Modification of Mbed-dev library for LQFP48 package microcontrollers: STM32F103C8 (STM32F103C8T6) and STM32F103CB (STM32F103CBT6) (Bluepill boards, Maple mini etc. )

Fork of mbed-STM32F103C8_org by Nothing Special

Library for STM32F103C8 (Bluepill boards etc.).
Use this instead of mbed library.
This library allows the size of the code in the FLASH up to 128kB. Therefore, code also runs on microcontrollers STM32F103CB (eg. Maple mini).
But in the case of STM32F103C8, check the size of the resulting code would not exceed 64kB.

To compile a program with this library, use NUCLEO-F103RB as the target name. !

Changes:

  • Corrected initialization of the HSE + crystal clock (mbed permanent bug), allowing the use of on-board xtal (8MHz).(1)
  • Additionally, it also set USB clock (48Mhz).(2)
  • Definitions of pins and peripherals adjusted to LQFP48 case.
  • Board led LED1 is now PC_13 (3)
  • USER_BUTTON is now PC_14 (4)

    Now the library is complete rebuilt based on mbed-dev v160 (and not yet fully tested).

notes
(1) - In case 8MHz xtal on board, CPU frequency is 72MHz. Without xtal is 64MHz.
(2) - Using the USB interface is only possible if STM32 is clocking by on-board 8MHz xtal or external clock signal 8MHz on the OSC_IN pin.
(3) - On Bluepill board led operation is reversed, i.e. 0 - led on, 1 - led off.
(4) - Bluepill board has no real user button

Information

After export to SW4STM (AC6):

  • add line #include "mbed_config.h" in files Serial.h and RawSerial.h
  • in project properties change Optimisation Level to Optimise for size (-Os)

targets/TARGET_STM/TARGET_STM32F1/serial_api.c

Committer:
mega64
Date:
2017-04-27
Revision:
148:8b0b02bf146f
Parent:
146:03e976389d16

File content as of revision 148:8b0b02bf146f:

/* mbed Microcontroller Library
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */
#include "mbed_assert.h"
#include "serial_api.h"

#if DEVICE_SERIAL

#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include <string.h>
#include "PeripheralPins.h"

#define UART_NUM (3)

static uint32_t serial_irq_ids[UART_NUM] = {0};
static UART_HandleTypeDef uart_handlers[UART_NUM];

static uart_irq_handler irq_handler;

int stdio_uart_inited = 0;
serial_t stdio_uart;

#if DEVICE_SERIAL_ASYNCH
    #define SERIAL_S(obj) (&((obj)->serial))
#else
    #define SERIAL_S(obj) (obj)
#endif

static void init_uart(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    huart->Instance = (USART_TypeDef *)(obj_s->uart);

    huart->Init.BaudRate     = obj_s->baudrate;
    huart->Init.WordLength   = obj_s->databits;
    huart->Init.StopBits     = obj_s->stopbits;
    huart->Init.Parity       = obj_s->parity;
#if DEVICE_SERIAL_FC
    huart->Init.HwFlowCtl    = obj_s->hw_flow_ctl;
#else
    huart->Init.HwFlowCtl    = UART_HWCONTROL_NONE;
#endif
    huart->TxXferCount       = 0;
    huart->TxXferSize        = 0;
    huart->RxXferCount       = 0;
    huart->RxXferSize        = 0;

    if (obj_s->pin_rx == NC) {
        huart->Init.Mode = UART_MODE_TX;
    } else if (obj_s->pin_tx == NC) {
        huart->Init.Mode = UART_MODE_RX;
    } else {
        huart->Init.Mode = UART_MODE_TX_RX;
    }

    if (HAL_UART_Init(huart) != HAL_OK) {
        error("Cannot initialize UART\n");
    }
}

void serial_init(serial_t *obj, PinName tx, PinName rx)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    
    // Determine the UART to use (UART_1, UART_2, ...)
    UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
    UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);

    // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
    obj_s->uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
    MBED_ASSERT(obj_s->uart != (UARTName)NC);

