Battery Management System LV - 2020/2021

Dependencies:   mbed

bq79606.cpp

Committer:
minamax
Date:
2020-12-23
Revision:
2:03a6da61d834
Parent:
1:d0662d4ffb8c
Child:
3:4dc457ed63d5

File content as of revision 2:03a6da61d834:

#include "mbed.h"
#include "bq79606.h"

int bRes = 0;
int count = 10000;
uint8_t pFrame[(MAXBYTES+6)*TOTALBOARDS];
BYTE bBuf[8];
BYTE bReturn = 0;
BYTE response_frame2[(MAXBYTES+6)*TOTALBOARDS];
BYTE bFrame[(2+6)*TOTALBOARDS];
int nCurrentBoard = 0;

extern Serial bms, pc1;
extern DigitalIn bmsFault;
extern DigitalOut bmsWakeUp;

void sendUART(int length, uint8_t * data){
    pc1.printf("SENDING TO BOARD");
    for(int i = 0; i < length; i++) {
      //pc1.putc(data[i]);
      bms.putc(data[i]);
      }
    //wait_ms(1);
}

void Wake79606(){
    bmsWakeUp = 1;
    wait_ms(50);
    bmsWakeUp = 0;
    wait_ms(10);
    //bmsWakeUp = 1;
}

void AutoAddress()
{
    memset(response_frame2,0,sizeof(response_frame2)); //clear out the response frame buffer

    //dummy write to ECC_TEST (sync DLL)
    //WriteReg(0, ECC_TEST, 0x00, 1, FRMWRT_ALL_NR);

    //clear CONFIG in case it is set
    WriteReg(0, CONFIG, 0x00, 1, FRMWRT_ALL_NR);

    //enter auto addressing mode
    WriteReg(0, CONTROL1, 0x01, 1, FRMWRT_ALL_NR);

    //set addresses for all boards in daisy-chain
    for (nCurrentBoard = 0; nCurrentBoard < TOTALBOARDS; nCurrentBoard++)
    {
        WriteReg(nCurrentBoard, DEVADD_USR, nCurrentBoard, 1, FRMWRT_ALL_NR);
    }

    //set all devices as a stack device
    //WriteReg(0, CONFIG, 0x02, 1, FRMWRT_ALL_NR);

    //if there's only 1 board, it's the base AND the top of stack, so change it to those
    //if(TOTALBOARDS==1)
    //{
        WriteReg(0, CONFIG, 0x01, 1, FRMWRT_SGL_NR);
    //}
    //otherwise set the base and top of stack individually
    /*else
    {
        WriteReg(0, CONFIG, 0x00, 1, FRMWRT_SGL_NR);             //base
        WriteReg(TOTALBOARDS-1, CONFIG, 0x03, 1, FRMWRT_SGL_NR); //top of stack
    }*/

    //dummy read from ECC_TEST (sync DLL)
    //ReadReg(TOTALBOARDS-1, ECC_TEST, response_frame2, 1, 0, FRMWRT_ALL_R);

    //OPTIONAL: read back all device addresses
    WriteReg(0, COMM_TO, 0x00, 1, FRMWRT_ALL_NR); //Disable communication timeout because printf takes a long time
    for (nCurrentBoard = 0; nCurrentBoard < TOTALBOARDS; nCurrentBoard++) {
        memset(response_frame2, 0, sizeof(response_frame2));
        ReadReg(nCurrentBoard, DEVADD_USR, response_frame2, 1, 0, FRMWRT_SGL_R);
        //printf("Board %d=%02x\n",nCurrentBoard,response_frame2[4]);
    }
}
//**************************
//END AUTO ADDRESS SEQUENCE
//**************************


