Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MPU9250_SPI mbed
Fork of MPU9250_AHRS by
main.cpp
- Committer:
- mfurukawa
- Date:
- 2016-06-17
- Revision:
- 12:5638ddcd8477
- Parent:
- 11:3f0b35a0855c
- Child:
- 13:3487e01bd5db
File content as of revision 12:5638ddcd8477:
/**
* Masahiro FURUKAWA - m.furukawa@ist.osaka-u.ac.jp
*
* June 17, 2016
*
* MPU9250 9DoF Sensor (Extended to Ch1 ~ Ch2)
*
**/
#include "mbed.h"
#include "MPU9250.h"
#include "KalmanFilter.h"
/* MPU9250 Library
*
* https://developer.mbed.org/users/kylongmu/code/MPU9250_SPI_Test/file/5839d1b118bc/main.cpp
MOSI (Master Out Slave In) p5
MISO (Master In Slave Out p6
SCK (Serial Clock) p7
~CS (Chip Select) p8
*/
/* Reference
*
* AHRS algorithm is one of hte sensor fusion algorism.
* http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/AHRS algorithm is one of hte sensor fusion algorism.
* http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
*/
//---------------------------------------------------------------------------------------------------
// Definitions
#define sampleFreq 500.0f // sample frequency in Hz
#define betaDef 1.0f // 2 * proportional gain
#define PI 3.14159265358979f
#define DEGREE2RAD PI/180.0f
class MadgwickAHRS
{
//---------------------------------------------------------------------------------------------------
// Variable definitions
private:
volatile float beta; // 2 * proportional gain (Kp)
//---------------------------------------------------------------------------------------------------
// Function declarations
public:
volatile float q0,q1,q2,q3; // quaternion of sensor frame relative to auxiliary frame
MadgwickAHRS();
void update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz);
void updateIMU(float gx, float gy, float gz, float ax, float ay, float az);
float invSqrt(float x);
};
//====================================================================================================
// Functions
//---------------------------------------------------------------------------------------------------
// AHRS algorithm update
MadgwickAHRS::MadgwickAHRS()
{
beta = betaDef; // 2 * proportional gain (Kp)
q0 = 1.0f;
q1 = 0.0f;
q2 = 0.0f;
q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
}
void MadgwickAHRS::update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz)
{
float recipNorm;
float s0, s1, s2, s3;
float qDot1, qDot2, qDot3, qDot4;
float hx, hy;
float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
// Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
updateIMU(gx, gy, gz, ax, ay, az);
return;
}
// Rate of change of quaternion from gyroscope
qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Normalise magnetometer measurement
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mx *= recipNorm;
my *= recipNorm;
mz *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
_2q0mx = 2.0f * q0 * mx;
_2q0my = 2.0f * q0 * my;
_2q0mz = 2.0f * q0 * mz;
_2q1mx = 2.0f * q1 * mx;
_2q0 = 2.0f * q0;
_2q1 = 2.0f * q1;
_2q2 = 2.0f * q2;
_2q3 = 2.0f * q3;
_2q0q2 = 2.0f * q0 * q2;
_2q2q3 = 2.0f * q2 * q3;
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
// Reference direction of Earth's magnetic field
hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
_2bx = sqrt(hx * hx + hy * hy);
_2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
// Gradient decent algorithm corrective step
s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
s0 *= recipNorm;
s1 *= recipNorm;
s2 *= recipNorm;
s3 *= recipNorm;
// Apply feedback step
qDot1 -= beta * s0;
qDot2 -= beta * s1;
qDot3 -= beta * s2;
qDot4 -= beta * s3;
}
// Integrate rate of change of quaternion to yield quaternion
q0 += qDot1 * (1.0f / sampleFreq);
q1 += qDot2 * (1.0f / sampleFreq);
q2 += qDot3 * (1.0f / sampleFreq);
q3 += qDot4 * (1.0f / sampleFreq);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
//---------------------------------------------------------------------------------------------------
// IMU algorithm update
void MadgwickAHRS::updateIMU(float gx, float gy, float gz, float ax, float ay, float az)