    // Enable USART clock
    if (obj_s->uart == UART_1) {
        __HAL_RCC_USART1_FORCE_RESET();
        __HAL_RCC_USART1_RELEASE_RESET();
        __HAL_RCC_USART1_CLK_ENABLE();
        obj_s->index = 0;
    }
    if (obj_s->uart == UART_2) {
        __HAL_RCC_USART2_FORCE_RESET();
        __HAL_RCC_USART2_RELEASE_RESET();
        __HAL_RCC_USART2_CLK_ENABLE();
        obj_s->index = 1;
    }
    if (obj_s->uart == UART_3) {
        __HAL_RCC_USART3_FORCE_RESET();
        __HAL_RCC_USART3_RELEASE_RESET();
        __HAL_RCC_USART3_CLK_ENABLE();
        obj_s->index = 2;
    }

    // Configure UART pins
    pinmap_pinout(tx, PinMap_UART_TX);
    pinmap_pinout(rx, PinMap_UART_RX);
    
    if (tx != NC) {
        pin_mode(tx, PullUp);
    }
    if (rx != NC) {
        pin_mode(rx, PullUp);
    }

    // Configure UART
    obj_s->baudrate = 9600;
    obj_s->databits = UART_WORDLENGTH_8B;
    obj_s->stopbits = UART_STOPBITS_1;
    obj_s->parity   = UART_PARITY_NONE;
    
#if DEVICE_SERIAL_FC
    obj_s->hw_flow_ctl = UART_HWCONTROL_NONE;
#endif

    obj_s->pin_tx = tx;
    obj_s->pin_rx = rx;

    init_uart(obj);

    // For stdio management
    if (obj_s->uart == STDIO_UART) {
        stdio_uart_inited = 1;
        memcpy(&stdio_uart, obj, sizeof(serial_t));
    }
}

void serial_free(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
      
    // Reset UART and disable clock
    if (obj_s->uart == UART_1) {
        __USART1_FORCE_RESET();
        __USART1_RELEASE_RESET();
        __USART1_CLK_DISABLE();
    }
    if (obj_s->uart == UART_2) {
        __USART2_FORCE_RESET();
        __USART2_RELEASE_RESET();
        __USART2_CLK_DISABLE();
    }
    if (obj_s->uart == UART_3) {
        __USART3_FORCE_RESET();
        __USART3_RELEASE_RESET();
        __USART3_CLK_DISABLE();
    }

    // Configure GPIOs
    pin_function(obj_s->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
    pin_function(obj_s->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));

    serial_irq_ids[obj_s->index] = 0;
}

void serial_baud(serial_t *obj, int baudrate)
{
    struct serial_s *obj_s = SERIAL_S(obj);

    obj_s->baudrate = baudrate;
    init_uart(obj);
}

void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
    struct serial_s *obj_s = SERIAL_S(obj);

    if (data_bits == 9) {
        obj_s->databits = UART_WORDLENGTH_9B;
    } else {
        obj_s->databits = UART_WORDLENGTH_8B;
    }

    switch (parity) {
        case ParityOdd:
            obj_s->parity = UART_PARITY_ODD;
            break;
        case ParityEven:
            obj_s->parity = UART_PARITY_EVEN;
            break;
        default: // ParityNone
        case ParityForced0: // unsupported!
        case ParityForced1: // unsupported!
            obj_s->parity = UART_PARITY_NONE;
            break;
    }

    if (stop_bits == 2) {
        obj_s->stopbits = UART_STOPBITS_2;
    } else {
        obj_s->stopbits = UART_STOPBITS_1;
    }

    init_uart(obj);
}

/******************************************************************************
 * INTERRUPTS HANDLING
 ******************************************************************************/

static void uart_irq(int id)
{
    UART_HandleTypeDef * huart = &uart_handlers[id];
    
    if (serial_irq_ids[id] != 0) {
        if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
            if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) {
                irq_handler(serial_irq_ids[id], TxIrq);
                __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
            }
        }
        if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) {
            if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE) != RESET) {
                irq_handler(serial_irq_ids[id], RxIrq);
                __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_RXNE);
            }
        }
        if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
            if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET) {
                volatile uint32_t tmpval = huart->Instance->DR; // Clear ORE flag
            }
        }
    }
}

