The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Dependents:   hello SerialTestv11 SerialTestv12 Sierpinski ... more

mbed 2

This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.

Committer:
Kojto
Date:
Wed Nov 25 13:21:40 2015 +0000
Revision:
110:165afa46840b
Child:
145:64910690c574
Release 110  of the mbed library

Changes:
- new platforms - STM32F410R, DISCO_F429ZI, DISCO_F469NI
- Nucleo L476 - gcc and uvision template
- k22,k64f targets - ADC channels A addition
- EFM32 - bugfixes in sleep, serial and spi
- Delta DFCM NNN40 - pinnames update

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Kojto 110:165afa46840b 1 /* ----------------------------------------------------------------------
Kojto 110:165afa46840b 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
Kojto 110:165afa46840b 3 *
Kojto 110:165afa46840b 4 * $Date: 19. March 2015
Kojto 110:165afa46840b 5 * $Revision: V.1.4.5
Kojto 110:165afa46840b 6 *
Kojto 110:165afa46840b 7 * Project: CMSIS DSP Library
Kojto 110:165afa46840b 8 * Title: arm_math.h
Kojto 110:165afa46840b 9 *
Kojto 110:165afa46840b 10 * Description: Public header file for CMSIS DSP Library
Kojto 110:165afa46840b 11 *
Kojto 110:165afa46840b 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
Kojto 110:165afa46840b 13 *
Kojto 110:165afa46840b 14 * Redistribution and use in source and binary forms, with or without
Kojto 110:165afa46840b 15 * modification, are permitted provided that the following conditions
Kojto 110:165afa46840b 16 * are met:
Kojto 110:165afa46840b 17 * - Redistributions of source code must retain the above copyright
Kojto 110:165afa46840b 18 * notice, this list of conditions and the following disclaimer.
Kojto 110:165afa46840b 19 * - Redistributions in binary form must reproduce the above copyright
Kojto 110:165afa46840b 20 * notice, this list of conditions and the following disclaimer in
Kojto 110:165afa46840b 21 * the documentation and/or other materials provided with the
Kojto 110:165afa46840b 22 * distribution.
Kojto 110:165afa46840b 23 * - Neither the name of ARM LIMITED nor the names of its contributors
Kojto 110:165afa46840b 24 * may be used to endorse or promote products derived from this
Kojto 110:165afa46840b 25 * software without specific prior written permission.
Kojto 110:165afa46840b 26 *
Kojto 110:165afa46840b 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
Kojto 110:165afa46840b 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
Kojto 110:165afa46840b 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
Kojto 110:165afa46840b 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
Kojto 110:165afa46840b 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
Kojto 110:165afa46840b 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
Kojto 110:165afa46840b 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
Kojto 110:165afa46840b 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
Kojto 110:165afa46840b 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
Kojto 110:165afa46840b 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
Kojto 110:165afa46840b 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Kojto 110:165afa46840b 38 * POSSIBILITY OF SUCH DAMAGE.
Kojto 110:165afa46840b 39 * -------------------------------------------------------------------- */
Kojto 110:165afa46840b 40
Kojto 110:165afa46840b 41 /**
Kojto 110:165afa46840b 42 \mainpage CMSIS DSP Software Library
Kojto 110:165afa46840b 43 *
Kojto 110:165afa46840b 44 * Introduction
Kojto 110:165afa46840b 45 * ------------
Kojto 110:165afa46840b 46 *
Kojto 110:165afa46840b 47 * This user manual describes the CMSIS DSP software library,
Kojto 110:165afa46840b 48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
Kojto 110:165afa46840b 49 *
Kojto 110:165afa46840b 50 * The library is divided into a number of functions each covering a specific category:
Kojto 110:165afa46840b 51 * - Basic math functions
Kojto 110:165afa46840b 52 * - Fast math functions
Kojto 110:165afa46840b 53 * - Complex math functions
Kojto 110:165afa46840b 54 * - Filters
Kojto 110:165afa46840b 55 * - Matrix functions
Kojto 110:165afa46840b 56 * - Transforms
Kojto 110:165afa46840b 57 * - Motor control functions
Kojto 110:165afa46840b 58 * - Statistical functions
Kojto 110:165afa46840b 59 * - Support functions
Kojto 110:165afa46840b 60 * - Interpolation functions
Kojto 110:165afa46840b 61 *
Kojto 110:165afa46840b 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
Kojto 110:165afa46840b 63 * 32-bit integer and 32-bit floating-point values.
Kojto 110:165afa46840b 64 *
Kojto 110:165afa46840b 65 * Using the Library
Kojto 110:165afa46840b 66 * ------------
Kojto 110:165afa46840b 67 *
Kojto 110:165afa46840b 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
Kojto 110:165afa46840b 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
Kojto 110:165afa46840b 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
Kojto 110:165afa46840b 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
Kojto 110:165afa46840b 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
Kojto 110:165afa46840b 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
Kojto 110:165afa46840b 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
Kojto 110:165afa46840b 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
Kojto 110:165afa46840b 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
Kojto 110:165afa46840b 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
Kojto 110:165afa46840b 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
Kojto 110:165afa46840b 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
Kojto 110:165afa46840b 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
Kojto 110:165afa46840b 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
Kojto 110:165afa46840b 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
Kojto 110:165afa46840b 83 *
Kojto 110:165afa46840b 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
Kojto 110:165afa46840b 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
Kojto 110:165afa46840b 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
Kojto 110:165afa46840b 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
Kojto 110:165afa46840b 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
Kojto 110:165afa46840b 89 *
Kojto 110:165afa46840b 90 * Examples
Kojto 110:165afa46840b 91 * --------
Kojto 110:165afa46840b 92 *
Kojto 110:165afa46840b 93 * The library ships with a number of examples which demonstrate how to use the library functions.
Kojto 110:165afa46840b 94 *
Kojto 110:165afa46840b 95 * Toolchain Support
Kojto 110:165afa46840b 96 * ------------
Kojto 110:165afa46840b 97 *
Kojto 110:165afa46840b 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
Kojto 110:165afa46840b 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
Kojto 110:165afa46840b 100 *
Kojto 110:165afa46840b 101 * Building the Library
Kojto 110:165afa46840b 102 * ------------
Kojto 110:165afa46840b 103 *
Kojto 110:165afa46840b 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
Kojto 110:165afa46840b 105 * - arm_cortexM_math.uvprojx
Kojto 110:165afa46840b 106 *
Kojto 110:165afa46840b 107 *
Kojto 110:165afa46840b 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
Kojto 110:165afa46840b 109 *
Kojto 110:165afa46840b 110 * Pre-processor Macros
Kojto 110:165afa46840b 111 * ------------
Kojto 110:165afa46840b 112 *
Kojto 110:165afa46840b 113 * Each library project have differant pre-processor macros.
Kojto 110:165afa46840b 114 *
Kojto 110:165afa46840b 115 * - UNALIGNED_SUPPORT_DISABLE:
Kojto 110:165afa46840b 116 *
Kojto 110:165afa46840b 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
Kojto 110:165afa46840b 118 *
Kojto 110:165afa46840b 119 * - ARM_MATH_BIG_ENDIAN:
Kojto 110:165afa46840b 120 *
Kojto 110:165afa46840b 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
Kojto 110:165afa46840b 122 *
Kojto 110:165afa46840b 123 * - ARM_MATH_MATRIX_CHECK:
Kojto 110:165afa46840b 124 *
Kojto 110:165afa46840b 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
Kojto 110:165afa46840b 126 *
Kojto 110:165afa46840b 127 * - ARM_MATH_ROUNDING:
Kojto 110:165afa46840b 128 *
Kojto 110:165afa46840b 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
Kojto 110:165afa46840b 130 *
Kojto 110:165afa46840b 131 * - ARM_MATH_CMx:
Kojto 110:165afa46840b 132 *
Kojto 110:165afa46840b 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
Kojto 110:165afa46840b 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
Kojto 110:165afa46840b 135 * ARM_MATH_CM7 for building the library on cortex-M7.
Kojto 110:165afa46840b 136 *
Kojto 110:165afa46840b 137 * - __FPU_PRESENT:
Kojto 110:165afa46840b 138 *
Kojto 110:165afa46840b 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
Kojto 110:165afa46840b 140 *
Kojto 110:165afa46840b 141 * <hr>
Kojto 110:165afa46840b 142 * CMSIS-DSP in ARM::CMSIS Pack
Kojto 110:165afa46840b 143 * -----------------------------
Kojto 110:165afa46840b 144 *
Kojto 110:165afa46840b 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
Kojto 110:165afa46840b 146 * |File/Folder |Content |
Kojto 110:165afa46840b 147 * |------------------------------|------------------------------------------------------------------------|
Kojto 110:165afa46840b 148 * |\b CMSIS\\Documentation\\DSP | This documentation |
Kojto 110:165afa46840b 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
Kojto 110:165afa46840b 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
Kojto 110:165afa46840b 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
Kojto 110:165afa46840b 152 *
Kojto 110:165afa46840b 153 * <hr>
Kojto 110:165afa46840b 154 * Revision History of CMSIS-DSP
Kojto 110:165afa46840b 155 * ------------
Kojto 110:165afa46840b 156 * Please refer to \ref ChangeLog_pg.
Kojto 110:165afa46840b 157 *
Kojto 110:165afa46840b 158 * Copyright Notice
Kojto 110:165afa46840b 159 * ------------
Kojto 110:165afa46840b 160 *
Kojto 110:165afa46840b 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
Kojto 110:165afa46840b 162 */
Kojto 110:165afa46840b 163
Kojto 110:165afa46840b 164
Kojto 110:165afa46840b 165 /**
Kojto 110:165afa46840b 166 * @defgroup groupMath Basic Math Functions
Kojto 110:165afa46840b 167 */
Kojto 110:165afa46840b 168
Kojto 110:165afa46840b 169 /**
Kojto 110:165afa46840b 170 * @defgroup groupFastMath Fast Math Functions
Kojto 110:165afa46840b 171 * This set of functions provides a fast approximation to sine, cosine, and square root.
Kojto 110:165afa46840b 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
Kojto 110:165afa46840b 173 * operate on individual values and not arrays.
Kojto 110:165afa46840b 174 * There are separate functions for Q15, Q31, and floating-point data.
Kojto 110:165afa46840b 175 *
Kojto 110:165afa46840b 176 */
Kojto 110:165afa46840b 177
Kojto 110:165afa46840b 178 /**
Kojto 110:165afa46840b 179 * @defgroup groupCmplxMath Complex Math Functions
Kojto 110:165afa46840b 180 * This set of functions operates on complex data vectors.
Kojto 110:165afa46840b 181 * The data in the complex arrays is stored in an interleaved fashion
Kojto 110:165afa46840b 182 * (real, imag, real, imag, ...).
Kojto 110:165afa46840b 183 * In the API functions, the number of samples in a complex array refers
Kojto 110:165afa46840b 184 * to the number of complex values; the array contains twice this number of
Kojto 110:165afa46840b 185 * real values.
Kojto 110:165afa46840b 186 */
Kojto 110:165afa46840b 187
Kojto 110:165afa46840b 188 /**
Kojto 110:165afa46840b 189 * @defgroup groupFilters Filtering Functions
Kojto 110:165afa46840b 190 */
Kojto 110:165afa46840b 191
Kojto 110:165afa46840b 192 /**
Kojto 110:165afa46840b 193 * @defgroup groupMatrix Matrix Functions
Kojto 110:165afa46840b 194 *
Kojto 110:165afa46840b 195 * This set of functions provides basic matrix math operations.
Kojto 110:165afa46840b 196 * The functions operate on matrix data structures. For example,
Kojto 110:165afa46840b 197 * the type
Kojto 110:165afa46840b 198 * definition for the floating-point matrix structure is shown
Kojto 110:165afa46840b 199 * below:
Kojto 110:165afa46840b 200 * <pre>
Kojto 110:165afa46840b 201 * typedef struct
Kojto 110:165afa46840b 202 * {
Kojto 110:165afa46840b 203 * uint16_t numRows; // number of rows of the matrix.
Kojto 110:165afa46840b 204 * uint16_t numCols; // number of columns of the matrix.
Kojto 110:165afa46840b 205 * float32_t *pData; // points to the data of the matrix.
Kojto 110:165afa46840b 206 * } arm_matrix_instance_f32;
Kojto 110:165afa46840b 207 * </pre>
Kojto 110:165afa46840b 208 * There are similar definitions for Q15 and Q31 data types.
Kojto 110:165afa46840b 209 *
Kojto 110:165afa46840b 210 * The structure specifies the size of the matrix and then points to
Kojto 110:165afa46840b 211 * an array of data. The array is of size <code>numRows X numCols</code>
Kojto 110:165afa46840b 212 * and the values are arranged in row order. That is, the
Kojto 110:165afa46840b 213 * matrix element (i, j) is stored at:
Kojto 110:165afa46840b 214 * <pre>
Kojto 110:165afa46840b 215 * pData[i*numCols + j]
Kojto 110:165afa46840b 216 * </pre>
Kojto 110:165afa46840b 217 *
Kojto 110:165afa46840b 218 * \par Init Functions
Kojto 110:165afa46840b 219 * There is an associated initialization function for each type of matrix
Kojto 110:165afa46840b 220 * data structure.
Kojto 110:165afa46840b 221 * The initialization function sets the values of the internal structure fields.
Kojto 110:165afa46840b 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
Kojto 110:165afa46840b 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
Kojto 110:165afa46840b 224 *
Kojto 110:165afa46840b 225 * \par
Kojto 110:165afa46840b 226 * Use of the initialization function is optional. However, if initialization function is used
Kojto 110:165afa46840b 227 * then the instance structure cannot be placed into a const data section.
Kojto 110:165afa46840b 228 * To place the instance structure in a const data
Kojto 110:165afa46840b 229 * section, manually initialize the data structure. For example:
Kojto 110:165afa46840b 230 * <pre>
Kojto 110:165afa46840b 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
Kojto 110:165afa46840b 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
Kojto 110:165afa46840b 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
Kojto 110:165afa46840b 234 * </pre>
Kojto 110:165afa46840b 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
Kojto 110:165afa46840b 236 * specifies the number of columns, and <code>pData</code> points to the
Kojto 110:165afa46840b 237 * data array.
Kojto 110:165afa46840b 238 *
Kojto 110:165afa46840b 239 * \par Size Checking
Kojto 110:165afa46840b 240 * By default all of the matrix functions perform size checking on the input and
Kojto 110:165afa46840b 241 * output matrices. For example, the matrix addition function verifies that the
Kojto 110:165afa46840b 242 * two input matrices and the output matrix all have the same number of rows and
Kojto 110:165afa46840b 243 * columns. If the size check fails the functions return:
Kojto 110:165afa46840b 244 * <pre>
Kojto 110:165afa46840b 245 * ARM_MATH_SIZE_MISMATCH
Kojto 110:165afa46840b 246 * </pre>
Kojto 110:165afa46840b 247 * Otherwise the functions return
Kojto 110:165afa46840b 248 * <pre>
Kojto 110:165afa46840b 249 * ARM_MATH_SUCCESS
Kojto 110:165afa46840b 250 * </pre>
Kojto 110:165afa46840b 251 * There is some overhead associated with this matrix size checking.
Kojto 110:165afa46840b 252 * The matrix size checking is enabled via the \#define
Kojto 110:165afa46840b 253 * <pre>
Kojto 110:165afa46840b 254 * ARM_MATH_MATRIX_CHECK
Kojto 110:165afa46840b 255 * </pre>
Kojto 110:165afa46840b 256 * within the library project settings. By default this macro is defined
Kojto 110:165afa46840b 257 * and size checking is enabled. By changing the project settings and
Kojto 110:165afa46840b 258 * undefining this macro size checking is eliminated and the functions
Kojto 110:165afa46840b 259 * run a bit faster. With size checking disabled the functions always
Kojto 110:165afa46840b 260 * return <code>ARM_MATH_SUCCESS</code>.
Kojto 110:165afa46840b 261 */
Kojto 110:165afa46840b 262
Kojto 110:165afa46840b 263 /**
Kojto 110:165afa46840b 264 * @defgroup groupTransforms Transform Functions
Kojto 110:165afa46840b 265 */
Kojto 110:165afa46840b 266
Kojto 110:165afa46840b 267 /**
Kojto 110:165afa46840b 268 * @defgroup groupController Controller Functions
Kojto 110:165afa46840b 269 */
Kojto 110:165afa46840b 270
Kojto 110:165afa46840b 271 /**
Kojto 110:165afa46840b 272 * @defgroup groupStats Statistics Functions
Kojto 110:165afa46840b 273 */
Kojto 110:165afa46840b 274 /**
Kojto 110:165afa46840b 275 * @defgroup groupSupport Support Functions
Kojto 110:165afa46840b 276 */
Kojto 110:165afa46840b 277
Kojto 110:165afa46840b 278 /**
Kojto 110:165afa46840b 279 * @defgroup groupInterpolation Interpolation Functions
Kojto 110:165afa46840b 280 * These functions perform 1- and 2-dimensional interpolation of data.
Kojto 110:165afa46840b 281 * Linear interpolation is used for 1-dimensional data and
Kojto 110:165afa46840b 282 * bilinear interpolation is used for 2-dimensional data.
Kojto 110:165afa46840b 283 */
Kojto 110:165afa46840b 284
Kojto 110:165afa46840b 285 /**
Kojto 110:165afa46840b 286 * @defgroup groupExamples Examples
Kojto 110:165afa46840b 287 */
Kojto 110:165afa46840b 288 #ifndef _ARM_MATH_H
Kojto 110:165afa46840b 289 #define _ARM_MATH_H
Kojto 110:165afa46840b 290
Kojto 110:165afa46840b 291 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
Kojto 110:165afa46840b 292
Kojto 110:165afa46840b 293 #if defined(ARM_MATH_CM7)
Kojto 110:165afa46840b 294 #include "core_cm7.h"
Kojto 110:165afa46840b 295 #elif defined (ARM_MATH_CM4)
Kojto 110:165afa46840b 296 #include "core_cm4.h"
Kojto 110:165afa46840b 297 #elif defined (ARM_MATH_CM3)
Kojto 110:165afa46840b 298 #include "core_cm3.h"
Kojto 110:165afa46840b 299 #elif defined (ARM_MATH_CM0)
Kojto 110:165afa46840b 300 #include "core_cm0.h"
Kojto 110:165afa46840b 301 #define ARM_MATH_CM0_FAMILY
Kojto 110:165afa46840b 302 #elif defined (ARM_MATH_CM0PLUS)
Kojto 110:165afa46840b 303 #include "core_cm0plus.h"
Kojto 110:165afa46840b 304 #define ARM_MATH_CM0_FAMILY
Kojto 110:165afa46840b 305 #else
Kojto 110:165afa46840b 306 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
Kojto 110:165afa46840b 307 #endif
Kojto 110:165afa46840b 308
Kojto 110:165afa46840b 309 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
Kojto 110:165afa46840b 310 #include "string.h"
Kojto 110:165afa46840b 311 #include "math.h"
Kojto 110:165afa46840b 312 #ifdef __cplusplus
Kojto 110:165afa46840b 313 extern "C"
Kojto 110:165afa46840b 314 {
Kojto 110:165afa46840b 315 #endif
Kojto 110:165afa46840b 316
Kojto 110:165afa46840b 317
Kojto 110:165afa46840b 318 /**
Kojto 110:165afa46840b 319 * @brief Macros required for reciprocal calculation in Normalized LMS
Kojto 110:165afa46840b 320 */
Kojto 110:165afa46840b 321
Kojto 110:165afa46840b 322 #define DELTA_Q31 (0x100)
Kojto 110:165afa46840b 323 #define DELTA_Q15 0x5
Kojto 110:165afa46840b 324 #define INDEX_MASK 0x0000003F
Kojto 110:165afa46840b 325 #ifndef PI
Kojto 110:165afa46840b 326 #define PI 3.14159265358979f
Kojto 110:165afa46840b 327 #endif
Kojto 110:165afa46840b 328
Kojto 110:165afa46840b 329 /**
Kojto 110:165afa46840b 330 * @brief Macros required for SINE and COSINE Fast math approximations
Kojto 110:165afa46840b 331 */
Kojto 110:165afa46840b 332
Kojto 110:165afa46840b 333 #define FAST_MATH_TABLE_SIZE 512
Kojto 110:165afa46840b 334 #define FAST_MATH_Q31_SHIFT (32 - 10)
Kojto 110:165afa46840b 335 #define FAST_MATH_Q15_SHIFT (16 - 10)
Kojto 110:165afa46840b 336 #define CONTROLLER_Q31_SHIFT (32 - 9)
Kojto 110:165afa46840b 337 #define TABLE_SIZE 256
Kojto 110:165afa46840b 338 #define TABLE_SPACING_Q31 0x400000
Kojto 110:165afa46840b 339 #define TABLE_SPACING_Q15 0x80
Kojto 110:165afa46840b 340
Kojto 110:165afa46840b 341 /**
Kojto 110:165afa46840b 342 * @brief Macros required for SINE and COSINE Controller functions
Kojto 110:165afa46840b 343 */
Kojto 110:165afa46840b 344 /* 1.31(q31) Fixed value of 2/360 */
Kojto 110:165afa46840b 345 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
Kojto 110:165afa46840b 346 #define INPUT_SPACING 0xB60B61
Kojto 110:165afa46840b 347
Kojto 110:165afa46840b 348 /**
Kojto 110:165afa46840b 349 * @brief Macro for Unaligned Support
Kojto 110:165afa46840b 350 */
Kojto 110:165afa46840b 351 #ifndef UNALIGNED_SUPPORT_DISABLE
Kojto 110:165afa46840b 352 #define ALIGN4
Kojto 110:165afa46840b 353 #else
Kojto 110:165afa46840b 354 #if defined (__GNUC__)
Kojto 110:165afa46840b 355 #define ALIGN4 __attribute__((aligned(4)))
Kojto 110:165afa46840b 356 #else
Kojto 110:165afa46840b 357 #define ALIGN4 __align(4)
Kojto 110:165afa46840b 358 #endif
Kojto 110:165afa46840b 359 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
Kojto 110:165afa46840b 360
Kojto 110:165afa46840b 361 /**
Kojto 110:165afa46840b 362 * @brief Error status returned by some functions in the library.
Kojto 110:165afa46840b 363 */
Kojto 110:165afa46840b 364
Kojto 110:165afa46840b 365 typedef enum
Kojto 110:165afa46840b 366 {
Kojto 110:165afa46840b 367 ARM_MATH_SUCCESS = 0, /**< No error */
Kojto 110:165afa46840b 368 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
Kojto 110:165afa46840b 369 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
Kojto 110:165afa46840b 370 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
Kojto 110:165afa46840b 371 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
Kojto 110:165afa46840b 372 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
Kojto 110:165afa46840b 373 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
Kojto 110:165afa46840b 374 } arm_status;
Kojto 110:165afa46840b 375
Kojto 110:165afa46840b 376 /**
Kojto 110:165afa46840b 377 * @brief 8-bit fractional data type in 1.7 format.
Kojto 110:165afa46840b 378 */
Kojto 110:165afa46840b 379 typedef int8_t q7_t;
Kojto 110:165afa46840b 380
Kojto 110:165afa46840b 381 /**
Kojto 110:165afa46840b 382 * @brief 16-bit fractional data type in 1.15 format.
Kojto 110:165afa46840b 383 */
Kojto 110:165afa46840b 384 typedef int16_t q15_t;
Kojto 110:165afa46840b 385
Kojto 110:165afa46840b 386 /**
Kojto 110:165afa46840b 387 * @brief 32-bit fractional data type in 1.31 format.
Kojto 110:165afa46840b 388 */
Kojto 110:165afa46840b 389 typedef int32_t q31_t;
Kojto 110:165afa46840b 390
Kojto 110:165afa46840b 391 /**
Kojto 110:165afa46840b 392 * @brief 64-bit fractional data type in 1.63 format.
Kojto 110:165afa46840b 393 */
Kojto 110:165afa46840b 394 typedef int64_t q63_t;
Kojto 110:165afa46840b 395
Kojto 110:165afa46840b 396 /**
Kojto 110:165afa46840b 397 * @brief 32-bit floating-point type definition.
