mbed-os 6.10 versione

Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
diff -r 83d0537c7d84 -r fdd22bb7aa52 cmsis_dsp/ComplexMathFunctions/arm_cmplx_dot_prod_f32.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/ComplexMathFunctions/arm_cmplx_dot_prod_f32.c	Wed Nov 28 12:30:09 2012 +0000
@@ -0,0 +1,160 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010 ARM Limited. All rights reserved.    
+*    
+* $Date:        15. February 2012  
+* $Revision:     V1.1.0  
+*    
+* Project:         CMSIS DSP Library    
+* Title:        arm_cmplx_dot_prod_f32.c    
+*    
+* Description:    Floating-point complex dot product    
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Version 1.1.0 2012/02/15 
+*    Updated with more optimizations, bug fixes and minor API changes.  
+*   
+* Version 1.0.10 2011/7/15  
+*    Big Endian support added and Merged M0 and M3/M4 Source code.   
+*    
+* Version 1.0.3 2010/11/29   
+*    Re-organized the CMSIS folders and updated documentation.    
+*     
+* Version 1.0.2 2010/11/11    
+*    Documentation updated.     
+*    
+* Version 1.0.1 2010/10/05     
+*    Production release and review comments incorporated.    
+*    
+* Version 1.0.0 2010/09/20     
+*    Production release and review comments incorporated.    
+* ---------------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**    
+ * @ingroup groupCmplxMath    
+ */
+
+/**    
+ * @defgroup cmplx_dot_prod Complex Dot Product    
+ *    
+ * Computes the dot product of two complex vectors.    
+ * The vectors are multiplied element-by-element and then summed.    
+ *   
+ * The <code>pSrcA</code> points to the first complex input vector and    
+ * <code>pSrcB</code> points to the second complex input vector.    
+ * <code>numSamples</code> specifies the number of complex samples    
+ * and the data in each array is stored in an interleaved fashion    
+ * (real, imag, real, imag, ...).    
+ * Each array has a total of <code>2*numSamples</code> values.    
+ *    
+ * The underlying algorithm is used:    
+ * <pre>    
+ * realResult=0;    
+ * imagResult=0;    
+ * for(n=0; n<numSamples; n++) {    
+ *     realResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+0] - pSrcA[(2*n)+1]*pSrcB[(2*n)+1];    
+ *     imagResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+1] + pSrcA[(2*n)+1]*pSrcB[(2*n)+0];    
+ * }    
+ * </pre>    
+ *    
+ * There are separate functions for floating-point, Q15, and Q31 data types.    
+ */
+
+/**    
+ * @addtogroup cmplx_dot_prod    
+ * @{    
+ */
+
+/**    
+ * @brief  Floating-point complex dot product    
+ * @param  *pSrcA points to the first input vector    
+ * @param  *pSrcB points to the second input vector    
+ * @param  numSamples number of complex samples in each vector    
+ * @param  *realResult real part of the result returned here    
+ * @param  *imagResult imaginary part of the result returned here    
+ * @return none.    
+ */
+
+void arm_cmplx_dot_prod_f32(
+  float32_t * pSrcA,
+  float32_t * pSrcB,
+  uint32_t numSamples,
+  float32_t * realResult,
+  float32_t * imagResult)
+{
+  float32_t real_sum = 0.0f, imag_sum = 0.0f;    /* Temporary result storage */
+
+#ifndef ARM_MATH_CM0
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+  uint32_t blkCnt;                               /* loop counter */
+
+  /*loop Unrolling */
+  blkCnt = numSamples >> 2u;
+
+  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
+   ** a second loop below computes the remaining 1 to 3 samples. */
+  while(blkCnt > 0u)
+  {
+    /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
+    real_sum += (*pSrcA++) * (*pSrcB++);
+    /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
+    imag_sum += (*pSrcA++) * (*pSrcB++);
+
+    real_sum += (*pSrcA++) * (*pSrcB++);
+    imag_sum += (*pSrcA++) * (*pSrcB++);
+
+    real_sum += (*pSrcA++) * (*pSrcB++);
+    imag_sum += (*pSrcA++) * (*pSrcB++);
+
+    real_sum += (*pSrcA++) * (*pSrcB++);
+    imag_sum += (*pSrcA++) * (*pSrcB++);
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+  /* If the numSamples is not a multiple of 4, compute any remaining output samples here.    
+   ** No loop unrolling is used. */
+  blkCnt = numSamples % 0x4u;
+
+  while(blkCnt > 0u)
+  {
+    /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
+    real_sum += (*pSrcA++) * (*pSrcB++);
+    /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
+    imag_sum += (*pSrcA++) * (*pSrcB++);
+
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  while(numSamples > 0u)
+  {
+    /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
+    real_sum += (*pSrcA++) * (*pSrcB++);
+    /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
+    imag_sum += (*pSrcA++) * (*pSrcB++);
+
+
+    /* Decrement the loop counter */
+    numSamples--;
+  }
+
+#endif /* #ifndef ARM_MATH_CM0 */
+
+  /* Store the real and imaginary results in the destination buffers */
+  *realResult = real_sum;
+  *imagResult = imag_sum;
+}
+
+/**    
+ * @} end of cmplx_dot_prod group    
+ */