Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of UtilityLib by
Utility.cpp
- Committer:
- mgottscho
- Date:
- 2014-03-11
- Revision:
- 4:28f50e540872
- Parent:
- 3:87ce0325374d
- Child:
- 5:9cd633b79b23
File content as of revision 4:28f50e540872:
/* Utility.cpp * Tested with mbed board: FRDM-KL46Z * Author: Mark Gottscho * mgottscho@ucla.edu */ #include "mbed.h" #include <string> #include "Utility.h" using namespace std; Utility::Utility(PinName green_led_pin, PinName red_led_pin, PinName serial_tx_pin, PinName serial_rx_pin, int baudrate, bool enableSerialInterrupts) : console(serial_tx_pin, serial_rx_pin), green_led(green_led_pin), red_led(red_led_pin), __interrupts_en(enableSerialInterrupts), __user_fptr(NULL), __green_led_interrupt(), __red_led_interrupt(), __rx_head(0), __rx_tail(0), __tx_head(0), __tx_tail(0), __have_rx_serial(false) { red_led = 1; green_led = 1; console.baud(baudrate); //115200, 230400 confirmed to work, above this seems to fail //Set up serial interrupt handlers if (__interrupts_en) { console.attach(this, &Utility::__console_rx_ISR, Serial::RxIrq); //console.attach(this, &Utility::__console_tx_ISR, Serial::TxIrq); } } Utility::~Utility() { detach(); } void Utility::attach(void (*fptr)(void)) { //set user function pointer detach(); if (fptr != NULL) __user_fptr = new FunctionPointer(fptr); } template<typename T> void Utility::attach(T *tptr, void (T::*mptr)(void)) { //set user function pointer detach(); if (tptr != NULL && mptr != NULL) __user_fptr = new FunctionPointer(tptr, mptr); } void Utility::detach() { if (__user_fptr != NULL) delete __user_fptr; __user_fptr = NULL; } void Utility::panic(string errorMessage, int errorCode) { //We're dead. This is the point of no return! Permanently ignore interrupts. __disable_irq(); console.printf(">>> PANIC, CODE # %d: %s <<<\r\n", errorCode, errorMessage.c_str()); green_led = 1; red_led = 0; volatile uint32_t fake = 0; while(1) { fake = 0; } //Spinloop for eternity } void Utility::warn(string errorMessage, int errorCode) { console.printf(">>> WARN, CODE # %d: %s <<<\r\n", errorCode, errorMessage.c_str()); } #ifdef NDEBUG void Utility::myAssert(bool condition, const char *file, const unsigned long line) { } #else void Utility::myAssert(bool condition, const char *file, const unsigned long line) { if (!condition) { char msg[256]; sprintf(msg, "Assertion failed at file %s, line %d", file, line); panic(msg, -1); \ } } #endif void Utility::blinkGreen(bool enable, float half_period) { if (enable) { if (half_period <= 0.01) { __green_led_interrupt.detach(); green_led = 0; } else if (half_period <= 1800) __green_led_interrupt.attach(this, &Utility::__greenLED_ISR, half_period); } else { __green_led_interrupt.detach(); green_led = 1; } } void Utility::blinkRed(bool enable, float half_period) { if (enable) { if (half_period <= 0.01) { __red_led_interrupt.detach(); red_led = 0; } else if (half_period <= 1800) __red_led_interrupt.attach(this, &Utility::__redLED_ISR, half_period); } else { __red_led_interrupt.detach(); red_led = 1; } } //THIS DOES NOT WORK YET /*uint32_t Utility::sendLine(const char *line, const uint32_t len) { int i = 0; char temp_byte; bool buf_empty; if (line == NULL) //check input return 0; G_red_led = 0; // Start critical section - don't interrupt while changing global buffer variables __disable_irq(); buf_empty = (G_tx_head == G_tx_tail); while (i < len && line[i] != '\r') { //Loop until we have sent the maximum number of characters or we hit a carriage return // Wait if tx buffer full