Modification of mbed-src library only for STM32F030F4, very cheap microcontroller in 20-Pin TSSOP package, with 16Kbytes of Flash and 4Kbytes of Ram. **Target for online compilator must be Nucleo 32F030R8.**

Dependents:   STM32F031_blink_LED_2


Information

For programming similar chips in TSSOP20 package, but with 32kB flash: STM32F031F6 and STM32F050F6 (virtually identical to STM32F031F6 and no longer produced but still on sale), it is recommended to use NUCLEO-F031K6 as compiler platform, and the mbed library without the need for any modifications.

Just remember that the only significant difference between these chips and NUCLEO-F031K6 is the lack of pins: PB_0, PB_3, PB_4, PB_5, PB_6, PB_7, PA_11, PA_12, PA_15 in TSSOP-20.



STM32F030F4 pinout (pin functions supported in mbed library).

/media/uploads/mega64/mbedf4.jpg

other pins:

Pin nrPin nameConnectedST-LINK on Nucleo (programming and debug)
1.BOOT0GND
4.NRSTCN4 pin 5
5.VDDA+3.3V
15.VSSGNDCN4 pin 3
16.VDD+3.3V
19.SWDIOCN4 pin 4
20.SWCLKCN4 pin 2
  • Remove jumpers CN2 on Nucleo when CN4 is connected to STM32F030F4
  • NRST connection is not necessarily needed, but in this case, after programming it is necessary to manually reset the target processor


STM32R030F4 programming using Nucleo (any type):
/media/uploads/mega64/f4_nucleo.jpg Notes:

  • When programming using the Nucleo virtual disk (drag and drop) , first turn on the power STM32F030F4, and then connect Nucleo to USB. When programming with "ST-LINK Utility", it does not matter.




STM32R030F4 programming using Arduino (as a simple USB-Serial converter) and FlyMcu program:
/media/uploads/mega64/f4_arduino.jpg

Notes:

  • For Usart in STM32F030F4, only 5V tolerant TX, RX pins are pins 17 and 18. Just their uses internal serial bootloader, so you can use such Arduino or other USB-Serial converter operating as standard 5V.
  • Where used FlyMcu, binary file from online compiler Mbed need to convert to intel hex file and during the conversion add the data offset 0x08000000 (or if offset is 0, manually add/edit the first line of the .hex file to ":020000040800F2").
  • During programming procedure, pin 1 (BOOT0) should be connected to 3.3 V. And before contact with the loader program, temporarily pin 4 (NRST) shorted to GND to reset the chip. After programming BOOT0 is connected to GND.
  • In this set with Arduino Uno, the "Flash loader demonstrator" from STM does not work (does not recognize the response from the chip at the initial stage of connection). But with Arduino Duemilanove program "STM Flash loader demonstrator" works perfectly (ver. 2.7.0). And do not need any additional file conversion (as the need for FlyMcu). You can use a binary file directly from the on-line compiler mbed.

Warning.
Because of the small size of the STM32F030F4 flash, for programs that use UART, it is proposed not to use the Serial class but use the <cstdio> (stdio.h) functions that directly use stdout and stdin (e.g printf().putchar(),getchar(),vprintf(),scanf() ).

Example:

version with serial class

#include "mbed.h"
Serial pc(USBTX, USBRX); // tx, rx

int main()
{

    pc.printf("Hello World!\n");

}

consuming 13.7kB FLASH and 1.5kB RAM

but this:

version without serial class

#include "mbed.h"
int main()
{

    printf("Hello World!\n");

}

consuming only 8.7kB FLASH and 0.4kB RAM

5kB used flash difference (with 16kB total size) !!!

However, if you need other than the default UART settings for stdin and stdout (that is 9600b, pins PA_2, PA_3), you can do as an example:

change uart pins and speed

#include "mbed.h"

// declarations needed to change here the parameters of stdio UART
extern int stdio_uart_inited;
extern serial_t stdio_uart; 

int main()
{
    // for change pins
    serial_init(&stdio_uart, PA_9,PA_10);
    stdio_uart_inited=1;

    // for change baud rate
    serial_baud(&stdio_uart, 115000);


    printf("Hello World!\n");

}




uVision users

In the case of online compilation of the program with this library using Keil, to prevent linker errors set in the project options "One ELF Section per Function" and Optimisation: Level 2.