Kojto 110:165afa46840b 398 */
Kojto 110:165afa46840b 399 typedef float float32_t;
Kojto 110:165afa46840b 400
Kojto 110:165afa46840b 401 /**
Kojto 110:165afa46840b 402 * @brief 64-bit floating-point type definition.
Kojto 110:165afa46840b 403 */
Kojto 110:165afa46840b 404 typedef double float64_t;
Kojto 110:165afa46840b 405
Kojto 110:165afa46840b 406 /**
Kojto 110:165afa46840b 407 * @brief definition to read/write two 16 bit values.
Kojto 110:165afa46840b 408 */
Kojto 110:165afa46840b 409 #if defined __CC_ARM
Kojto 110:165afa46840b 410 #define __SIMD32_TYPE int32_t __packed
Kojto 110:165afa46840b 411 #define CMSIS_UNUSED __attribute__((unused))
Kojto 110:165afa46840b 412 #elif defined __ICCARM__
Kojto 110:165afa46840b 413 #define __SIMD32_TYPE int32_t __packed
Kojto 110:165afa46840b 414 #define CMSIS_UNUSED
Kojto 110:165afa46840b 415 #elif defined __GNUC__
Kojto 110:165afa46840b 416 #define __SIMD32_TYPE int32_t
Kojto 110:165afa46840b 417 #define CMSIS_UNUSED __attribute__((unused))
Kojto 110:165afa46840b 418 #elif defined __CSMC__ /* Cosmic */
Kojto 110:165afa46840b 419 #define __SIMD32_TYPE int32_t
Kojto 110:165afa46840b 420 #define CMSIS_UNUSED
Kojto 110:165afa46840b 421 #elif defined __TASKING__
Kojto 110:165afa46840b 422 #define __SIMD32_TYPE __unaligned int32_t
Kojto 110:165afa46840b 423 #define CMSIS_UNUSED
Kojto 110:165afa46840b 424 #else
Kojto 110:165afa46840b 425 #error Unknown compiler
Kojto 110:165afa46840b 426 #endif
Kojto 110:165afa46840b 427
Kojto 110:165afa46840b 428 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
Kojto 110:165afa46840b 429 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
Kojto 110:165afa46840b 430
Kojto 110:165afa46840b 431 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
Kojto 110:165afa46840b 432
Kojto 110:165afa46840b 433 #define __SIMD64(addr) (*(int64_t **) & (addr))
Kojto 110:165afa46840b 434
Kojto 110:165afa46840b 435 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
Kojto 110:165afa46840b 436 /**
Kojto 110:165afa46840b 437 * @brief definition to pack two 16 bit values.
Kojto 110:165afa46840b 438 */
Kojto 110:165afa46840b 439 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
Kojto 110:165afa46840b 440 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
Kojto 110:165afa46840b 441 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
Kojto 110:165afa46840b 442 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
Kojto 110:165afa46840b 443
Kojto 110:165afa46840b 444 #endif
Kojto 110:165afa46840b 445
Kojto 110:165afa46840b 446
Kojto 110:165afa46840b 447 /**
Kojto 110:165afa46840b 448 * @brief definition to pack four 8 bit values.
Kojto 110:165afa46840b 449 */
Kojto 110:165afa46840b 450 #ifndef ARM_MATH_BIG_ENDIAN
Kojto 110:165afa46840b 451
Kojto 110:165afa46840b 452 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
Kojto 110:165afa46840b 453 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
Kojto 110:165afa46840b 454 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
Kojto 110:165afa46840b 455 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
Kojto 110:165afa46840b 456 #else
Kojto 110:165afa46840b 457
Kojto 110:165afa46840b 458 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
Kojto 110:165afa46840b 459 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
Kojto 110:165afa46840b 460 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
Kojto 110:165afa46840b 461 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
Kojto 110:165afa46840b 462
Kojto 110:165afa46840b 463 #endif
Kojto 110:165afa46840b 464
Kojto 110:165afa46840b 465
Kojto 110:165afa46840b 466 /**
Kojto 110:165afa46840b 467 * @brief Clips Q63 to Q31 values.
Kojto 110:165afa46840b 468 */
Kojto 110:165afa46840b 469 static __INLINE q31_t clip_q63_to_q31(
Kojto 110:165afa46840b 470 q63_t x)
Kojto 110:165afa46840b 471 {
Kojto 110:165afa46840b 472 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
Kojto 110:165afa46840b 473 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
Kojto 110:165afa46840b 474 }
Kojto 110:165afa46840b 475
Kojto 110:165afa46840b 476 /**
Kojto 110:165afa46840b 477 * @brief Clips Q63 to Q15 values.
Kojto 110:165afa46840b 478 */
Kojto 110:165afa46840b 479 static __INLINE q15_t clip_q63_to_q15(
Kojto 110:165afa46840b 480 q63_t x)
Kojto 110:165afa46840b 481 {
Kojto 110:165afa46840b 482 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
Kojto 110:165afa46840b 483 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
Kojto 110:165afa46840b 484 }
Kojto 110:165afa46840b 485
Kojto 110:165afa46840b 486 /**
Kojto 110:165afa46840b 487 * @brief Clips Q31 to Q7 values.
Kojto 110:165afa46840b 488 */
Kojto 110:165afa46840b 489 static __INLINE q7_t clip_q31_to_q7(
Kojto 110:165afa46840b 490 q31_t x)
Kojto 110:165afa46840b 491 {
Kojto 110:165afa46840b 492 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
Kojto 110:165afa46840b 493 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
Kojto 110:165afa46840b 494 }
Kojto 110:165afa46840b 495
Kojto 110:165afa46840b 496 /**
Kojto 110:165afa46840b 497 * @brief Clips Q31 to Q15 values.
Kojto 110:165afa46840b 498 */
Kojto 110:165afa46840b 499 static __INLINE q15_t clip_q31_to_q15(
Kojto 110:165afa46840b 500 q31_t x)
Kojto 110:165afa46840b 501 {
Kojto 110:165afa46840b 502 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
Kojto 110:165afa46840b 503 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
Kojto 110:165afa46840b 504 }
Kojto 110:165afa46840b 505
Kojto 110:165afa46840b 506 /**
Kojto 110:165afa46840b 507 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
Kojto 110:165afa46840b 508 */
Kojto 110:165afa46840b 509
Kojto 110:165afa46840b 510 static __INLINE q63_t mult32x64(
Kojto 110:165afa46840b 511 q63_t x,
Kojto 110:165afa46840b 512 q31_t y)
Kojto 110:165afa46840b 513 {
Kojto 110:165afa46840b 514 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
Kojto 110:165afa46840b 515 (((q63_t) (x >> 32) * y)));
Kojto 110:165afa46840b 516 }
Kojto 110:165afa46840b 517
Kojto 110:165afa46840b 518
Kojto 110:165afa46840b 519 //#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
Kojto 110:165afa46840b 520 //#define __CLZ __clz
Kojto 110:165afa46840b 521 //#endif
Kojto 110:165afa46840b 522
Kojto 110:165afa46840b 523 //note: function can be removed when all toolchain support __CLZ for Cortex-M0
Kojto 110:165afa46840b 524 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
Kojto 110:165afa46840b 525
Kojto 110:165afa46840b 526 static __INLINE uint32_t __CLZ(
Kojto 110:165afa46840b 527 q31_t data);
Kojto 110:165afa46840b 528
Kojto 110:165afa46840b 529
Kojto 110:165afa46840b 530 static __INLINE uint32_t __CLZ(
Kojto 110:165afa46840b 531 q31_t data)
Kojto 110:165afa46840b 532 {
Kojto 110:165afa46840b 533 uint32_t count = 0;
Kojto 110:165afa46840b 534 uint32_t mask = 0x80000000;
Kojto 110:165afa46840b 535
Kojto 110:165afa46840b 536 while((data & mask) == 0)
Kojto 110:165afa46840b 537 {
Kojto 110:165afa46840b 538 count += 1u;
Kojto 110:165afa46840b 539 mask = mask >> 1u;
Kojto 110:165afa46840b 540 }
Kojto 110:165afa46840b 541
Kojto 110:165afa46840b 542 return (count);
Kojto 110:165afa46840b 543
Kojto 110:165afa46840b 544 }
Kojto 110:165afa46840b 545
Kojto 110:165afa46840b 546 #endif
Kojto 110:165afa46840b 547
Kojto 110:165afa46840b 548 /**
Kojto 110:165afa46840b 549 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
Kojto 110:165afa46840b 550 */
Kojto 110:165afa46840b 551
Kojto 110:165afa46840b 552 static __INLINE uint32_t arm_recip_q31(
Kojto 110:165afa46840b 553 q31_t in,
Kojto 110:165afa46840b 554 q31_t * dst,
Kojto 110:165afa46840b 555 q31_t * pRecipTable)
Kojto 110:165afa46840b 556 {
Kojto 110:165afa46840b 557
Kojto 110:165afa46840b 558 uint32_t out, tempVal;
Kojto 110:165afa46840b 559 uint32_t index, i;
Kojto 110:165afa46840b 560 uint32_t signBits;
Kojto 110:165afa46840b 561
Kojto 110:165afa46840b 562 if(in > 0)
Kojto 110:165afa46840b 563 {
Kojto 110:165afa46840b 564 signBits = __CLZ(in) - 1;
Kojto 110:165afa46840b 565 }
Kojto 110:165afa46840b 566 else
Kojto 110:165afa46840b 567 {
Kojto 110:165afa46840b 568 signBits = __CLZ(-in) - 1;
Kojto 110:165afa46840b 569 }
Kojto 110:165afa46840b 570
Kojto 110:165afa46840b 571 /* Convert input sample to 1.31 format */
Kojto 110:165afa46840b 572 in = in << signBits;
Kojto 110:165afa46840b 573
Kojto 110:165afa46840b 574 /* calculation of index for initial approximated Val */
Kojto 110:165afa46840b 575 index = (uint32_t) (in >> 24u);
Kojto 110:165afa46840b 576 index = (index & INDEX_MASK);
Kojto 110:165afa46840b 577
Kojto 110:165afa46840b 578 /* 1.31 with exp 1 */
Kojto 110:165afa46840b 579 out = pRecipTable[index];
Kojto 110:165afa46840b 580
Kojto 110:165afa46840b 581 /* calculation of reciprocal value */
Kojto 110:165afa46840b 582 /* running approximation for two iterations */
Kojto 110:165afa46840b 583 for (i = 0u; i < 2u; i++)
Kojto 110:165afa46840b 584 {
Kojto 110:165afa46840b 585 tempVal = (q31_t) (((q63_t) in * out) >> 31u);
Kojto 110:165afa46840b 586 tempVal = 0x7FFFFFFF - tempVal;
Kojto 110:165afa46840b 587 /* 1.31 with exp 1 */
Kojto 110:165afa46840b 588 //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
Kojto 110:165afa46840b 589 out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
Kojto 110:165afa46840b 590 }
Kojto 110:165afa46840b 591
Kojto 110:165afa46840b 592 /* write output */
Kojto 110:165afa46840b 593 *dst = out;
Kojto 110:165afa46840b 594
Kojto 110:165afa46840b 595 /* return num of signbits of out = 1/in value */
Kojto 110:165afa46840b 596 return (signBits + 1u);
Kojto 110:165afa46840b 597
Kojto 110:165afa46840b 598 }
Kojto 110:165afa46840b 599
Kojto 110:165afa46840b 600 /**
Kojto 110:165afa46840b 601 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
Kojto 110:165afa46840b 602 */
Kojto 110:165afa46840b 603 static __INLINE uint32_t arm_recip_q15(
Kojto 110:165afa46840b 604 q15_t in,
Kojto 110:165afa46840b 605 q15_t * dst,
Kojto 110:165afa46840b 606 q15_t * pRecipTable)
Kojto 110:165afa46840b 607 {
Kojto 110:165afa46840b 608
Kojto 110:165afa46840b 609 uint32_t out = 0, tempVal = 0;
Kojto 110:165afa46840b 610 uint32_t index = 0, i = 0;
Kojto 110:165afa46840b 611 uint32_t signBits = 0;
Kojto 110:165afa46840b 612
Kojto 110:165afa46840b 613 if(in > 0)
Kojto 110:165afa46840b 614 {
Kojto 110:165afa46840b 615 signBits = __CLZ(in) - 17;
Kojto 110:165afa46840b 616 }
Kojto 110:165afa46840b 617 else
Kojto 110:165afa46840b 618 {
Kojto 110:165afa46840b 619 signBits = __CLZ(-in) - 17;
Kojto 110:165afa46840b 620 }
Kojto 110:165afa46840b 621
Kojto 110:165afa46840b 622 /* Convert input sample to 1.15 format */
Kojto 110:165afa46840b 623 in = in << signBits;
Kojto 110:165afa46840b 624
Kojto 110:165afa46840b 625 /* calculation of index for initial approximated Val */
Kojto 110:165afa46840b 626 index = in >> 8;
Kojto 110:165afa46840b 627 index = (index & INDEX_MASK);
Kojto 110:165afa46840b 628
Kojto 110:165afa46840b 629 /* 1.15 with exp 1 */
Kojto 110:165afa46840b 630 out = pRecipTable[index];
Kojto 110:165afa46840b 631
Kojto 110:165afa46840b 632 /* calculation of reciprocal value */
Kojto 110:165afa46840b 633 /* running approximation for two iterations */
Kojto 110:165afa46840b 634 for (i = 0; i < 2; i++)
Kojto 110:165afa46840b 635 {
Kojto 110:165afa46840b 636 tempVal = (q15_t) (((q31_t) in * out) >> 15);
Kojto 110:165afa46840b 637 tempVal = 0x7FFF - tempVal;
Kojto 110:165afa46840b 638 /* 1.15 with exp 1 */
Kojto 110:165afa46840b 639 out = (q15_t) (((q31_t) out * tempVal) >> 14);
Kojto 110:165afa46840b 640 }
Kojto 110:165afa46840b 641
Kojto 110:165afa46840b 642 /* write output */
Kojto 110:165afa46840b 643 *dst = out;
Kojto 110:165afa46840b 644
Kojto 110:165afa46840b 645 /* return num of signbits of out = 1/in value */
Kojto 110:165afa46840b 646 return (signBits + 1);
Kojto 110:165afa46840b 647
Kojto 110:165afa46840b 648 }
Kojto 110:165afa46840b 649
Kojto 110:165afa46840b 650
Kojto 110:165afa46840b 651 /*
Kojto 110:165afa46840b 652 * @brief C custom defined intrinisic function for only M0 processors
Kojto 110:165afa46840b 653 */
Kojto 110:165afa46840b 654 #if defined(ARM_MATH_CM0_FAMILY)
Kojto 110:165afa46840b 655
Kojto 110:165afa46840b 656 static __INLINE q31_t __SSAT(
Kojto 110:165afa46840b 657 q31_t x,
Kojto 110:165afa46840b 658 uint32_t y)
Kojto 110:165afa46840b 659 {
Kojto 110:165afa46840b 660 int32_t posMax, negMin;
Kojto 110:165afa46840b 661 uint32_t i;
Kojto 110:165afa46840b 662
Kojto 110:165afa46840b 663 posMax = 1;
Kojto 110:165afa46840b 664 for (i = 0; i < (y - 1); i++)
Kojto 110:165afa46840b 665 {
Kojto 110:165afa46840b 666 posMax = posMax * 2;
Kojto 110:165afa46840b 667 }
Kojto 110:165afa46840b 668
Kojto 110:165afa46840b 669 if(x > 0)
Kojto 110:165afa46840b 670 {
Kojto 110:165afa46840b 671 posMax = (posMax - 1);
Kojto 110:165afa46840b 672
Kojto 110:165afa46840b 673 if(x > posMax)
Kojto 110:165afa46840b 674 {
Kojto 110:165afa46840b 675 x = posMax;
Kojto 110:165afa46840b 676 }
Kojto 110:165afa46840b 677 }
Kojto 110:165afa46840b 678 else
Kojto 110:165afa46840b 679 {
Kojto 110:165afa46840b 680 negMin = -posMax;
Kojto 110:165afa46840b 681
Kojto 110:165afa46840b 682 if(x < negMin)
Kojto 110:165afa46840b 683 {
Kojto 110:165afa46840b 684 x = negMin;
Kojto 110:165afa46840b 685 }
Kojto 110:165afa46840b 686 }
Kojto 110:165afa46840b 687 return (x);
Kojto 110:165afa46840b 688
Kojto 110:165afa46840b 689
Kojto 110:165afa46840b 690 }
Kojto 110:165afa46840b 691
Kojto 110:165afa46840b 692 #endif /* end of ARM_MATH_CM0_FAMILY */
Kojto 110:165afa46840b 693
Kojto 110:165afa46840b 694
Kojto 110:165afa46840b 695
Kojto 110:165afa46840b 696 /*
Kojto 110:165afa46840b 697 * @brief C custom defined intrinsic function for M3 and M0 processors
Kojto 110:165afa46840b 698 */
Kojto 110:165afa46840b 699 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
Kojto 110:165afa46840b 700
Kojto 110:165afa46840b 701 /*
Kojto 110:165afa46840b 702 * @brief C custom defined QADD8 for M3 and M0 processors
Kojto 110:165afa46840b 703 */
Kojto 110:165afa46840b 704 static __INLINE q31_t __QADD8(
Kojto 110:165afa46840b 705 q31_t x,
Kojto 110:165afa46840b 706 q31_t y)
Kojto 110:165afa46840b 707 {
Kojto 110:165afa46840b 708
Kojto 110:165afa46840b 709 q31_t sum;
Kojto 110:165afa46840b 710 q7_t r, s, t, u;
Kojto 110:165afa46840b 711
Kojto 110:165afa46840b 712 r = (q7_t) x;
Kojto 110:165afa46840b 713 s = (q7_t) y;
Kojto 110:165afa46840b 714
Kojto 110:165afa46840b 715 r = __SSAT((q31_t) (r + s), 8);
Kojto 110:165afa46840b 716 s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
Kojto 110:165afa46840b 717 t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
Kojto 110:165afa46840b 718 u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
Kojto 110:165afa46840b 719
Kojto 110:165afa46840b 720 sum =
Kojto 110:165afa46840b 721 (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
Kojto 110:165afa46840b 722 (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
Kojto 110:165afa46840b 723
Kojto 110:165afa46840b 724 return sum;
Kojto 110:165afa46840b 725
Kojto 110:165afa46840b 726 }
Kojto 110:165afa46840b 727
Kojto 110:165afa46840b 728 /*
Kojto 110:165afa46840b 729 * @brief C custom defined QSUB8 for M3 and M0 processors
Kojto 110:165afa46840b 730 */
Kojto 110:165afa46840b 731 static __INLINE q31_t __QSUB8(
Kojto 110:165afa46840b 732 q31_t x,
Kojto 110:165afa46840b 733 q31_t y)
Kojto 110:165afa46840b 734 {
Kojto 110:165afa46840b 735
Kojto 110:165afa46840b 736 q31_t sum;
Kojto 110:165afa46840b 737 q31_t r, s, t, u;
Kojto 110:165afa46840b 738
Kojto 110:165afa46840b 739 r = (q7_t) x;
Kojto 110:165afa46840b 740 s = (q7_t) y;
Kojto 110:165afa46840b 741
Kojto 110:165afa46840b 742 r = __SSAT((r - s), 8);
Kojto 110:165afa46840b 743 s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
Kojto 110:165afa46840b 744 t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
Kojto 110:165afa46840b 745 u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
Kojto 110:165afa46840b 746
Kojto 110:165afa46840b 747 sum =
Kojto 110:165afa46840b 748 (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
Kojto 110:165afa46840b 749 0x000000FF);
Kojto 110:165afa46840b 750
Kojto 110:165afa46840b 751 return sum;
Kojto 110:165afa46840b 752 }
Kojto 110:165afa46840b 753
Kojto 110:165afa46840b 754 /*
Kojto 110:165afa46840b 755 * @brief C custom defined QADD16 for M3 and M0 processors
Kojto 110:165afa46840b 756 */
Kojto 110:165afa46840b 757
Kojto 110:165afa46840b 758 /*
Kojto 110:165afa46840b 759 * @brief C custom defined QADD16 for M3 and M0 processors
Kojto 110:165afa46840b 760 */
Kojto 110:165afa46840b 761 static __INLINE q31_t __QADD16(
Kojto 110:165afa46840b 762 q31_t x,
Kojto 110:165afa46840b 763 q31_t y)
Kojto 110:165afa46840b 764 {
Kojto 110:165afa46840b 765
Kojto 110:165afa46840b 766 q31_t sum;
Kojto 110:165afa46840b 767 q31_t r, s;
Kojto 110:165afa46840b 768
Kojto 110:165afa46840b 769 r = (q15_t) x;
Kojto 110:165afa46840b 770 s = (q15_t) y;
Kojto 110:165afa46840b 771
Kojto 110:165afa46840b 772 r = __SSAT(r + s, 16);
Kojto 110:165afa46840b 773 s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
Kojto 110:165afa46840b 774
Kojto 110:165afa46840b 775 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 110:165afa46840b 776
Kojto 110:165afa46840b 777 return sum;
Kojto 110:165afa46840b 778
Kojto 110:165afa46840b 779 }
Kojto 110:165afa46840b 780
Kojto 110:165afa46840b 781 /*
Kojto 110:165afa46840b 782 * @brief C custom defined SHADD16 for M3 and M0 processors
Kojto 110:165afa46840b 783 */
Kojto 110:165afa46840b 784 static __INLINE q31_t __SHADD16(
Kojto 110:165afa46840b 785 q31_t x,
Kojto 110:165afa46840b 786 q31_t y)
Kojto 110:165afa46840b 787 {
Kojto 110:165afa46840b 788
Kojto 110:165afa46840b 789 q31_t sum;
Kojto 110:165afa46840b 790 q31_t r, s;
Kojto 110:165afa46840b 791
Kojto 110:165afa46840b 792 r = (q15_t) x;
Kojto 110:165afa46840b 793 s = (q15_t) y;
Kojto 110:165afa46840b 794
Kojto 110:165afa46840b 795 r = ((r >> 1) + (s >> 1));
Kojto 110:165afa46840b 796 s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
Kojto 110:165afa46840b 797
Kojto 110:165afa46840b 798 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 110:165afa46840b 799
Kojto 110:165afa46840b 800 return sum;
Kojto 110:165afa46840b 801
Kojto 110:165afa46840b 802 }
Kojto 110:165afa46840b 803
Kojto 110:165afa46840b 804 /*
Kojto 110:165afa46840b 805 * @brief C custom defined QSUB16 for M3 and M0 processors
Kojto 110:165afa46840b 806 */
Kojto 110:165afa46840b 807 static __INLINE q31_t __QSUB16(
Kojto 110:165afa46840b 808 q31_t x,
Kojto 110:165afa46840b 809 q31_t y)
Kojto 110:165afa46840b 810 {
Kojto 110:165afa46840b 811
Kojto 110:165afa46840b 812 q31_t sum;
Kojto 110:165afa46840b 813 q31_t r, s;
Kojto 110:165afa46840b 814
Kojto 110:165afa46840b 815 r = (q15_t) x;
Kojto 110:165afa46840b 816 s = (q15_t) y;
Kojto 110:165afa46840b 817
Kojto 110:165afa46840b 818 r = __SSAT(r - s, 16);
Kojto 110:165afa46840b 819 s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
Kojto 110:165afa46840b 820
Kojto 110:165afa46840b 821 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 110:165afa46840b 822
Kojto 110:165afa46840b 823 return sum;
Kojto 110:165afa46840b 824 }
Kojto 110:165afa46840b 825
Kojto 110:165afa46840b 826 /*
Kojto 110:165afa46840b 827 * @brief C custom defined SHSUB16 for M3 and M0 processors
Kojto 110:165afa46840b 828 */
Kojto 110:165afa46840b 829 static __INLINE q31_t __SHSUB16(
Kojto 110:165afa46840b 830 q31_t x,
Kojto 110:165afa46840b 831 q31_t y)
Kojto 110:165afa46840b 832 {
Kojto 110:165afa46840b 833
Kojto 110:165afa46840b 834 q31_t diff;
Kojto 110:165afa46840b 835 q31_t r, s;
Kojto 110:165afa46840b 836
Kojto 110:165afa46840b 837 r = (q15_t) x;
Kojto 110:165afa46840b 838 s = (q15_t) y;
Kojto 110:165afa46840b 839
Kojto 110:165afa46840b 840 r = ((r >> 1) - (s >> 1));
Kojto 110:165afa46840b 841 s = (((x >> 17) - (y >> 17)) << 16);
Kojto 110:165afa46840b 842
Kojto 110:165afa46840b 843 diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 110:165afa46840b 844
Kojto 110:165afa46840b 845 return diff;
Kojto 110:165afa46840b 846 }
Kojto 110:165afa46840b 847
Kojto 110:165afa46840b 848 /*
Kojto 110:165afa46840b 849 * @brief C custom defined QASX for M3 and M0 processors
