usb
Dependents: finalV1 finalV1 finalv2 finalv3 ... more
USBMSD/USBMSD.cpp
- Committer:
- mbed_official
- Date:
- 2014-08-18
- Revision:
- 29:b7a0ea455a0c
- Parent:
- 18:78bdbce94509
File content as of revision 29:b7a0ea455a0c:
/* Copyright (c) 2010-2011 mbed.org, MIT License * * Permission is hereby granted, free of charge, to any person obtaining a copy of this software * and associated documentation files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or * substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "stdint.h" #include "USBMSD.h" #define DISK_OK 0x00 #define NO_INIT 0x01 #define NO_DISK 0x02 #define WRITE_PROTECT 0x04 #define CBW_Signature 0x43425355 #define CSW_Signature 0x53425355 // SCSI Commands #define TEST_UNIT_READY 0x00 #define REQUEST_SENSE 0x03 #define FORMAT_UNIT 0x04 #define INQUIRY 0x12 #define MODE_SELECT6 0x15 #define MODE_SENSE6 0x1A #define START_STOP_UNIT 0x1B #define MEDIA_REMOVAL 0x1E #define READ_FORMAT_CAPACITIES 0x23 #define READ_CAPACITY 0x25 #define READ10 0x28 #define WRITE10 0x2A #define VERIFY10 0x2F #define READ12 0xA8 #define WRITE12 0xAA #define MODE_SELECT10 0x55 #define MODE_SENSE10 0x5A // MSC class specific requests #define MSC_REQUEST_RESET 0xFF #define MSC_REQUEST_GET_MAX_LUN 0xFE #define DEFAULT_CONFIGURATION (1) // max packet size #define MAX_PACKET MAX_PACKET_SIZE_EPBULK // CSW Status enum Status { CSW_PASSED, CSW_FAILED, CSW_ERROR, }; USBMSD::USBMSD(uint16_t vendor_id, uint16_t product_id, uint16_t product_release): USBDevice(vendor_id, product_id, product_release) { stage = READ_CBW; memset((void *)&cbw, 0, sizeof(CBW)); memset((void *)&csw, 0, sizeof(CSW)); page = NULL; } USBMSD::~USBMSD() { disconnect(); } // Called in ISR context to process a class specific request bool USBMSD::USBCallback_request(void) { bool success = false; CONTROL_TRANSFER * transfer = getTransferPtr(); static uint8_t maxLUN[1] = {0}; if (transfer->setup.bmRequestType.Type == CLASS_TYPE) { switch (transfer->setup.bRequest) { case MSC_REQUEST_RESET: reset(); success = true; break; case MSC_REQUEST_GET_MAX_LUN: transfer->remaining = 1; transfer->ptr = maxLUN; transfer->direction = DEVICE_TO_HOST; success = true; break; default: break; } } return success; } bool USBMSD::connect(bool blocking) { //disk initialization if (disk_status() & NO_INIT) { if (disk_initialize()) { return false; } } // get number of blocks BlockCount = disk_sectors(); // get memory size MemorySize = disk_size(); if (BlockCount > 0) { BlockSize = MemorySize / BlockCount; if (BlockSize != 0) { free(page); page = (uint8_t *)malloc(BlockSize * sizeof(uint8_t)); if (page == NULL) return false; } } else { return false; } //connect the device USBDevice::connect(blocking); return true; } void USBMSD::disconnect() { //De-allocate MSD page size: free(page); page = NULL; USBDevice::disconnect(); } void USBMSD::reset() { stage = READ_CBW; } // Called in ISR context called when a data is received bool USBMSD::EP2_OUT_callback() { uint32_t size = 0; uint8_t buf[MAX_PACKET_SIZE_EPBULK]; readEP(EPBULK_OUT, buf, &size, MAX_PACKET_SIZE_EPBULK); switch (stage) { // the device has to decode the CBW received