Additional information (and inspiration for this modification):

http://developer.mbed.org/forum/electronics/topic/5184/

http://developer.mbed.org/questions/4643/Does-mbed-support-STM32F030F4/

http://developer.mbed.org/questions/2927/mbed-on-other-packages-stm32f030f4-TSSOP/

http://developer.mbed.org/questions/4139/Programming-STM32F030F4-with-Nucleo-F030/

Committer:
mega64
Date:
Sat Oct 18 02:40:17 2014 +0000
Revision:
0:38ccae254a29
only for STM32F030F4

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mega64 0:38ccae254a29 1 /* mbed Microcontroller Library
mega64 0:38ccae254a29 2 * Copyright (c) 2006-2013 ARM Limited
mega64 0:38ccae254a29 3 *
mega64 0:38ccae254a29 4 * Licensed under the Apache License, Version 2.0 (the "License");
mega64 0:38ccae254a29 5 * you may not use this file except in compliance with the License.
mega64 0:38ccae254a29 6 * You may obtain a copy of the License at
mega64 0:38ccae254a29 7 *
mega64 0:38ccae254a29 8 * http://www.apache.org/licenses/LICENSE-2.0
mega64 0:38ccae254a29 9 *
mega64 0:38ccae254a29 10 * Unless required by applicable law or agreed to in writing, software
mega64 0:38ccae254a29 11 * distributed under the License is distributed on an "AS IS" BASIS,
mega64 0:38ccae254a29 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
mega64 0:38ccae254a29 13 * See the License for the specific language governing permissions and
mega64 0:38ccae254a29 14 * limitations under the License.
mega64 0:38ccae254a29 15 */
mega64 0:38ccae254a29 16 #ifndef MBED_I2C_SLAVE_H
mega64 0:38ccae254a29 17 #define MBED_I2C_SLAVE_H
mega64 0:38ccae254a29 18
mega64 0:38ccae254a29 19 #include "platform.h"
mega64 0:38ccae254a29 20
mega64 0:38ccae254a29 21 #if DEVICE_I2CSLAVE
mega64 0:38ccae254a29 22
mega64 0:38ccae254a29 23 #include "i2c_api.h"
mega64 0:38ccae254a29 24
mega64 0:38ccae254a29 25 namespace mbed {
mega64 0:38ccae254a29 26
mega64 0:38ccae254a29 27 /** An I2C Slave, used for communicating with an I2C Master device
mega64 0:38ccae254a29 28 *
mega64 0:38ccae254a29 29 * Example:
mega64 0:38ccae254a29 30 * @code
mega64 0:38ccae254a29 31 * // Simple I2C responder
mega64 0:38ccae254a29 32 * #include <mbed.h>
mega64 0:38ccae254a29 33 *
mega64 0:38ccae254a29 34 * I2CSlave slave(p9, p10);
mega64 0:38ccae254a29 35 *
mega64 0:38ccae254a29 36 * int main() {
mega64 0:38ccae254a29 37 * char buf[10];
mega64 0:38ccae254a29 38 * char msg[] = "Slave!";
mega64 0:38ccae254a29 39 *
mega64 0:38ccae254a29 40 * slave.address(0xA0);
mega64 0:38ccae254a29 41 * while (1) {
mega64 0:38ccae254a29 42 * int i = slave.receive();
mega64 0:38ccae254a29 43 * switch (i) {
mega64 0:38ccae254a29 44 * case I2CSlave::ReadAddressed:
mega64 0:38ccae254a29 45 * slave.write(msg, strlen(msg) + 1); // Includes null char
mega64 0:38ccae254a29 46 * break;
mega64 0:38ccae254a29 47 * case I2CSlave::WriteGeneral:
mega64 0:38ccae254a29 48 * slave.read(buf, 10);
mega64 0:38ccae254a29 49 * printf("Read G: %s\n", buf);
mega64 0:38ccae254a29 50 * break;
mega64 0:38ccae254a29 51 * case I2CSlave::WriteAddressed:
mega64 0:38ccae254a29 52 * slave.read(buf, 10);
mega64 0:38ccae254a29 53 * printf("Read A: %s\n", buf);
mega64 0:38ccae254a29 54 * break;
mega64 0:38ccae254a29 55 * }
mega64 0:38ccae254a29 56 * for(int i = 0; i < 10; i++) buf[i] = 0; // Clear buffer
mega64 0:38ccae254a29 57 * }
mega64 0:38ccae254a29 58 * }
mega64 0:38ccae254a29 59 * @endcode
mega64 0:38ccae254a29 60 */
mega64 0:38ccae254a29 61 class I2CSlave {
mega64 0:38ccae254a29 62
mega64 0:38ccae254a29 63 public:
mega64 0:38ccae254a29 64 enum RxStatus {
mega64 0:38ccae254a29 65 NoData = 0,
mega64 0:38ccae254a29 66 ReadAddressed = 1,
mega64 0:38ccae254a29 67 WriteGeneral = 2,
mega64 0:38ccae254a29 68 WriteAddressed = 3
mega64 0:38ccae254a29 69 };
mega64 0:38ccae254a29 70
mega64 0:38ccae254a29 71 /** Create an I2C Slave interface, connected to the specified pins.