Kojto 110:165afa46840b 850 */
Kojto 110:165afa46840b 851 static __INLINE q31_t __QASX(
Kojto 110:165afa46840b 852 q31_t x,
Kojto 110:165afa46840b 853 q31_t y)
Kojto 110:165afa46840b 854 {
Kojto 110:165afa46840b 855
Kojto 110:165afa46840b 856 q31_t sum = 0;
Kojto 110:165afa46840b 857
Kojto 110:165afa46840b 858 sum =
Kojto 110:165afa46840b 859 ((sum +
Kojto 110:165afa46840b 860 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
Kojto 110:165afa46840b 861 clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
Kojto 110:165afa46840b 862
Kojto 110:165afa46840b 863 return sum;
Kojto 110:165afa46840b 864 }
Kojto 110:165afa46840b 865
Kojto 110:165afa46840b 866 /*
Kojto 110:165afa46840b 867 * @brief C custom defined SHASX for M3 and M0 processors
Kojto 110:165afa46840b 868 */
Kojto 110:165afa46840b 869 static __INLINE q31_t __SHASX(
Kojto 110:165afa46840b 870 q31_t x,
Kojto 110:165afa46840b 871 q31_t y)
Kojto 110:165afa46840b 872 {
Kojto 110:165afa46840b 873
Kojto 110:165afa46840b 874 q31_t sum;
Kojto 110:165afa46840b 875 q31_t r, s;
Kojto 110:165afa46840b 876
Kojto 110:165afa46840b 877 r = (q15_t) x;
Kojto 110:165afa46840b 878 s = (q15_t) y;
Kojto 110:165afa46840b 879
Kojto 110:165afa46840b 880 r = ((r >> 1) - (y >> 17));
Kojto 110:165afa46840b 881 s = (((x >> 17) + (s >> 1)) << 16);
Kojto 110:165afa46840b 882
Kojto 110:165afa46840b 883 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 110:165afa46840b 884
Kojto 110:165afa46840b 885 return sum;
Kojto 110:165afa46840b 886 }
Kojto 110:165afa46840b 887
Kojto 110:165afa46840b 888
Kojto 110:165afa46840b 889 /*
Kojto 110:165afa46840b 890 * @brief C custom defined QSAX for M3 and M0 processors
Kojto 110:165afa46840b 891 */
Kojto 110:165afa46840b 892 static __INLINE q31_t __QSAX(
Kojto 110:165afa46840b 893 q31_t x,
Kojto 110:165afa46840b 894 q31_t y)
Kojto 110:165afa46840b 895 {
Kojto 110:165afa46840b 896
Kojto 110:165afa46840b 897 q31_t sum = 0;
Kojto 110:165afa46840b 898
Kojto 110:165afa46840b 899 sum =
Kojto 110:165afa46840b 900 ((sum +
Kojto 110:165afa46840b 901 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
Kojto 110:165afa46840b 902 clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
Kojto 110:165afa46840b 903
Kojto 110:165afa46840b 904 return sum;
Kojto 110:165afa46840b 905 }
Kojto 110:165afa46840b 906
Kojto 110:165afa46840b 907 /*
Kojto 110:165afa46840b 908 * @brief C custom defined SHSAX for M3 and M0 processors
Kojto 110:165afa46840b 909 */
Kojto 110:165afa46840b 910 static __INLINE q31_t __SHSAX(
Kojto 110:165afa46840b 911 q31_t x,
Kojto 110:165afa46840b 912 q31_t y)
Kojto 110:165afa46840b 913 {
Kojto 110:165afa46840b 914
Kojto 110:165afa46840b 915 q31_t sum;
Kojto 110:165afa46840b 916 q31_t r, s;
Kojto 110:165afa46840b 917
Kojto 110:165afa46840b 918 r = (q15_t) x;
Kojto 110:165afa46840b 919 s = (q15_t) y;
Kojto 110:165afa46840b 920
Kojto 110:165afa46840b 921 r = ((r >> 1) + (y >> 17));
Kojto 110:165afa46840b 922 s = (((x >> 17) - (s >> 1)) << 16);
Kojto 110:165afa46840b 923
Kojto 110:165afa46840b 924 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 110:165afa46840b 925
Kojto 110:165afa46840b 926 return sum;
Kojto 110:165afa46840b 927 }
Kojto 110:165afa46840b 928
Kojto 110:165afa46840b 929 /*
Kojto 110:165afa46840b 930 * @brief C custom defined SMUSDX for M3 and M0 processors
Kojto 110:165afa46840b 931 */
Kojto 110:165afa46840b 932 static __INLINE q31_t __SMUSDX(
Kojto 110:165afa46840b 933 q31_t x,
Kojto 110:165afa46840b 934 q31_t y)
Kojto 110:165afa46840b 935 {
Kojto 110:165afa46840b 936
Kojto 110:165afa46840b 937 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
Kojto 110:165afa46840b 938 ((q15_t) (x >> 16) * (q15_t) y)));
Kojto 110:165afa46840b 939 }
Kojto 110:165afa46840b 940
Kojto 110:165afa46840b 941 /*
Kojto 110:165afa46840b 942 * @brief C custom defined SMUADX for M3 and M0 processors
Kojto 110:165afa46840b 943 */
Kojto 110:165afa46840b 944 static __INLINE q31_t __SMUADX(
Kojto 110:165afa46840b 945 q31_t x,
Kojto 110:165afa46840b 946 q31_t y)
Kojto 110:165afa46840b 947 {
Kojto 110:165afa46840b 948
Kojto 110:165afa46840b 949 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
Kojto 110:165afa46840b 950 ((q15_t) (x >> 16) * (q15_t) y)));
Kojto 110:165afa46840b 951 }
Kojto 110:165afa46840b 952
Kojto 110:165afa46840b 953 /*
Kojto 110:165afa46840b 954 * @brief C custom defined QADD for M3 and M0 processors
Kojto 110:165afa46840b 955 */
Kojto 110:165afa46840b 956 static __INLINE q31_t __QADD(
Kojto 110:165afa46840b 957 q31_t x,
Kojto 110:165afa46840b 958 q31_t y)
Kojto 110:165afa46840b 959 {
Kojto 110:165afa46840b 960 return clip_q63_to_q31((q63_t) x + y);
Kojto 110:165afa46840b 961 }
Kojto 110:165afa46840b 962
Kojto 110:165afa46840b 963 /*
Kojto 110:165afa46840b 964 * @brief C custom defined QSUB for M3 and M0 processors
Kojto 110:165afa46840b 965 */
Kojto 110:165afa46840b 966 static __INLINE q31_t __QSUB(
Kojto 110:165afa46840b 967 q31_t x,
Kojto 110:165afa46840b 968 q31_t y)
Kojto 110:165afa46840b 969 {
Kojto 110:165afa46840b 970 return clip_q63_to_q31((q63_t) x - y);
Kojto 110:165afa46840b 971 }
Kojto 110:165afa46840b 972
Kojto 110:165afa46840b 973 /*
Kojto 110:165afa46840b 974 * @brief C custom defined SMLAD for M3 and M0 processors
Kojto 110:165afa46840b 975 */
Kojto 110:165afa46840b 976 static __INLINE q31_t __SMLAD(
Kojto 110:165afa46840b 977 q31_t x,
Kojto 110:165afa46840b 978 q31_t y,
Kojto 110:165afa46840b 979 q31_t sum)
Kojto 110:165afa46840b 980 {
Kojto 110:165afa46840b 981
Kojto 110:165afa46840b 982 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
Kojto 110:165afa46840b 983 ((q15_t) x * (q15_t) y));
Kojto 110:165afa46840b 984 }
Kojto 110:165afa46840b 985
Kojto 110:165afa46840b 986 /*
Kojto 110:165afa46840b 987 * @brief C custom defined SMLADX for M3 and M0 processors
Kojto 110:165afa46840b 988 */
Kojto 110:165afa46840b 989 static __INLINE q31_t __SMLADX(
Kojto 110:165afa46840b 990 q31_t x,
Kojto 110:165afa46840b 991 q31_t y,
Kojto 110:165afa46840b 992 q31_t sum)
Kojto 110:165afa46840b 993 {
Kojto 110:165afa46840b 994
Kojto 110:165afa46840b 995 return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
Kojto 110:165afa46840b 996 ((q15_t) x * (q15_t) (y >> 16)));
Kojto 110:165afa46840b 997 }
Kojto 110:165afa46840b 998
Kojto 110:165afa46840b 999 /*
Kojto 110:165afa46840b 1000 * @brief C custom defined SMLSDX for M3 and M0 processors
Kojto 110:165afa46840b 1001 */
Kojto 110:165afa46840b 1002 static __INLINE q31_t __SMLSDX(
Kojto 110:165afa46840b 1003 q31_t x,
Kojto 110:165afa46840b 1004 q31_t y,
Kojto 110:165afa46840b 1005 q31_t sum)
Kojto 110:165afa46840b 1006 {
Kojto 110:165afa46840b 1007
Kojto 110:165afa46840b 1008 return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
Kojto 110:165afa46840b 1009 ((q15_t) x * (q15_t) (y >> 16)));
Kojto 110:165afa46840b 1010 }
Kojto 110:165afa46840b 1011
Kojto 110:165afa46840b 1012 /*
Kojto 110:165afa46840b 1013 * @brief C custom defined SMLALD for M3 and M0 processors
Kojto 110:165afa46840b 1014 */
Kojto 110:165afa46840b 1015 static __INLINE q63_t __SMLALD(
Kojto 110:165afa46840b 1016 q31_t x,
Kojto 110:165afa46840b 1017 q31_t y,
Kojto 110:165afa46840b 1018 q63_t sum)
Kojto 110:165afa46840b 1019 {
Kojto 110:165afa46840b 1020
Kojto 110:165afa46840b 1021 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
Kojto 110:165afa46840b 1022 ((q15_t) x * (q15_t) y));
Kojto 110:165afa46840b 1023 }
Kojto 110:165afa46840b 1024
Kojto 110:165afa46840b 1025 /*
Kojto 110:165afa46840b 1026 * @brief C custom defined SMLALDX for M3 and M0 processors
Kojto 110:165afa46840b 1027 */
Kojto 110:165afa46840b 1028 static __INLINE q63_t __SMLALDX(
Kojto 110:165afa46840b 1029 q31_t x,
Kojto 110:165afa46840b 1030 q31_t y,
Kojto 110:165afa46840b 1031 q63_t sum)
Kojto 110:165afa46840b 1032 {
Kojto 110:165afa46840b 1033
Kojto 110:165afa46840b 1034 return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
Kojto 110:165afa46840b 1035 ((q15_t) x * (q15_t) (y >> 16));
Kojto 110:165afa46840b 1036 }
Kojto 110:165afa46840b 1037
Kojto 110:165afa46840b 1038 /*
Kojto 110:165afa46840b 1039 * @brief C custom defined SMUAD for M3 and M0 processors
Kojto 110:165afa46840b 1040 */
Kojto 110:165afa46840b 1041 static __INLINE q31_t __SMUAD(
Kojto 110:165afa46840b 1042 q31_t x,
Kojto 110:165afa46840b 1043 q31_t y)
Kojto 110:165afa46840b 1044 {
Kojto 110:165afa46840b 1045
Kojto 110:165afa46840b 1046 return (((x >> 16) * (y >> 16)) +
Kojto 110:165afa46840b 1047 (((x << 16) >> 16) * ((y << 16) >> 16)));
Kojto 110:165afa46840b 1048 }
Kojto 110:165afa46840b 1049
Kojto 110:165afa46840b 1050 /*
Kojto 110:165afa46840b 1051 * @brief C custom defined SMUSD for M3 and M0 processors
Kojto 110:165afa46840b 1052 */
Kojto 110:165afa46840b 1053 static __INLINE q31_t __SMUSD(
Kojto 110:165afa46840b 1054 q31_t x,
Kojto 110:165afa46840b 1055 q31_t y)
Kojto 110:165afa46840b 1056 {
Kojto 110:165afa46840b 1057
Kojto 110:165afa46840b 1058 return (-((x >> 16) * (y >> 16)) +
Kojto 110:165afa46840b 1059 (((x << 16) >> 16) * ((y << 16) >> 16)));
Kojto 110:165afa46840b 1060 }
Kojto 110:165afa46840b 1061
Kojto 110:165afa46840b 1062
Kojto 110:165afa46840b 1063 /*
Kojto 110:165afa46840b 1064 * @brief C custom defined SXTB16 for M3 and M0 processors
Kojto 110:165afa46840b 1065 */
Kojto 110:165afa46840b 1066 static __INLINE q31_t __SXTB16(
Kojto 110:165afa46840b 1067 q31_t x)
Kojto 110:165afa46840b 1068 {
Kojto 110:165afa46840b 1069
Kojto 110:165afa46840b 1070 return ((((x << 24) >> 24) & 0x0000FFFF) |
Kojto 110:165afa46840b 1071 (((x << 8) >> 8) & 0xFFFF0000));
Kojto 110:165afa46840b 1072 }
Kojto 110:165afa46840b 1073
Kojto 110:165afa46840b 1074
Kojto 110:165afa46840b 1075 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
Kojto 110:165afa46840b 1076
Kojto 110:165afa46840b 1077
Kojto 110:165afa46840b 1078 /**
Kojto 110:165afa46840b 1079 * @brief Instance structure for the Q7 FIR filter.
Kojto 110:165afa46840b 1080 */
Kojto 110:165afa46840b 1081 typedef struct
Kojto 110:165afa46840b 1082 {
Kojto 110:165afa46840b 1083 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 110:165afa46840b 1084 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 1085 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 110:165afa46840b 1086 } arm_fir_instance_q7;
Kojto 110:165afa46840b 1087
Kojto 110:165afa46840b 1088 /**
Kojto 110:165afa46840b 1089 * @brief Instance structure for the Q15 FIR filter.
Kojto 110:165afa46840b 1090 */
Kojto 110:165afa46840b 1091 typedef struct
Kojto 110:165afa46840b 1092 {
Kojto 110:165afa46840b 1093 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 110:165afa46840b 1094 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 1095 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 110:165afa46840b 1096 } arm_fir_instance_q15;
Kojto 110:165afa46840b 1097
Kojto 110:165afa46840b 1098 /**
Kojto 110:165afa46840b 1099 * @brief Instance structure for the Q31 FIR filter.
Kojto 110:165afa46840b 1100 */
Kojto 110:165afa46840b 1101 typedef struct
Kojto 110:165afa46840b 1102 {
Kojto 110:165afa46840b 1103 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 110:165afa46840b 1104 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 1105 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 110:165afa46840b 1106 } arm_fir_instance_q31;
Kojto 110:165afa46840b 1107
Kojto 110:165afa46840b 1108 /**
Kojto 110:165afa46840b 1109 * @brief Instance structure for the floating-point FIR filter.
Kojto 110:165afa46840b 1110 */
Kojto 110:165afa46840b 1111 typedef struct
Kojto 110:165afa46840b 1112 {
Kojto 110:165afa46840b 1113 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 110:165afa46840b 1114 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 1115 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 110:165afa46840b 1116 } arm_fir_instance_f32;
Kojto 110:165afa46840b 1117
Kojto 110:165afa46840b 1118
Kojto 110:165afa46840b 1119 /**
Kojto 110:165afa46840b 1120 * @brief Processing function for the Q7 FIR filter.
Kojto 110:165afa46840b 1121 * @param[in] *S points to an instance of the Q7 FIR filter structure.
Kojto 110:165afa46840b 1122 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1123 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1124 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1125 * @return none.
Kojto 110:165afa46840b 1126 */
Kojto 110:165afa46840b 1127 void arm_fir_q7(
Kojto 110:165afa46840b 1128 const arm_fir_instance_q7 * S,
Kojto 110:165afa46840b 1129 q7_t * pSrc,
Kojto 110:165afa46840b 1130 q7_t * pDst,
Kojto 110:165afa46840b 1131 uint32_t blockSize);
Kojto 110:165afa46840b 1132
Kojto 110:165afa46840b 1133
Kojto 110:165afa46840b 1134 /**
Kojto 110:165afa46840b 1135 * @brief Initialization function for the Q7 FIR filter.
Kojto 110:165afa46840b 1136 * @param[in,out] *S points to an instance of the Q7 FIR structure.
Kojto 110:165afa46840b 1137 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 110:165afa46840b 1138 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 1139 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 1140 * @param[in] blockSize number of samples that are processed.
Kojto 110:165afa46840b 1141 * @return none
Kojto 110:165afa46840b 1142 */
Kojto 110:165afa46840b 1143 void arm_fir_init_q7(
Kojto 110:165afa46840b 1144 arm_fir_instance_q7 * S,
Kojto 110:165afa46840b 1145 uint16_t numTaps,
Kojto 110:165afa46840b 1146 q7_t * pCoeffs,
Kojto 110:165afa46840b 1147 q7_t * pState,
Kojto 110:165afa46840b 1148 uint32_t blockSize);
Kojto 110:165afa46840b 1149
Kojto 110:165afa46840b 1150
Kojto 110:165afa46840b 1151 /**
Kojto 110:165afa46840b 1152 * @brief Processing function for the Q15 FIR filter.
Kojto 110:165afa46840b 1153 * @param[in] *S points to an instance of the Q15 FIR structure.
Kojto 110:165afa46840b 1154 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1155 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1156 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1157 * @return none.
Kojto 110:165afa46840b 1158 */
Kojto 110:165afa46840b 1159 void arm_fir_q15(
Kojto 110:165afa46840b 1160 const arm_fir_instance_q15 * S,
Kojto 110:165afa46840b 1161 q15_t * pSrc,
Kojto 110:165afa46840b 1162 q15_t * pDst,
Kojto 110:165afa46840b 1163 uint32_t blockSize);
Kojto 110:165afa46840b 1164
Kojto 110:165afa46840b 1165 /**
Kojto 110:165afa46840b 1166 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
Kojto 110:165afa46840b 1167 * @param[in] *S points to an instance of the Q15 FIR filter structure.
Kojto 110:165afa46840b 1168 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1169 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1170 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1171 * @return none.
Kojto 110:165afa46840b 1172 */
Kojto 110:165afa46840b 1173 void arm_fir_fast_q15(
Kojto 110:165afa46840b 1174 const arm_fir_instance_q15 * S,
Kojto 110:165afa46840b 1175 q15_t * pSrc,
Kojto 110:165afa46840b 1176 q15_t * pDst,
Kojto 110:165afa46840b 1177 uint32_t blockSize);
Kojto 110:165afa46840b 1178
Kojto 110:165afa46840b 1179 /**
Kojto 110:165afa46840b 1180 * @brief Initialization function for the Q15 FIR filter.
Kojto 110:165afa46840b 1181 * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
Kojto 110:165afa46840b 1182 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
Kojto 110:165afa46840b 1183 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 1184 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 1185 * @param[in] blockSize number of samples that are processed at a time.
Kojto 110:165afa46840b 1186 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
Kojto 110:165afa46840b 1187 * <code>numTaps</code> is not a supported value.
Kojto 110:165afa46840b 1188 */
Kojto 110:165afa46840b 1189
Kojto 110:165afa46840b 1190 arm_status arm_fir_init_q15(
Kojto 110:165afa46840b 1191 arm_fir_instance_q15 * S,
Kojto 110:165afa46840b 1192 uint16_t numTaps,
Kojto 110:165afa46840b 1193 q15_t * pCoeffs,
Kojto 110:165afa46840b 1194 q15_t * pState,
Kojto 110:165afa46840b 1195 uint32_t blockSize);
Kojto 110:165afa46840b 1196
Kojto 110:165afa46840b 1197 /**
Kojto 110:165afa46840b 1198 * @brief Processing function for the Q31 FIR filter.
Kojto 110:165afa46840b 1199 * @param[in] *S points to an instance of the Q31 FIR filter structure.
Kojto 110:165afa46840b 1200 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1201 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1202 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1203 * @return none.
Kojto 110:165afa46840b 1204 */
Kojto 110:165afa46840b 1205 void arm_fir_q31(
Kojto 110:165afa46840b 1206 const arm_fir_instance_q31 * S,
Kojto 110:165afa46840b 1207 q31_t * pSrc,
Kojto 110:165afa46840b 1208 q31_t * pDst,
Kojto 110:165afa46840b 1209 uint32_t blockSize);
Kojto 110:165afa46840b 1210
Kojto 110:165afa46840b 1211 /**
Kojto 110:165afa46840b 1212 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
Kojto 110:165afa46840b 1213 * @param[in] *S points to an instance of the Q31 FIR structure.
Kojto 110:165afa46840b 1214 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1215 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1216 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1217 * @return none.
Kojto 110:165afa46840b 1218 */
Kojto 110:165afa46840b 1219 void arm_fir_fast_q31(
Kojto 110:165afa46840b 1220 const arm_fir_instance_q31 * S,
Kojto 110:165afa46840b 1221 q31_t * pSrc,
Kojto 110:165afa46840b 1222 q31_t * pDst,
Kojto 110:165afa46840b 1223 uint32_t blockSize);
Kojto 110:165afa46840b 1224
Kojto 110:165afa46840b 1225 /**
Kojto 110:165afa46840b 1226 * @brief Initialization function for the Q31 FIR filter.
Kojto 110:165afa46840b 1227 * @param[in,out] *S points to an instance of the Q31 FIR structure.
Kojto 110:165afa46840b 1228 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 110:165afa46840b 1229 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 1230 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 1231 * @param[in] blockSize number of samples that are processed at a time.
Kojto 110:165afa46840b 1232 * @return none.
Kojto 110:165afa46840b 1233 */
Kojto 110:165afa46840b 1234 void arm_fir_init_q31(
Kojto 110:165afa46840b 1235 arm_fir_instance_q31 * S,
Kojto 110:165afa46840b 1236 uint16_t numTaps,
Kojto 110:165afa46840b 1237 q31_t * pCoeffs,
Kojto 110:165afa46840b 1238 q31_t * pState,
Kojto 110:165afa46840b 1239 uint32_t blockSize);
Kojto 110:165afa46840b 1240
Kojto 110:165afa46840b 1241 /**
Kojto 110:165afa46840b 1242 * @brief Processing function for the floating-point FIR filter.
Kojto 110:165afa46840b 1243 * @param[in] *S points to an instance of the floating-point FIR structure.
Kojto 110:165afa46840b 1244 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1245 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1246 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1247 * @return none.
Kojto 110:165afa46840b 1248 */
Kojto 110:165afa46840b 1249 void arm_fir_f32(
Kojto 110:165afa46840b 1250 const arm_fir_instance_f32 * S,
Kojto 110:165afa46840b 1251 float32_t * pSrc,
Kojto 110:165afa46840b 1252 float32_t * pDst,
Kojto 110:165afa46840b 1253 uint32_t blockSize);
Kojto 110:165afa46840b 1254
Kojto 110:165afa46840b 1255 /**
Kojto 110:165afa46840b 1256 * @brief Initialization function for the floating-point FIR filter.
Kojto 110:165afa46840b 1257 * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
Kojto 110:165afa46840b 1258 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 110:165afa46840b 1259 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 1260 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 1261 * @param[in] blockSize number of samples that are processed at a time.
Kojto 110:165afa46840b 1262 * @return none.
Kojto 110:165afa46840b 1263 */
Kojto 110:165afa46840b 1264 void arm_fir_init_f32(
Kojto 110:165afa46840b 1265 arm_fir_instance_f32 * S,
Kojto 110:165afa46840b 1266 uint16_t numTaps,
Kojto 110:165afa46840b 1267 float32_t * pCoeffs,
Kojto 110:165afa46840b 1268 float32_t * pState,
Kojto 110:165afa46840b 1269 uint32_t blockSize);
Kojto 110:165afa46840b 1270
Kojto 110:165afa46840b 1271
Kojto 110:165afa46840b 1272 /**
Kojto 110:165afa46840b 1273 * @brief Instance structure for the Q15 Biquad cascade filter.
