Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- mborchers
- Date:
- 2016-02-03
- Revision:
- 2:bf739d7d9f8f
- Parent:
- 1:7eddde9fba60
- Child:
- 3:391c4639bc7d
File content as of revision 2:bf739d7d9f8f:
#include <mbed.h>
#include "rtos.h"
#include "Periphery/SupportSystem.h"
#include "Misc/SystemTimer.h"
#include "Threads/MachineDirectionControl.h"
#define PI 3.14159265
Serial serialMinnow(p13, p14);
PwmOut drivePWM(p22);
PwmOut steerPWM(p21);
I2C i2c(p9, p10);
DigitalOut heartbeatLED(LED1);
DigitalOut buttonLED(LED2);
DigitalOut redlightLED(LED3);
DigitalIn buttonOne(p25);
DigitalIn buttonTwo(p26);
DigitalIn buttonThree(p29);
DigitalIn buttonFour(p30);
IMU_RegisterDataBuffer_t *IMU_registerDataBuffer;
RadioDecoder_RegisterDataBuffer_t *RadioDecoder_registerDataBuffer;
// Queues von der Bahnplanung
Queue<float, 2> quadrature_queue;
Queue<float, 2> machine_direction_queue;
float steering_angle_minnow_queue;
float velocity_minnow_queue;
// Queues von dem Maussensor
Queue<float, 2> imu_queue_velocity;
Queue<float, 2> imu_queue_steering_angle;
float steering_angle_imu_queue;
float velocity_imu_queue;
// Variablen von der Trajektorienplanung
float velocity_set = 0, steering_angle_set = 0;
// Variablen für die Längsregelung
float velocity_current = 0, velocity_last = 0;
uint8_t timer_velocity_sampling_time=0.01;
float Vorsteuerungsfaktor;
float l_esum, Vorsteuerung, I_Regler, l_output, l_PWM, l_e;
float l_Ki=30*timer_velocity_sampling_time;
uint16_t a[19]={0,600,400,325,250,237,225,212,200,177,144,140,136,132,128,124,120,115,111};
// Variablen für die Querregelung
float steering_angle_current = 0, steering_angle_last = 0;
uint8_t timer_steering_angle_sampling_time = 0.01;
float q_Kp = 8.166343211;
float q_Ki = 18.6661236;
float feed_forward_control_factor = 13.37091452;
float q_esum = 0;
float feed_forward = 0;
float q_Ki_sampling_time = q_Ki * timer_steering_angle_sampling_time;
float q_PI_controller, q_PWM, q_e, q_output;
// Querregelung Ende
void serial_thread(void const *args) {
while (true) {
Thread::wait(100);
}
}
void machine_direction_control(void const *args) {
osEvent velocity_set_event = machine_direction_queue.get(0);
if (velocity_set_event.status == osEventMessage) {
velocity_set = *(float*)velocity_set_event.value.p;
}
osEvent velocity_current_event = imu_queue_velocity.get(0);
if (velocity_current_event.status == osEventMessage) {
velocity_current = *(float *)velocity_current_event.value.p;
}
Vorsteuerungsfaktor = a[(uint8_t)velocity_set*4];
l_e = velocity_set-velocity_current;
l_esum = l_esum + l_e;
Vorsteuerung=Vorsteuerungsfaktor*velocity_set;
I_Regler = q_Ki * l_esum;
l_output=Vorsteuerung;//+I_Regler;
l_PWM = 1500+l_output;
if(l_PWM<1500)
{
l_PWM=1500;
}
else if(l_PWM>2000)
{
l_PWM=2000;
}
drivePWM.pulsewidth_us(l_PWM);
}
void quadrature_control(void const *args) {
osEvent steering_angle_set_event = quadrature_queue.get(0);
if (steering_angle_set_event.status == osEventMessage) {
steering_angle_set = *(float *)steering_angle_set_event.value.p;
}
osEvent steering_angle_current_event = imu_queue_steering_angle.get(0);
if (steering_angle_current_event.status == osEventMessage) {
steering_angle_current = *(float *)steering_angle_current_event.value.p;
}
q_e = steering_angle_set - steering_angle_current;
q_esum = q_esum + q_e;
feed_forward = steering_angle_set * feed_forward_control_factor;
q_PI_controller = q_Kp*q_e + q_Ki_sampling_time * q_esum;
q_output = feed_forward + q_PI_controller;
if(q_output > 500){q_output = 500;} // evtl Begrenzung schon auf z.b. 300/ -300 stellen (wegen Linearität)
if(q_output < -500){q_output = - 500;}
q_PWM = 1500 + q_output;
steerPWM.pulsewidth_us(q_PWM);
}
int main() {
serialMinnow.baud(115200);
drivePWM.period_ms(20);
steerPWM.period_ms(20);
SystemTimer *millis = new SystemTimer();
SupportSystem *supportSystem = new SupportSystem(0x80, &i2c);
Thread machineDirectionControl(serial_thread);