//************************
//WRITE AND READ FUNCTIONS
//************************
int WriteReg(BYTE bID, uint16_t wAddr, uint64_t dwData, BYTE bLen, BYTE bWriteType) {
    // device address, register start address, data bytes, data length, write type (single, broadcast, stack)
    bRes = 0;
    memset(bBuf,0,sizeof(bBuf));
    switch (bLen) {
    case 1:
        bBuf[0] = dwData & 0x00000000000000FF;
        bRes = WriteFrame(bID, wAddr, bBuf, 1, bWriteType);
        break;
    case 2:
        bBuf[0] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[1] = dwData & 0x00000000000000FF;
        bRes = WriteFrame(bID, wAddr, bBuf, 2, bWriteType);
        break;
    case 3:
        bBuf[0] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[1] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[2] = dwData & 0x00000000000000FF;
        bRes = WriteFrame(bID, wAddr, bBuf, 3, bWriteType);
        break;
    case 4:
        bBuf[0] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[1] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[2] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[3] = dwData & 0x00000000000000FF;
        bRes = WriteFrame(bID, wAddr, bBuf, 4, bWriteType);
        break;
    case 5:
        bBuf[0] = (dwData & 0x000000FF00000000) >> 32;
        bBuf[1] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[2] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[3] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[4] = dwData & 0x00000000000000FF;
        bRes = WriteFrame(bID, wAddr, bBuf, 5, bWriteType);
        break;
    case 6:
        bBuf[0] = (dwData & 0x0000FF0000000000) >> 40;
        bBuf[1] = (dwData & 0x000000FF00000000) >> 32;
        bBuf[2] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[3] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[4] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[5] = dwData & 0x00000000000000FF;
        bRes = WriteFrame(bID, wAddr, bBuf, 6, bWriteType);
        break;
    case 7:
        bBuf[0] = (dwData & 0x00FF000000000000) >> 48;
        bBuf[1] = (dwData & 0x0000FF0000000000) >> 40;
        bBuf[2] = (dwData & 0x000000FF00000000) >> 32;
        bBuf[3] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[4] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[5] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[6] = dwData & 0x00000000000000FF;
        bRes = WriteFrame(bID, wAddr, bBuf, 7, bWriteType);
        break;
    case 8:
        bBuf[0] = (dwData & 0xFF00000000000000) >> 56;
        bBuf[1] = (dwData & 0x00FF000000000000) >> 48;
        bBuf[2] = (dwData & 0x0000FF0000000000) >> 40;
        bBuf[3] = (dwData & 0x000000FF00000000) >> 32;
        bBuf[4] = (dwData & 0x00000000FF000000) >> 24;
        bBuf[5] = (dwData & 0x0000000000FF0000) >> 16;
        bBuf[6] = (dwData & 0x000000000000FF00) >> 8;
        bBuf[7] = dwData & 0x00000000000000FF;
        bRes = WriteFrame(bID, wAddr, bBuf, 8, bWriteType);
        break;
    default:
        break;
    }
    return bRes;
}

int WriteFrame(BYTE bID, uint16_t wAddr, BYTE * pData, BYTE bLen, BYTE bWriteType) {
    int bPktLen = 0;
    uint8_t * pBuf = pFrame;
    uint16_t wCRC;
    memset(pFrame, 0x7F, sizeof(pFrame));
    *pBuf++ = 0x80 | (bWriteType) | ((bWriteType & 0x10) ? bLen - 0x01 : 0x00); //Only include blen if it is a write; Writes are 0x90, 0xB0, 0xD0
    if (bWriteType == FRMWRT_SGL_R || bWriteType == FRMWRT_SGL_NR)
    {
        *pBuf++ = (bID & 0x00FF);
    }
    *pBuf++ = (wAddr & 0xFF00) >> 8;
    *pBuf++ = wAddr & 0x00FF;

    while (bLen--)
        *pBuf++ = *pData++;

    bPktLen = pBuf - pFrame;

    wCRC = CRC16(pFrame, bPktLen);
    *pBuf++ = wCRC & 0x00FF;
    *pBuf++ = (wCRC & 0xFF00) >> 8;
    bPktLen += 2;
    //THIS SEEMS to occasionally drop bytes from the frame. Sometimes is not sending the last frame of the CRC.
    //(Seems to be caused by stack overflow, so take precautions to reduce stack usage in function calls)
    //sciSend(scilinREG, bPktLen, pFrame);
    