mega64 0:38ccae254a29 72 *
mega64 0:38ccae254a29 73 * @param sda I2C data line pin
mega64 0:38ccae254a29 74 * @param scl I2C clock line pin
mega64 0:38ccae254a29 75 */
mega64 0:38ccae254a29 76 I2CSlave(PinName sda, PinName scl);
mega64 0:38ccae254a29 77
mega64 0:38ccae254a29 78 /** Set the frequency of the I2C interface
mega64 0:38ccae254a29 79 *
mega64 0:38ccae254a29 80 * @param hz The bus frequency in hertz
mega64 0:38ccae254a29 81 */
mega64 0:38ccae254a29 82 void frequency(int hz);
mega64 0:38ccae254a29 83
mega64 0:38ccae254a29 84 /** Checks to see if this I2C Slave has been addressed.
mega64 0:38ccae254a29 85 *
mega64 0:38ccae254a29 86 * @returns
mega64 0:38ccae254a29 87 * A status indicating if the device has been addressed, and how
mega64 0:38ccae254a29 88 * - NoData - the slave has not been addressed
mega64 0:38ccae254a29 89 * - ReadAddressed - the master has requested a read from this slave
mega64 0:38ccae254a29 90 * - WriteAddressed - the master is writing to this slave
mega64 0:38ccae254a29 91 * - WriteGeneral - the master is writing to all slave
mega64 0:38ccae254a29 92 */
mega64 0:38ccae254a29 93 int receive(void);
mega64 0:38ccae254a29 94
mega64 0:38ccae254a29 95 /** Read from an I2C master.
mega64 0:38ccae254a29 96 *
mega64 0:38ccae254a29 97 * @param data pointer to the byte array to read data in to
mega64 0:38ccae254a29 98 * @param length maximum number of bytes to read
mega64 0:38ccae254a29 99 *
mega64 0:38ccae254a29 100 * @returns
mega64 0:38ccae254a29 101 * 0 on success,
mega64 0:38ccae254a29 102 * non-0 otherwise
mega64 0:38ccae254a29 103 */
mega64 0:38ccae254a29 104 int read(char *data, int length);
mega64 0:38ccae254a29 105
mega64 0:38ccae254a29 106 /** Read a single byte from an I2C master.
mega64 0:38ccae254a29 107 *
mega64 0:38ccae254a29 108 * @returns
mega64 0:38ccae254a29 109 * the byte read
mega64 0:38ccae254a29 110 */
mega64 0:38ccae254a29 111 int read(void);
mega64 0:38ccae254a29 112
mega64 0:38ccae254a29 113 /** Write to an I2C master.
mega64 0:38ccae254a29 114 *
mega64 0:38ccae254a29 115 * @param data pointer to the byte array to be transmitted
mega64 0:38ccae254a29 116 * @param length the number of bytes to transmite
mega64 0:38ccae254a29 117 *
mega64 0:38ccae254a29 118 * @returns
mega64 0:38ccae254a29 119 * 0 on success,
mega64 0:38ccae254a29 120 * non-0 otherwise
mega64 0:38ccae254a29 121 */
mega64 0:38ccae254a29 122 int write(const char *data, int length);
mega64 0:38ccae254a29 123
mega64 0:38ccae254a29 124 /** Write a single byte to an I2C master.
mega64 0:38ccae254a29 125 *
mega64 0:38ccae254a29 126 * @data the byte to write
mega64 0:38ccae254a29 127 *
mega64 0:38ccae254a29 128 * @returns
mega64 0:38ccae254a29 129 * '1' if an ACK was received,
mega64 0:38ccae254a29 130 * '0' otherwise
mega64 0:38ccae254a29 131 */
mega64 0:38ccae254a29 132 int write(int data);
mega64 0:38ccae254a29 133
mega64 0:38ccae254a29 134 /** Sets the I2C slave address.
mega64 0:38ccae254a29 135 *
mega64 0:38ccae254a29 136 * @param address The address to set for the slave (ignoring the least
mega64 0:38ccae254a29 137 * signifcant bit). If set to 0, the slave will only respond to the
mega64 0:38ccae254a29 138 * general call address.
mega64 0:38ccae254a29 139 */
mega64 0:38ccae254a29 140 void address(int address);
mega64 0:38ccae254a29 141
mega64 0:38ccae254a29 142 /** Reset the I2C slave back into the known ready receiving state.
mega64 0:38ccae254a29 143 */
mega64 0:38ccae254a29 144 void stop(void);
mega64 0:38ccae254a29 145
mega64 0:38ccae254a29 146 protected:
mega64 0:38ccae254a29 147 i2c_t _i2c;
mega64 0:38ccae254a29 148 };
mega64 0:38ccae254a29 149
mega64 0:38ccae254a29 150 } // namespace mbed
mega64 0:38ccae254a29 151
mega64 0:38ccae254a29 152 #endif
mega64 0:38ccae254a29 153
mega64 0:38ccae254a29 154 #endif