case READ_CBW: CBWDecode(buf, size); break; // the device has to receive data from the host case PROCESS_CBW: switch (cbw.CB[0]) { case WRITE10: case WRITE12: memoryWrite(buf, size); break; case VERIFY10: memoryVerify(buf, size); break; } break; // an error has occured: stall endpoint and send CSW default: stallEndpoint(EPBULK_OUT); csw.Status = CSW_ERROR; sendCSW(); break; } //reactivate readings on the OUT bulk endpoint readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK); return true; } // Called in ISR context when a data has been transferred bool USBMSD::EP2_IN_callback() { switch (stage) { // the device has to send data to the host case PROCESS_CBW: switch (cbw.CB[0]) { case READ10: case READ12: memoryRead(); break; } break; //the device has to send a CSW case SEND_CSW: sendCSW(); break; // the host has received the CSW -> we wait a CBW case WAIT_CSW: stage = READ_CBW; break; // an error has occured default: stallEndpoint(EPBULK_IN); sendCSW(); break; } return true; } void USBMSD::memoryWrite (uint8_t * buf, uint16_t size) { if ((addr + size) > MemorySize) { size = MemorySize - addr; stage = ERROR; stallEndpoint(EPBULK_OUT); } // we fill an array in RAM of 1 block before writing it in memory for (int i = 0; i < size; i++) page[addr%BlockSize + i] = buf[i]; // if the array is filled, write it in memory if (!((addr + size)%BlockSize)) { if (!(disk_status() & WRITE_PROTECT)) { disk_write(page, addr/BlockSize, 1); } } addr += size; length -= size; csw.DataResidue -= size; if ((!length) || (stage != PROCESS_CBW)) { csw.Status = (stage == ERROR) ? CSW_FAILED : CSW_PASSED; sendCSW(); } } void USBMSD::memoryVerify (uint8_t * buf, uint16_t size) { uint32_t n; if ((addr + size) > MemorySize) { size = MemorySize - addr; stage = ERROR; stallEndpoint(EPBULK_OUT); } // beginning of a new block -> load a whole block in RAM if (!(addr%BlockSize)) disk_read(page, addr/BlockSize, 1); // info are in RAM -> no need to re-read memory for (n = 0; n < size; n++) { if (page[addr%BlockSize + n] != buf[n]) { memOK = false; break; } } addr += size; length -= size; csw.DataResidue -= size; if ( !length || (stage != PROCESS_CBW)) { csw.Status = (memOK && (stage == PROCESS_CBW)) ? CSW_PASSED : CSW_FAILED; sendCSW(); } } bool USBMSD::inquiryRequest (void) { uint8_t inquiry[] = { 0x00, 0x80, 0x00, 0x01, 36 - 4, 0x80, 0x00, 0x00, 'M', 'B', 'E', 'D', '.', 'O', 'R', 'G', 'M', 'B', 'E', 'D', ' ', 'U', 'S', 'B', ' ', 'D', 'I', 'S', 'K', ' ', ' ', ' ', '1', '.', '0', ' ', }; if (!write(inquiry, sizeof(inquiry))) { return false; } return true; } bool USBMSD::readFormatCapacity() { uint8_t capacity[] = { 0x00, 0x00, 0x00, 0x08, (uint8_t)((BlockCount >> 24) & 0xff), (uint8_t)((BlockCount >> 16) & 0xff), (uint8_t)((BlockCount >> 8) & 0xff), (uint8_t)((BlockCount >> 0) & 0xff), 0x02, (uint8_t)((BlockSize >> 16) & 0xff), (uint8_t)((BlockSize >> 8) & 0xff), (uint8_t)((BlockSize >> 0) & 0xff), }; if (!write(capacity, sizeof(capacity))) { return false; } return true; } bool USBMSD::readCapacity (void) { uint8_t capacity[] = { (uint8_t)(((BlockCount - 1) >> 24) & 0xff), (uint8_t)(((BlockCount - 1) >> 16) & 0xff), (uint8_t)(((BlockCount - 1) >> 8) & 0xff), (uint8_t)(((BlockCount - 1) >> 0) & 0xff), (uint8_t)((BlockSize >> 24) & 0xff), (uint8_t)((BlockSize >> 16) & 0xff), (uint8_t)((BlockSize >> 8) & 0xff), (uint8_t)((BlockSize >> 0) & 0xff), }; if (!write(capacity, sizeof(capacity))) { return false; } return true; } bool USBMSD::write (uint8_t * buf, uint16_t size) { if (size >= cbw.DataLength) { size = cbw.DataLength; } stage = SEND_CSW; if (!writeNB(EPBULK_IN, buf, size, MAX_PACKET_SIZE_EPBULK)) { return false; } csw.DataResidue -= size; csw.Status = CSW_PASSED; return true; } bool USBMSD::modeSense6 (void) { uint8_t sense6[] = { 0x03, 0x00, 0x00, 0x00 }; if (!write(sense6, sizeof(sense6))) { return false; } return true; } void USBMSD::sendCSW() { csw.Signature = CSW_Signature; writeNB(EPBULK_IN, (uint8_t *)&csw, sizeof(CSW), MAX_PACKET_SIZE_EPBULK); stage = WAIT_CSW; } bool USBMSD::requestSense (void) { uint8_t request_sense[] = { 0x70, 0x00, 0x05, // Sense Key: illegal request 0x00, 0x00, 0x00, 0x00, 0x0A, 0x00, 0x00, 0x00, 0x00, 0x30, 0x01, 0x00, 0x00, 0x00, 0x00, }; if (!write(request_sense, sizeof(request_sense))) { return false; } return true; } void USBMSD::fail() { csw.Status = CSW_FAILED; sendCSW(); } void USBMSD::CBWDecode(uint8_t * buf, uint16_t size) { if (size == sizeof(cbw)) { memcpy((uint8_t *)&cbw, buf, size); if (cbw.Signature == CBW_Signature) { csw.Tag = cbw.Tag; csw.DataResidue = cbw.DataLength; if ((cbw.CBLength < 1) || (cbw.CBLength > 16) ) { fail(); } else { switch (cbw.CB[0]) { case TEST_UNIT_READY: testUnitReady(); break; case REQUEST_SENSE: requestSense(); break; case INQUIRY: inquiryRequest(); break; case MODE_SENSE6: modeSense6(); break; case READ_FORMAT_CAPACITIES: readFormatCapacity(); break; case READ_CAPACITY: readCapacity(); break; case READ10: case READ12: if (infoTransfer()) { if ((cbw.Flags & 0x80)) { stage = PROCESS_CBW; memoryRead(); } else { stallEndpoint(EPBULK_OUT); csw.Status = CSW_ERROR; sendCSW(); } } break; case WRITE10: case WRITE12: if (infoTransfer()) { if (!(cbw.Flags & 0x80)) { stage = PROCESS_CBW; } else { stallEndpoint(EPBULK_IN); csw.Status = CSW_ERROR; sendCSW(); } } break; case VERIFY10: if (!(cbw.CB[1] & 0x02)) { csw.Status = CSW_PASSED; sendCSW(); break; } if (infoTransfer()) { if (!(cbw.Flags & 0x80)) { stage = PROCESS_CBW; memOK = true; } else { stallEndpoint(EPBULK_IN); csw.Status = CSW_ERROR; sendCSW(); } } break; case MEDIA_REMOVAL: csw.Status = CSW_PASSED; sendCSW(); break; default: fail(); break; } } } } } void USBMSD::testUnitReady (void) { if (cbw.DataLength != 0) { if ((cbw.Flags & 0x80) != 0) { stallEndpoint(EPBULK_IN); } else { stallEndpoint(EPBULK_OUT); } } csw.Status = CSW_PASSED; sendCSW(); } void USBMSD::memoryRead (void) { uint32_t n; n = (length > MAX_PACKET) ? MAX_PACKET : length; if ((addr + n) > MemorySize) { n = MemorySize - addr; stage = ERROR; } // we read an entire block if (!