Kojto 110:165afa46840b 1274 */
Kojto 110:165afa46840b 1275 typedef struct
Kojto 110:165afa46840b 1276 {
Kojto 110:165afa46840b 1277 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 110:165afa46840b 1278 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 110:165afa46840b 1279 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 110:165afa46840b 1280 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
Kojto 110:165afa46840b 1281
Kojto 110:165afa46840b 1282 } arm_biquad_casd_df1_inst_q15;
Kojto 110:165afa46840b 1283
Kojto 110:165afa46840b 1284
Kojto 110:165afa46840b 1285 /**
Kojto 110:165afa46840b 1286 * @brief Instance structure for the Q31 Biquad cascade filter.
Kojto 110:165afa46840b 1287 */
Kojto 110:165afa46840b 1288 typedef struct
Kojto 110:165afa46840b 1289 {
Kojto 110:165afa46840b 1290 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 110:165afa46840b 1291 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 110:165afa46840b 1292 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 110:165afa46840b 1293 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
Kojto 110:165afa46840b 1294
Kojto 110:165afa46840b 1295 } arm_biquad_casd_df1_inst_q31;
Kojto 110:165afa46840b 1296
Kojto 110:165afa46840b 1297 /**
Kojto 110:165afa46840b 1298 * @brief Instance structure for the floating-point Biquad cascade filter.
Kojto 110:165afa46840b 1299 */
Kojto 110:165afa46840b 1300 typedef struct
Kojto 110:165afa46840b 1301 {
Kojto 110:165afa46840b 1302 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 110:165afa46840b 1303 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 110:165afa46840b 1304 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 110:165afa46840b 1305
Kojto 110:165afa46840b 1306
Kojto 110:165afa46840b 1307 } arm_biquad_casd_df1_inst_f32;
Kojto 110:165afa46840b 1308
Kojto 110:165afa46840b 1309
Kojto 110:165afa46840b 1310
Kojto 110:165afa46840b 1311 /**
Kojto 110:165afa46840b 1312 * @brief Processing function for the Q15 Biquad cascade filter.
Kojto 110:165afa46840b 1313 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
Kojto 110:165afa46840b 1314 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1315 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1316 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1317 * @return none.
Kojto 110:165afa46840b 1318 */
Kojto 110:165afa46840b 1319
Kojto 110:165afa46840b 1320 void arm_biquad_cascade_df1_q15(
Kojto 110:165afa46840b 1321 const arm_biquad_casd_df1_inst_q15 * S,
Kojto 110:165afa46840b 1322 q15_t * pSrc,
Kojto 110:165afa46840b 1323 q15_t * pDst,
Kojto 110:165afa46840b 1324 uint32_t blockSize);
Kojto 110:165afa46840b 1325
Kojto 110:165afa46840b 1326 /**
Kojto 110:165afa46840b 1327 * @brief Initialization function for the Q15 Biquad cascade filter.
Kojto 110:165afa46840b 1328 * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
Kojto 110:165afa46840b 1329 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 110:165afa46840b 1330 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 1331 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 1332 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
Kojto 110:165afa46840b 1333 * @return none
Kojto 110:165afa46840b 1334 */
Kojto 110:165afa46840b 1335
Kojto 110:165afa46840b 1336 void arm_biquad_cascade_df1_init_q15(
Kojto 110:165afa46840b 1337 arm_biquad_casd_df1_inst_q15 * S,
Kojto 110:165afa46840b 1338 uint8_t numStages,
Kojto 110:165afa46840b 1339 q15_t * pCoeffs,
Kojto 110:165afa46840b 1340 q15_t * pState,
Kojto 110:165afa46840b 1341 int8_t postShift);
Kojto 110:165afa46840b 1342
Kojto 110:165afa46840b 1343
Kojto 110:165afa46840b 1344 /**
Kojto 110:165afa46840b 1345 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
Kojto 110:165afa46840b 1346 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
Kojto 110:165afa46840b 1347 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1348 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1349 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1350 * @return none.
Kojto 110:165afa46840b 1351 */
Kojto 110:165afa46840b 1352
Kojto 110:165afa46840b 1353 void arm_biquad_cascade_df1_fast_q15(
Kojto 110:165afa46840b 1354 const arm_biquad_casd_df1_inst_q15 * S,
Kojto 110:165afa46840b 1355 q15_t * pSrc,
Kojto 110:165afa46840b 1356 q15_t * pDst,
Kojto 110:165afa46840b 1357 uint32_t blockSize);
Kojto 110:165afa46840b 1358
Kojto 110:165afa46840b 1359
Kojto 110:165afa46840b 1360 /**
Kojto 110:165afa46840b 1361 * @brief Processing function for the Q31 Biquad cascade filter
Kojto 110:165afa46840b 1362 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
Kojto 110:165afa46840b 1363 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1364 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1365 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1366 * @return none.
Kojto 110:165afa46840b 1367 */
Kojto 110:165afa46840b 1368
Kojto 110:165afa46840b 1369 void arm_biquad_cascade_df1_q31(
Kojto 110:165afa46840b 1370 const arm_biquad_casd_df1_inst_q31 * S,
Kojto 110:165afa46840b 1371 q31_t * pSrc,
Kojto 110:165afa46840b 1372 q31_t * pDst,
Kojto 110:165afa46840b 1373 uint32_t blockSize);
Kojto 110:165afa46840b 1374
Kojto 110:165afa46840b 1375 /**
Kojto 110:165afa46840b 1376 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
Kojto 110:165afa46840b 1377 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
Kojto 110:165afa46840b 1378 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1379 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1380 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1381 * @return none.
Kojto 110:165afa46840b 1382 */
Kojto 110:165afa46840b 1383
Kojto 110:165afa46840b 1384 void arm_biquad_cascade_df1_fast_q31(
Kojto 110:165afa46840b 1385 const arm_biquad_casd_df1_inst_q31 * S,
Kojto 110:165afa46840b 1386 q31_t * pSrc,
Kojto 110:165afa46840b 1387 q31_t * pDst,
Kojto 110:165afa46840b 1388 uint32_t blockSize);
Kojto 110:165afa46840b 1389
Kojto 110:165afa46840b 1390 /**
Kojto 110:165afa46840b 1391 * @brief Initialization function for the Q31 Biquad cascade filter.
Kojto 110:165afa46840b 1392 * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
Kojto 110:165afa46840b 1393 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 110:165afa46840b 1394 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 1395 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 1396 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
Kojto 110:165afa46840b 1397 * @return none
Kojto 110:165afa46840b 1398 */
Kojto 110:165afa46840b 1399
Kojto 110:165afa46840b 1400 void arm_biquad_cascade_df1_init_q31(
Kojto 110:165afa46840b 1401 arm_biquad_casd_df1_inst_q31 * S,
Kojto 110:165afa46840b 1402 uint8_t numStages,
Kojto 110:165afa46840b 1403 q31_t * pCoeffs,
Kojto 110:165afa46840b 1404 q31_t * pState,
Kojto 110:165afa46840b 1405 int8_t postShift);
Kojto 110:165afa46840b 1406
Kojto 110:165afa46840b 1407 /**
Kojto 110:165afa46840b 1408 * @brief Processing function for the floating-point Biquad cascade filter.
Kojto 110:165afa46840b 1409 * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
Kojto 110:165afa46840b 1410 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 1411 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 1412 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 1413 * @return none.
Kojto 110:165afa46840b 1414 */
Kojto 110:165afa46840b 1415
Kojto 110:165afa46840b 1416 void arm_biquad_cascade_df1_f32(
Kojto 110:165afa46840b 1417 const arm_biquad_casd_df1_inst_f32 * S,
Kojto 110:165afa46840b 1418 float32_t * pSrc,
Kojto 110:165afa46840b 1419 float32_t * pDst,
Kojto 110:165afa46840b 1420 uint32_t blockSize);
Kojto 110:165afa46840b 1421
Kojto 110:165afa46840b 1422 /**
Kojto 110:165afa46840b 1423 * @brief Initialization function for the floating-point Biquad cascade filter.
Kojto 110:165afa46840b 1424 * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
Kojto 110:165afa46840b 1425 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 110:165afa46840b 1426 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 1427 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 1428 * @return none
Kojto 110:165afa46840b 1429 */
Kojto 110:165afa46840b 1430
Kojto 110:165afa46840b 1431 void arm_biquad_cascade_df1_init_f32(
Kojto 110:165afa46840b 1432 arm_biquad_casd_df1_inst_f32 * S,
Kojto 110:165afa46840b 1433 uint8_t numStages,
Kojto 110:165afa46840b 1434 float32_t * pCoeffs,
Kojto 110:165afa46840b 1435 float32_t * pState);
Kojto 110:165afa46840b 1436
Kojto 110:165afa46840b 1437
Kojto 110:165afa46840b 1438 /**
Kojto 110:165afa46840b 1439 * @brief Instance structure for the floating-point matrix structure.
Kojto 110:165afa46840b 1440 */
Kojto 110:165afa46840b 1441
Kojto 110:165afa46840b 1442 typedef struct
Kojto 110:165afa46840b 1443 {
Kojto 110:165afa46840b 1444 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 110:165afa46840b 1445 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 110:165afa46840b 1446 float32_t *pData; /**< points to the data of the matrix. */
Kojto 110:165afa46840b 1447 } arm_matrix_instance_f32;
Kojto 110:165afa46840b 1448
Kojto 110:165afa46840b 1449
Kojto 110:165afa46840b 1450 /**
Kojto 110:165afa46840b 1451 * @brief Instance structure for the floating-point matrix structure.
Kojto 110:165afa46840b 1452 */
Kojto 110:165afa46840b 1453
Kojto 110:165afa46840b 1454 typedef struct
Kojto 110:165afa46840b 1455 {
Kojto 110:165afa46840b 1456 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 110:165afa46840b 1457 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 110:165afa46840b 1458 float64_t *pData; /**< points to the data of the matrix. */
Kojto 110:165afa46840b 1459 } arm_matrix_instance_f64;
Kojto 110:165afa46840b 1460
Kojto 110:165afa46840b 1461 /**
Kojto 110:165afa46840b 1462 * @brief Instance structure for the Q15 matrix structure.
Kojto 110:165afa46840b 1463 */
Kojto 110:165afa46840b 1464
Kojto 110:165afa46840b 1465 typedef struct
Kojto 110:165afa46840b 1466 {
Kojto 110:165afa46840b 1467 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 110:165afa46840b 1468 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 110:165afa46840b 1469 q15_t *pData; /**< points to the data of the matrix. */
Kojto 110:165afa46840b 1470
Kojto 110:165afa46840b 1471 } arm_matrix_instance_q15;
Kojto 110:165afa46840b 1472
Kojto 110:165afa46840b 1473 /**
Kojto 110:165afa46840b 1474 * @brief Instance structure for the Q31 matrix structure.
Kojto 110:165afa46840b 1475 */
Kojto 110:165afa46840b 1476
Kojto 110:165afa46840b 1477 typedef struct
Kojto 110:165afa46840b 1478 {
Kojto 110:165afa46840b 1479 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 110:165afa46840b 1480 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 110:165afa46840b 1481 q31_t *pData; /**< points to the data of the matrix. */
Kojto 110:165afa46840b 1482
Kojto 110:165afa46840b 1483 } arm_matrix_instance_q31;
Kojto 110:165afa46840b 1484
Kojto 110:165afa46840b 1485
Kojto 110:165afa46840b 1486
Kojto 110:165afa46840b 1487 /**
Kojto 110:165afa46840b 1488 * @brief Floating-point matrix addition.
Kojto 110:165afa46840b 1489 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1490 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1491 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1492 * @return The function returns either
Kojto 110:165afa46840b 1493 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1494 */
Kojto 110:165afa46840b 1495
Kojto 110:165afa46840b 1496 arm_status arm_mat_add_f32(
Kojto 110:165afa46840b 1497 const arm_matrix_instance_f32 * pSrcA,
Kojto 110:165afa46840b 1498 const arm_matrix_instance_f32 * pSrcB,
Kojto 110:165afa46840b 1499 arm_matrix_instance_f32 * pDst);
Kojto 110:165afa46840b 1500
Kojto 110:165afa46840b 1501 /**
Kojto 110:165afa46840b 1502 * @brief Q15 matrix addition.
Kojto 110:165afa46840b 1503 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1504 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1505 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1506 * @return The function returns either
Kojto 110:165afa46840b 1507 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1508 */
Kojto 110:165afa46840b 1509
Kojto 110:165afa46840b 1510 arm_status arm_mat_add_q15(
Kojto 110:165afa46840b 1511 const arm_matrix_instance_q15 * pSrcA,
Kojto 110:165afa46840b 1512 const arm_matrix_instance_q15 * pSrcB,
Kojto 110:165afa46840b 1513 arm_matrix_instance_q15 * pDst);
Kojto 110:165afa46840b 1514
Kojto 110:165afa46840b 1515 /**
Kojto 110:165afa46840b 1516 * @brief Q31 matrix addition.
Kojto 110:165afa46840b 1517 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1518 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1519 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1520 * @return The function returns either
Kojto 110:165afa46840b 1521 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1522 */
Kojto 110:165afa46840b 1523
Kojto 110:165afa46840b 1524 arm_status arm_mat_add_q31(
Kojto 110:165afa46840b 1525 const arm_matrix_instance_q31 * pSrcA,
Kojto 110:165afa46840b 1526 const arm_matrix_instance_q31 * pSrcB,
Kojto 110:165afa46840b 1527 arm_matrix_instance_q31 * pDst);
Kojto 110:165afa46840b 1528
Kojto 110:165afa46840b 1529 /**
Kojto 110:165afa46840b 1530 * @brief Floating-point, complex, matrix multiplication.
Kojto 110:165afa46840b 1531 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1532 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1533 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1534 * @return The function returns either
Kojto 110:165afa46840b 1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1536 */
Kojto 110:165afa46840b 1537
Kojto 110:165afa46840b 1538 arm_status arm_mat_cmplx_mult_f32(
Kojto 110:165afa46840b 1539 const arm_matrix_instance_f32 * pSrcA,
Kojto 110:165afa46840b 1540 const arm_matrix_instance_f32 * pSrcB,
Kojto 110:165afa46840b 1541 arm_matrix_instance_f32 * pDst);
Kojto 110:165afa46840b 1542
Kojto 110:165afa46840b 1543 /**
Kojto 110:165afa46840b 1544 * @brief Q15, complex, matrix multiplication.
Kojto 110:165afa46840b 1545 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1546 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1547 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1548 * @return The function returns either
Kojto 110:165afa46840b 1549 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1550 */
Kojto 110:165afa46840b 1551
Kojto 110:165afa46840b 1552 arm_status arm_mat_cmplx_mult_q15(
Kojto 110:165afa46840b 1553 const arm_matrix_instance_q15 * pSrcA,
Kojto 110:165afa46840b 1554 const arm_matrix_instance_q15 * pSrcB,
Kojto 110:165afa46840b 1555 arm_matrix_instance_q15 * pDst,
Kojto 110:165afa46840b 1556 q15_t * pScratch);
Kojto 110:165afa46840b 1557
Kojto 110:165afa46840b 1558 /**
Kojto 110:165afa46840b 1559 * @brief Q31, complex, matrix multiplication.
Kojto 110:165afa46840b 1560 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1561 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1562 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1563 * @return The function returns either
Kojto 110:165afa46840b 1564 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1565 */
Kojto 110:165afa46840b 1566
Kojto 110:165afa46840b 1567 arm_status arm_mat_cmplx_mult_q31(
Kojto 110:165afa46840b 1568 const arm_matrix_instance_q31 * pSrcA,
Kojto 110:165afa46840b 1569 const arm_matrix_instance_q31 * pSrcB,
Kojto 110:165afa46840b 1570 arm_matrix_instance_q31 * pDst);
Kojto 110:165afa46840b 1571
Kojto 110:165afa46840b 1572
Kojto 110:165afa46840b 1573 /**
Kojto 110:165afa46840b 1574 * @brief Floating-point matrix transpose.
Kojto 110:165afa46840b 1575 * @param[in] *pSrc points to the input matrix
Kojto 110:165afa46840b 1576 * @param[out] *pDst points to the output matrix
Kojto 110:165afa46840b 1577 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 110:165afa46840b 1578 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1579 */
Kojto 110:165afa46840b 1580
Kojto 110:165afa46840b 1581 arm_status arm_mat_trans_f32(
Kojto 110:165afa46840b 1582 const arm_matrix_instance_f32 * pSrc,
Kojto 110:165afa46840b 1583 arm_matrix_instance_f32 * pDst);
Kojto 110:165afa46840b 1584
Kojto 110:165afa46840b 1585
Kojto 110:165afa46840b 1586 /**
Kojto 110:165afa46840b 1587 * @brief Q15 matrix transpose.
Kojto 110:165afa46840b 1588 * @param[in] *pSrc points to the input matrix
Kojto 110:165afa46840b 1589 * @param[out] *pDst points to the output matrix
Kojto 110:165afa46840b 1590 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 110:165afa46840b 1591 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1592 */
Kojto 110:165afa46840b 1593
Kojto 110:165afa46840b 1594 arm_status arm_mat_trans_q15(
Kojto 110:165afa46840b 1595 const arm_matrix_instance_q15 * pSrc,
Kojto 110:165afa46840b 1596 arm_matrix_instance_q15 * pDst);
Kojto 110:165afa46840b 1597
Kojto 110:165afa46840b 1598 /**
Kojto 110:165afa46840b 1599 * @brief Q31 matrix transpose.
Kojto 110:165afa46840b 1600 * @param[in] *pSrc points to the input matrix
Kojto 110:165afa46840b 1601 * @param[out] *pDst points to the output matrix
Kojto 110:165afa46840b 1602 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 110:165afa46840b 1603 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1604 */
Kojto 110:165afa46840b 1605
Kojto 110:165afa46840b 1606 arm_status arm_mat_trans_q31(
Kojto 110:165afa46840b 1607 const arm_matrix_instance_q31 * pSrc,
Kojto 110:165afa46840b 1608 arm_matrix_instance_q31 * pDst);
Kojto 110:165afa46840b 1609
Kojto 110:165afa46840b 1610
Kojto 110:165afa46840b 1611 /**
Kojto 110:165afa46840b 1612 * @brief Floating-point matrix multiplication
Kojto 110:165afa46840b 1613 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1614 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1615 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1616 * @return The function returns either
Kojto 110:165afa46840b 1617 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1618 */
Kojto 110:165afa46840b 1619
Kojto 110:165afa46840b 1620 arm_status arm_mat_mult_f32(
Kojto 110:165afa46840b 1621 const arm_matrix_instance_f32 * pSrcA,
Kojto 110:165afa46840b 1622 const arm_matrix_instance_f32 * pSrcB,
Kojto 110:165afa46840b 1623 arm_matrix_instance_f32 * pDst);
Kojto 110:165afa46840b 1624
Kojto 110:165afa46840b 1625 /**
Kojto 110:165afa46840b 1626 * @brief Q15 matrix multiplication
Kojto 110:165afa46840b 1627 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1628 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1629 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1630 * @param[in] *pState points to the array for storing intermediate results
Kojto 110:165afa46840b 1631 * @return The function returns either
Kojto 110:165afa46840b 1632 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1633 */
Kojto 110:165afa46840b 1634
Kojto 110:165afa46840b 1635 arm_status arm_mat_mult_q15(
Kojto 110:165afa46840b 1636 const arm_matrix_instance_q15 * pSrcA,
Kojto 110:165afa46840b 1637 const arm_matrix_instance_q15 * pSrcB,
Kojto 110:165afa46840b 1638 arm_matrix_instance_q15 * pDst,
Kojto 110:165afa46840b 1639 q15_t * pState);
Kojto 110:165afa46840b 1640
Kojto 110:165afa46840b 1641 /**
Kojto 110:165afa46840b 1642 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
Kojto 110:165afa46840b 1643 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1644 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1645 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1646 * @param[in] *pState points to the array for storing intermediate results
Kojto 110:165afa46840b 1647 * @return The function returns either
Kojto 110:165afa46840b 1648 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1649 */
Kojto 110:165afa46840b 1650
Kojto 110:165afa46840b 1651 arm_status arm_mat_mult_fast_q15(
Kojto 110:165afa46840b 1652 const arm_matrix_instance_q15 * pSrcA,
Kojto 110:165afa46840b 1653 const arm_matrix_instance_q15 * pSrcB,
Kojto 110:165afa46840b 1654 arm_matrix_instance_q15 * pDst,
Kojto 110:165afa46840b 1655 q15_t * pState);
Kojto 110:165afa46840b 1656
Kojto 110:165afa46840b 1657 /**
Kojto 110:165afa46840b 1658 * @brief Q31 matrix multiplication
Kojto 110:165afa46840b 1659 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1660 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1661 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1662 * @return The function returns either
Kojto 110:165afa46840b 1663 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1664 */
Kojto 110:165afa46840b 1665
Kojto 110:165afa46840b 1666 arm_status arm_mat_mult_q31(
Kojto 110:165afa46840b 1667 const arm_matrix_instance_q31 * pSrcA,
Kojto 110:165afa46840b 1668 const arm_matrix_instance_q31 * pSrcB,
Kojto 110:165afa46840b 1669 arm_matrix_instance_q31 * pDst);
Kojto 110:165afa46840b 1670
Kojto 110:165afa46840b 1671 /**
Kojto 110:165afa46840b 1672 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
Kojto 110:165afa46840b 1673 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1674 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1675 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1676 * @return The function returns either
Kojto 110:165afa46840b 1677 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1678 */
Kojto 110:165afa46840b 1679
Kojto 110:165afa46840b 1680 arm_status arm_mat_mult_fast_q31(
Kojto 110:165afa46840b 1681 const arm_matrix_instance_q31 * pSrcA,
Kojto 110:165afa46840b 1682 const arm_matrix_instance_q31 * pSrcB,
Kojto 110:165afa46840b 1683 arm_matrix_instance_q31 * pDst);
Kojto 110:165afa46840b 1684
Kojto 110:165afa46840b 1685
Kojto 110:165afa46840b 1686 /**
Kojto 110:165afa46840b 1687 * @brief Floating-point matrix subtraction
Kojto 110:165afa46840b 1688 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1689 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1690 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1691 * @return The function returns either
Kojto 110:165afa46840b 1692 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1693 */
Kojto 110:165afa46840b 1694
Kojto 110:165afa46840b 1695 arm_status arm_mat_sub_f32(
Kojto 110:165afa46840b 1696 const arm_matrix_instance_f32 * pSrcA,
Kojto 110:165afa46840b 1697 const arm_matrix_instance_f32 * pSrcB,
Kojto 110:165afa46840b 1698 arm_matrix_instance_f32 * pDst);
Kojto 110:165afa46840b 1699
Kojto 110:165afa46840b 1700 /**
Kojto 110:165afa46840b 1701 * @brief Q15 matrix subtraction
Kojto 110:165afa46840b 1702 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1703 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1704 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1705 * @return The function returns either
Kojto 110:165afa46840b 1706 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1707 */
Kojto 110:165afa46840b 1708
Kojto 110:165afa46840b 1709 arm_status arm_mat_sub_q15(
Kojto 110:165afa46840b 1710 const arm_matrix_instance_q15 * pSrcA,
Kojto 110:165afa46840b 1711 const arm_matrix_instance_q15 * pSrcB,
Kojto 110:165afa46840b 1712 arm_matrix_instance_q15 * pDst);
Kojto 110:165afa46840b 1713
Kojto 110:165afa46840b 1714 /**
Kojto 110:165afa46840b 1715 * @brief Q31 matrix subtraction
Kojto 110:165afa46840b 1716 * @param[in] *pSrcA points to the first input matrix structure
Kojto 110:165afa46840b 1717 * @param[in] *pSrcB points to the second input matrix structure
Kojto 110:165afa46840b 1718 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1719 * @return The function returns either
Kojto 110:165afa46840b 1720 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1721 */
Kojto 110:165afa46840b 1722
Kojto 110:165afa46840b 1723 arm_status arm_mat_sub_q31(
Kojto 110:165afa46840b 1724 const arm_matrix_instance_q31 * pSrcA,
Kojto 110:165afa46840b 1725 const arm_matrix_instance_q31 * pSrcB,
Kojto 110:165afa46840b 1726 arm_matrix_instance_q31 * pDst);
Kojto 110:165afa46840b 1727
Kojto 110:165afa46840b 1728 /**
Kojto 110:165afa46840b 1729 * @brief Floating-point matrix scaling.
