < 0) gu16Delta[ongoing_elec] = 0; else gu16Delta[ongoing_elec] = u16temp_delta; //Change Electrode to Scan if(total_electrode > 1) { if((total_electrode-1) > ongoing_elec) ongoing_elec++; else ongoing_elec = 0; TSI0->DATA = ((elec_array[ongoing_elec]<<TSI_DATA_TSICH_SHIFT) ); TSI0->DATA |= TSI_DATA_SWTS_MASK; } } void tsi_irq(void) { end_flag = 1; TSI0->GENCS |= TSI_GENCS_EOSF_MASK; // Clear End of Scan Flag changeElectrode(); }