(addr%BlockSize)) disk_read(page, addr/BlockSize, 1); // write data which are in RAM writeNB(EPBULK_IN, &page[addr%BlockSize], n, MAX_PACKET_SIZE_EPBULK); addr += n; length -= n; csw.DataResidue -= n; if ( !length || (stage != PROCESS_CBW)) { csw.Status = (stage == PROCESS_CBW) ? CSW_PASSED : CSW_FAILED; stage = (stage == PROCESS_CBW) ? SEND_CSW : stage; } } bool USBMSD::infoTransfer (void) { uint32_t n; // Logical Block Address of First Block n = (cbw.CB[2] << 24) | (cbw.CB[3] << 16) | (cbw.CB[4] << 8) | (cbw.CB[5] << 0); addr = n * BlockSize; // Number of Blocks to transfer switch (cbw.CB[0]) { case READ10: case WRITE10: case VERIFY10: n = (cbw.CB[7] << 8) | (cbw.CB[8] << 0); break; case READ12: case WRITE12: n = (cbw.CB[6] << 24) | (cbw.CB[7] << 16) | (cbw.CB[8] << 8) | (cbw.CB[9] << 0); break; } length = n * BlockSize; if (!cbw.DataLength) { // host requests no data csw.Status = CSW_FAILED; sendCSW(); return false; } if (cbw.DataLength != length) { if ((cbw.Flags & 0x80) != 0) { stallEndpoint(EPBULK_IN); } else { stallEndpoint(EPBULK_OUT); } csw.Status = CSW_FAILED; sendCSW(); return false; } return true; } // Called in ISR context // Set configuration. Return false if the // configuration is not supported. bool USBMSD::USBCallback_setConfiguration(uint8_t configuration) { if (configuration != DEFAULT_CONFIGURATION) { return false; } // Configure endpoints > 0 addEndpoint(EPBULK_IN, MAX_PACKET_SIZE_EPBULK); addEndpoint(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK); //activate readings readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK); return true; } uint8_t * USBMSD::stringIinterfaceDesc() { static uint8_t stringIinterfaceDescriptor[] = { 0x08, //bLength STRING_DESCRIPTOR, //bDescriptorType 0x03 'M',0,'S',0,'D',0 //bString iInterface - MSD }; return stringIinterfaceDescriptor; } uint8_t * USBMSD::stringIproductDesc() { static uint8_t stringIproductDescriptor[] = { 0x12, //bLength STRING_DESCRIPTOR, //bDescriptorType 0x03 'M',0,'b',0,'e',0,'d',0,' ',0,'M',0,'S',0,'D',0 //bString iProduct - Mbed Audio }; return stringIproductDescriptor; } uint8_t * USBMSD::configurationDesc() { static uint8_t configDescriptor[] = { // Configuration 1 9, // bLength 2, // bDescriptorType LSB(9 + 9 + 7 + 7), // wTotalLength MSB(9 + 9 + 7 + 7), 0x01, // bNumInterfaces 0x01, // bConfigurationValue: 0x01 is used to select this configuration 0x00, // iConfiguration: no string to describe this configuration 0xC0, // bmAttributes 100, // bMaxPower, device power consumption is 100 mA // Interface 0, Alternate Setting 0, MSC Class 9, // bLength 4, // bDescriptorType 0x00, // bInterfaceNumber 0x00, // bAlternateSetting 0x02, // bNumEndpoints 0x08, // bInterfaceClass 0x06, // bInterfaceSubClass 0x50, // bInterfaceProtocol 0x04, // iInterface // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 7, // bLength 5, // bDescriptorType PHY_TO_DESC(EPBULK_IN), // bEndpointAddress 0x02, // bmAttributes (0x02=bulk) LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB) MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB) 0, // bInterval // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 7, // bLength 5, // bDescriptorType PHY_TO_DESC(EPBULK_OUT), // bEndpointAddress 0x02, // bmAttributes (0x02=bulk) LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB) MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB) 0 // bInterval }; return configDescriptor; }