Kojto 110:165afa46840b 1730 * @param[in] *pSrc points to the input matrix
Kojto 110:165afa46840b 1731 * @param[in] scale scale factor
Kojto 110:165afa46840b 1732 * @param[out] *pDst points to the output matrix
Kojto 110:165afa46840b 1733 * @return The function returns either
Kojto 110:165afa46840b 1734 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1735 */
Kojto 110:165afa46840b 1736
Kojto 110:165afa46840b 1737 arm_status arm_mat_scale_f32(
Kojto 110:165afa46840b 1738 const arm_matrix_instance_f32 * pSrc,
Kojto 110:165afa46840b 1739 float32_t scale,
Kojto 110:165afa46840b 1740 arm_matrix_instance_f32 * pDst);
Kojto 110:165afa46840b 1741
Kojto 110:165afa46840b 1742 /**
Kojto 110:165afa46840b 1743 * @brief Q15 matrix scaling.
Kojto 110:165afa46840b 1744 * @param[in] *pSrc points to input matrix
Kojto 110:165afa46840b 1745 * @param[in] scaleFract fractional portion of the scale factor
Kojto 110:165afa46840b 1746 * @param[in] shift number of bits to shift the result by
Kojto 110:165afa46840b 1747 * @param[out] *pDst points to output matrix
Kojto 110:165afa46840b 1748 * @return The function returns either
Kojto 110:165afa46840b 1749 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1750 */
Kojto 110:165afa46840b 1751
Kojto 110:165afa46840b 1752 arm_status arm_mat_scale_q15(
Kojto 110:165afa46840b 1753 const arm_matrix_instance_q15 * pSrc,
Kojto 110:165afa46840b 1754 q15_t scaleFract,
Kojto 110:165afa46840b 1755 int32_t shift,
Kojto 110:165afa46840b 1756 arm_matrix_instance_q15 * pDst);
Kojto 110:165afa46840b 1757
Kojto 110:165afa46840b 1758 /**
Kojto 110:165afa46840b 1759 * @brief Q31 matrix scaling.
Kojto 110:165afa46840b 1760 * @param[in] *pSrc points to input matrix
Kojto 110:165afa46840b 1761 * @param[in] scaleFract fractional portion of the scale factor
Kojto 110:165afa46840b 1762 * @param[in] shift number of bits to shift the result by
Kojto 110:165afa46840b 1763 * @param[out] *pDst points to output matrix structure
Kojto 110:165afa46840b 1764 * @return The function returns either
Kojto 110:165afa46840b 1765 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 110:165afa46840b 1766 */
Kojto 110:165afa46840b 1767
Kojto 110:165afa46840b 1768 arm_status arm_mat_scale_q31(
Kojto 110:165afa46840b 1769 const arm_matrix_instance_q31 * pSrc,
Kojto 110:165afa46840b 1770 q31_t scaleFract,
Kojto 110:165afa46840b 1771 int32_t shift,
Kojto 110:165afa46840b 1772 arm_matrix_instance_q31 * pDst);
Kojto 110:165afa46840b 1773
Kojto 110:165afa46840b 1774
Kojto 110:165afa46840b 1775 /**
Kojto 110:165afa46840b 1776 * @brief Q31 matrix initialization.
Kojto 110:165afa46840b 1777 * @param[in,out] *S points to an instance of the floating-point matrix structure.
Kojto 110:165afa46840b 1778 * @param[in] nRows number of rows in the matrix.
Kojto 110:165afa46840b 1779 * @param[in] nColumns number of columns in the matrix.
Kojto 110:165afa46840b 1780 * @param[in] *pData points to the matrix data array.
Kojto 110:165afa46840b 1781 * @return none
Kojto 110:165afa46840b 1782 */
Kojto 110:165afa46840b 1783
Kojto 110:165afa46840b 1784 void arm_mat_init_q31(
Kojto 110:165afa46840b 1785 arm_matrix_instance_q31 * S,
Kojto 110:165afa46840b 1786 uint16_t nRows,
Kojto 110:165afa46840b 1787 uint16_t nColumns,
Kojto 110:165afa46840b 1788 q31_t * pData);
Kojto 110:165afa46840b 1789
Kojto 110:165afa46840b 1790 /**
Kojto 110:165afa46840b 1791 * @brief Q15 matrix initialization.
Kojto 110:165afa46840b 1792 * @param[in,out] *S points to an instance of the floating-point matrix structure.
Kojto 110:165afa46840b 1793 * @param[in] nRows number of rows in the matrix.
Kojto 110:165afa46840b 1794 * @param[in] nColumns number of columns in the matrix.
Kojto 110:165afa46840b 1795 * @param[in] *pData points to the matrix data array.
Kojto 110:165afa46840b 1796 * @return none
Kojto 110:165afa46840b 1797 */
Kojto 110:165afa46840b 1798
Kojto 110:165afa46840b 1799 void arm_mat_init_q15(
Kojto 110:165afa46840b 1800 arm_matrix_instance_q15 * S,
Kojto 110:165afa46840b 1801 uint16_t nRows,
Kojto 110:165afa46840b 1802 uint16_t nColumns,
Kojto 110:165afa46840b 1803 q15_t * pData);
Kojto 110:165afa46840b 1804
Kojto 110:165afa46840b 1805 /**
Kojto 110:165afa46840b 1806 * @brief Floating-point matrix initialization.
Kojto 110:165afa46840b 1807 * @param[in,out] *S points to an instance of the floating-point matrix structure.
Kojto 110:165afa46840b 1808 * @param[in] nRows number of rows in the matrix.
Kojto 110:165afa46840b 1809 * @param[in] nColumns number of columns in the matrix.
Kojto 110:165afa46840b 1810 * @param[in] *pData points to the matrix data array.
Kojto 110:165afa46840b 1811 * @return none
Kojto 110:165afa46840b 1812 */
Kojto 110:165afa46840b 1813
Kojto 110:165afa46840b 1814 void arm_mat_init_f32(
Kojto 110:165afa46840b 1815 arm_matrix_instance_f32 * S,
Kojto 110:165afa46840b 1816 uint16_t nRows,
Kojto 110:165afa46840b 1817 uint16_t nColumns,
Kojto 110:165afa46840b 1818 float32_t * pData);
Kojto 110:165afa46840b 1819
Kojto 110:165afa46840b 1820
Kojto 110:165afa46840b 1821
Kojto 110:165afa46840b 1822 /**
Kojto 110:165afa46840b 1823 * @brief Instance structure for the Q15 PID Control.
Kojto 110:165afa46840b 1824 */
Kojto 110:165afa46840b 1825 typedef struct
Kojto 110:165afa46840b 1826 {
Kojto 110:165afa46840b 1827 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 110:165afa46840b 1828 #ifdef ARM_MATH_CM0_FAMILY
Kojto 110:165afa46840b 1829 q15_t A1;
Kojto 110:165afa46840b 1830 q15_t A2;
Kojto 110:165afa46840b 1831 #else
Kojto 110:165afa46840b 1832 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
Kojto 110:165afa46840b 1833 #endif
Kojto 110:165afa46840b 1834 q15_t state[3]; /**< The state array of length 3. */
Kojto 110:165afa46840b 1835 q15_t Kp; /**< The proportional gain. */
Kojto 110:165afa46840b 1836 q15_t Ki; /**< The integral gain. */
Kojto 110:165afa46840b 1837 q15_t Kd; /**< The derivative gain. */
Kojto 110:165afa46840b 1838 } arm_pid_instance_q15;
Kojto 110:165afa46840b 1839
Kojto 110:165afa46840b 1840 /**
Kojto 110:165afa46840b 1841 * @brief Instance structure for the Q31 PID Control.
Kojto 110:165afa46840b 1842 */
Kojto 110:165afa46840b 1843 typedef struct
Kojto 110:165afa46840b 1844 {
Kojto 110:165afa46840b 1845 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 110:165afa46840b 1846 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
Kojto 110:165afa46840b 1847 q31_t A2; /**< The derived gain, A2 = Kd . */
Kojto 110:165afa46840b 1848 q31_t state[3]; /**< The state array of length 3. */
Kojto 110:165afa46840b 1849 q31_t Kp; /**< The proportional gain. */
Kojto 110:165afa46840b 1850 q31_t Ki; /**< The integral gain. */
Kojto 110:165afa46840b 1851 q31_t Kd; /**< The derivative gain. */
Kojto 110:165afa46840b 1852
Kojto 110:165afa46840b 1853 } arm_pid_instance_q31;
Kojto 110:165afa46840b 1854
Kojto 110:165afa46840b 1855 /**
Kojto 110:165afa46840b 1856 * @brief Instance structure for the floating-point PID Control.
Kojto 110:165afa46840b 1857 */
Kojto 110:165afa46840b 1858 typedef struct
Kojto 110:165afa46840b 1859 {
Kojto 110:165afa46840b 1860 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 110:165afa46840b 1861 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
Kojto 110:165afa46840b 1862 float32_t A2; /**< The derived gain, A2 = Kd . */
Kojto 110:165afa46840b 1863 float32_t state[3]; /**< The state array of length 3. */
Kojto 110:165afa46840b 1864 float32_t Kp; /**< The proportional gain. */
Kojto 110:165afa46840b 1865 float32_t Ki; /**< The integral gain. */
Kojto 110:165afa46840b 1866 float32_t Kd; /**< The derivative gain. */
Kojto 110:165afa46840b 1867 } arm_pid_instance_f32;
Kojto 110:165afa46840b 1868
Kojto 110:165afa46840b 1869
Kojto 110:165afa46840b 1870
Kojto 110:165afa46840b 1871 /**
Kojto 110:165afa46840b 1872 * @brief Initialization function for the floating-point PID Control.
Kojto 110:165afa46840b 1873 * @param[in,out] *S points to an instance of the PID structure.
Kojto 110:165afa46840b 1874 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 110:165afa46840b 1875 * @return none.
Kojto 110:165afa46840b 1876 */
Kojto 110:165afa46840b 1877 void arm_pid_init_f32(
Kojto 110:165afa46840b 1878 arm_pid_instance_f32 * S,
Kojto 110:165afa46840b 1879 int32_t resetStateFlag);
Kojto 110:165afa46840b 1880
Kojto 110:165afa46840b 1881 /**
Kojto 110:165afa46840b 1882 * @brief Reset function for the floating-point PID Control.
Kojto 110:165afa46840b 1883 * @param[in,out] *S is an instance of the floating-point PID Control structure
Kojto 110:165afa46840b 1884 * @return none
Kojto 110:165afa46840b 1885 */
Kojto 110:165afa46840b 1886 void arm_pid_reset_f32(
Kojto 110:165afa46840b 1887 arm_pid_instance_f32 * S);
Kojto 110:165afa46840b 1888
Kojto 110:165afa46840b 1889
Kojto 110:165afa46840b 1890 /**
Kojto 110:165afa46840b 1891 * @brief Initialization function for the Q31 PID Control.
Kojto 110:165afa46840b 1892 * @param[in,out] *S points to an instance of the Q15 PID structure.
Kojto 110:165afa46840b 1893 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 110:165afa46840b 1894 * @return none.
Kojto 110:165afa46840b 1895 */
Kojto 110:165afa46840b 1896 void arm_pid_init_q31(
Kojto 110:165afa46840b 1897 arm_pid_instance_q31 * S,
Kojto 110:165afa46840b 1898 int32_t resetStateFlag);
Kojto 110:165afa46840b 1899
Kojto 110:165afa46840b 1900
Kojto 110:165afa46840b 1901 /**
Kojto 110:165afa46840b 1902 * @brief Reset function for the Q31 PID Control.
Kojto 110:165afa46840b 1903 * @param[in,out] *S points to an instance of the Q31 PID Control structure
Kojto 110:165afa46840b 1904 * @return none
Kojto 110:165afa46840b 1905 */
Kojto 110:165afa46840b 1906
Kojto 110:165afa46840b 1907 void arm_pid_reset_q31(
Kojto 110:165afa46840b 1908 arm_pid_instance_q31 * S);
Kojto 110:165afa46840b 1909
Kojto 110:165afa46840b 1910 /**
Kojto 110:165afa46840b 1911 * @brief Initialization function for the Q15 PID Control.
Kojto 110:165afa46840b 1912 * @param[in,out] *S points to an instance of the Q15 PID structure.
Kojto 110:165afa46840b 1913 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 110:165afa46840b 1914 * @return none.
Kojto 110:165afa46840b 1915 */
Kojto 110:165afa46840b 1916 void arm_pid_init_q15(
Kojto 110:165afa46840b 1917 arm_pid_instance_q15 * S,
Kojto 110:165afa46840b 1918 int32_t resetStateFlag);
Kojto 110:165afa46840b 1919
Kojto 110:165afa46840b 1920 /**
Kojto 110:165afa46840b 1921 * @brief Reset function for the Q15 PID Control.
Kojto 110:165afa46840b 1922 * @param[in,out] *S points to an instance of the q15 PID Control structure
Kojto 110:165afa46840b 1923 * @return none
Kojto 110:165afa46840b 1924 */
Kojto 110:165afa46840b 1925 void arm_pid_reset_q15(
Kojto 110:165afa46840b 1926 arm_pid_instance_q15 * S);
Kojto 110:165afa46840b 1927
Kojto 110:165afa46840b 1928
Kojto 110:165afa46840b 1929 /**
Kojto 110:165afa46840b 1930 * @brief Instance structure for the floating-point Linear Interpolate function.
Kojto 110:165afa46840b 1931 */
Kojto 110:165afa46840b 1932 typedef struct
Kojto 110:165afa46840b 1933 {
Kojto 110:165afa46840b 1934 uint32_t nValues; /**< nValues */
Kojto 110:165afa46840b 1935 float32_t x1; /**< x1 */
Kojto 110:165afa46840b 1936 float32_t xSpacing; /**< xSpacing */
Kojto 110:165afa46840b 1937 float32_t *pYData; /**< pointer to the table of Y values */
Kojto 110:165afa46840b 1938 } arm_linear_interp_instance_f32;
Kojto 110:165afa46840b 1939
Kojto 110:165afa46840b 1940 /**
Kojto 110:165afa46840b 1941 * @brief Instance structure for the floating-point bilinear interpolation function.
Kojto 110:165afa46840b 1942 */
Kojto 110:165afa46840b 1943
Kojto 110:165afa46840b 1944 typedef struct
Kojto 110:165afa46840b 1945 {
Kojto 110:165afa46840b 1946 uint16_t numRows; /**< number of rows in the data table. */
Kojto 110:165afa46840b 1947 uint16_t numCols; /**< number of columns in the data table. */
Kojto 110:165afa46840b 1948 float32_t *pData; /**< points to the data table. */
Kojto 110:165afa46840b 1949 } arm_bilinear_interp_instance_f32;
Kojto 110:165afa46840b 1950
Kojto 110:165afa46840b 1951 /**
Kojto 110:165afa46840b 1952 * @brief Instance structure for the Q31 bilinear interpolation function.
Kojto 110:165afa46840b 1953 */
Kojto 110:165afa46840b 1954
Kojto 110:165afa46840b 1955 typedef struct
Kojto 110:165afa46840b 1956 {
Kojto 110:165afa46840b 1957 uint16_t numRows; /**< number of rows in the data table. */
Kojto 110:165afa46840b 1958 uint16_t numCols; /**< number of columns in the data table. */
Kojto 110:165afa46840b 1959 q31_t *pData; /**< points to the data table. */
Kojto 110:165afa46840b 1960 } arm_bilinear_interp_instance_q31;
Kojto 110:165afa46840b 1961
Kojto 110:165afa46840b 1962 /**
Kojto 110:165afa46840b 1963 * @brief Instance structure for the Q15 bilinear interpolation function.
Kojto 110:165afa46840b 1964 */
Kojto 110:165afa46840b 1965
Kojto 110:165afa46840b 1966 typedef struct
Kojto 110:165afa46840b 1967 {
Kojto 110:165afa46840b 1968 uint16_t numRows; /**< number of rows in the data table. */
Kojto 110:165afa46840b 1969 uint16_t numCols; /**< number of columns in the data table. */
Kojto 110:165afa46840b 1970 q15_t *pData; /**< points to the data table. */
Kojto 110:165afa46840b 1971 } arm_bilinear_interp_instance_q15;
Kojto 110:165afa46840b 1972
Kojto 110:165afa46840b 1973 /**
Kojto 110:165afa46840b 1974 * @brief Instance structure for the Q15 bilinear interpolation function.
Kojto 110:165afa46840b 1975 */
Kojto 110:165afa46840b 1976
Kojto 110:165afa46840b 1977 typedef struct
Kojto 110:165afa46840b 1978 {
Kojto 110:165afa46840b 1979 uint16_t numRows; /**< number of rows in the data table. */
Kojto 110:165afa46840b 1980 uint16_t numCols; /**< number of columns in the data table. */
Kojto 110:165afa46840b 1981 q7_t *pData; /**< points to the data table. */
Kojto 110:165afa46840b 1982 } arm_bilinear_interp_instance_q7;
Kojto 110:165afa46840b 1983
Kojto 110:165afa46840b 1984
Kojto 110:165afa46840b 1985 /**
Kojto 110:165afa46840b 1986 * @brief Q7 vector multiplication.
Kojto 110:165afa46840b 1987 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 1988 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 1989 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 1990 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 1991 * @return none.
Kojto 110:165afa46840b 1992 */
Kojto 110:165afa46840b 1993
Kojto 110:165afa46840b 1994 void arm_mult_q7(
Kojto 110:165afa46840b 1995 q7_t * pSrcA,
Kojto 110:165afa46840b 1996 q7_t * pSrcB,
Kojto 110:165afa46840b 1997 q7_t * pDst,
Kojto 110:165afa46840b 1998 uint32_t blockSize);
Kojto 110:165afa46840b 1999
Kojto 110:165afa46840b 2000 /**
Kojto 110:165afa46840b 2001 * @brief Q15 vector multiplication.
Kojto 110:165afa46840b 2002 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2003 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2004 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2005 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2006 * @return none.
Kojto 110:165afa46840b 2007 */
Kojto 110:165afa46840b 2008
Kojto 110:165afa46840b 2009 void arm_mult_q15(
Kojto 110:165afa46840b 2010 q15_t * pSrcA,
Kojto 110:165afa46840b 2011 q15_t * pSrcB,
Kojto 110:165afa46840b 2012 q15_t * pDst,
Kojto 110:165afa46840b 2013 uint32_t blockSize);
Kojto 110:165afa46840b 2014
Kojto 110:165afa46840b 2015 /**
Kojto 110:165afa46840b 2016 * @brief Q31 vector multiplication.
Kojto 110:165afa46840b 2017 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2018 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2019 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2020 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2021 * @return none.
Kojto 110:165afa46840b 2022 */
Kojto 110:165afa46840b 2023
Kojto 110:165afa46840b 2024 void arm_mult_q31(
Kojto 110:165afa46840b 2025 q31_t * pSrcA,
Kojto 110:165afa46840b 2026 q31_t * pSrcB,
Kojto 110:165afa46840b 2027 q31_t * pDst,
Kojto 110:165afa46840b 2028 uint32_t blockSize);
Kojto 110:165afa46840b 2029
Kojto 110:165afa46840b 2030 /**
Kojto 110:165afa46840b 2031 * @brief Floating-point vector multiplication.
Kojto 110:165afa46840b 2032 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2033 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2034 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2035 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2036 * @return none.
Kojto 110:165afa46840b 2037 */
Kojto 110:165afa46840b 2038
Kojto 110:165afa46840b 2039 void arm_mult_f32(
Kojto 110:165afa46840b 2040 float32_t * pSrcA,
Kojto 110:165afa46840b 2041 float32_t * pSrcB,
Kojto 110:165afa46840b 2042 float32_t * pDst,
Kojto 110:165afa46840b 2043 uint32_t blockSize);
Kojto 110:165afa46840b 2044
Kojto 110:165afa46840b 2045
Kojto 110:165afa46840b 2046
Kojto 110:165afa46840b 2047
Kojto 110:165afa46840b 2048
Kojto 110:165afa46840b 2049
Kojto 110:165afa46840b 2050 /**
Kojto 110:165afa46840b 2051 * @brief Instance structure for the Q15 CFFT/CIFFT function.
Kojto 110:165afa46840b 2052 */
Kojto 110:165afa46840b 2053
Kojto 110:165afa46840b 2054 typedef struct
Kojto 110:165afa46840b 2055 {
Kojto 110:165afa46840b 2056 uint16_t fftLen; /**< length of the FFT. */
Kojto 110:165afa46840b 2057 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 110:165afa46840b 2058 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 110:165afa46840b 2059 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
Kojto 110:165afa46840b 2060 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 110:165afa46840b 2061 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 110:165afa46840b 2062 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 110:165afa46840b 2063 } arm_cfft_radix2_instance_q15;
Kojto 110:165afa46840b 2064
Kojto 110:165afa46840b 2065 /* Deprecated */
Kojto 110:165afa46840b 2066 arm_status arm_cfft_radix2_init_q15(
Kojto 110:165afa46840b 2067 arm_cfft_radix2_instance_q15 * S,
Kojto 110:165afa46840b 2068 uint16_t fftLen,
Kojto 110:165afa46840b 2069 uint8_t ifftFlag,
Kojto 110:165afa46840b 2070 uint8_t bitReverseFlag);
Kojto 110:165afa46840b 2071
Kojto 110:165afa46840b 2072 /* Deprecated */
Kojto 110:165afa46840b 2073 void arm_cfft_radix2_q15(
Kojto 110:165afa46840b 2074 const arm_cfft_radix2_instance_q15 * S,
Kojto 110:165afa46840b 2075 q15_t * pSrc);
Kojto 110:165afa46840b 2076
Kojto 110:165afa46840b 2077
Kojto 110:165afa46840b 2078
Kojto 110:165afa46840b 2079 /**
Kojto 110:165afa46840b 2080 * @brief Instance structure for the Q15 CFFT/CIFFT function.
Kojto 110:165afa46840b 2081 */
Kojto 110:165afa46840b 2082
Kojto 110:165afa46840b 2083 typedef struct
Kojto 110:165afa46840b 2084 {
Kojto 110:165afa46840b 2085 uint16_t fftLen; /**< length of the FFT. */
Kojto 110:165afa46840b 2086 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 110:165afa46840b 2087 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 110:165afa46840b 2088 q15_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 110:165afa46840b 2089 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 110:165afa46840b 2090 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 110:165afa46840b 2091 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 110:165afa46840b 2092 } arm_cfft_radix4_instance_q15;
Kojto 110:165afa46840b 2093
Kojto 110:165afa46840b 2094 /* Deprecated */
Kojto 110:165afa46840b 2095 arm_status arm_cfft_radix4_init_q15(
Kojto 110:165afa46840b 2096 arm_cfft_radix4_instance_q15 * S,
Kojto 110:165afa46840b 2097 uint16_t fftLen,
Kojto 110:165afa46840b 2098 uint8_t ifftFlag,
Kojto 110:165afa46840b 2099 uint8_t bitReverseFlag);
Kojto 110:165afa46840b 2100
Kojto 110:165afa46840b 2101 /* Deprecated */
Kojto 110:165afa46840b 2102 void arm_cfft_radix4_q15(
Kojto 110:165afa46840b 2103 const arm_cfft_radix4_instance_q15 * S,
Kojto 110:165afa46840b 2104 q15_t * pSrc);
Kojto 110:165afa46840b 2105
Kojto 110:165afa46840b 2106 /**
Kojto 110:165afa46840b 2107 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
Kojto 110:165afa46840b 2108 */
Kojto 110:165afa46840b 2109
Kojto 110:165afa46840b 2110 typedef struct
Kojto 110:165afa46840b 2111 {
Kojto 110:165afa46840b 2112 uint16_t fftLen; /**< length of the FFT. */
Kojto 110:165afa46840b 2113 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 110:165afa46840b 2114 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 110:165afa46840b 2115 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 110:165afa46840b 2116 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 110:165afa46840b 2117 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 110:165afa46840b 2118 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 110:165afa46840b 2119 } arm_cfft_radix2_instance_q31;
Kojto 110:165afa46840b 2120
Kojto 110:165afa46840b 2121 /* Deprecated */
Kojto 110:165afa46840b 2122 arm_status arm_cfft_radix2_init_q31(
Kojto 110:165afa46840b 2123 arm_cfft_radix2_instance_q31 * S,
Kojto 110:165afa46840b 2124 uint16_t fftLen,
Kojto 110:165afa46840b 2125 uint8_t ifftFlag,
Kojto 110:165afa46840b 2126 uint8_t bitReverseFlag);
Kojto 110:165afa46840b 2127
Kojto 110:165afa46840b 2128 /* Deprecated */
Kojto 110:165afa46840b 2129 void arm_cfft_radix2_q31(
Kojto 110:165afa46840b 2130 const arm_cfft_radix2_instance_q31 * S,
Kojto 110:165afa46840b 2131 q31_t * pSrc);
Kojto 110:165afa46840b 2132
Kojto 110:165afa46840b 2133 /**
Kojto 110:165afa46840b 2134 * @brief Instance structure for the Q31 CFFT/CIFFT function.
