Acceleration in meter per second square

Fork of MPU6050 by Baser Kandehir

Committer:
mbedproject
Date:
Wed Jun 15 22:28:32 2016 +0000
Revision:
8:0e3519559bcb
Parent:
7:c9f95ebeb780
Hexcopter_IMU_distance_v1;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
BaserK 4:20f1f660e5c3 1 /* MPU6050 Library
BaserK 4:20f1f660e5c3 2 *
BaserK 4:20f1f660e5c3 3 * @author: Baser Kandehir
BaserK 2:3e0dfce73a58 4 * @date: July 16, 2015
BaserK 3:a173ad187e67 5 * @license: MIT license
BaserK 3:a173ad187e67 6 *
BaserK 3:a173ad187e67 7 * Copyright (c) 2015, Baser Kandehir, baser.kandehir@ieee.metu.edu.tr
BaserK 3:a173ad187e67 8 *
BaserK 3:a173ad187e67 9 * Permission is hereby granted, free of charge, to any person obtaining a copy
BaserK 3:a173ad187e67 10 * of this software and associated documentation files (the "Software"), to deal
BaserK 3:a173ad187e67 11 * in the Software without restriction, including without limitation the rights
BaserK 3:a173ad187e67 12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
BaserK 3:a173ad187e67 13 * copies of the Software, and to permit persons to whom the Software is
BaserK 3:a173ad187e67 14 * furnished to do so, subject to the following conditions:
BaserK 3:a173ad187e67 15 *
BaserK 3:a173ad187e67 16 * The above copyright notice and this permission notice shall be included in
BaserK 3:a173ad187e67 17 * all copies or substantial portions of the Software.
BaserK 3:a173ad187e67 18 *
BaserK 3:a173ad187e67 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
BaserK 3:a173ad187e67 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
BaserK 3:a173ad187e67 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
BaserK 3:a173ad187e67 22 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
BaserK 3:a173ad187e67 23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
BaserK 3:a173ad187e67 24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
BaserK 3:a173ad187e67 25 * THE SOFTWARE.
BaserK 3:a173ad187e67 26 *
BaserK 0:954f15bd95f1 27 */
BaserK 0:954f15bd95f1 28
BaserK 0:954f15bd95f1 29 // Most of the code is adapted from Kris Winer's MPU6050 library
BaserK 0:954f15bd95f1 30
BaserK 0:954f15bd95f1 31 #include "MPU6050.h"
BaserK 0:954f15bd95f1 32
BaserK 4:20f1f660e5c3 33 /* For LPC1768 board */
BaserK 4:20f1f660e5c3 34 //I2C i2c(p9,p10); // setup i2c (SDA,SCL)
BaserK 4:20f1f660e5c3 35
BaserK 4:20f1f660e5c3 36 /* For NUCLEO-F411RE board */
mbedproject 7:c9f95ebeb780 37 static I2C i2c(PTE25,PTE24); // setup i2c (SDA,SCL)
BaserK 0:954f15bd95f1 38
BaserK 0:954f15bd95f1 39 /* Set initial input parameters */
BaserK 0:954f15bd95f1 40
BaserK 0:954f15bd95f1 41 // Acc Full Scale Range +-2G 4G 8G 16G
BaserK 0:954f15bd95f1 42 enum Ascale
BaserK 0:954f15bd95f1 43 {
BaserK 0:954f15bd95f1 44 AFS_2G=0,
BaserK 0:954f15bd95f1 45 AFS_4G,
BaserK 0:954f15bd95f1 46 AFS_8G,
BaserK 0:954f15bd95f1 47 AFS_16G
BaserK 0:954f15bd95f1 48 };
BaserK 0:954f15bd95f1 49
BaserK 0:954f15bd95f1 50 // Gyro Full Scale Range +-250 500 1000 2000 Degrees per second
BaserK 0:954f15bd95f1 51 enum Gscale
BaserK 0:954f15bd95f1 52 {
BaserK 0:954f15bd95f1 53 GFS_250DPS=0,
BaserK 0:954f15bd95f1 54 GFS_500DPS,
BaserK 0:954f15bd95f1 55 GFS_1000DPS,
BaserK 0:954f15bd95f1 56 GFS_2000DPS
BaserK 0:954f15bd95f1 57 };
BaserK 0:954f15bd95f1 58
BaserK 0:954f15bd95f1 59 // Sensor datas
