Modification of Mbed-dev library for LQFP48 package microcontrollers: STM32F103C8 (STM32F103C8T6) and STM32F103CB (STM32F103CBT6) (Bluepill boards, Maple mini etc. )

Fork of mbed-STM32F103C8_org by Nothing Special

Library for STM32F103C8 (Bluepill boards etc.).
Use this instead of mbed library.
This library allows the size of the code in the FLASH up to 128kB. Therefore, code also runs on microcontrollers STM32F103CB (eg. Maple mini).
But in the case of STM32F103C8, check the size of the resulting code would not exceed 64kB.

To compile a program with this library, use NUCLEO-F103RB as the target name. !

Changes:

  • Corrected initialization of the HSE + crystal clock (mbed permanent bug), allowing the use of on-board xtal (8MHz).(1)
  • Additionally, it also set USB clock (48Mhz).(2)
  • Definitions of pins and peripherals adjusted to LQFP48 case.
  • Board led LED1 is now PC_13 (3)
  • USER_BUTTON is now PC_14 (4)

    Now the library is complete rebuilt based on mbed-dev v160 (and not yet fully tested).

notes
(1) - In case 8MHz xtal on board, CPU frequency is 72MHz. Without xtal is 64MHz.
(2) - Using the USB interface is only possible if STM32 is clocking by on-board 8MHz xtal or external clock signal 8MHz on the OSC_IN pin.
(3) - On Bluepill board led operation is reversed, i.e. 0 - led on, 1 - led off.
(4) - Bluepill board has no real user button

Information

After export to SW4STM (AC6):

  • add line #include "mbed_config.h" in files Serial.h and RawSerial.h
  • in project properties change Optimisation Level to Optimise for size (-Os)

targets/TARGET_STM/hal_tick_16b.c

Committer:
mega64
Date:
2017-04-27
Revision:
148:8b0b02bf146f
Parent:
146:03e976389d16

File content as of revision 148:8b0b02bf146f:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2016 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "hal_tick.h"

// A 16-bit timer is used
#if TIM_MST_16BIT

#define DEBUG_TICK 0 // Set to 1 to toggle a pin (see below which pin) at each tick

extern TIM_HandleTypeDef TimMasterHandle;

extern volatile uint32_t SlaveCounter;
extern volatile uint32_t oc_int_part;
extern volatile uint16_t oc_rem_part;
extern volatile uint8_t  tim_it_update;
extern volatile uint32_t tim_it_counter;

volatile uint32_t PreviousVal = 0;

void us_ticker_irq_handler(void);
void set_compare(uint16_t count);

#if defined(TARGET_STM32F0)
void timer_update_irq_handler(void) {
#else
void timer_irq_handler(void)
{
#endif
    uint16_t cnt_val = TIM_MST->CNT;
    TimMasterHandle.Instance = TIM_MST;

    // Clear Update interrupt flag
    if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_UPDATE) == SET) {
        if (__HAL_TIM_GET_IT_SOURCE(&TimMasterHandle, TIM_IT_UPDATE) == SET) {
            __HAL_TIM_CLEAR_IT(&TimMasterHandle, TIM_IT_UPDATE);
            SlaveCounter++;
            tim_it_counter = cnt_val + (uint32_t)(SlaveCounter << 16);
            tim_it_update = 1;
        }
    }

#if defined(TARGET_STM32F0)
} // end timer_update_irq_handler function
// Used for mbed timeout (channel 1) and HAL tick (channel 2)
void timer_oc_irq_handler(void)
{
    uint16_t cnt_val = TIM_MST->CNT;
    TimMasterHandle.Instance = TIM_MST;
#endif

    // Channel 1 for mbed timeout
    if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) {
        if (__HAL_TIM_GET_IT_SOURCE(&TimMasterHandle, TIM_IT_CC1) == SET) {
            __HAL_TIM_CLEAR_IT(&TimMasterHandle, TIM_IT_CC1);
            if (oc_rem_part > 0) {
                set_compare(oc_rem_part); // Finish the remaining time left
                oc_rem_part = 0;
            } else {
                if (oc_int_part > 0) {
                    set_compare(0xFFFF);
                    oc_rem_part = cnt_val; // To finish the counter loop the next time
                    oc_int_part--;
                } else {
                    us_ticker_irq_handler();
                }
            }
        }
    }