static void uart1_irq(void)
{
    uart_irq(0);
}

static void uart2_irq(void)
{
    uart_irq(1);
}

static void uart3_irq(void)
{
    uart_irq(2);
}

void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
    struct serial_s *obj_s = SERIAL_S(obj);
  
    irq_handler = handler;
    serial_irq_ids[obj_s->index] = id;
}

void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    IRQn_Type irq_n = (IRQn_Type)0;
    uint32_t vector = 0;

    if (obj_s->uart == UART_1) {
        irq_n = USART1_IRQn;
        vector = (uint32_t)&uart1_irq;
    }

    if (obj_s->uart == UART_2) {
        irq_n = USART2_IRQn;
        vector = (uint32_t)&uart2_irq;
    }

    if (obj_s->uart == UART_3) {
        irq_n = USART3_IRQn;
        vector = (uint32_t)&uart3_irq;
    }

    if (enable) {
        if (irq == RxIrq) {
            __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
        } else { // TxIrq
            __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
        }
        NVIC_SetVector(irq_n, vector);
        NVIC_EnableIRQ(irq_n);

    } else { // disable
        int all_disabled = 0;
        if (irq == RxIrq) {
            __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
            // Check if TxIrq is disabled too
            if ((huart->Instance->CR1 & USART_CR1_TXEIE) == 0) {
                all_disabled = 1;
            }
        } else { // TxIrq
            __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
            // Check if RxIrq is disabled too
            if ((huart->Instance->CR1 & USART_CR1_RXNEIE) == 0) {
                all_disabled = 1;
            }
        }

        if (all_disabled) {
            NVIC_DisableIRQ(irq_n);
        }
    }
}

/******************************************************************************
 * READ/WRITE
 ******************************************************************************/

int serial_getc(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];

    while (!serial_readable(obj));
    if (obj_s->databits == UART_WORDLENGTH_8B) {
        return (int)(huart->Instance->DR & (uint8_t)0xFF);
    } else {
        return (int)(huart->Instance->DR & (uint16_t)0x1FF);
    }
}

void serial_putc(serial_t *obj, int c)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];

    while (!serial_writable(obj));
    if (obj_s->databits == UART_WORDLENGTH_8B) {
        huart->Instance->DR = (uint8_t)(c & (uint8_t)0xFF);
    } else {
        huart->Instance->DR = (uint16_t)(c & (uint16_t)0x1FF);
    }
}

int serial_readable(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    
    // Check if data is received
    return (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) ? 1 : 0;
}

int serial_writable(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    
    // Check if data is transmitted
    return (__HAL_UART_GET_FLAG(huart, UART_FLAG_TXE) != RESET) ? 1 : 0;
}

void serial_clear(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    
    huart->TxXferCount = 0;
    huart->RxXferCount = 0;
}

void serial_pinout_tx(PinName tx)
{
    pinmap_pinout(tx, PinMap_UART_TX);
}

void serial_break_set(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    
    HAL_LIN_SendBreak(huart);
}

void serial_break_clear(serial_t *obj)
{
    (void)obj;
}

#if DEVICE_SERIAL_ASYNCH

/******************************************************************************
 * LOCAL HELPER FUNCTIONS
 ******************************************************************************/

/** 
 * Configure the TX buffer for an asynchronous write serial transaction
 *
 * @param obj       The serial object.
 * @param tx        The buffer for sending.
 * @param tx_length The number of words to transmit.
 */
static void serial_tx_buffer_set(serial_t *obj, void *tx, int tx_length, uint8_t width)
{
    (void)width;

    // Exit if a transmit is already on-going
    if (serial_tx_active(obj)) {
        return;
    }

    obj->tx_buff.buffer = tx;
    obj->tx_buff.length = tx_length;
    obj->tx_buff.pos = 0;
}
  