RtosTimer machine_direction_control_timer(machine_direction_control);
RtosTimer quadrature_control_timer(quadrature_control);
// Konfiguration AMF-IMU
// [0]: Conversation Factor
// [1]: Sensor Position X
// [2]: Sensor Position Y
// [3]: Sensor Position Angle
float configData[4] = {0.002751114f, 167.0f, 0.0f, 269.0f};
supportSystem->writeData(SUPPORT_SYSTEM_REGISTER_ADDRESS_IMU_CONVERSION_FACTOR, configData, sizeof(float)*4);
// Flag setzen
uint8_t command = 1<<3;
supportSystem->writeData(SUPPORT_SYSTEM_REGISTER_ADDRESS_IMU_COMMAND, &command, sizeof(uint8_t));
bool timer_started = false;
wait(0.1);
steering_angle_minnow_queue = 0.0;
quadrature_queue.put(&steering_angle_minnow_queue);
velocity_minnow_queue = 1.5;
machine_direction_queue.put(&velocity_minnow_queue);
while(true) {
IMU_registerDataBuffer = supportSystem->getImuRegisterDataBuffer();
RadioDecoder_registerDataBuffer = supportSystem->getRadioDecoderRegisterDataBuffer();
for(uint8_t i=0; i<3; i++) {
serialMinnow.printf("RadioDecoder - Ch[%d] Valid: %d\r\n",i,RadioDecoder_registerDataBuffer->channelValid[i]);
serialMinnow.printf("RadioDecoder - Ch[%d] ActiveTime: %d\r\n",i,RadioDecoder_registerDataBuffer->channelActiveTime[i]);
serialMinnow.printf("RadioDecoder - Ch[%d] Percentage: %d\r\n",i,RadioDecoder_registerDataBuffer->channelPercent[i]);
}
uint16_t rc_percentage = RadioDecoder_registerDataBuffer->channelActiveTime[0];
uint8_t rc_valid = RadioDecoder_registerDataBuffer->channelValid[0];
uint16_t drive_percentage = RadioDecoder_registerDataBuffer->channelActiveTime[1];
uint8_t drive_valid = RadioDecoder_registerDataBuffer->channelValid[1];
uint16_t steer_percentage = RadioDecoder_registerDataBuffer->channelActiveTime[2];
uint8_t steer_valid = RadioDecoder_registerDataBuffer->channelValid[2];
if (rc_percentage > (uint16_t) 1800 && rc_valid != 0) {
// oben => Wettbewerb
heartbeatLED = true;
buttonLED = false;
redlightLED = false;
supportSystem->setLightManagerRemoteLight(false, true);
if (!timer_started) {
timer_started = true;
machine_direction_control_timer.start(10);
quadrature_control_timer.start(10);
}
} else if (rc_percentage > (uint16_t) 1200 && rc_valid != 0) {
// unten => RC-Wettbewerb
heartbeatLED = false;
buttonLED = false;
redlightLED = true;
supportSystem->setLightManagerRemoteLight(true, true);
if (drive_valid) {
drivePWM.pulsewidth_us(drive_percentage);
}
if (steer_valid) {
steerPWM.pulsewidth_us(steer_percentage);
}
if (timer_started) {
timer_started = false;
machine_direction_control_timer.stop();
quadrature_control_timer.stop();
}
} else if (rc_percentage > (uint16_t) 800 && rc_valid != 0) {
// mitte => RC-Training
heartbeatLED = false;
buttonLED = true;
redlightLED = false;
supportSystem->setLightManagerRemoteLight(true, true);
if (drive_valid) {
drivePWM.pulsewidth_us(drive_percentage);
}
if (steer_valid) {
steerPWM.pulsewidth_us(steer_percentage);
}
if (timer_started) {
timer_started = false;
machine_direction_control_timer.stop();
quadrature_control_timer.stop();
}
}
velocity_imu_queue = IMU_registerDataBuffer->velocityXFilteredRegister;
imu_queue_velocity.put(&velocity_imu_queue);
float radius = IMU_registerDataBuffer->velocityXFilteredRegister/IMU_registerDataBuffer->velocityAngularFilteredRegister;
steering_angle_imu_queue = atan(0.205/radius)*180/PI;
imu_queue_steering_angle.put(&steering_angle_imu_queue);
//serialMinnow.printf("%ld, ", difference_millis);
serialMinnow.printf("%f, ", velocity_minnow_queue);
serialMinnow.printf("%f, ", steering_angle_minnow_queue);
serialMinnow.printf("%d, ", IMU_registerDataBuffer->curveRadiusRegister);
serialMinnow.printf("%f, ", IMU_registerDataBuffer->velocityAngularRegister);
serialMinnow.printf("%f, ", IMU_registerDataBuffer->velocityAngularFilteredRegister);
serialMinnow.printf("%f, ", IMU_registerDataBuffer->velocityXRegister);
serialMinnow.printf("%f\r\n", IMU_registerDataBuffer->velocityXFilteredRegister);
Thread::wait(50);
}
}
