Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed_amf_controlsystem_iO_copy by
main.cpp
- Committer:
- mborchers
- Date:
- 2016-02-07
- Revision:
- 15:141de2b5646d
- Parent:
- 14:48cdd880ca1a
- Child:
- 16:a387f2e275c8
File content as of revision 15:141de2b5646d:
#include <mbed.h> #include "rtos.h" #include "Periphery/SupportSystem.h" #include "Misc/SystemTimer.h" #include "Controller/QuadratureController.h" #include "Controller/MachineDirectionController.h" #define PI 3.14159265 Serial serialXbee(p28,p27), serialMinnow(p13, p14); PwmOut drivePWM(p22), steerPWM(p21); I2C i2c(p9, p10); DigitalOut serialLED(LED1), ledTwo(LED2), ledThree(LED3), heartbeatLED(LED4); DigitalIn buttonOne(p25), buttonTwo(p26), buttonThree(p29), buttonFour(p30); IMU_RegisterDataBuffer_t *IMU_registerDataBuffer; RadioDecoder_RegisterDataBuffer_t *RadioDecoder_registerDataBuffer; QuadratureController *quadratureController; MachineDirectionController *machineDirectionController; // Queues von der Bahnplanung Queue<float, 2> quadrature_queue; Queue<float, 2> machine_direction_queue; float steering_angle_minnow_queue; float velocity_minnow_queue; // Queues von dem Maussensor Queue<float, 2> imu_queue_velocity; Queue<float, 2> imu_queue_steering_angle; float steering_angle_imu_queue; float velocity_imu_queue; // Queue typedef struct { char identifier; uint8_t payload; } serial_output_t; serial_output_t modus_struct; Queue<serial_output_t, 2> serial_output_modus_queue; void hearbeat_thread(void const *args); void serial_transmit_thread(void const *args) { //serialMinnow.printf("Serial Thread erstellt"); osEvent modus_event; while (true) { //modus_event = serial_output_modus_queue.get(); if (modus_event.status == osEventMessage) { serialMinnow.printf("in der if\r\n"); serialMinnow.printf("[%c]=%d\r", ((serial_output_t *)modus_event.value.p)->identifier, ((serial_output_t *)modus_event.value.p)->payload); } } } void serial_receive_thread(void const *args) { size_t length = 20; char receive_buffer[length]; char* ptr = (char*) receive_buffer; char* end = ptr + length; char c, x = 22; float f; while (true) { if (ptr != end) { c = serialMinnow.getc(); *ptr++ = c; } else { ptr = (char*)receive_buffer; } serialLED = !serialLED; if (c == '\r') { sscanf(receive_buffer, "[%c]=%f\r", &x, &f); ptr = (char*)receive_buffer; } if (x == 'v') { machine_direction_queue.put(&f); ledTwo = true; // Buffer wieder auf Anfang setzen ptr = (char*)receive_buffer; x = 22; } else if (x == 'g') { f = -1*f; quadrature_queue.put(&f); ledThree = true; // Buffer wieder auf Anfang setzen ptr = (char*)receive_buffer; x = 22; } //if(rc_valid != 0) { // serialMinnow.putc('a');//Aktiviert //} else { // serialMinnow.putc('d');//Deaktiviert //} //Thread::wait(100); } } void redirect_machine_direction_controller(void const *args) { machineDirectionController->cylic_control(); } void redirect_quadrature_controller(void const *args) { quadratureController->cylic_control(); } int main() { serialMinnow.baud(115200); drivePWM.period_ms(20); steerPWM.period_ms(20); SystemTimer *millis = new SystemTimer(); SupportSystem *supportSystem = new SupportSystem(0x80, &i2c); quadratureController = new QuadratureController(&steerPWM, &quadrature_queue, &imu_queue_steering_angle); machineDirectionController = new MachineDirectionController(&drivePWM, &machine_direction_queue, &imu_queue_velocity); //Thread serialTransmitThread(serial_transmit_thread); Thread machineDirectionControl(serial_receive_thread); Thread hearbeatThread(hearbeat_thread); RtosTimer