    // Channel 2 for HAL tick
    if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC2) == SET) {
        if (__HAL_TIM_GET_IT_SOURCE(&TimMasterHandle, TIM_IT_CC2) == SET) {
            __HAL_TIM_CLEAR_IT(&TimMasterHandle, TIM_IT_CC2);
            uint32_t val = __HAL_TIM_GetCounter(&TimMasterHandle);
            if ((val - PreviousVal) >= HAL_TICK_DELAY) {
                // Increment HAL variable
                HAL_IncTick();
                // Prepare next interrupt
                __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_2, val + HAL_TICK_DELAY);
                PreviousVal = val;
#if DEBUG_TICK > 0
                HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_6);
#endif
            }
        }
    }
}

// Reconfigure the HAL tick using a standard timer instead of systick.
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
    // Enable timer clock
    TIM_MST_RCC;

    // Reset timer
    TIM_MST_RESET_ON;
    TIM_MST_RESET_OFF;

    // Update the SystemCoreClock variable
    SystemCoreClockUpdate();

    // Configure time base
    TimMasterHandle.Instance = TIM_MST;
    TimMasterHandle.Init.Period        = 0xFFFF;
    TimMasterHandle.Init.Prescaler     = (uint32_t)(SystemCoreClock / 1000000) - 1; // 1 us tick
    TimMasterHandle.Init.ClockDivision = 0;
    TimMasterHandle.Init.CounterMode   = TIM_COUNTERMODE_UP;
#ifdef TARGET_STM32F0
    TimMasterHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
#endif
    HAL_TIM_Base_Init(&TimMasterHandle);

    // Configure output compare channel 1 for mbed timeout (enabled later when used)
    HAL_TIM_OC_Start(&TimMasterHandle, TIM_CHANNEL_1);

    // Configure output compare channel 2 for HAL tick
    HAL_TIM_OC_Start(&TimMasterHandle, TIM_CHANNEL_2);
    PreviousVal = __HAL_TIM_GetCounter(&TimMasterHandle);
    __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_2, PreviousVal + HAL_TICK_DELAY);

    // Configure interrupts
    // Update interrupt used for 32-bit counter
    // Output compare channel 1 interrupt for mbed timeout
    // Output compare channel 2 interrupt for HAL tick
#if defined(TARGET_STM32F0)
    NVIC_SetVector(TIM_MST_UP_IRQ, (uint32_t)timer_update_irq_handler);
    NVIC_EnableIRQ(TIM_MST_UP_IRQ);
    NVIC_SetPriority(TIM_MST_UP_IRQ, 0);
    NVIC_SetVector(TIM_MST_OC_IRQ, (uint32_t)timer_oc_irq_handler);
    NVIC_EnableIRQ(TIM_MST_OC_IRQ);
    NVIC_SetPriority(TIM_MST_OC_IRQ, 1);
#else
    NVIC_SetVector(TIM_MST_IRQ, (uint32_t)timer_irq_handler);
    NVIC_EnableIRQ(TIM_MST_IRQ);
#endif

    // Enable interrupts
    __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_UPDATE); // For 32-bit counter
    __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC2); // For HAL tick

    // Enable timer
    HAL_TIM_Base_Start(&TimMasterHandle);

#if DEBUG_TICK > 0
    __GPIOB_CLK_ENABLE();
    GPIO_InitTypeDef GPIO_InitStruct;
    GPIO_InitStruct.Pin = GPIO_PIN_6;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_PULLUP;
    GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
#endif

    return HAL_OK;
}

void HAL_SuspendTick(void)
{
    TimMasterHandle.Instance = TIM_MST;
    __HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC2);
}

void HAL_ResumeTick(void)
{
    TimMasterHandle.Instance = TIM_MST;
    __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC2);
}

#endif // TIM_MST_16BIT