Kojto 110:165afa46840b 2135 */
Kojto 110:165afa46840b 2136
Kojto 110:165afa46840b 2137 typedef struct
Kojto 110:165afa46840b 2138 {
Kojto 110:165afa46840b 2139 uint16_t fftLen; /**< length of the FFT. */
Kojto 110:165afa46840b 2140 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 110:165afa46840b 2141 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 110:165afa46840b 2142 q31_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 110:165afa46840b 2143 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 110:165afa46840b 2144 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 110:165afa46840b 2145 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 110:165afa46840b 2146 } arm_cfft_radix4_instance_q31;
Kojto 110:165afa46840b 2147
Kojto 110:165afa46840b 2148 /* Deprecated */
Kojto 110:165afa46840b 2149 void arm_cfft_radix4_q31(
Kojto 110:165afa46840b 2150 const arm_cfft_radix4_instance_q31 * S,
Kojto 110:165afa46840b 2151 q31_t * pSrc);
Kojto 110:165afa46840b 2152
Kojto 110:165afa46840b 2153 /* Deprecated */
Kojto 110:165afa46840b 2154 arm_status arm_cfft_radix4_init_q31(
Kojto 110:165afa46840b 2155 arm_cfft_radix4_instance_q31 * S,
Kojto 110:165afa46840b 2156 uint16_t fftLen,
Kojto 110:165afa46840b 2157 uint8_t ifftFlag,
Kojto 110:165afa46840b 2158 uint8_t bitReverseFlag);
Kojto 110:165afa46840b 2159
Kojto 110:165afa46840b 2160 /**
Kojto 110:165afa46840b 2161 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 110:165afa46840b 2162 */
Kojto 110:165afa46840b 2163
Kojto 110:165afa46840b 2164 typedef struct
Kojto 110:165afa46840b 2165 {
Kojto 110:165afa46840b 2166 uint16_t fftLen; /**< length of the FFT. */
Kojto 110:165afa46840b 2167 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 110:165afa46840b 2168 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 110:165afa46840b 2169 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 110:165afa46840b 2170 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 110:165afa46840b 2171 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 110:165afa46840b 2172 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 110:165afa46840b 2173 float32_t onebyfftLen; /**< value of 1/fftLen. */
Kojto 110:165afa46840b 2174 } arm_cfft_radix2_instance_f32;
Kojto 110:165afa46840b 2175
Kojto 110:165afa46840b 2176 /* Deprecated */
Kojto 110:165afa46840b 2177 arm_status arm_cfft_radix2_init_f32(
Kojto 110:165afa46840b 2178 arm_cfft_radix2_instance_f32 * S,
Kojto 110:165afa46840b 2179 uint16_t fftLen,
Kojto 110:165afa46840b 2180 uint8_t ifftFlag,
Kojto 110:165afa46840b 2181 uint8_t bitReverseFlag);
Kojto 110:165afa46840b 2182
Kojto 110:165afa46840b 2183 /* Deprecated */
Kojto 110:165afa46840b 2184 void arm_cfft_radix2_f32(
Kojto 110:165afa46840b 2185 const arm_cfft_radix2_instance_f32 * S,
Kojto 110:165afa46840b 2186 float32_t * pSrc);
Kojto 110:165afa46840b 2187
Kojto 110:165afa46840b 2188 /**
Kojto 110:165afa46840b 2189 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 110:165afa46840b 2190 */
Kojto 110:165afa46840b 2191
Kojto 110:165afa46840b 2192 typedef struct
Kojto 110:165afa46840b 2193 {
Kojto 110:165afa46840b 2194 uint16_t fftLen; /**< length of the FFT. */
Kojto 110:165afa46840b 2195 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 110:165afa46840b 2196 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 110:165afa46840b 2197 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 110:165afa46840b 2198 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 110:165afa46840b 2199 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 110:165afa46840b 2200 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 110:165afa46840b 2201 float32_t onebyfftLen; /**< value of 1/fftLen. */
Kojto 110:165afa46840b 2202 } arm_cfft_radix4_instance_f32;
Kojto 110:165afa46840b 2203
Kojto 110:165afa46840b 2204 /* Deprecated */
Kojto 110:165afa46840b 2205 arm_status arm_cfft_radix4_init_f32(
Kojto 110:165afa46840b 2206 arm_cfft_radix4_instance_f32 * S,
Kojto 110:165afa46840b 2207 uint16_t fftLen,
Kojto 110:165afa46840b 2208 uint8_t ifftFlag,
Kojto 110:165afa46840b 2209 uint8_t bitReverseFlag);
Kojto 110:165afa46840b 2210
Kojto 110:165afa46840b 2211 /* Deprecated */
Kojto 110:165afa46840b 2212 void arm_cfft_radix4_f32(
Kojto 110:165afa46840b 2213 const arm_cfft_radix4_instance_f32 * S,
Kojto 110:165afa46840b 2214 float32_t * pSrc);
Kojto 110:165afa46840b 2215
Kojto 110:165afa46840b 2216 /**
Kojto 110:165afa46840b 2217 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
Kojto 110:165afa46840b 2218 */
Kojto 110:165afa46840b 2219
Kojto 110:165afa46840b 2220 typedef struct
Kojto 110:165afa46840b 2221 {
Kojto 110:165afa46840b 2222 uint16_t fftLen; /**< length of the FFT. */
Kojto 110:165afa46840b 2223 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 110:165afa46840b 2224 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 110:165afa46840b 2225 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 110:165afa46840b 2226 } arm_cfft_instance_q15;
Kojto 110:165afa46840b 2227
Kojto 110:165afa46840b 2228 void arm_cfft_q15(
Kojto 110:165afa46840b 2229 const arm_cfft_instance_q15 * S,
Kojto 110:165afa46840b 2230 q15_t * p1,
Kojto 110:165afa46840b 2231 uint8_t ifftFlag,
Kojto 110:165afa46840b 2232 uint8_t bitReverseFlag);
Kojto 110:165afa46840b 2233
Kojto 110:165afa46840b 2234 /**
Kojto 110:165afa46840b 2235 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
Kojto 110:165afa46840b 2236 */
Kojto 110:165afa46840b 2237
Kojto 110:165afa46840b 2238 typedef struct
Kojto 110:165afa46840b 2239 {
Kojto 110:165afa46840b 2240 uint16_t fftLen; /**< length of the FFT. */
Kojto 110:165afa46840b 2241 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 110:165afa46840b 2242 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 110:165afa46840b 2243 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 110:165afa46840b 2244 } arm_cfft_instance_q31;
Kojto 110:165afa46840b 2245
Kojto 110:165afa46840b 2246 void arm_cfft_q31(
Kojto 110:165afa46840b 2247 const arm_cfft_instance_q31 * S,
Kojto 110:165afa46840b 2248 q31_t * p1,
Kojto 110:165afa46840b 2249 uint8_t ifftFlag,
Kojto 110:165afa46840b 2250 uint8_t bitReverseFlag);
Kojto 110:165afa46840b 2251
Kojto 110:165afa46840b 2252 /**
Kojto 110:165afa46840b 2253 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 110:165afa46840b 2254 */
Kojto 110:165afa46840b 2255
Kojto 110:165afa46840b 2256 typedef struct
Kojto 110:165afa46840b 2257 {
Kojto 110:165afa46840b 2258 uint16_t fftLen; /**< length of the FFT. */
Kojto 110:165afa46840b 2259 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 110:165afa46840b 2260 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 110:165afa46840b 2261 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 110:165afa46840b 2262 } arm_cfft_instance_f32;
Kojto 110:165afa46840b 2263
Kojto 110:165afa46840b 2264 void arm_cfft_f32(
Kojto 110:165afa46840b 2265 const arm_cfft_instance_f32 * S,
Kojto 110:165afa46840b 2266 float32_t * p1,
Kojto 110:165afa46840b 2267 uint8_t ifftFlag,
Kojto 110:165afa46840b 2268 uint8_t bitReverseFlag);
Kojto 110:165afa46840b 2269
Kojto 110:165afa46840b 2270 /**
Kojto 110:165afa46840b 2271 * @brief Instance structure for the Q15 RFFT/RIFFT function.
Kojto 110:165afa46840b 2272 */
Kojto 110:165afa46840b 2273
Kojto 110:165afa46840b 2274 typedef struct
Kojto 110:165afa46840b 2275 {
Kojto 110:165afa46840b 2276 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 110:165afa46840b 2277 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 110:165afa46840b 2278 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 110:165afa46840b 2279 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 110:165afa46840b 2280 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 110:165afa46840b 2281 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 110:165afa46840b 2282 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
Kojto 110:165afa46840b 2283 } arm_rfft_instance_q15;
Kojto 110:165afa46840b 2284
Kojto 110:165afa46840b 2285 arm_status arm_rfft_init_q15(
Kojto 110:165afa46840b 2286 arm_rfft_instance_q15 * S,
Kojto 110:165afa46840b 2287 uint32_t fftLenReal,
Kojto 110:165afa46840b 2288 uint32_t ifftFlagR,
Kojto 110:165afa46840b 2289 uint32_t bitReverseFlag);
Kojto 110:165afa46840b 2290
Kojto 110:165afa46840b 2291 void arm_rfft_q15(
Kojto 110:165afa46840b 2292 const arm_rfft_instance_q15 * S,
Kojto 110:165afa46840b 2293 q15_t * pSrc,
Kojto 110:165afa46840b 2294 q15_t * pDst);
Kojto 110:165afa46840b 2295
Kojto 110:165afa46840b 2296 /**
Kojto 110:165afa46840b 2297 * @brief Instance structure for the Q31 RFFT/RIFFT function.
Kojto 110:165afa46840b 2298 */
Kojto 110:165afa46840b 2299
Kojto 110:165afa46840b 2300 typedef struct
Kojto 110:165afa46840b 2301 {
Kojto 110:165afa46840b 2302 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 110:165afa46840b 2303 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 110:165afa46840b 2304 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 110:165afa46840b 2305 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 110:165afa46840b 2306 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 110:165afa46840b 2307 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 110:165afa46840b 2308 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
Kojto 110:165afa46840b 2309 } arm_rfft_instance_q31;
Kojto 110:165afa46840b 2310
Kojto 110:165afa46840b 2311 arm_status arm_rfft_init_q31(
Kojto 110:165afa46840b 2312 arm_rfft_instance_q31 * S,
Kojto 110:165afa46840b 2313 uint32_t fftLenReal,
Kojto 110:165afa46840b 2314 uint32_t ifftFlagR,
Kojto 110:165afa46840b 2315 uint32_t bitReverseFlag);
Kojto 110:165afa46840b 2316
Kojto 110:165afa46840b 2317 void arm_rfft_q31(
Kojto 110:165afa46840b 2318 const arm_rfft_instance_q31 * S,
Kojto 110:165afa46840b 2319 q31_t * pSrc,
Kojto 110:165afa46840b 2320 q31_t * pDst);
Kojto 110:165afa46840b 2321
Kojto 110:165afa46840b 2322 /**
Kojto 110:165afa46840b 2323 * @brief Instance structure for the floating-point RFFT/RIFFT function.
Kojto 110:165afa46840b 2324 */
Kojto 110:165afa46840b 2325
Kojto 110:165afa46840b 2326 typedef struct
Kojto 110:165afa46840b 2327 {
Kojto 110:165afa46840b 2328 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 110:165afa46840b 2329 uint16_t fftLenBy2; /**< length of the complex FFT. */
Kojto 110:165afa46840b 2330 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 110:165afa46840b 2331 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 110:165afa46840b 2332 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 110:165afa46840b 2333 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 110:165afa46840b 2334 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 110:165afa46840b 2335 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
Kojto 110:165afa46840b 2336 } arm_rfft_instance_f32;
Kojto 110:165afa46840b 2337
Kojto 110:165afa46840b 2338 arm_status arm_rfft_init_f32(
Kojto 110:165afa46840b 2339 arm_rfft_instance_f32 * S,
Kojto 110:165afa46840b 2340 arm_cfft_radix4_instance_f32 * S_CFFT,
Kojto 110:165afa46840b 2341 uint32_t fftLenReal,
Kojto 110:165afa46840b 2342 uint32_t ifftFlagR,
Kojto 110:165afa46840b 2343 uint32_t bitReverseFlag);
Kojto 110:165afa46840b 2344
Kojto 110:165afa46840b 2345 void arm_rfft_f32(
Kojto 110:165afa46840b 2346 const arm_rfft_instance_f32 * S,
Kojto 110:165afa46840b 2347 float32_t * pSrc,
Kojto 110:165afa46840b 2348 float32_t * pDst);
Kojto 110:165afa46840b 2349
Kojto 110:165afa46840b 2350 /**
Kojto 110:165afa46840b 2351 * @brief Instance structure for the floating-point RFFT/RIFFT function.
Kojto 110:165afa46840b 2352 */
Kojto 110:165afa46840b 2353
Kojto 110:165afa46840b 2354 typedef struct
Kojto 110:165afa46840b 2355 {
Kojto 110:165afa46840b 2356 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
Kojto 110:165afa46840b 2357 uint16_t fftLenRFFT; /**< length of the real sequence */
Kojto 110:165afa46840b 2358 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
Kojto 110:165afa46840b 2359 } arm_rfft_fast_instance_f32 ;
Kojto 110:165afa46840b 2360
Kojto 110:165afa46840b 2361 arm_status arm_rfft_fast_init_f32 (
Kojto 110:165afa46840b 2362 arm_rfft_fast_instance_f32 * S,
Kojto 110:165afa46840b 2363 uint16_t fftLen);
Kojto 110:165afa46840b 2364
Kojto 110:165afa46840b 2365 void arm_rfft_fast_f32(
Kojto 110:165afa46840b 2366 arm_rfft_fast_instance_f32 * S,
Kojto 110:165afa46840b 2367 float32_t * p, float32_t * pOut,
Kojto 110:165afa46840b 2368 uint8_t ifftFlag);
Kojto 110:165afa46840b 2369
Kojto 110:165afa46840b 2370 /**
Kojto 110:165afa46840b 2371 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
Kojto 110:165afa46840b 2372 */
Kojto 110:165afa46840b 2373
Kojto 110:165afa46840b 2374 typedef struct
Kojto 110:165afa46840b 2375 {
Kojto 110:165afa46840b 2376 uint16_t N; /**< length of the DCT4. */
Kojto 110:165afa46840b 2377 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 110:165afa46840b 2378 float32_t normalize; /**< normalizing factor. */
Kojto 110:165afa46840b 2379 float32_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 110:165afa46840b 2380 float32_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 110:165afa46840b 2381 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
Kojto 110:165afa46840b 2382 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
Kojto 110:165afa46840b 2383 } arm_dct4_instance_f32;
Kojto 110:165afa46840b 2384
Kojto 110:165afa46840b 2385 /**
Kojto 110:165afa46840b 2386 * @brief Initialization function for the floating-point DCT4/IDCT4.
Kojto 110:165afa46840b 2387 * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
Kojto 110:165afa46840b 2388 * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
Kojto 110:165afa46840b 2389 * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
Kojto 110:165afa46840b 2390 * @param[in] N length of the DCT4.
Kojto 110:165afa46840b 2391 * @param[in] Nby2 half of the length of the DCT4.
Kojto 110:165afa46840b 2392 * @param[in] normalize normalizing factor.
Kojto 110:165afa46840b 2393 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
Kojto 110:165afa46840b 2394 */
Kojto 110:165afa46840b 2395
Kojto 110:165afa46840b 2396 arm_status arm_dct4_init_f32(
Kojto 110:165afa46840b 2397 arm_dct4_instance_f32 * S,
Kojto 110:165afa46840b 2398 arm_rfft_instance_f32 * S_RFFT,
Kojto 110:165afa46840b 2399 arm_cfft_radix4_instance_f32 * S_CFFT,
Kojto 110:165afa46840b 2400 uint16_t N,
Kojto 110:165afa46840b 2401 uint16_t Nby2,
Kojto 110:165afa46840b 2402 float32_t normalize);
Kojto 110:165afa46840b 2403
Kojto 110:165afa46840b 2404 /**
Kojto 110:165afa46840b 2405 * @brief Processing function for the floating-point DCT4/IDCT4.
Kojto 110:165afa46840b 2406 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
Kojto 110:165afa46840b 2407 * @param[in] *pState points to state buffer.
Kojto 110:165afa46840b 2408 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
Kojto 110:165afa46840b 2409 * @return none.
Kojto 110:165afa46840b 2410 */
Kojto 110:165afa46840b 2411
Kojto 110:165afa46840b 2412 void arm_dct4_f32(
Kojto 110:165afa46840b 2413 const arm_dct4_instance_f32 * S,
Kojto 110:165afa46840b 2414 float32_t * pState,
Kojto 110:165afa46840b 2415 float32_t * pInlineBuffer);
Kojto 110:165afa46840b 2416
Kojto 110:165afa46840b 2417 /**
Kojto 110:165afa46840b 2418 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
Kojto 110:165afa46840b 2419 */
Kojto 110:165afa46840b 2420
Kojto 110:165afa46840b 2421 typedef struct
Kojto 110:165afa46840b 2422 {
Kojto 110:165afa46840b 2423 uint16_t N; /**< length of the DCT4. */
Kojto 110:165afa46840b 2424 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 110:165afa46840b 2425 q31_t normalize; /**< normalizing factor. */
Kojto 110:165afa46840b 2426 q31_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 110:165afa46840b 2427 q31_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 110:165afa46840b 2428 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
Kojto 110:165afa46840b 2429 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
Kojto 110:165afa46840b 2430 } arm_dct4_instance_q31;
Kojto 110:165afa46840b 2431
Kojto 110:165afa46840b 2432 /**
Kojto 110:165afa46840b 2433 * @brief Initialization function for the Q31 DCT4/IDCT4.
Kojto 110:165afa46840b 2434 * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
Kojto 110:165afa46840b 2435 * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
Kojto 110:165afa46840b 2436 * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
Kojto 110:165afa46840b 2437 * @param[in] N length of the DCT4.
Kojto 110:165afa46840b 2438 * @param[in] Nby2 half of the length of the DCT4.
Kojto 110:165afa46840b 2439 * @param[in] normalize normalizing factor.
Kojto 110:165afa46840b 2440 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
Kojto 110:165afa46840b 2441 */
Kojto 110:165afa46840b 2442
Kojto 110:165afa46840b 2443 arm_status arm_dct4_init_q31(
Kojto 110:165afa46840b 2444 arm_dct4_instance_q31 * S,
Kojto 110:165afa46840b 2445 arm_rfft_instance_q31 * S_RFFT,
Kojto 110:165afa46840b 2446 arm_cfft_radix4_instance_q31 * S_CFFT,
Kojto 110:165afa46840b 2447 uint16_t N,
Kojto 110:165afa46840b 2448 uint16_t Nby2,
Kojto 110:165afa46840b 2449 q31_t normalize);
Kojto 110:165afa46840b 2450
Kojto 110:165afa46840b 2451 /**
Kojto 110:165afa46840b 2452 * @brief Processing function for the Q31 DCT4/IDCT4.
Kojto 110:165afa46840b 2453 * @param[in] *S points to an instance of the Q31 DCT4 structure.
Kojto 110:165afa46840b 2454 * @param[in] *pState points to state buffer.
Kojto 110:165afa46840b 2455 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
Kojto 110:165afa46840b 2456 * @return none.
Kojto 110:165afa46840b 2457 */
Kojto 110:165afa46840b 2458
Kojto 110:165afa46840b 2459 void arm_dct4_q31(
Kojto 110:165afa46840b 2460 const arm_dct4_instance_q31 * S,
Kojto 110:165afa46840b 2461 q31_t * pState,
Kojto 110:165afa46840b 2462 q31_t * pInlineBuffer);
Kojto 110:165afa46840b 2463
Kojto 110:165afa46840b 2464 /**
Kojto 110:165afa46840b 2465 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
Kojto 110:165afa46840b 2466 */
Kojto 110:165afa46840b 2467
Kojto 110:165afa46840b 2468 typedef struct
Kojto 110:165afa46840b 2469 {
Kojto 110:165afa46840b 2470 uint16_t N; /**< length of the DCT4. */
Kojto 110:165afa46840b 2471 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 110:165afa46840b 2472 q15_t normalize; /**< normalizing factor. */
Kojto 110:165afa46840b 2473 q15_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 110:165afa46840b 2474 q15_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 110:165afa46840b 2475 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
Kojto 110:165afa46840b 2476 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
Kojto 110:165afa46840b 2477 } arm_dct4_instance_q15;
Kojto 110:165afa46840b 2478
Kojto 110:165afa46840b 2479 /**
Kojto 110:165afa46840b 2480 * @brief Initialization function for the Q15 DCT4/IDCT4.
Kojto 110:165afa46840b 2481 * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
Kojto 110:165afa46840b 2482 * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
Kojto 110:165afa46840b 2483 * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
Kojto 110:165afa46840b 2484 * @param[in] N length of the DCT4.
Kojto 110:165afa46840b 2485 * @param[in] Nby2 half of the length of the DCT4.
Kojto 110:165afa46840b 2486 * @param[in] normalize normalizing factor.
Kojto 110:165afa46840b 2487 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
Kojto 110:165afa46840b 2488 */
Kojto 110:165afa46840b 2489
Kojto 110:165afa46840b 2490 arm_status arm_dct4_init_q15(
Kojto 110:165afa46840b 2491 arm_dct4_instance_q15 * S,
Kojto 110:165afa46840b 2492 arm_rfft_instance_q15 * S_RFFT,
Kojto 110:165afa46840b 2493 arm_cfft_radix4_instance_q15 * S_CFFT,
Kojto 110:165afa46840b 2494 uint16_t N,
Kojto 110:165afa46840b 2495 uint16_t Nby2,
Kojto 110:165afa46840b 2496 q15_t normalize);
Kojto 110:165afa46840b 2497
Kojto 110:165afa46840b 2498 /**
Kojto 110:165afa46840b 2499 * @brief Processing function for the Q15 DCT4/IDCT4.
Kojto 110:165afa46840b 2500 * @param[in] *S points to an instance of the Q15 DCT4 structure.
Kojto 110:165afa46840b 2501 * @param[in] *pState points to state buffer.
Kojto 110:165afa46840b 2502 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
Kojto 110:165afa46840b 2503 * @return none.
Kojto 110:165afa46840b 2504 */
Kojto 110:165afa46840b 2505
Kojto 110:165afa46840b 2506 void arm_dct4_q15(
Kojto 110:165afa46840b 2507 const arm_dct4_instance_q15 * S,
Kojto 110:165afa46840b 2508 q15_t * pState,
Kojto 110:165afa46840b 2509 q15_t * pInlineBuffer);
Kojto 110:165afa46840b 2510
Kojto 110:165afa46840b 2511 /**
Kojto 110:165afa46840b 2512 * @brief Floating-point vector addition.
Kojto 110:165afa46840b 2513 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2514 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2515 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2516 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2517 * @return none.