/**
 * Configure the RX buffer for an asynchronous write serial transaction
 *
 * @param obj       The serial object.
 * @param tx        The buffer for sending.
 * @param tx_length The number of words to transmit.
 */
static void serial_rx_buffer_set(serial_t *obj, void *rx, int rx_length, uint8_t width)
{
    (void)width;

    // Exit if a reception is already on-going
    if (serial_rx_active(obj)) {
        return;
    }

    obj->rx_buff.buffer = rx;
    obj->rx_buff.length = rx_length;
    obj->rx_buff.pos = 0;
}

/** 
 * Configure events
 *
 * @param obj    The serial object
 * @param event  The logical OR of the events to configure
 * @param enable Set to non-zero to enable events, or zero to disable them
 */
static void serial_enable_event(serial_t *obj, int event, uint8_t enable)
{  
    struct serial_s *obj_s = SERIAL_S(obj);
    
    // Shouldn't have to enable interrupt here, just need to keep track of the requested events.
    if (enable) {
        obj_s->events |= event;
    } else {
        obj_s->events &= ~event;
    }
}


/**
* Get index of serial object TX IRQ, relating it to the physical peripheral.
*
* @param obj pointer to serial object
* @return internal NVIC TX IRQ index of U(S)ART peripheral
*/
static IRQn_Type serial_get_irq_n(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    IRQn_Type irq_n;

    switch (obj_s->index) {
        case 0:
            irq_n = USART1_IRQn;
            break;

        case 1:
            irq_n = USART2_IRQn;
            break;

        case 2:
            irq_n = USART3_IRQn;
            break;

        default:
            irq_n = (IRQn_Type)0;
    }
    
    return irq_n;
}

/******************************************************************************
 * MBED API FUNCTIONS
 ******************************************************************************/

/** 
 * Begin asynchronous TX transfer. The used buffer is specified in the serial
 * object, tx_buff
 *
 * @param obj       The serial object
 * @param tx        The buffer for sending
 * @param tx_length The number of words to transmit
 * @param tx_width  The bit width of buffer word
 * @param handler   The serial handler
 * @param event     The logical OR of events to be registered
 * @param hint      A suggestion for how to use DMA with this transfer
 * @return Returns number of data transfered, or 0 otherwise
 */
int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint)
{    
    // TODO: DMA usage is currently ignored
    (void) hint;
    
    // Check buffer is ok
    MBED_ASSERT(tx != (void*)0);
    MBED_ASSERT(tx_width == 8); // support only 8b width
    
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef * huart = &uart_handlers[obj_s->index];

    if (tx_length == 0) {
        return 0;
    }
  
    // Set up buffer
    serial_tx_buffer_set(obj, (void *)tx, tx_length, tx_width);
  
    // Set up events
    serial_enable_event(obj, SERIAL_EVENT_TX_ALL, 0); // Clear all events
    serial_enable_event(obj, event, 1); // Set only the wanted events
    
    // Enable interrupt
    IRQn_Type irq_n = serial_get_irq_n(obj);
    NVIC_ClearPendingIRQ(irq_n);
    NVIC_DisableIRQ(irq_n);
    NVIC_SetPriority(irq_n, 1);
    NVIC_SetVector(irq_n, (uint32_t)handler);
    NVIC_EnableIRQ(irq_n);

    // the following function will enable UART_IT_TXE and error interrupts
    if (HAL_UART_Transmit_IT(huart, (uint8_t*)tx, tx_length) != HAL_OK) {
        return 0;
    }
    
    return tx_length;
}

/** 
 * Begin asynchronous RX transfer (enable interrupt for data collecting)
 * The used buffer is specified in the serial object, rx_buff
 *
 * @param obj        The serial object
 * @param rx         The buffer for sending
 * @param rx_length  The number of words to transmit
 * @param rx_width   The bit width of buffer word
 * @param handler    The serial handler
 * @param event      The logical OR of events to be registered
 * @param handler    The serial handler
 * @param char_match A character in range 0-254 to be matched
 * @param hint       A suggestion for how to use DMA with this transfer
 */
void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint)
{
    // TODO: DMA usage is currently ignored
    (void) hint;