    sendUART(bPktLen, pFrame);

    return bPktLen;
}

int ReadReg(BYTE bID, uint16_t wAddr, BYTE * pData, BYTE bLen, uint32_t dwTimeOut,
        BYTE bWriteType) {
    bRes = 0;
    //count = 100000;
    if (bWriteType == FRMWRT_SGL_R) {
        ReadFrameReq(bID, wAddr, bLen, bWriteType);
        //memset(pData, 0, sizeof(pData));
        //sciEnableNotification(scilinREG, SCI_RX_INT);
        //sciReceive(scilinREG, bLen + 6, pData);
        //while(UART_RX_RDY == 0U && count>0) count--; /*wait*/
        //if(count == 0) printf("COUNT REACHED 0\n");
        //UART_RX_RDY = 0;
        bRes = bLen + 6;
    /*else if (bWriteType == FRMWRT_STK_R) {
        bRes = ReadFrameReq(bID, wAddr, bLen, bWriteType);
        memset(pData, 0, sizeof(pData));
        sciEnableNotification(scilinREG, SCI_RX_INT);
        sciReceive(scilinREG, (bLen + 6) * (TOTALBOARDS - 1), pData);
        while(UART_RX_RDY == 0U && count>0) count--; //wait
        UART_RX_RDY = 0;
        bRes = (bLen + 6) * (TOTALBOARDS - 1);*/
    } else if (bWriteType == FRMWRT_ALL_R) {
        bRes = ReadFrameReq(bID, wAddr, bLen, bWriteType);
        /*memset(pData, 0, sizeof(pData));
        sciEnableNotification(scilinREG, SCI_RX_INT);
        sciReceive(scilinREG, (bLen + 6) * TOTALBOARDS, pData);
        while(UART_RX_RDY == 0U && count>0) count--; //wait
        UART_RX_RDY = 0;*/
        bRes = (bLen + 6) * TOTALBOARDS;
    } else {
        bRes = 0;
    }
    /*int recBuff[256];
    bRes = 1;
    for(int i = 0; i < bRes; i++){
            recBuff[i] = bms.getc();
            //pc1.printf("rec = %d", recBuff[i]);
        }
        for(int i = 0; i < bRes; i++){
            pc1.printf("rec = %d", recBuff[i]);
        }*/
    return bRes;
}

int ReadFrameReq(BYTE bID, uint16_t wAddr, BYTE bByteToReturn, BYTE bWriteType) {
    bReturn = bByteToReturn - 1;

    if (bReturn > 127)
        return 0;

    return WriteFrame(bID, wAddr, &bReturn, 1, bWriteType);
}



void init(){
    
   
    