BaserK 0:954f15bd95f1 60 float ax,ay,az;
BaserK 0:954f15bd95f1 61 float gx,gy,gz;
mbedproject 8:0e3519559bcb 62 float axx;
BaserK 0:954f15bd95f1 63 int16_t accelData[3],gyroData[3],tempData;
BaserK 0:954f15bd95f1 64 float accelBias[3] = {0, 0, 0}; // Bias corrections for acc
BaserK 0:954f15bd95f1 65 float gyroBias[3] = {0, 0, 0}; // Bias corrections for gyro
BaserK 0:954f15bd95f1 66
BaserK 0:954f15bd95f1 67 // Specify sensor full scale range
BaserK 0:954f15bd95f1 68 int Ascale = AFS_2G;
BaserK 0:954f15bd95f1 69 int Gscale = GFS_250DPS;
BaserK 0:954f15bd95f1 70
BaserK 0:954f15bd95f1 71 // Scale resolutions per LSB for the sensors
BaserK 0:954f15bd95f1 72 float aRes, gRes;
BaserK 0:954f15bd95f1 73
BaserK 0:954f15bd95f1 74 // Calculates Acc resolution
BaserK 0:954f15bd95f1 75 void MPU6050::getAres()
BaserK 0:954f15bd95f1 76 {
BaserK 0:954f15bd95f1 77 switch(Ascale)
BaserK 0:954f15bd95f1 78 {
BaserK 0:954f15bd95f1 79 case AFS_2G:
BaserK 0:954f15bd95f1 80 aRes = 2.0/32768.0;
BaserK 0:954f15bd95f1 81 break;
BaserK 0:954f15bd95f1 82 case AFS_4G:
BaserK 0:954f15bd95f1 83 aRes = 4.0/32768.0;
BaserK 0:954f15bd95f1 84 break;
BaserK 0:954f15bd95f1 85 case AFS_8G:
BaserK 0:954f15bd95f1 86 aRes = 8.0/32768.0;
BaserK 0:954f15bd95f1 87 break;
BaserK 0:954f15bd95f1 88 case AFS_16G:
BaserK 0:954f15bd95f1 89 aRes = 16.0/32768.0;
BaserK 0:954f15bd95f1 90 break;
BaserK 0:954f15bd95f1 91 }
BaserK 0:954f15bd95f1 92 }
BaserK 0:954f15bd95f1 93
BaserK 0:954f15bd95f1 94 // Calculates Gyro resolution
BaserK 0:954f15bd95f1 95 void MPU6050::getGres()
BaserK 0:954f15bd95f1 96 {
BaserK 0:954f15bd95f1 97 switch(Gscale)
BaserK 0:954f15bd95f1 98 {
BaserK 0:954f15bd95f1 99 case GFS_250DPS:
BaserK 0:954f15bd95f1 100 gRes = 250.0/32768.0;
BaserK 0:954f15bd95f1 101 break;
BaserK 0:954f15bd95f1 102 case GFS_500DPS:
BaserK 0:954f15bd95f1 103 gRes = 500.0/32768.0;
BaserK 0:954f15bd95f1 104 break;
BaserK 0:954f15bd95f1 105 case GFS_1000DPS:
BaserK 0:954f15bd95f1 106 gRes = 1000.0/32768.0;
BaserK 0:954f15bd95f1 107 break;
BaserK 0:954f15bd95f1 108 case GFS_2000DPS:
BaserK 0:954f15bd95f1 109 gRes = 2000.0/32768.0;
BaserK 0:954f15bd95f1 110 break;
BaserK 0:954f15bd95f1 111 }
BaserK 0:954f15bd95f1 112 }
BaserK 0:954f15bd95f1 113
BaserK 0:954f15bd95f1 114 void MPU6050::writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
BaserK 0:954f15bd95f1 115 {
BaserK 0:954f15bd95f1 116 char data_write[2];
BaserK 0:954f15bd95f1 117 data_write[0]=subAddress; // I2C sends MSB first. Namely >>|subAddress|>>|data|
BaserK 0:954f15bd95f1 118 data_write[1]=data;
BaserK 0:954f15bd95f1 119 i2c.write(address,data_write,2,0); // i2c.write(int address, char* data, int length, bool repeated=false);
BaserK 0:954f15bd95f1 120 }
BaserK 0:954f15bd95f1 121
BaserK 0:954f15bd95f1 122 char MPU6050::readByte(uint8_t address, uint8_t subAddress)
BaserK 0:954f15bd95f1 123 {
BaserK 0:954f15bd95f1 124 char data_read[1]; // will store the register data
BaserK 0:954f15bd95f1 125 char data_write[1];
BaserK 0:954f15bd95f1 126 data_write[0]=subAddress;
BaserK 0:954f15bd95f1 127 i2c.write(address,data_write,1,1); // have not stopped yet
BaserK 0:954f15bd95f1 128 i2c.read(address,data_read,1,0); // read the data and stop
BaserK 0:954f15bd95f1 129 return data_read[0];
BaserK 0:954f15bd95f1 130 }
BaserK 0:954f15bd95f1 131