    /* Sanity check arguments */
    MBED_ASSERT(obj);
    MBED_ASSERT(rx != (void*)0);
    MBED_ASSERT(rx_width == 8); // support only 8b width
    
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];

    serial_enable_event(obj, SERIAL_EVENT_RX_ALL, 0);
    serial_enable_event(obj, event, 1);
    
    // set CharMatch
    obj->char_match = char_match;
    
    serial_rx_buffer_set(obj, rx, rx_length, rx_width);

    IRQn_Type irq_n = serial_get_irq_n(obj);
    NVIC_ClearPendingIRQ(irq_n);
    NVIC_DisableIRQ(irq_n);
    NVIC_SetPriority(irq_n, 0);
    NVIC_SetVector(irq_n, (uint32_t)handler);
    NVIC_EnableIRQ(irq_n);

    // following HAL function will enable the RXNE interrupt + error interrupts    
    HAL_UART_Receive_IT(huart, (uint8_t*)rx, rx_length);
}

/**
 * Attempts to determine if the serial peripheral is already in use for TX
 *
 * @param obj The serial object
 * @return Non-zero if the TX transaction is ongoing, 0 otherwise
 */
uint8_t serial_tx_active(serial_t *obj)
{
    MBED_ASSERT(obj);
    
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    
    return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_TX) ? 1 : 0);
}

/**
 * Attempts to determine if the serial peripheral is already in use for RX
 *
 * @param obj The serial object
 * @return Non-zero if the RX transaction is ongoing, 0 otherwise
 */
uint8_t serial_rx_active(serial_t *obj)
{
    MBED_ASSERT(obj);
    
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    
    return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_RX) ? 1 : 0);
}

void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) {
    if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
        __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
    }
}

void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) {
    if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
        volatile uint32_t tmpval = huart->Instance->DR; // Clear PE flag
    } else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
        volatile uint32_t tmpval = huart->Instance->DR; // Clear FE flag
    } else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_NE) != RESET) {
        volatile uint32_t tmpval = huart->Instance->DR; // Clear NE flag
    } else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
        volatile uint32_t tmpval = huart->Instance->DR; // Clear ORE flag
    }
}

/**
 * The asynchronous TX and RX handler.
 *
 * @param obj The serial object
 * @return Returns event flags if a TX/RX transfer termination condition was met or 0 otherwise
 */
int serial_irq_handler_asynch(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    
    volatile int return_event = 0;
    uint8_t *buf = (uint8_t*)(obj->rx_buff.buffer);
    uint8_t i = 0;
    
    // TX PART:
    if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
        if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) {
            // Return event SERIAL_EVENT_TX_COMPLETE if requested
            if ((obj_s->events & SERIAL_EVENT_TX_COMPLETE ) != 0) {
                return_event |= (SERIAL_EVENT_TX_COMPLETE & obj_s->events);
            }
        }
    }
    
    // Handle error events
    if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
        if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
            return_event |= (SERIAL_EVENT_RX_PARITY_ERROR & obj_s->events);
        }
}

    if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
        if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
            return_event |= (SERIAL_EVENT_RX_FRAMING_ERROR & obj_s->events);
        }
    }
    
    if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
        if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
            return_event |= (SERIAL_EVENT_RX_OVERRUN_ERROR & obj_s->events);
        }
    }
    
    HAL_UART_IRQHandler(huart);
    
    // Abort if an error occurs
    if (return_event & SERIAL_EVENT_RX_PARITY_ERROR ||
            return_event & SERIAL_EVENT_RX_FRAMING_ERROR ||
            return_event & SERIAL_EVENT_RX_OVERRUN_ERROR) {
        return return_event;
    }
    
    //RX PART
    if (huart->RxXferSize != 0) {
        obj->rx_buff.pos = huart->RxXferSize - huart->RxXferCount;
    }
    if ((huart->RxXferCount == 0) && (obj->rx_buff.pos >= (obj->rx_buff.length - 1))) {
        return_event |= (SERIAL_EVENT_RX_COMPLETE & obj_s->events);
    }
    
