Modification of Mbed-dev library for LQFP48 package microcontrollers: STM32F103C8 (STM32F103C8T6) and STM32F103CB (STM32F103CBT6) (Bluepill boards, Maple mini etc. )
Fork of mbed-STM32F103C8_org by
Library for STM32F103C8 (Bluepill boards etc.).
Use this instead of mbed library.
This library allows the size of the code in the FLASH up to 128kB. Therefore, code also runs on microcontrollers STM32F103CB (eg. Maple mini).
But in the case of STM32F103C8, check the size of the resulting code would not exceed 64kB.
To compile a program with this library, use NUCLEO-F103RB as the target name. !
Changes:
- Corrected initialization of the HSE + crystal clock (mbed permanent bug), allowing the use of on-board xtal (8MHz).(1)
- Additionally, it also set USB clock (48Mhz).(2)
- Definitions of pins and peripherals adjusted to LQFP48 case.
- Board led LED1 is now PC_13 (3)
- USER_BUTTON is now PC_14 (4)
Now the library is complete rebuilt based on mbed-dev v160 (and not yet fully tested).
notes
(1) - In case 8MHz xtal on board, CPU frequency is 72MHz. Without xtal is 64MHz.
(2) - Using the USB interface is only possible if STM32 is clocking by on-board 8MHz xtal or external clock signal 8MHz on the OSC_IN pin.
(3) - On Bluepill board led operation is reversed, i.e. 0 - led on, 1 - led off.
(4) - Bluepill board has no real user button
Information
After export to SW4STM (AC6):
- add line
#include "mbed_config.h"
in files Serial.h and RawSerial.h - in project properties change
Optimisation Level
toOptimise for size (-Os)
targets/TARGET_STM/hal_tick_32b.c
- Committer:
- mega64
- Date:
- 2017-04-27
- Revision:
- 148:8b0b02bf146f
- Parent:
- 146:03e976389d16
File content as of revision 148:8b0b02bf146f:
/* mbed Microcontroller Library * Copyright (c) 2006-2016 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "hal_tick.h" // A 32-bit timer is used #if !TIM_MST_16BIT #define DEBUG_TICK 0 // Set to 1 to toggle a pin (see below which pin) at each tick extern TIM_HandleTypeDef TimMasterHandle; extern void HAL_IncTick(void); volatile uint32_t PreviousVal = 0; void us_ticker_irq_handler(void); void timer_irq_handler(void) { // Channel 1 for mbed timeout if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) { if (__HAL_TIM_GET_IT_SOURCE(&TimMasterHandle, TIM_IT_CC1) == SET) { __HAL_TIM_CLEAR_IT(&TimMasterHandle, TIM_IT_CC1); us_ticker_irq_handler(); } } // Channel 2 for HAL tick if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC2) == SET) { if (__HAL_TIM_GET_IT_SOURCE(&TimMasterHandle, TIM_IT_CC2) == SET) { __HAL_TIM_CLEAR_IT(&TimMasterHandle, TIM_IT_CC2); uint32_t val = __HAL_TIM_GetCounter(&TimMasterHandle); if ((val - PreviousVal) >= HAL_TICK_DELAY) { // Increment HAL variable HAL_IncTick(); // Prepare next interrupt __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_2, val + HAL_TICK_DELAY); PreviousVal = val; #if DEBUG_TICK > 0 HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_6); #endif } } } } // Reconfigure the HAL tick using a standard timer instead of systick. HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) { RCC_ClkInitTypeDef RCC_ClkInitStruct; uint32_t PclkFreq; // Get clock configuration // Note: PclkFreq contains here the Latency (not used after) HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq); // Get timer clock value #if TIM_MST_PCLK == 1 PclkFreq = HAL_RCC_GetPCLK1Freq(); #else PclkFreq = HAL_RCC_GetPCLK2Freq(); #endif // Enable timer clock TIM_MST_RCC; // Reset timer TIM_MST_RESET_ON; TIM_MST_RESET_OFF; // Configure time base TimMasterHandle.Instance = TIM_MST; TimMasterHandle.Init.Period = 0xFFFFFFFF; // TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx #if TIM_MST_PCLK == 1 if (RCC_ClkInitStruct.APB1CLKDivider == RCC_HCLK_DIV1) { #else if (RCC_ClkInitStruct.APB2CLKDivider == RCC_HCLK_DIV1) { #endif TimMasterHandle.Init.Prescaler = (uint16_t)((PclkFreq) / 1000000) - 1; // 1 us tick } else { TimMasterHandle.Init.Prescaler = (uint16_t)((PclkFreq * 2) / 1000000) - 1; // 1 us tick } TimMasterHandle.Init.ClockDivision = 0; TimMasterHandle.Init.CounterMode = TIM_COUNTERMODE_UP; #if !TARGET_STM32L1 TimMasterHandle.Init.RepetitionCounter = 0; #endif #ifdef TARGET_STM32F0 TimMasterHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; #endif HAL_TIM_OC_Init(&TimMasterHandle); NVIC_SetVector(TIM_MST_IRQ, (uint32_t)timer_irq_handler); NVIC_EnableIRQ(TIM_MST_IRQ); // Channel 1 for mbed timeout HAL_TIM_OC_Start(&TimMasterHandle, TIM_CHANNEL_1); // Channel 2 for HAL tick HAL_TIM_OC_Start(&TimMasterHandle, TIM_CHANNEL_2); PreviousVal = __HAL_TIM_GetCounter(&TimMasterHandle); __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_2, PreviousVal + HAL_TICK_DELAY); __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC2); #if DEBUG_TICK > 0 __GPIOB_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); #endif return HAL_OK; } void HAL_SuspendTick(void) { TimMasterHandle.Instance = TIM_MST; __HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC2); } void HAL_ResumeTick(void) { TimMasterHandle.Instance = TIM_MST; __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC2); } #endif // !TIM_MST_16BIT