BaserK 0:954f15bd95f1 132 void MPU6050::readBytes(uint8_t address, uint8_t subAddress, uint8_t byteNum, uint8_t* dest)
BaserK 0:954f15bd95f1 133 {
BaserK 0:954f15bd95f1 134 char data[14],data_write[1];
BaserK 0:954f15bd95f1 135 data_write[0]=subAddress;
BaserK 0:954f15bd95f1 136 i2c.write(address,data_write,1,1);
BaserK 0:954f15bd95f1 137 i2c.read(address,data,byteNum,0);
BaserK 0:954f15bd95f1 138 for(int i=0;i<byteNum;i++) // equate the addresses
BaserK 0:954f15bd95f1 139 dest[i]=data[i];
BaserK 0:954f15bd95f1 140 }
BaserK 0:954f15bd95f1 141
mbedproject 7:c9f95ebeb780 142 // Communication test: CHECKADDRESS register reading
mbedproject 7:c9f95ebeb780 143 void MPU6050::checkaddress()
BaserK 0:954f15bd95f1 144 {
mbedproject 7:c9f95ebeb780 145 uint8_t checkaddress = readByte(MPU6050_ADDRESS, CHECKADDRESS_MPU6050); // Should return 0x68
mbedproject 8:0e3519559bcb 146 pc.printf("Sensor Address ID: 0x%x \r\n",checkaddress);
BaserK 0:954f15bd95f1 147
mbedproject 7:c9f95ebeb780 148 if(checkaddress==0x68)
BaserK 0:954f15bd95f1 149 {
mbedproject 8:0e3519559bcb 150 pc.printf("IMU is online now... \r\n");
BaserK 0:954f15bd95f1 151 }
BaserK 0:954f15bd95f1 152 else
BaserK 0:954f15bd95f1 153 {
mbedproject 8:0e3519559bcb 154 pc.printf("No connection to IMU !! Check the connections... \r\n");
BaserK 0:954f15bd95f1 155 }
BaserK 0:954f15bd95f1 156 }
BaserK 0:954f15bd95f1 157
BaserK 0:954f15bd95f1 158 // Initializes MPU6050 with the following config:
BaserK 0:954f15bd95f1 159 // PLL with X axis gyroscope reference
BaserK 0:954f15bd95f1 160 // Sample rate: 200Hz for gyro and acc
BaserK 0:954f15bd95f1 161 // Interrupts are disabled
BaserK 0:954f15bd95f1 162 void MPU6050::init()
BaserK 5:5bff0edcdff8 163 {
BaserK 5:5bff0edcdff8 164 i2c.frequency(400000); // fast i2c: 400 kHz
BaserK 5:5bff0edcdff8 165
BaserK 0:954f15bd95f1 166 /* Wake up the device */
BaserK 0:954f15bd95f1 167 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // wake up the device by clearing the sleep bit (bit6)
BaserK 0:954f15bd95f1 168 wait_ms(100); // wait 100 ms to stabilize
BaserK 0:954f15bd95f1 169
BaserK 0:954f15bd95f1 170 /* Get stable time source */
BaserK 0:954f15bd95f1 171 // PLL with X axis gyroscope reference is used to improve stability
BaserK 0:954f15bd95f1 172 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
BaserK 0:954f15bd95f1 173
BaserK 0:954f15bd95f1 174 /* Configure Gyroscope and Accelerometer */
BaserK 0:954f15bd95f1 175 // Disable FSYNC, acc bandwidth: 44 Hz, gyro bandwidth: 42 Hz
BaserK 0:954f15bd95f1 176 // Sample rates: 1kHz, maximum delay: 4.9ms (which is pretty good for a 200 Hz maximum rate)
BaserK 0:954f15bd95f1 177 writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
BaserK 0:954f15bd95f1 178
BaserK 0:954f15bd95f1 179 /* Set sample rate = gyroscope output rate/(1+SMPLRT_DIV) */
BaserK 0:954f15bd95f1 180 // SMPLRT_DIV=4 and sample rate=200 Hz (compatible with config above)
BaserK 0:954f15bd95f1 181 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04);
BaserK 0:954f15bd95f1 182
BaserK 0:954f15bd95f1 183 /* Accelerometer configuration */
BaserK 0:954f15bd95f1 184 uint8_t temp = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
BaserK 0:954f15bd95f1 185 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, temp & ~0xE0); // Clear self-test bits [7:5]