    // Check if char_match is present
    if (obj_s->events & SERIAL_EVENT_RX_CHARACTER_MATCH) {
        if (buf != NULL) {
            for (i = 0; i < obj->rx_buff.pos; i++) {
                if (buf[i] == obj->char_match) {
                    obj->rx_buff.pos = i;
                    return_event |= (SERIAL_EVENT_RX_CHARACTER_MATCH & obj_s->events);
                    serial_rx_abort_asynch(obj);
                    break;
                }
            }
        }
    }
    
    return return_event;  
}

/** 
 * Abort the ongoing TX transaction. It disables the enabled interupt for TX and
 * flush TX hardware buffer if TX FIFO is used
 *
 * @param obj The serial object
 */
void serial_tx_abort_asynch(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    
    __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
    __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
    
    // clear flags
    __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
    
    // reset states
    huart->TxXferCount = 0;
    // update handle state
    if(huart->State == HAL_UART_STATE_BUSY_TX_RX) {
        huart->State = HAL_UART_STATE_BUSY_RX;
    } else {
        huart->State = HAL_UART_STATE_READY;
    }
}

/**
 * Abort the ongoing RX transaction It disables the enabled interrupt for RX and
 * flush RX hardware buffer if RX FIFO is used
 *
 * @param obj The serial object
 */
void serial_rx_abort_asynch(serial_t *obj)
{
    struct serial_s *obj_s = SERIAL_S(obj);
    UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
    
    // disable interrupts
    __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
    __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
    __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
    
    // clear flags
    __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_RXNE);
    volatile uint32_t tmpval = huart->Instance->DR; // Clear errors flag
    
    // reset states
    huart->RxXferCount = 0;
    // update handle state
    if(huart->State == HAL_UART_STATE_BUSY_TX_RX) {
        huart->State = HAL_UART_STATE_BUSY_TX;
    } else {
        huart->State = HAL_UART_STATE_READY;
    }
}

#endif

#if DEVICE_SERIAL_FC

/**
 * Set HW Control Flow
 * @param obj    The serial object
 * @param type   The Control Flow type (FlowControlNone, FlowControlRTS, FlowControlCTS, FlowControlRTSCTS)
 * @param rxflow Pin for the rxflow
 * @param txflow Pin for the txflow
 */
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
    struct serial_s *obj_s = SERIAL_S(obj);

    // Determine the UART to use (UART_1, UART_2, ...)
    UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
    UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);

    // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
    obj_s->uart = (UARTName)pinmap_merge(uart_cts, uart_rts);
    MBED_ASSERT(obj_s->uart != (UARTName)NC);

    if(type == FlowControlNone) {
        // Disable hardware flow control
      obj_s->hw_flow_ctl = UART_HWCONTROL_NONE;
    }
    if (type == FlowControlRTS) {
        // Enable RTS
        MBED_ASSERT(uart_rts != (UARTName)NC);
        obj_s->hw_flow_ctl = UART_HWCONTROL_RTS;
        obj_s->pin_rts = rxflow;
        // Enable the pin for RTS function
        pinmap_pinout(rxflow, PinMap_UART_RTS);
    }
    if (type == FlowControlCTS) {
        // Enable CTS
        MBED_ASSERT(uart_cts != (UARTName)NC);
        obj_s->hw_flow_ctl = UART_HWCONTROL_CTS;
        obj_s->pin_cts = txflow;
        // Enable the pin for CTS function
        pinmap_pinout(txflow, PinMap_UART_CTS);
    }
    if (type == FlowControlRTSCTS) {
        // Enable CTS & RTS
        MBED_ASSERT(uart_rts != (UARTName)NC);
        MBED_ASSERT(uart_cts != (UARTName)NC);
        obj_s->hw_flow_ctl = UART_HWCONTROL_RTS_CTS;
        obj_s->pin_rts = rxflow;
        obj_s->pin_cts = txflow;
        // Enable the pin for CTS function
        pinmap_pinout(txflow, PinMap_UART_CTS);
        // Enable the pin for RTS function
        pinmap_pinout(rxflow, PinMap_UART_RTS);
    }
    
    init_uart(obj);
}

#endif

#endif