Kojto 110:165afa46840b 2518 */
Kojto 110:165afa46840b 2519
Kojto 110:165afa46840b 2520 void arm_add_f32(
Kojto 110:165afa46840b 2521 float32_t * pSrcA,
Kojto 110:165afa46840b 2522 float32_t * pSrcB,
Kojto 110:165afa46840b 2523 float32_t * pDst,
Kojto 110:165afa46840b 2524 uint32_t blockSize);
Kojto 110:165afa46840b 2525
Kojto 110:165afa46840b 2526 /**
Kojto 110:165afa46840b 2527 * @brief Q7 vector addition.
Kojto 110:165afa46840b 2528 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2529 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2530 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2531 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2532 * @return none.
Kojto 110:165afa46840b 2533 */
Kojto 110:165afa46840b 2534
Kojto 110:165afa46840b 2535 void arm_add_q7(
Kojto 110:165afa46840b 2536 q7_t * pSrcA,
Kojto 110:165afa46840b 2537 q7_t * pSrcB,
Kojto 110:165afa46840b 2538 q7_t * pDst,
Kojto 110:165afa46840b 2539 uint32_t blockSize);
Kojto 110:165afa46840b 2540
Kojto 110:165afa46840b 2541 /**
Kojto 110:165afa46840b 2542 * @brief Q15 vector addition.
Kojto 110:165afa46840b 2543 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2544 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2545 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2546 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2547 * @return none.
Kojto 110:165afa46840b 2548 */
Kojto 110:165afa46840b 2549
Kojto 110:165afa46840b 2550 void arm_add_q15(
Kojto 110:165afa46840b 2551 q15_t * pSrcA,
Kojto 110:165afa46840b 2552 q15_t * pSrcB,
Kojto 110:165afa46840b 2553 q15_t * pDst,
Kojto 110:165afa46840b 2554 uint32_t blockSize);
Kojto 110:165afa46840b 2555
Kojto 110:165afa46840b 2556 /**
Kojto 110:165afa46840b 2557 * @brief Q31 vector addition.
Kojto 110:165afa46840b 2558 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2559 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2560 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2561 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2562 * @return none.
Kojto 110:165afa46840b 2563 */
Kojto 110:165afa46840b 2564
Kojto 110:165afa46840b 2565 void arm_add_q31(
Kojto 110:165afa46840b 2566 q31_t * pSrcA,
Kojto 110:165afa46840b 2567 q31_t * pSrcB,
Kojto 110:165afa46840b 2568 q31_t * pDst,
Kojto 110:165afa46840b 2569 uint32_t blockSize);
Kojto 110:165afa46840b 2570
Kojto 110:165afa46840b 2571 /**
Kojto 110:165afa46840b 2572 * @brief Floating-point vector subtraction.
Kojto 110:165afa46840b 2573 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2574 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2575 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2576 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2577 * @return none.
Kojto 110:165afa46840b 2578 */
Kojto 110:165afa46840b 2579
Kojto 110:165afa46840b 2580 void arm_sub_f32(
Kojto 110:165afa46840b 2581 float32_t * pSrcA,
Kojto 110:165afa46840b 2582 float32_t * pSrcB,
Kojto 110:165afa46840b 2583 float32_t * pDst,
Kojto 110:165afa46840b 2584 uint32_t blockSize);
Kojto 110:165afa46840b 2585
Kojto 110:165afa46840b 2586 /**
Kojto 110:165afa46840b 2587 * @brief Q7 vector subtraction.
Kojto 110:165afa46840b 2588 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2589 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2590 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2591 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2592 * @return none.
Kojto 110:165afa46840b 2593 */
Kojto 110:165afa46840b 2594
Kojto 110:165afa46840b 2595 void arm_sub_q7(
Kojto 110:165afa46840b 2596 q7_t * pSrcA,
Kojto 110:165afa46840b 2597 q7_t * pSrcB,
Kojto 110:165afa46840b 2598 q7_t * pDst,
Kojto 110:165afa46840b 2599 uint32_t blockSize);
Kojto 110:165afa46840b 2600
Kojto 110:165afa46840b 2601 /**
Kojto 110:165afa46840b 2602 * @brief Q15 vector subtraction.
Kojto 110:165afa46840b 2603 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2604 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2605 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2606 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2607 * @return none.
Kojto 110:165afa46840b 2608 */
Kojto 110:165afa46840b 2609
Kojto 110:165afa46840b 2610 void arm_sub_q15(
Kojto 110:165afa46840b 2611 q15_t * pSrcA,
Kojto 110:165afa46840b 2612 q15_t * pSrcB,
Kojto 110:165afa46840b 2613 q15_t * pDst,
Kojto 110:165afa46840b 2614 uint32_t blockSize);
Kojto 110:165afa46840b 2615
Kojto 110:165afa46840b 2616 /**
Kojto 110:165afa46840b 2617 * @brief Q31 vector subtraction.
Kojto 110:165afa46840b 2618 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2619 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2620 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2621 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2622 * @return none.
Kojto 110:165afa46840b 2623 */
Kojto 110:165afa46840b 2624
Kojto 110:165afa46840b 2625 void arm_sub_q31(
Kojto 110:165afa46840b 2626 q31_t * pSrcA,
Kojto 110:165afa46840b 2627 q31_t * pSrcB,
Kojto 110:165afa46840b 2628 q31_t * pDst,
Kojto 110:165afa46840b 2629 uint32_t blockSize);
Kojto 110:165afa46840b 2630
Kojto 110:165afa46840b 2631 /**
Kojto 110:165afa46840b 2632 * @brief Multiplies a floating-point vector by a scalar.
Kojto 110:165afa46840b 2633 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2634 * @param[in] scale scale factor to be applied
Kojto 110:165afa46840b 2635 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2636 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2637 * @return none.
Kojto 110:165afa46840b 2638 */
Kojto 110:165afa46840b 2639
Kojto 110:165afa46840b 2640 void arm_scale_f32(
Kojto 110:165afa46840b 2641 float32_t * pSrc,
Kojto 110:165afa46840b 2642 float32_t scale,
Kojto 110:165afa46840b 2643 float32_t * pDst,
Kojto 110:165afa46840b 2644 uint32_t blockSize);
Kojto 110:165afa46840b 2645
Kojto 110:165afa46840b 2646 /**
Kojto 110:165afa46840b 2647 * @brief Multiplies a Q7 vector by a scalar.
Kojto 110:165afa46840b 2648 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2649 * @param[in] scaleFract fractional portion of the scale value
Kojto 110:165afa46840b 2650 * @param[in] shift number of bits to shift the result by
Kojto 110:165afa46840b 2651 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2652 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2653 * @return none.
Kojto 110:165afa46840b 2654 */
Kojto 110:165afa46840b 2655
Kojto 110:165afa46840b 2656 void arm_scale_q7(
Kojto 110:165afa46840b 2657 q7_t * pSrc,
Kojto 110:165afa46840b 2658 q7_t scaleFract,
Kojto 110:165afa46840b 2659 int8_t shift,
Kojto 110:165afa46840b 2660 q7_t * pDst,
Kojto 110:165afa46840b 2661 uint32_t blockSize);
Kojto 110:165afa46840b 2662
Kojto 110:165afa46840b 2663 /**
Kojto 110:165afa46840b 2664 * @brief Multiplies a Q15 vector by a scalar.
Kojto 110:165afa46840b 2665 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2666 * @param[in] scaleFract fractional portion of the scale value
Kojto 110:165afa46840b 2667 * @param[in] shift number of bits to shift the result by
Kojto 110:165afa46840b 2668 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2669 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2670 * @return none.
Kojto 110:165afa46840b 2671 */
Kojto 110:165afa46840b 2672
Kojto 110:165afa46840b 2673 void arm_scale_q15(
Kojto 110:165afa46840b 2674 q15_t * pSrc,
Kojto 110:165afa46840b 2675 q15_t scaleFract,
Kojto 110:165afa46840b 2676 int8_t shift,
Kojto 110:165afa46840b 2677 q15_t * pDst,
Kojto 110:165afa46840b 2678 uint32_t blockSize);
Kojto 110:165afa46840b 2679
Kojto 110:165afa46840b 2680 /**
Kojto 110:165afa46840b 2681 * @brief Multiplies a Q31 vector by a scalar.
Kojto 110:165afa46840b 2682 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2683 * @param[in] scaleFract fractional portion of the scale value
Kojto 110:165afa46840b 2684 * @param[in] shift number of bits to shift the result by
Kojto 110:165afa46840b 2685 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2686 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2687 * @return none.
Kojto 110:165afa46840b 2688 */
Kojto 110:165afa46840b 2689
Kojto 110:165afa46840b 2690 void arm_scale_q31(
Kojto 110:165afa46840b 2691 q31_t * pSrc,
Kojto 110:165afa46840b 2692 q31_t scaleFract,
Kojto 110:165afa46840b 2693 int8_t shift,
Kojto 110:165afa46840b 2694 q31_t * pDst,
Kojto 110:165afa46840b 2695 uint32_t blockSize);
Kojto 110:165afa46840b 2696
Kojto 110:165afa46840b 2697 /**
Kojto 110:165afa46840b 2698 * @brief Q7 vector absolute value.
Kojto 110:165afa46840b 2699 * @param[in] *pSrc points to the input buffer
Kojto 110:165afa46840b 2700 * @param[out] *pDst points to the output buffer
Kojto 110:165afa46840b 2701 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2702 * @return none.
Kojto 110:165afa46840b 2703 */
Kojto 110:165afa46840b 2704
Kojto 110:165afa46840b 2705 void arm_abs_q7(
Kojto 110:165afa46840b 2706 q7_t * pSrc,
Kojto 110:165afa46840b 2707 q7_t * pDst,
Kojto 110:165afa46840b 2708 uint32_t blockSize);
Kojto 110:165afa46840b 2709
Kojto 110:165afa46840b 2710 /**
Kojto 110:165afa46840b 2711 * @brief Floating-point vector absolute value.
Kojto 110:165afa46840b 2712 * @param[in] *pSrc points to the input buffer
Kojto 110:165afa46840b 2713 * @param[out] *pDst points to the output buffer
Kojto 110:165afa46840b 2714 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2715 * @return none.
Kojto 110:165afa46840b 2716 */
Kojto 110:165afa46840b 2717
Kojto 110:165afa46840b 2718 void arm_abs_f32(
Kojto 110:165afa46840b 2719 float32_t * pSrc,
Kojto 110:165afa46840b 2720 float32_t * pDst,
Kojto 110:165afa46840b 2721 uint32_t blockSize);
Kojto 110:165afa46840b 2722
Kojto 110:165afa46840b 2723 /**
Kojto 110:165afa46840b 2724 * @brief Q15 vector absolute value.
Kojto 110:165afa46840b 2725 * @param[in] *pSrc points to the input buffer
Kojto 110:165afa46840b 2726 * @param[out] *pDst points to the output buffer
Kojto 110:165afa46840b 2727 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2728 * @return none.
Kojto 110:165afa46840b 2729 */
Kojto 110:165afa46840b 2730
Kojto 110:165afa46840b 2731 void arm_abs_q15(
Kojto 110:165afa46840b 2732 q15_t * pSrc,
Kojto 110:165afa46840b 2733 q15_t * pDst,
Kojto 110:165afa46840b 2734 uint32_t blockSize);
Kojto 110:165afa46840b 2735
Kojto 110:165afa46840b 2736 /**
Kojto 110:165afa46840b 2737 * @brief Q31 vector absolute value.
Kojto 110:165afa46840b 2738 * @param[in] *pSrc points to the input buffer
Kojto 110:165afa46840b 2739 * @param[out] *pDst points to the output buffer
Kojto 110:165afa46840b 2740 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2741 * @return none.
Kojto 110:165afa46840b 2742 */
Kojto 110:165afa46840b 2743
Kojto 110:165afa46840b 2744 void arm_abs_q31(
Kojto 110:165afa46840b 2745 q31_t * pSrc,
Kojto 110:165afa46840b 2746 q31_t * pDst,
Kojto 110:165afa46840b 2747 uint32_t blockSize);
Kojto 110:165afa46840b 2748
Kojto 110:165afa46840b 2749 /**
Kojto 110:165afa46840b 2750 * @brief Dot product of floating-point vectors.
Kojto 110:165afa46840b 2751 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2752 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2753 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2754 * @param[out] *result output result returned here
Kojto 110:165afa46840b 2755 * @return none.
Kojto 110:165afa46840b 2756 */
Kojto 110:165afa46840b 2757
Kojto 110:165afa46840b 2758 void arm_dot_prod_f32(
Kojto 110:165afa46840b 2759 float32_t * pSrcA,
Kojto 110:165afa46840b 2760 float32_t * pSrcB,
Kojto 110:165afa46840b 2761 uint32_t blockSize,
Kojto 110:165afa46840b 2762 float32_t * result);
Kojto 110:165afa46840b 2763
Kojto 110:165afa46840b 2764 /**
Kojto 110:165afa46840b 2765 * @brief Dot product of Q7 vectors.
Kojto 110:165afa46840b 2766 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2767 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2768 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2769 * @param[out] *result output result returned here
Kojto 110:165afa46840b 2770 * @return none.
Kojto 110:165afa46840b 2771 */
Kojto 110:165afa46840b 2772
Kojto 110:165afa46840b 2773 void arm_dot_prod_q7(
Kojto 110:165afa46840b 2774 q7_t * pSrcA,
Kojto 110:165afa46840b 2775 q7_t * pSrcB,
Kojto 110:165afa46840b 2776 uint32_t blockSize,
Kojto 110:165afa46840b 2777 q31_t * result);
Kojto 110:165afa46840b 2778
Kojto 110:165afa46840b 2779 /**
Kojto 110:165afa46840b 2780 * @brief Dot product of Q15 vectors.
Kojto 110:165afa46840b 2781 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2782 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2783 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2784 * @param[out] *result output result returned here
Kojto 110:165afa46840b 2785 * @return none.
Kojto 110:165afa46840b 2786 */
Kojto 110:165afa46840b 2787
Kojto 110:165afa46840b 2788 void arm_dot_prod_q15(
Kojto 110:165afa46840b 2789 q15_t * pSrcA,
Kojto 110:165afa46840b 2790 q15_t * pSrcB,
Kojto 110:165afa46840b 2791 uint32_t blockSize,
Kojto 110:165afa46840b 2792 q63_t * result);
Kojto 110:165afa46840b 2793
Kojto 110:165afa46840b 2794 /**
Kojto 110:165afa46840b 2795 * @brief Dot product of Q31 vectors.
Kojto 110:165afa46840b 2796 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 2797 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 2798 * @param[in] blockSize number of samples in each vector
Kojto 110:165afa46840b 2799 * @param[out] *result output result returned here
Kojto 110:165afa46840b 2800 * @return none.
Kojto 110:165afa46840b 2801 */
Kojto 110:165afa46840b 2802
Kojto 110:165afa46840b 2803 void arm_dot_prod_q31(
Kojto 110:165afa46840b 2804 q31_t * pSrcA,
Kojto 110:165afa46840b 2805 q31_t * pSrcB,
Kojto 110:165afa46840b 2806 uint32_t blockSize,
Kojto 110:165afa46840b 2807 q63_t * result);
Kojto 110:165afa46840b 2808
Kojto 110:165afa46840b 2809 /**
Kojto 110:165afa46840b 2810 * @brief Shifts the elements of a Q7 vector a specified number of bits.
Kojto 110:165afa46840b 2811 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2812 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 110:165afa46840b 2813 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2814 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2815 * @return none.
Kojto 110:165afa46840b 2816 */
Kojto 110:165afa46840b 2817
Kojto 110:165afa46840b 2818 void arm_shift_q7(
Kojto 110:165afa46840b 2819 q7_t * pSrc,
Kojto 110:165afa46840b 2820 int8_t shiftBits,
Kojto 110:165afa46840b 2821 q7_t * pDst,
Kojto 110:165afa46840b 2822 uint32_t blockSize);
Kojto 110:165afa46840b 2823
Kojto 110:165afa46840b 2824 /**
Kojto 110:165afa46840b 2825 * @brief Shifts the elements of a Q15 vector a specified number of bits.
Kojto 110:165afa46840b 2826 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2827 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 110:165afa46840b 2828 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2829 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2830 * @return none.
Kojto 110:165afa46840b 2831 */
Kojto 110:165afa46840b 2832
Kojto 110:165afa46840b 2833 void arm_shift_q15(
Kojto 110:165afa46840b 2834 q15_t * pSrc,
Kojto 110:165afa46840b 2835 int8_t shiftBits,
Kojto 110:165afa46840b 2836 q15_t * pDst,
Kojto 110:165afa46840b 2837 uint32_t blockSize);
Kojto 110:165afa46840b 2838
Kojto 110:165afa46840b 2839 /**
Kojto 110:165afa46840b 2840 * @brief Shifts the elements of a Q31 vector a specified number of bits.
Kojto 110:165afa46840b 2841 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2842 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 110:165afa46840b 2843 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2844 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2845 * @return none.
Kojto 110:165afa46840b 2846 */
Kojto 110:165afa46840b 2847
Kojto 110:165afa46840b 2848 void arm_shift_q31(
Kojto 110:165afa46840b 2849 q31_t * pSrc,
Kojto 110:165afa46840b 2850 int8_t shiftBits,
Kojto 110:165afa46840b 2851 q31_t * pDst,
Kojto 110:165afa46840b 2852 uint32_t blockSize);
Kojto 110:165afa46840b 2853
Kojto 110:165afa46840b 2854 /**
Kojto 110:165afa46840b 2855 * @brief Adds a constant offset to a floating-point vector.
Kojto 110:165afa46840b 2856 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2857 * @param[in] offset is the offset to be added
Kojto 110:165afa46840b 2858 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2859 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2860 * @return none.
Kojto 110:165afa46840b 2861 */
Kojto 110:165afa46840b 2862
Kojto 110:165afa46840b 2863 void arm_offset_f32(
Kojto 110:165afa46840b 2864 float32_t * pSrc,
Kojto 110:165afa46840b 2865 float32_t offset,
Kojto 110:165afa46840b 2866 float32_t * pDst,
Kojto 110:165afa46840b 2867 uint32_t blockSize);
Kojto 110:165afa46840b 2868
Kojto 110:165afa46840b 2869 /**
Kojto 110:165afa46840b 2870 * @brief Adds a constant offset to a Q7 vector.
Kojto 110:165afa46840b 2871 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2872 * @param[in] offset is the offset to be added
Kojto 110:165afa46840b 2873 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2874 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2875 * @return none.
Kojto 110:165afa46840b 2876 */
Kojto 110:165afa46840b 2877
Kojto 110:165afa46840b 2878 void arm_offset_q7(
Kojto 110:165afa46840b 2879 q7_t * pSrc,
Kojto 110:165afa46840b 2880 q7_t offset,
Kojto 110:165afa46840b 2881 q7_t * pDst,
Kojto 110:165afa46840b 2882 uint32_t blockSize);
Kojto 110:165afa46840b 2883
Kojto 110:165afa46840b 2884 /**
Kojto 110:165afa46840b 2885 * @brief Adds a constant offset to a Q15 vector.
Kojto 110:165afa46840b 2886 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2887 * @param[in] offset is the offset to be added
Kojto 110:165afa46840b 2888 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2889 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2890 * @return none.
Kojto 110:165afa46840b 2891 */
Kojto 110:165afa46840b 2892
Kojto 110:165afa46840b 2893 void arm_offset_q15(
Kojto 110:165afa46840b 2894 q15_t * pSrc,
Kojto 110:165afa46840b 2895 q15_t offset,
Kojto 110:165afa46840b 2896 q15_t * pDst,
Kojto 110:165afa46840b 2897 uint32_t blockSize);
Kojto 110:165afa46840b 2898
Kojto 110:165afa46840b 2899 /**
Kojto 110:165afa46840b 2900 * @brief Adds a constant offset to a Q31 vector.
Kojto 110:165afa46840b 2901 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2902 * @param[in] offset is the offset to be added
Kojto 110:165afa46840b 2903 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2904 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2905 * @return none.
Kojto 110:165afa46840b 2906 */
Kojto 110:165afa46840b 2907
Kojto 110:165afa46840b 2908 void arm_offset_q31(
Kojto 110:165afa46840b 2909 q31_t * pSrc,
Kojto 110:165afa46840b 2910 q31_t offset,
Kojto 110:165afa46840b 2911 q31_t * pDst,
Kojto 110:165afa46840b 2912 uint32_t blockSize);
Kojto 110:165afa46840b 2913
Kojto 110:165afa46840b 2914 /**
Kojto 110:165afa46840b 2915 * @brief Negates the elements of a floating-point vector.
Kojto 110:165afa46840b 2916 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2917 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2918 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2919 * @return none.
Kojto 110:165afa46840b 2920 */
Kojto 110:165afa46840b 2921
Kojto 110:165afa46840b 2922 void arm_negate_f32(
Kojto 110:165afa46840b 2923 float32_t * pSrc,
Kojto 110:165afa46840b 2924 float32_t * pDst,
Kojto 110:165afa46840b 2925 uint32_t blockSize);
Kojto 110:165afa46840b 2926
Kojto 110:165afa46840b 2927 /**
Kojto 110:165afa46840b 2928 * @brief Negates the elements of a Q7 vector.
Kojto 110:165afa46840b 2929 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2930 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2931 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2932 * @return none.
Kojto 110:165afa46840b 2933 */
Kojto 110:165afa46840b 2934
Kojto 110:165afa46840b 2935 void arm_negate_q7(
Kojto 110:165afa46840b 2936 q7_t * pSrc,
Kojto 110:165afa46840b 2937 q7_t * pDst,
Kojto 110:165afa46840b 2938 uint32_t blockSize);
Kojto 110:165afa46840b 2939
Kojto 110:165afa46840b 2940 /**
Kojto 110:165afa46840b 2941 * @brief Negates the elements of a Q15 vector.
Kojto 110:165afa46840b 2942 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2943 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2944 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2945 * @return none.
Kojto 110:165afa46840b 2946 */
Kojto 110:165afa46840b 2947
Kojto 110:165afa46840b 2948 void arm_negate_q15(
Kojto 110:165afa46840b 2949 q15_t * pSrc,
Kojto 110:165afa46840b 2950 q15_t * pDst,
Kojto 110:165afa46840b 2951 uint32_t blockSize);
Kojto 110:165afa46840b 2952
Kojto 110:165afa46840b 2953 /**
Kojto 110:165afa46840b 2954 * @brief Negates the elements of a Q31 vector.
Kojto 110:165afa46840b 2955 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 2956 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 2957 * @param[in] blockSize number of samples in the vector
Kojto 110:165afa46840b 2958 * @return none.
Kojto 110:165afa46840b 2959 */
Kojto 110:165afa46840b 2960
Kojto 110:165afa46840b 2961 void arm_negate_q31(
Kojto 110:165afa46840b 2962 q31_t * pSrc,
Kojto 110:165afa46840b 2963 q31_t * pDst,
Kojto 110:165afa46840b 2964 uint32_t blockSize);
Kojto 110:165afa46840b 2965 /**
Kojto 110:165afa46840b 2966 * @brief Copies the elements of a floating-point vector.
Kojto 110:165afa46840b 2967 * @param[in] *pSrc input pointer
Kojto 110:165afa46840b 2968 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 2969 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 2970 * @return none.
Kojto 110:165afa46840b 2971 */
Kojto 110:165afa46840b 2972 void arm_copy_f32(
Kojto 110:165afa46840b 2973 float32_t * pSrc,
Kojto 110:165afa46840b 2974 float32_t * pDst,
Kojto 110:165afa46840b 2975 uint32_t blockSize);
Kojto 110:165afa46840b 2976
Kojto 110:165afa46840b 2977 /**
Kojto 110:165afa46840b 2978 * @brief Copies the elements of a Q7 vector.
Kojto 110:165afa46840b 2979 * @param[in] *pSrc input pointer
Kojto 110:165afa46840b 2980 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 2981 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 2982 * @return none.
Kojto 110:165afa46840b 2983 */
Kojto 110:165afa46840b 2984 void arm_copy_q7(
Kojto 110:165afa46840b 2985 q7_t * pSrc,
Kojto 110:165afa46840b 2986 q7_t * pDst,
Kojto 110:165afa46840b 2987 uint32_t blockSize);
Kojto 110:165afa46840b 2988
Kojto 110:165afa46840b 2989 /**
Kojto 110:165afa46840b 2990 * @brief Copies the elements of a Q15 vector.