BaserK 0:954f15bd95f1 186 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, temp & ~0x18); // Clear AFS bits [4:3]
BaserK 0:954f15bd95f1 187 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, temp | Ascale<<3); // Set full scale range
BaserK 0:954f15bd95f1 188
BaserK 0:954f15bd95f1 189 /* Gyroscope configuration */
BaserK 0:954f15bd95f1 190 temp = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
BaserK 0:954f15bd95f1 191 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, temp & ~0xE0); // Clear self-test bits [7:5]
BaserK 0:954f15bd95f1 192 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, temp & ~0x18); // Clear FS bits [4:3]
BaserK 0:954f15bd95f1 193 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, temp | Gscale<<3); // Set full scale range
BaserK 0:954f15bd95f1 194 }
BaserK 0:954f15bd95f1 195
BaserK 0:954f15bd95f1 196 // Resets the device
BaserK 0:954f15bd95f1 197 void MPU6050::reset()
BaserK 0:954f15bd95f1 198 {
BaserK 0:954f15bd95f1 199 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // set bit7 to reset the device
BaserK 0:954f15bd95f1 200 wait_ms(100); // wait 100 ms to stabilize
BaserK 0:954f15bd95f1 201 }
BaserK 0:954f15bd95f1 202
BaserK 0:954f15bd95f1 203 void MPU6050::readAccelData(int16_t* dest)
BaserK 0:954f15bd95f1 204 {
BaserK 0:954f15bd95f1 205 uint8_t rawData[6]; // x,y,z acc data
BaserK 0:954f15bd95f1 206 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // read six raw data registers sequentially and write them into data array
BaserK 0:954f15bd95f1 207
BaserK 0:954f15bd95f1 208 /* Turn the MSB LSB into signed 16-bit value */
BaserK 0:954f15bd95f1 209 dest[0] = (int16_t)(((int16_t)rawData[0]<<8) | rawData[1]); // ACCEL_XOUT
BaserK 0:954f15bd95f1 210 dest[1] = (int16_t)(((int16_t)rawData[2]<<8) | rawData[3]); // ACCEL_YOUT
BaserK 0:954f15bd95f1 211 dest[2] = (int16_t)(((int16_t)rawData[4]<<8) | rawData[5]); // ACCEL_ZOUT
BaserK 0:954f15bd95f1 212 }
BaserK 0:954f15bd95f1 213
BaserK 0:954f15bd95f1 214 void MPU6050::readGyroData(int16_t* dest)
BaserK 0:954f15bd95f1 215 {
BaserK 0:954f15bd95f1 216 uint8_t rawData[6]; // x,y,z gyro data
BaserK 0:954f15bd95f1 217 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // read the six raw data registers sequentially and write them into data array
BaserK 0:954f15bd95f1 218
BaserK 0:954f15bd95f1 219 /* Turn the MSB LSB into signed 16-bit value */
BaserK 0:954f15bd95f1 220 dest[0] = (int16_t)(((int16_t)rawData[0]<<8) | rawData[1]); // GYRO_XOUT
BaserK 0:954f15bd95f1 221 dest[1] = (int16_t)(((int16_t)rawData[2]<<8) | rawData[3]); // GYRO_YOUT
BaserK 0:954f15bd95f1 222 dest[2] = (int16_t)(((int16_t)rawData[4]<<8) | rawData[5]); // GYRO_ZOUT
BaserK 0:954f15bd95f1 223 }
BaserK 0:954f15bd95f1 224
BaserK 0:954f15bd95f1 225 int16_t MPU6050::readTempData()
BaserK 0:954f15bd95f1 226 {
BaserK 0:954f15bd95f1 227 uint8_t rawData[2]; // temperature data
BaserK 0:954f15bd95f1 228 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // read the two raw data registers sequentially and write them into data array
BaserK 0:954f15bd95f1 229 return (int16_t)(((int16_t)rawData[0]<<8) | rawData[1]); // turn the MSB LSB into signed 16-bit value
BaserK 0:954f15bd95f1 230 }
BaserK 0:954f15bd95f1 231
BaserK 0:954f15bd95f1 232 /* Function which accumulates gyro and accelerometer data after device initialization.