machine_direction_control_timer(redirect_machine_direction_controller); RtosTimer quadrature_control_timer(redirect_quadrature_controller); // Konfiguration AMF-IMU // [0]: Conversation Factor // [1]: Sensor Position X // [2]: Sensor Position Y // [3]: Sensor Position Angle float configData[4] = {0.002751114f, 167.0f, 0.0f, 271.5f}; supportSystem->writeImuConfig(configData); bool timer_started = false; steering_angle_minnow_queue = 0; quadrature_queue.put(&steering_angle_minnow_queue); velocity_minnow_queue = 0; machine_direction_queue.put(&velocity_minnow_queue); machine_direction_control_timer.start(10); quadrature_control_timer.start(10); while(true) { modus_struct.identifier = 'm'; modus_struct.payload = 1; serial_output_modus_queue.put(&modus_struct); IMU_registerDataBuffer = supportSystem->getImuRegisterDataBuffer(); RadioDecoder_registerDataBuffer = supportSystem->getRadioDecoderRegisterDataBuffer(); uint16_t rc_percentage = RadioDecoder_registerDataBuffer->channelActiveTime[0]; uint8_t rc_valid = RadioDecoder_registerDataBuffer->channelValid[0]; uint16_t drive_percentage = RadioDecoder_registerDataBuffer->channelActiveTime[1]; uint8_t drive_valid = RadioDecoder_registerDataBuffer->channelValid[1]; uint16_t steer_percentage = RadioDecoder_registerDataBuffer->channelActiveTime[2]; uint8_t steer_valid = RadioDecoder_registerDataBuffer->channelValid[2]; if (rc_percentage > (uint16_t) 1800 && rc_valid != 0) { // oben => Wettbewerb supportSystem->setLightManagerRemoteLight(false, true); //serialMinnow.putc('w'); if (!timer_started) { timer_started = true; machine_direction_control_timer.start(10); quadrature_control_timer.start(10); } } else if (rc_percentage > (uint16_t) 1200 && rc_valid != 0) { // unten => RC-Wettbewerb supportSystem->setLightManagerRemoteLight(true, true); //serialMinnow.putc('r'); if (drive_valid) { drivePWM.pulsewidth_us(drive_percentage); } if (steer_valid) { steerPWM.pulsewidth_us(steer_percentage); } if (timer_started) { timer_started = false; machine_direction_control_timer.stop(); quadrature_control_timer.stop(); } } else if (rc_percentage > (uint16_t) 800 && rc_valid != 0) { // mitte => RC-Training supportSystem->setLightManagerRemoteLight(true, true); //serialMinnow.putc('r'); if (drive_valid) { drivePWM.pulsewidth_us(drive_percentage); } if (steer_valid) { steerPWM.pulsewidth_us(steer_percentage); } if (timer_started) { timer_started = false; machine_direction_control_timer.stop(); quadrature_control_timer.stop(); } } velocity_imu_queue = IMU_registerDataBuffer->velocityXFilteredRegister; imu_queue_velocity.put(&velocity_imu_queue); float radius = IMU_registerDataBuffer->velocityXFilteredRegister/IMU_registerDataBuffer->velocityAngularFilteredRegister; steering_angle_imu_queue = atan(0.205/radius)*180/PI; imu_queue_steering_angle.put(&steering_angle_imu_queue); //serialMinnow.printf("%ld, ", difference_millis); //serialMinnow.printf("%f, ", velocity_minnow_queue); //serialMinnow.printf("%f, ", steering_angle_minnow_queue); //serialMinnow.printf("%d, ", IMU_registerDataBuffer->curveRadiusRegister); //serialMinnow.printf("%f, ", IMU_registerDataBuffer->velocityAngularRegister); //serialMinnow.printf("%f, ", IMU_registerDataBuffer->velocityAngularFilteredRegister); //serialMinnow.printf("%f, ", IMU_registerDataBuffer->velocityXRegister); //serialMinnow.printf("%f\r\n", IMU_registerDataBuffer->velocityXFilteredRegister); Thread::wait(10); } } void hearbeat_thread(void const *args) { while(true) { heartbeatLED = !heartbeatLED; Thread::wait(100); } }