if ((G_tx_head + 1) % BUFFER_SIZE == G_tx_tail) { //If TX buffer is full, wait. // End critical section - need to let interrupt routine empty buffer by sending __enable_irq(); while ((G_tx_head + 1) % BUFFER_SIZE == G_tx_tail) { } //Spinloop until TX buffer is not full // Start critical section - don't interrupt while changing global buffer variables __disable_irq(); } G_tx_head = (G_tx_head + 1) % BUFFER_SIZE; G_tx_buf[G_tx_head] = line[i++]; } //Now we have buffered all characters in the line. Trigger the TX serial interrupt if (G_console.writeable() && buf_empty) { //Write the first byte to get it started temp_byte = G_tx_buf[G_tx_tail]; G_tx_tail = (G_tx_tail + 1) % BUFFER_SIZE; // Send first character to start tx interrupts, if stopped G_console.putc(temp_byte); } // End critical section __enable_irq(); G_red_led = 1; return i; }*/ uint32_t Utility::receiveLine(char *line, const uint32_t len) { int i = 0; char lastChar = '\0'; if (line == NULL) //check input return 0; // Start critical section - don't interrupt while changing global buffer variables __disable_uart_irq(); while (i < len && lastChar != '\r') { //Loop until maximum number of characters or a newline symbol //Wait for more characters if the rx buffer is empty if (__rx_tail == __rx_head) { // End critical section - need to allow rx interrupt to get new characters for buffer __enable_uart_irq(); while (__rx_tail == __rx_head) { } //Spinloop until there are some characters // Start critical section - don't interrupt while changing global buffer variables __disable_uart_irq(); } lastChar = __rx_buf[__rx_tail]; if (lastChar == '\r') //newline symbol line[i] = '\0'; else line[i] = lastChar; i++; __rx_tail = (__rx_tail + 1) % BUFFER_SIZE; } //Clear flag __have_rx_serial = false; // End critical section __enable_uart_irq(); return i; } bool Utility::haveRxSerialData() { return __have_rx_serial; } void Utility::__greenLED_ISR() { if (green_led == 0) //Just flip the LED status every time we are called green_led = 1; else green_led = 0; } void Utility::__redLED_ISR() { if (red_led == 0) //Just flip the LED status every time we are called red_led = 1; else red_led = 0; } void Utility::__console_rx_ISR() { char tmp; //Loop while the UART inbound FIFO is not empty and the receiving buffer is not full while (console.readable() && (__rx_head != (__rx_tail - 1) % BUFFER_SIZE)) { tmp = console.getc(); //read a byte into the buffer from the serial port __rx_buf[__rx_head] = tmp; __rx_head = (__rx_head + 1) % BUFFER_SIZE; if (tmp == '\r') __have_rx_serial = true; } if (__user_fptr != NULL) //user callback __user_fptr->call(); } //THIS DOES NOT WORK YET /*void Utility::__console_tx_ISR() { //Loop while the UART outbound FIFO is not full and the transmitting buffer is not empty while (G_console.writeable() && (G_tx_tail != G_tx_head)) { G_console.putc(G_tx_buf[G_tx_tail]); //write a byte to the serial port from the buffer G_tx_tail = (G_tx_tail + 1) % BUFFER_SIZE; } }*/ inline void Utility::__disable_uart_irq() { // Start critical section - don't interrupt with serial I/O // Since user specifies UART TX/RX pins, we don't know which we are using, so disable all 3 NVIC_DisableIRQ(UART0_IRQn); NVIC_DisableIRQ(UART1_IRQn); NVIC_DisableIRQ(UART2_IRQn); } inline void Utility::__enable_uart_irq() { // End critical section - can now interrupt with serial I/O // Since user specifies UART TX/RX pins, we don't know which we are using, so enable all 3 NVIC_EnableIRQ(UART0_IRQn); NVIC_EnableIRQ(UART1_IRQn); NVIC_EnableIRQ(UART2_IRQn); }