{
float recipNorm;
float s0, s1, s2, s3;
float qDot1, qDot2, qDot3, qDot4;
float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
// Rate of change of quaternion from gyroscope
qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
_2q0 = 2.0f * q0;
_2q1 = 2.0f * q1;
_2q2 = 2.0f * q2;
_2q3 = 2.0f * q3;
_4q0 = 4.0f * q0;
_4q1 = 4.0f * q1;
_4q2 = 4.0f * q2;
_8q1 = 8.0f * q1;
_8q2 = 8.0f * q2;
q0q0 = q0 * q0;
q1q1 = q1 * q1;
q2q2 = q2 * q2;
q3q3 = q3 * q3;
// Gradient decent algorithm corrective step
s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
s0 *= recipNorm;
s1 *= recipNorm;
s2 *= recipNorm;
s3 *= recipNorm;
// Apply feedback step
qDot1 -= beta * s0;
qDot2 -= beta * s1;
qDot3 -= beta * s2;
qDot4 -= beta * s3;
}
// Integrate rate of change of quaternion to yield quaternion
q0 += qDot1 * (1.0f / sampleFreq);
q1 += qDot2 * (1.0f / sampleFreq);
q2 += qDot3 * (1.0f / sampleFreq);
q3 += qDot4 * (1.0f / sampleFreq);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
//---------------------------------------------------------------------------------------------------
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
float MadgwickAHRS::invSqrt(float x)
{
float halfx = 0.5f * x;
float y = x;
long i = *(long*)&y;
i = 0x5f3759df - (i>>1);
y = *(float*)&i;
y = y * (1.5f - (halfx * y * y));
return y;
}
//define the mpu9250 object
mpu9250_spi *imu[2];
MadgwickAHRS *ahrs[2];
Serial pc(USBTX, USBRX);
SPI spi(p5, p6, p7);
KalmanFilter *kf[12];
Ticker ticker;
float x,y,z,gxOfs,gyOfs,gzOfs;
// Calibration wait
void resetOffset(void)
{
gxOfs = 0.0f;
gyOfs = 0.0f;
gzOfs = 0.0f;
imu[0]->deselect();
imu[1]->deselect();
imu[0]->select();
for(int i=0; i<1000; i++) {
imu[0]->read_all();
gxOfs += imu[0]->gyroscope_data[0];
gyOfs += imu[0]->gyroscope_data[1];
gzOfs += imu[0]->gyroscope_data[2];
wait_us(1000000.0f/sampleFreq);
}
gxOfs /= 1000.0f;
gyOfs /= 1000.0f;
gzOfs /= 1000.0f;
ahrs[0]->q0 = 1.0f;
ahrs[0]->q1 = 0.0f;
ahrs[0]->q2 = 0.0f;
ahrs[0]->q3 = 0.0f;
}
void init(void)
{
pc.baud(921600);
imu[0] = new mpu9250_spi(spi, p8);
imu[1] = new mpu9250_spi(spi, p9);
ahrs[0] = new MadgwickAHRS();
ahrs[1] = new MadgwickAHRS();
for(int i=0; i<2; i++) {
imu[0]->deselect();
imu[1]->deselect();
imu[i]->select();
if(imu[i]->init(1,BITS_DLPF_CFG_188HZ)) { //INIT the mpu9250
printf("\nCH %d\n\nCouldn't initialize MPU9250 via SPI!", i);
wait(90);
}
printf("\nCH %d\nWHOAMI=0x%2x\n",i, imu[i]->whoami()); //output the I2C address to know if SPI is working, it should be 104
printf("Gyro_scale=%u\n",imu[i]->set_gyro_scale(BITS_FS_1000DPS)); //Set full scale range for gyros
printf("Acc_scale=%u\n",imu[i]->set_acc_scale(BITS_FS_16G)); //Set full scale range for accs
printf("AK8963 WHIAM=0x%2x\n",imu[i]->AK8963_whoami());
imu[i]->AK8963_calib_Magnetometer();
wait(0.1);
}
resetOffset();
}
void eventFunc(void)
{
for(int i=0; i<2; i++) {
imu[0]->deselect();
imu[1]->deselect();
imu[i]->select();
imu[i]->read_all();
}
for(int i=0; i<2; i++) {
ahrs[i]->update(
(imu[i]->gyroscope_data[0]-gxOfs)*DEGREE2RAD,
(imu[i]->gyroscope_data[1]-gyOfs)*DEGREE2RAD,
(imu[i]->gyroscope_data[2]-gzOfs)*DEGREE2RAD,
imu[i]->accelerometer_data[0],
imu[i]->accelerometer_data[1],
imu[i]->accelerometer_data[2],
imu[i]->Magnetometer[0],
imu[i]->Magnetometer[1],
imu[i]->Magnetometer[2]
);
printf("%+0.3f,%+0.3f,%+0.3f,%+0.3f,",
ahrs[i]->q0,ahrs[i]->q1,ahrs[i]->q2,ahrs[i]->q3);
}
printf("\n");
}
int main()
{
init();
ticker.attach_us(eventFunc, 1000000.0f/sampleFreq);
while(1) {
if(pc.readable())
if(pc.getc() == 'r') {
ticker.detach();
resetOffset();
ticker.attach_us(eventFunc, 1000000.0f/sampleFreq);
}
/*
imu[i]->read_all();
printf("%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%10.3f ",
imu[i]->Temperature,
imu[i]->gyroscope_data[0],
imu[i]->gyroscope_data[1],
imu[i]->gyroscope_data[2],
imu[i]->accelerometer_data[0],
imu[i]->accelerometer_data[1],
imu[i]->accelerometer_data[2],
imu[i]->Magnetometer[0],
imu[i]->Magnetometer[1],
imu[i]->Magnetometer[2]
);*/
//myled = 0;
//wait(0.5);
}
}