    /* mask all low level faults... user should unmask necessary faults */
    WriteReg(0, GPIO_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR); //mask GPIO faults
    //WriteReg(0, UV_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR); //mask UV faults
    //WriteReg(0, OV_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR); //mask OV faults
    //WriteReg(0, UT_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR); //mask UT faults
    //WriteReg(0, OT_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR); //mask OT faults
    WriteReg(0, TONE_FLT_MSK, 0x07, 1, FRMWRT_ALL_NR); //mask all tone faults
    WriteReg(0, COMM_UART_FLT_MSK, 0x07, 1, FRMWRT_ALL_NR); //mask UART faults
    WriteReg(0, COMM_UART_RC_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR); //mask UART fault contd
    WriteReg(0, COMM_UART_RR_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR);
    WriteReg(0, COMM_UART_TR_FLT_MSK, 0x03, 1, FRMWRT_ALL_NR);
    WriteReg(0, COMM_COMH_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR);
    WriteReg(0, COMM_COMH_RC_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR);
    WriteReg(0, COMM_COMH_RR_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR);
    WriteReg(0, COMM_COMH_TR_FLT_MSK, 0x03, 1, FRMWRT_ALL_NR);
    WriteReg(0, COMM_COML_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR);
    WriteReg(0, COMM_COML_RC_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR);
    WriteReg(0, COMM_COML_RR_FLT_MSK, 0x3F, 1, FRMWRT_ALL_NR);
    WriteReg(0, COMM_COML_TR_FLT_MSK, 0x03, 1, FRMWRT_ALL_NR);
    WriteReg(0, OTP_FLT_MSK, 0x07, 1, FRMWRT_ALL_NR); // mask otp faults
    WriteReg(0, RAIL_FLT_MSK, 0xFF, 1, FRMWRT_ALL_NR); //mask power rail faults
    WriteReg(0, SYSFLT1_FLT_MSK, 0x7F, 1, FRMWRT_ALL_NR); //sys fault  mask 1
    WriteReg(0, SYSFLT2_FLT_MSK, 0xFF, 1, FRMWRT_ALL_NR); //sys fault mask 2
    WriteReg(0, SYSFLT3_FLT_MSK, 0x7F, 1, FRMWRT_ALL_NR); //sys  fault  mask 3
    WriteReg(0, OVUV_BIST_FLT_MSK, 0x03, 1, FRMWRT_ALL_NR); //mask ov/uv bist faults
    WriteReg(0, OTUT_BIST_FLT_MSK, 0xFF, 1, FRMWRT_ALL_NR);
    
    WriteReg(0, CELL_ADC_CTRL, 0x07, 1, FRMWRT_ALL_NR); //enables ADC for all 6 cell channels
    WriteReg(0, OVUV_CTRL, 0x3F, 1, FRMWRT_ALL_NR); //enable all cell ov/uv
    WriteReg(0, UV_THRESH, 0x53, 1, FRMWRT_ALL_NR); //sets cell UV to 2.8V
    WriteReg(0, OV_THRESH, 0x5B, 1, FRMWRT_ALL_NR); //sets cell OV to 4.3V
    
    WriteReg(0, AUX_ADC_CONF, 0x08, 1, FRMWRT_ALL_NR); //1MHz AUX sample rate,  128 decimation  ratio
    WriteReg(0, CELL_ADC_CONF1, 0x67, 1, FRMWRT_ALL_NR); //256 decimation ratio, 1MHz sample. 1.2 Hz LPF
    WriteReg(0, CELL_ADC_CONF2, 0x00, 1, FRMWRT_ALL_NR); //single conversion
    WriteReg(0, CONTROL2, 0x01, 1, FRMWRT_ALL_NR);          //CELL_ADC_GO = 1
    ///enable continuous sampling. Otherwise, single conversions with CONTROL2[CELL_ADC_GO]
    //WriteReg(0,CELL_ADC_CONF2, 0x0A,1,FRMWRT_ALL_NR);//continuous sampling with 5ms interval
    //WriteReg(0, CONTROL2, 0x10, 1, FRMWRT_ALL_NR);// enable TSREF to give enough settling time
    //wait_ms(2); // provides settling time for TSREF
    
    
    
}







// CRC16 TABLE
// ITU_T polynomial: x^16 + x^15 + x^2 + 1
const uint16_t crc16_table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301,
        0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1,
        0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81,
        0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
        0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00,
        0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1,
        0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380,
        0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141,
        0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501,
        0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0,
        0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881,
        0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
        0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401,
        0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1,
        0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180,
        0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740,
        0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01,
        0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1,
        0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80,
        0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
        0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200,
        0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1,
        0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780,
        0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41,
        0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901,
        0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1,
        0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80,
        0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
        0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040 };

uint16_t CRC16(BYTE *pBuf, int nLen) {
    uint16_t wCRC = 0xFFFF;
    int i;

    for (i = 0; i < nLen; i++) {
        wCRC ^= (*pBuf++) & 0x00FF;
        wCRC = crc16_table[wCRC & 0x00FF] ^ (wCRC >> 8);
    }

    return wCRC;
}