BaserK 0:954f15bd95f1 233 It calculates the average of the at-rest readings and
BaserK 0:954f15bd95f1 234 then loads the resulting offsets into accelerometer and gyro bias registers. */
BaserK 0:954f15bd95f1 235 /*
BaserK 0:954f15bd95f1 236 IMPORTANT NOTE: In this function;
BaserK 0:954f15bd95f1 237 Resulting accel offsets are NOT pushed to the accel bias registers. accelBias[i] offsets are used in the main program.
BaserK 0:954f15bd95f1 238 Resulting gyro offsets are pushed to the gyro bias registers. gyroBias[i] offsets are NOT used in the main program.
BaserK 0:954f15bd95f1 239 Resulting data seems satisfactory.
BaserK 0:954f15bd95f1 240 */
BaserK 0:954f15bd95f1 241 // dest1: accelBias dest2: gyroBias
BaserK 0:954f15bd95f1 242 void MPU6050::calibrate(float* dest1, float* dest2)
BaserK 0:954f15bd95f1 243 {
BaserK 0:954f15bd95f1 244 uint8_t data[12]; // data array to hold acc and gyro x,y,z data
BaserK 0:954f15bd95f1 245 uint16_t fifo_count, packet_count, count;
BaserK 0:954f15bd95f1 246 int32_t accel_bias[3] = {0,0,0};
BaserK 0:954f15bd95f1 247 int32_t gyro_bias[3] = {0,0,0};
BaserK 0:954f15bd95f1 248 float aRes = 2.0/32768.0;
BaserK 0:954f15bd95f1 249 float gRes = 250.0/32768.0;
BaserK 0:954f15bd95f1 250 uint16_t accelsensitivity = 16384; // = 1/aRes = 16384 LSB/g
BaserK 0:954f15bd95f1 251 //uint16_t gyrosensitivity = 131; // = 1/gRes = 131 LSB/dps
BaserK 0:954f15bd95f1 252
BaserK 0:954f15bd95f1 253 reset(); // Reset device
BaserK 0:954f15bd95f1 254
BaserK 0:954f15bd95f1 255 /* Get stable time source */
BaserK 0:954f15bd95f1 256 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // PLL with X axis gyroscope reference is used to improve stability
BaserK 0:954f15bd95f1 257 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); // Disable accel only low power mode
BaserK 0:954f15bd95f1 258 wait(0.2);
BaserK 0:954f15bd95f1 259
BaserK 0:954f15bd95f1 260 /* Configure device for bias calculation */
BaserK 0:954f15bd95f1 261 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
BaserK 0:954f15bd95f1 262 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
BaserK 0:954f15bd95f1 263 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
BaserK 0:954f15bd95f1 264 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
BaserK 0:954f15bd95f1 265 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
BaserK 0:954f15bd95f1 266 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x04); // Reset FIFO
BaserK 0:954f15bd95f1 267 wait(0.015);
BaserK 0:954f15bd95f1 268
BaserK 0:954f15bd95f1 269 /* Configure accel and gyro for bias calculation */
BaserK 0:954f15bd95f1 270 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
BaserK 0:954f15bd95f1 271 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
BaserK 0:954f15bd95f1 272 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
BaserK 0:954f15bd95f1 273 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
BaserK 0:954f15bd95f1 274
BaserK 0:954f15bd95f1 275 /* Configure FIFO to capture accelerometer and gyro data for bias calculation */
BaserK 0:954f15bd95f1 276 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
BaserK 0:954f15bd95f1 277 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable accelerometer and gyro for FIFO (max size 1024 bytes in MPU-6050)
BaserK 0:954f15bd95f1 278 wait(0.08); // Sample rate is 1 kHz, accumulates 80 samples in 80 milliseconds.
BaserK 0:954f15bd95f1 279 // accX: 2 byte, accY: 2 byte, accZ: 2 byte. gyroX: 2 byte, gyroY: 2 byte, gyroZ: 2 byte. 12*80=960 byte < 1024 byte
BaserK 0:954f15bd95f1 280
BaserK 0:954f15bd95f1 281 /* At end of sample accumulation, turn off FIFO sensor read */
BaserK 0:954f15bd95f1 282 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
BaserK 0:954f15bd95f1 283 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // Read FIFO sample count
BaserK 0:954f15bd95f1 284 fifo_count = ((uint16_t)data[0] << 8) | data[1];
BaserK 0:954f15bd95f1 285 packet_count = fifo_count/12; // The number of sets of full acc and gyro data for averaging. packet_count = 80 in this case
BaserK 0:954f15bd95f1 286
BaserK 0:954f15bd95f1 287 for(count=0; count<packet_count; count++)
BaserK 0:954f15bd95f1 288 {
BaserK 0:954f15bd95f1 289 int16_t accel_temp[3]={0,0,0};
BaserK 0:954f15bd95f1 290 int16_t gyro_temp[3]={0,0,0};
BaserK 0:954f15bd95f1 291 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
BaserK 0:954f15bd95f1 292
BaserK 0:954f15bd95f1 293 /* Form signed 16-bit integer for each sample in FIFO */
BaserK 0:954f15bd95f1 294 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ;
BaserK 0:954f15bd95f1 295 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
BaserK 0:954f15bd95f1 296 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
BaserK 0:954f15bd95f1 297 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
BaserK 0:954f15bd95f1 298 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
BaserK 0:954f15bd95f1 299 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
BaserK 0:954f15bd95f1 300
BaserK 0:954f15bd95f1 301 /* Sum individual signed 16-bit biases to get accumulated signed 32-bit biases */
BaserK 0:954f15bd95f1 302 accel_bias[0] += (int32_t) accel_temp[0];
BaserK 0:954f15bd95f1 303 accel_bias[1] += (int32_t) accel_temp[1];
BaserK 0:954f15bd95f1 304 accel_bias[2] += (int32_t) accel_temp[2];
BaserK 0:954f15bd95f1 305 gyro_bias[0] += (int32_t) gyro_temp[0];
BaserK 0:954f15bd95f1 306 gyro_bias[1] += (int32_t) gyro_temp[1];
BaserK 0:954f15bd95f1 307 gyro_bias[2] += (int32_t) gyro_temp[2];
BaserK 0:954f15bd95f1 308 }
BaserK 0:954f15bd95f1 309
BaserK 0:954f15bd95f1 310 /* Normalize sums to get average count biases */
BaserK 0:954f15bd95f1 311 accel_bias[0] /= (int32_t) packet_count;
BaserK 0:954f15bd95f1 312 accel_bias[1] /= (int32_t) packet_count;
BaserK 0:954f15bd95f1 313 accel_bias[2] /= (int32_t) packet_count;
BaserK 0:954f15bd95f1 314 gyro_bias[0] /= (int32_t) packet_count;
BaserK 0:954f15bd95f1 315 gyro_bias[1] /= (int32_t) packet_count;
BaserK 0:954f15bd95f1 316 gyro_bias[2] /= (int32_t) packet_count;
BaserK 0:954f15bd95f1 317
BaserK 0:954f15bd95f1 318 /* Remove gravity from the z-axis accelerometer bias calculation */
BaserK 0:954f15bd95f1 319 if(accel_bias[2] > 0) {accel_bias[2] -= (int32_t) accelsensitivity;}
BaserK 0:954f15bd95f1 320 else {accel_bias[2] += (int32_t) accelsensitivity;}
BaserK 0:954f15bd95f1 321
BaserK 0:954f15bd95f1 322 /* Output scaled accelerometer biases for manual subtraction in the main program */
BaserK 0:954f15bd95f1 323 dest1[0] = accel_bias[0]*aRes;
BaserK 0:954f15bd95f1 324 dest1[1] = accel_bias[1]*aRes;
BaserK 0:954f15bd95f1 325 dest1[2] = accel_bias[2]*aRes;
BaserK 0:954f15bd95f1 326
BaserK 0:954f15bd95f1 327 /* Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup */
BaserK 0:954f15bd95f1 328 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
BaserK 0:954f15bd95f1 329 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
BaserK 0:954f15bd95f1 330 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
BaserK 0:954f15bd95f1 331 data[3] = (-gyro_bias[1]/4) & 0xFF;
BaserK 0:954f15bd95f1 332 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
BaserK 0:954f15bd95f1 333 data[5] = (-gyro_bias[2]/4) & 0xFF;
BaserK 0:954f15bd95f1 334
BaserK 0:954f15bd95f1 335 /* Push gyro biases to hardware registers */
BaserK 0:954f15bd95f1 336 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
BaserK 0:954f15bd95f1 337 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
BaserK 0:954f15bd95f1 338 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
BaserK 0:954f15bd95f1 339 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
BaserK 0:954f15bd95f1 340 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
BaserK 0:954f15bd95f1 341 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
BaserK 0:954f15bd95f1 342
BaserK 0:954f15bd95f1 343 /* Construct gyro bias in deg/s for later manual subtraction */
BaserK 0:954f15bd95f1 344 dest2[0] = gyro_bias[0]*gRes;
BaserK 0:954f15bd95f1 345 dest2[1] = gyro_bias[1]*gRes;
BaserK 0:954f15bd95f1 346 dest2[2] = gyro_bias[2]*gRes;
BaserK 0:954f15bd95f1 347 }
BaserK 2:3e0dfce73a58 348
BaserK 2:3e0dfce73a58 349 void MPU6050::complementaryFilter(float* pitch, float* roll)
BaserK 2:3e0dfce73a58 350 {
BaserK 2:3e0dfce73a58 351 /* Get actual acc value */
BaserK 2:3e0dfce73a58 352 readAccelData(accelData);
BaserK 2:3e0dfce73a58 353 getAres();
BaserK 2:3e0dfce73a58 354 ax = accelData[0]*aRes - accelBias[0];
BaserK 2:3e0dfce73a58 355 ay = accelData[1]*aRes - accelBias[1];
BaserK 2:3e0dfce73a58 356 az = accelData[2]*aRes - accelBias[2];
mbedproject 8:0e3519559bcb 357
mbedproject 8:0e3519559bcb 358 axx = 9.80665f * ax;
BaserK 2:3e0dfce73a58 359
BaserK 2:3e0dfce73a58 360 /* Get actual gyro value */
BaserK 2:3e0dfce73a58 361 readGyroData(gyroData);
BaserK 2:3e0dfce73a58 362 getGres();
BaserK 2:3e0dfce73a58 363 gx = gyroData[0]*gRes; // - gyroBias[0]; // Results are better without extracting gyroBias[i]
BaserK 2:3e0dfce73a58 364 gy = gyroData[1]*gRes; // - gyroBias[1];
BaserK 2:3e0dfce73a58 365 gz = gyroData[2]*gRes; // - gyroBias[2];
BaserK 2:3e0dfce73a58 366
BaserK 2:3e0dfce73a58 367 float pitchAcc, rollAcc;
BaserK 2:3e0dfce73a58 368
BaserK 2:3e0dfce73a58 369 /* Integrate the gyro data(deg/s) over time to get angle */
BaserK 2:3e0dfce73a58 370 *pitch += gx * dt; // Angle around the X-axis
BaserK 2:3e0dfce73a58 371 *roll -= gy * dt; // Angle around the Y-axis
BaserK 2:3e0dfce73a58 372
BaserK 2:3e0dfce73a58 373 /* Turning around the X-axis results in a vector on the Y-axis
BaserK 2:3e0dfce73a58 374 whereas turning around the Y-axis results in a vector on the X-axis. */
BaserK 2:3e0dfce73a58 375 pitchAcc = atan2f(accelData[1], accelData[2])*180/PI;
BaserK 2:3e0dfce73a58 376 rollAcc = atan2f(accelData[0], accelData[2])*180/PI;
BaserK 2:3e0dfce73a58 377
BaserK 2:3e0dfce73a58 378 /* Apply Complementary Filter */
BaserK 2:3e0dfce73a58 379 *pitch = *pitch * 0.98 + pitchAcc * 0.02;
BaserK 2:3e0dfce73a58 380 *roll = *roll * 0.98 + rollAcc * 0.02;
BaserK 2:3e0dfce73a58 381 }