Kojto 110:165afa46840b 2991 * @param[in] *pSrc input pointer
Kojto 110:165afa46840b 2992 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 2993 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 2994 * @return none.
Kojto 110:165afa46840b 2995 */
Kojto 110:165afa46840b 2996 void arm_copy_q15(
Kojto 110:165afa46840b 2997 q15_t * pSrc,
Kojto 110:165afa46840b 2998 q15_t * pDst,
Kojto 110:165afa46840b 2999 uint32_t blockSize);
Kojto 110:165afa46840b 3000
Kojto 110:165afa46840b 3001 /**
Kojto 110:165afa46840b 3002 * @brief Copies the elements of a Q31 vector.
Kojto 110:165afa46840b 3003 * @param[in] *pSrc input pointer
Kojto 110:165afa46840b 3004 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 3005 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 3006 * @return none.
Kojto 110:165afa46840b 3007 */
Kojto 110:165afa46840b 3008 void arm_copy_q31(
Kojto 110:165afa46840b 3009 q31_t * pSrc,
Kojto 110:165afa46840b 3010 q31_t * pDst,
Kojto 110:165afa46840b 3011 uint32_t blockSize);
Kojto 110:165afa46840b 3012 /**
Kojto 110:165afa46840b 3013 * @brief Fills a constant value into a floating-point vector.
Kojto 110:165afa46840b 3014 * @param[in] value input value to be filled
Kojto 110:165afa46840b 3015 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 3016 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 3017 * @return none.
Kojto 110:165afa46840b 3018 */
Kojto 110:165afa46840b 3019 void arm_fill_f32(
Kojto 110:165afa46840b 3020 float32_t value,
Kojto 110:165afa46840b 3021 float32_t * pDst,
Kojto 110:165afa46840b 3022 uint32_t blockSize);
Kojto 110:165afa46840b 3023
Kojto 110:165afa46840b 3024 /**
Kojto 110:165afa46840b 3025 * @brief Fills a constant value into a Q7 vector.
Kojto 110:165afa46840b 3026 * @param[in] value input value to be filled
Kojto 110:165afa46840b 3027 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 3028 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 3029 * @return none.
Kojto 110:165afa46840b 3030 */
Kojto 110:165afa46840b 3031 void arm_fill_q7(
Kojto 110:165afa46840b 3032 q7_t value,
Kojto 110:165afa46840b 3033 q7_t * pDst,
Kojto 110:165afa46840b 3034 uint32_t blockSize);
Kojto 110:165afa46840b 3035
Kojto 110:165afa46840b 3036 /**
Kojto 110:165afa46840b 3037 * @brief Fills a constant value into a Q15 vector.
Kojto 110:165afa46840b 3038 * @param[in] value input value to be filled
Kojto 110:165afa46840b 3039 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 3040 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 3041 * @return none.
Kojto 110:165afa46840b 3042 */
Kojto 110:165afa46840b 3043 void arm_fill_q15(
Kojto 110:165afa46840b 3044 q15_t value,
Kojto 110:165afa46840b 3045 q15_t * pDst,
Kojto 110:165afa46840b 3046 uint32_t blockSize);
Kojto 110:165afa46840b 3047
Kojto 110:165afa46840b 3048 /**
Kojto 110:165afa46840b 3049 * @brief Fills a constant value into a Q31 vector.
Kojto 110:165afa46840b 3050 * @param[in] value input value to be filled
Kojto 110:165afa46840b 3051 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 3052 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 3053 * @return none.
Kojto 110:165afa46840b 3054 */
Kojto 110:165afa46840b 3055 void arm_fill_q31(
Kojto 110:165afa46840b 3056 q31_t value,
Kojto 110:165afa46840b 3057 q31_t * pDst,
Kojto 110:165afa46840b 3058 uint32_t blockSize);
Kojto 110:165afa46840b 3059
Kojto 110:165afa46840b 3060 /**
Kojto 110:165afa46840b 3061 * @brief Convolution of floating-point sequences.
Kojto 110:165afa46840b 3062 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3063 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3064 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3065 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3066 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
Kojto 110:165afa46840b 3067 * @return none.
Kojto 110:165afa46840b 3068 */
Kojto 110:165afa46840b 3069
Kojto 110:165afa46840b 3070 void arm_conv_f32(
Kojto 110:165afa46840b 3071 float32_t * pSrcA,
Kojto 110:165afa46840b 3072 uint32_t srcALen,
Kojto 110:165afa46840b 3073 float32_t * pSrcB,
Kojto 110:165afa46840b 3074 uint32_t srcBLen,
Kojto 110:165afa46840b 3075 float32_t * pDst);
Kojto 110:165afa46840b 3076
Kojto 110:165afa46840b 3077
Kojto 110:165afa46840b 3078 /**
Kojto 110:165afa46840b 3079 * @brief Convolution of Q15 sequences.
Kojto 110:165afa46840b 3080 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3081 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3082 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3083 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3084 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 110:165afa46840b 3085 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 110:165afa46840b 3086 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 110:165afa46840b 3087 * @return none.
Kojto 110:165afa46840b 3088 */
Kojto 110:165afa46840b 3089
Kojto 110:165afa46840b 3090
Kojto 110:165afa46840b 3091 void arm_conv_opt_q15(
Kojto 110:165afa46840b 3092 q15_t * pSrcA,
Kojto 110:165afa46840b 3093 uint32_t srcALen,
Kojto 110:165afa46840b 3094 q15_t * pSrcB,
Kojto 110:165afa46840b 3095 uint32_t srcBLen,
Kojto 110:165afa46840b 3096 q15_t * pDst,
Kojto 110:165afa46840b 3097 q15_t * pScratch1,
Kojto 110:165afa46840b 3098 q15_t * pScratch2);
Kojto 110:165afa46840b 3099
Kojto 110:165afa46840b 3100
Kojto 110:165afa46840b 3101 /**
Kojto 110:165afa46840b 3102 * @brief Convolution of Q15 sequences.
Kojto 110:165afa46840b 3103 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3104 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3105 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3106 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3107 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
Kojto 110:165afa46840b 3108 * @return none.
Kojto 110:165afa46840b 3109 */
Kojto 110:165afa46840b 3110
Kojto 110:165afa46840b 3111 void arm_conv_q15(
Kojto 110:165afa46840b 3112 q15_t * pSrcA,
Kojto 110:165afa46840b 3113 uint32_t srcALen,
Kojto 110:165afa46840b 3114 q15_t * pSrcB,
Kojto 110:165afa46840b 3115 uint32_t srcBLen,
Kojto 110:165afa46840b 3116 q15_t * pDst);
Kojto 110:165afa46840b 3117
Kojto 110:165afa46840b 3118 /**
Kojto 110:165afa46840b 3119 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 110:165afa46840b 3120 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3121 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3122 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3123 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3124 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 110:165afa46840b 3125 * @return none.
Kojto 110:165afa46840b 3126 */
Kojto 110:165afa46840b 3127
Kojto 110:165afa46840b 3128 void arm_conv_fast_q15(
Kojto 110:165afa46840b 3129 q15_t * pSrcA,
Kojto 110:165afa46840b 3130 uint32_t srcALen,
Kojto 110:165afa46840b 3131 q15_t * pSrcB,
Kojto 110:165afa46840b 3132 uint32_t srcBLen,
Kojto 110:165afa46840b 3133 q15_t * pDst);
Kojto 110:165afa46840b 3134
Kojto 110:165afa46840b 3135 /**
Kojto 110:165afa46840b 3136 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 110:165afa46840b 3137 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3138 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3139 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3140 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3141 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 110:165afa46840b 3142 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 110:165afa46840b 3143 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 110:165afa46840b 3144 * @return none.
Kojto 110:165afa46840b 3145 */
Kojto 110:165afa46840b 3146
Kojto 110:165afa46840b 3147 void arm_conv_fast_opt_q15(
Kojto 110:165afa46840b 3148 q15_t * pSrcA,
Kojto 110:165afa46840b 3149 uint32_t srcALen,
Kojto 110:165afa46840b 3150 q15_t * pSrcB,
Kojto 110:165afa46840b 3151 uint32_t srcBLen,
Kojto 110:165afa46840b 3152 q15_t * pDst,
Kojto 110:165afa46840b 3153 q15_t * pScratch1,
Kojto 110:165afa46840b 3154 q15_t * pScratch2);
Kojto 110:165afa46840b 3155
Kojto 110:165afa46840b 3156
Kojto 110:165afa46840b 3157
Kojto 110:165afa46840b 3158 /**
Kojto 110:165afa46840b 3159 * @brief Convolution of Q31 sequences.
Kojto 110:165afa46840b 3160 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3161 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3162 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3163 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3164 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 110:165afa46840b 3165 * @return none.
Kojto 110:165afa46840b 3166 */
Kojto 110:165afa46840b 3167
Kojto 110:165afa46840b 3168 void arm_conv_q31(
Kojto 110:165afa46840b 3169 q31_t * pSrcA,
Kojto 110:165afa46840b 3170 uint32_t srcALen,
Kojto 110:165afa46840b 3171 q31_t * pSrcB,
Kojto 110:165afa46840b 3172 uint32_t srcBLen,
Kojto 110:165afa46840b 3173 q31_t * pDst);
Kojto 110:165afa46840b 3174
Kojto 110:165afa46840b 3175 /**
Kojto 110:165afa46840b 3176 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 110:165afa46840b 3177 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3178 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3179 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3180 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3181 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 110:165afa46840b 3182 * @return none.
Kojto 110:165afa46840b 3183 */
Kojto 110:165afa46840b 3184
Kojto 110:165afa46840b 3185 void arm_conv_fast_q31(
Kojto 110:165afa46840b 3186 q31_t * pSrcA,
Kojto 110:165afa46840b 3187 uint32_t srcALen,
Kojto 110:165afa46840b 3188 q31_t * pSrcB,
Kojto 110:165afa46840b 3189 uint32_t srcBLen,
Kojto 110:165afa46840b 3190 q31_t * pDst);
Kojto 110:165afa46840b 3191
Kojto 110:165afa46840b 3192
Kojto 110:165afa46840b 3193 /**
Kojto 110:165afa46840b 3194 * @brief Convolution of Q7 sequences.
Kojto 110:165afa46840b 3195 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3196 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3197 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3198 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3199 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 110:165afa46840b 3200 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 110:165afa46840b 3201 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 110:165afa46840b 3202 * @return none.
Kojto 110:165afa46840b 3203 */
Kojto 110:165afa46840b 3204
Kojto 110:165afa46840b 3205 void arm_conv_opt_q7(
Kojto 110:165afa46840b 3206 q7_t * pSrcA,
Kojto 110:165afa46840b 3207 uint32_t srcALen,
Kojto 110:165afa46840b 3208 q7_t * pSrcB,
Kojto 110:165afa46840b 3209 uint32_t srcBLen,
Kojto 110:165afa46840b 3210 q7_t * pDst,
Kojto 110:165afa46840b 3211 q15_t * pScratch1,
Kojto 110:165afa46840b 3212 q15_t * pScratch2);
Kojto 110:165afa46840b 3213
Kojto 110:165afa46840b 3214
Kojto 110:165afa46840b 3215
Kojto 110:165afa46840b 3216 /**
Kojto 110:165afa46840b 3217 * @brief Convolution of Q7 sequences.
Kojto 110:165afa46840b 3218 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3219 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3220 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3221 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3222 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 110:165afa46840b 3223 * @return none.
Kojto 110:165afa46840b 3224 */
Kojto 110:165afa46840b 3225
Kojto 110:165afa46840b 3226 void arm_conv_q7(
Kojto 110:165afa46840b 3227 q7_t * pSrcA,
Kojto 110:165afa46840b 3228 uint32_t srcALen,
Kojto 110:165afa46840b 3229 q7_t * pSrcB,
Kojto 110:165afa46840b 3230 uint32_t srcBLen,
Kojto 110:165afa46840b 3231 q7_t * pDst);
Kojto 110:165afa46840b 3232
Kojto 110:165afa46840b 3233
Kojto 110:165afa46840b 3234 /**
Kojto 110:165afa46840b 3235 * @brief Partial convolution of floating-point sequences.
Kojto 110:165afa46840b 3236 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3237 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3238 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3239 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3240 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3241 * @param[in] firstIndex is the first output sample to start with.
Kojto 110:165afa46840b 3242 * @param[in] numPoints is the number of output points to be computed.
Kojto 110:165afa46840b 3243 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 110:165afa46840b 3244 */
Kojto 110:165afa46840b 3245
Kojto 110:165afa46840b 3246 arm_status arm_conv_partial_f32(
Kojto 110:165afa46840b 3247 float32_t * pSrcA,
Kojto 110:165afa46840b 3248 uint32_t srcALen,
Kojto 110:165afa46840b 3249 float32_t * pSrcB,
Kojto 110:165afa46840b 3250 uint32_t srcBLen,
Kojto 110:165afa46840b 3251 float32_t * pDst,
Kojto 110:165afa46840b 3252 uint32_t firstIndex,
Kojto 110:165afa46840b 3253 uint32_t numPoints);
Kojto 110:165afa46840b 3254
Kojto 110:165afa46840b 3255 /**
Kojto 110:165afa46840b 3256 * @brief Partial convolution of Q15 sequences.
Kojto 110:165afa46840b 3257 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3258 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3259 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3260 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3261 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3262 * @param[in] firstIndex is the first output sample to start with.
Kojto 110:165afa46840b 3263 * @param[in] numPoints is the number of output points to be computed.
Kojto 110:165afa46840b 3264 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 110:165afa46840b 3265 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 110:165afa46840b 3266 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 110:165afa46840b 3267 */
Kojto 110:165afa46840b 3268
Kojto 110:165afa46840b 3269 arm_status arm_conv_partial_opt_q15(
Kojto 110:165afa46840b 3270 q15_t * pSrcA,
Kojto 110:165afa46840b 3271 uint32_t srcALen,
Kojto 110:165afa46840b 3272 q15_t * pSrcB,
Kojto 110:165afa46840b 3273 uint32_t srcBLen,
Kojto 110:165afa46840b 3274 q15_t * pDst,
Kojto 110:165afa46840b 3275 uint32_t firstIndex,
Kojto 110:165afa46840b 3276 uint32_t numPoints,
Kojto 110:165afa46840b 3277 q15_t * pScratch1,
Kojto 110:165afa46840b 3278 q15_t * pScratch2);
Kojto 110:165afa46840b 3279
Kojto 110:165afa46840b 3280
Kojto 110:165afa46840b 3281 /**
Kojto 110:165afa46840b 3282 * @brief Partial convolution of Q15 sequences.
Kojto 110:165afa46840b 3283 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3284 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3285 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3286 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3287 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3288 * @param[in] firstIndex is the first output sample to start with.
Kojto 110:165afa46840b 3289 * @param[in] numPoints is the number of output points to be computed.
Kojto 110:165afa46840b 3290 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 110:165afa46840b 3291 */
Kojto 110:165afa46840b 3292
Kojto 110:165afa46840b 3293 arm_status arm_conv_partial_q15(
Kojto 110:165afa46840b 3294 q15_t * pSrcA,
Kojto 110:165afa46840b 3295 uint32_t srcALen,
Kojto 110:165afa46840b 3296 q15_t * pSrcB,
Kojto 110:165afa46840b 3297 uint32_t srcBLen,
Kojto 110:165afa46840b 3298 q15_t * pDst,
Kojto 110:165afa46840b 3299 uint32_t firstIndex,
Kojto 110:165afa46840b 3300 uint32_t numPoints);
Kojto 110:165afa46840b 3301
Kojto 110:165afa46840b 3302 /**
Kojto 110:165afa46840b 3303 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 110:165afa46840b 3304 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3305 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3306 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3307 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3308 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3309 * @param[in] firstIndex is the first output sample to start with.
Kojto 110:165afa46840b 3310 * @param[in] numPoints is the number of output points to be computed.
Kojto 110:165afa46840b 3311 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 110:165afa46840b 3312 */
Kojto 110:165afa46840b 3313
Kojto 110:165afa46840b 3314 arm_status arm_conv_partial_fast_q15(
Kojto 110:165afa46840b 3315 q15_t * pSrcA,
Kojto 110:165afa46840b 3316 uint32_t srcALen,
Kojto 110:165afa46840b 3317 q15_t * pSrcB,
Kojto 110:165afa46840b 3318 uint32_t srcBLen,
Kojto 110:165afa46840b 3319 q15_t * pDst,
Kojto 110:165afa46840b 3320 uint32_t firstIndex,
Kojto 110:165afa46840b 3321 uint32_t numPoints);
Kojto 110:165afa46840b 3322
Kojto 110:165afa46840b 3323
Kojto 110:165afa46840b 3324 /**
Kojto 110:165afa46840b 3325 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 110:165afa46840b 3326 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3327 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3328 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3329 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3330 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3331 * @param[in] firstIndex is the first output sample to start with.
Kojto 110:165afa46840b 3332 * @param[in] numPoints is the number of output points to be computed.
Kojto 110:165afa46840b 3333 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 110:165afa46840b 3334 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 110:165afa46840b 3335 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 110:165afa46840b 3336 */
Kojto 110:165afa46840b 3337
Kojto 110:165afa46840b 3338 arm_status arm_conv_partial_fast_opt_q15(
Kojto 110:165afa46840b 3339 q15_t * pSrcA,
Kojto 110:165afa46840b 3340 uint32_t srcALen,
Kojto 110:165afa46840b 3341 q15_t * pSrcB,
Kojto 110:165afa46840b 3342 uint32_t srcBLen,
Kojto 110:165afa46840b 3343 q15_t * pDst,
Kojto 110:165afa46840b 3344 uint32_t firstIndex,
Kojto 110:165afa46840b 3345 uint32_t numPoints,
Kojto 110:165afa46840b 3346 q15_t * pScratch1,
Kojto 110:165afa46840b 3347 q15_t * pScratch2);
Kojto 110:165afa46840b 3348
Kojto 110:165afa46840b 3349
Kojto 110:165afa46840b 3350 /**
Kojto 110:165afa46840b 3351 * @brief Partial convolution of Q31 sequences.
Kojto 110:165afa46840b 3352 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3353 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3354 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3355 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3356 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3357 * @param[in] firstIndex is the first output sample to start with.
Kojto 110:165afa46840b 3358 * @param[in] numPoints is the number of output points to be computed.
Kojto 110:165afa46840b 3359 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 110:165afa46840b 3360 */
Kojto 110:165afa46840b 3361
Kojto 110:165afa46840b 3362 arm_status arm_conv_partial_q31(
Kojto 110:165afa46840b 3363 q31_t * pSrcA,
Kojto 110:165afa46840b 3364 uint32_t srcALen,
Kojto 110:165afa46840b 3365 q31_t * pSrcB,
Kojto 110:165afa46840b 3366 uint32_t srcBLen,
Kojto 110:165afa46840b 3367 q31_t * pDst,
Kojto 110:165afa46840b 3368 uint32_t firstIndex,
Kojto 110:165afa46840b 3369 uint32_t numPoints);
Kojto 110:165afa46840b 3370
Kojto 110:165afa46840b 3371
Kojto 110:165afa46840b 3372 /**
Kojto 110:165afa46840b 3373 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 110:165afa46840b 3374 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3375 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3376 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3377 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3378 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3379 * @param[in] firstIndex is the first output sample to start with.
Kojto 110:165afa46840b 3380 * @param[in] numPoints is the number of output points to be computed.
Kojto 110:165afa46840b 3381 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 110:165afa46840b 3382 */
Kojto 110:165afa46840b 3383
Kojto 110:165afa46840b 3384 arm_status arm_conv_partial_fast_q31(
Kojto 110:165afa46840b 3385 q31_t * pSrcA,
Kojto 110:165afa46840b 3386 uint32_t srcALen,
Kojto 110:165afa46840b 3387 q31_t * pSrcB,
Kojto 110:165afa46840b 3388 uint32_t srcBLen,
Kojto 110:165afa46840b 3389 q31_t * pDst,
Kojto 110:165afa46840b 3390 uint32_t firstIndex,
Kojto 110:165afa46840b 3391 uint32_t numPoints);
Kojto 110:165afa46840b 3392
Kojto 110:165afa46840b 3393
Kojto 110:165afa46840b 3394 /**
Kojto 110:165afa46840b 3395 * @brief Partial convolution of Q7 sequences
Kojto 110:165afa46840b 3396 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3397 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3398 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3399 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3400 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3401 * @param[in] firstIndex is the first output sample to start with.
Kojto 110:165afa46840b 3402 * @param[in] numPoints is the number of output points to be computed.
Kojto 110:165afa46840b 3403 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 110:165afa46840b 3404 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 110:165afa46840b 3405 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 110:165afa46840b 3406 */
Kojto 110:165afa46840b 3407
Kojto 110:165afa46840b 3408 arm_status arm_conv_partial_opt_q7(
Kojto 110:165afa46840b 3409 q7_t * pSrcA,
Kojto 110:165afa46840b 3410 uint32_t srcALen,
Kojto 110:165afa46840b 3411 q7_t * pSrcB,
Kojto 110:165afa46840b 3412 uint32_t srcBLen,
Kojto 110:165afa46840b 3413 q7_t * pDst,
Kojto 110:165afa46840b 3414 uint32_t firstIndex,
Kojto 110:165afa46840b 3415 uint32_t numPoints,
Kojto 110:165afa46840b 3416 q15_t * pScratch1,
Kojto 110:165afa46840b 3417 q15_t * pScratch2);
Kojto 110:165afa46840b 3418
Kojto 110:165afa46840b 3419
Kojto 110:165afa46840b 3420 /**
Kojto 110:165afa46840b 3421 * @brief Partial convolution of Q7 sequences.
Kojto 110:165afa46840b 3422 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 3423 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 3424 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 3425 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 3426 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3427 * @param[in] firstIndex is the first output sample to start with.
Kojto 110:165afa46840b 3428 * @param[in] numPoints is the number of output points to be computed.
Kojto 110:165afa46840b 3429 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 110:165afa46840b 3430 */
Kojto 110:165afa46840b 3431
Kojto 110:165afa46840b 3432 arm_status arm_conv_partial_q7(
Kojto 110:165afa46840b 3433 q7_t * pSrcA,
Kojto 110:165afa46840b 3434 uint32_t srcALen,
Kojto 110:165afa46840b 3435 q7_t * pSrcB,
Kojto 110:165afa46840b 3436 uint32_t srcBLen,
Kojto 110:165afa46840b 3437 q7_t * pDst,
Kojto 110:165afa46840b 3438 uint32_t firstIndex,
Kojto 110:165afa46840b 3439 uint32_t numPoints);
Kojto 110:165afa46840b 3440
Kojto 110:165afa46840b 3441
Kojto 110:165afa46840b 3442
Kojto 110:165afa46840b 3443 /**
Kojto 110:165afa46840b 3444 * @brief Instance structure for the Q15 FIR decimator.
Kojto 110:165afa46840b 3445 */
Kojto 110:165afa46840b 3446
Kojto 110:165afa46840b 3447 typedef struct
Kojto 110:165afa46840b 3448 {
Kojto 110:165afa46840b 3449 uint8_t M; /**< decimation factor. */
Kojto 110:165afa46840b 3450 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 3451 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 110:165afa46840b 3452 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 3453 } arm_fir_decimate_instance_q15;
Kojto 110:165afa46840b 3454
Kojto 110:165afa46840b 3455 /**
Kojto 110:165afa46840b 3456 * @brief Instance structure for the Q31 FIR decimator.
Kojto 110:165afa46840b 3457 */
Kojto 110:165afa46840b 3458
Kojto 110:165afa46840b 3459 typedef struct
Kojto 110:165afa46840b 3460 {
Kojto 110:165afa46840b 3461 uint8_t M; /**< decimation factor. */
Kojto 110:165afa46840b 3462 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 3463 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 110:165afa46840b 3464 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 3465
Kojto 110:165afa46840b 3466 } arm_fir_decimate_instance_q31;
Kojto 110:165afa46840b 3467
Kojto 110:165afa46840b 3468 /**
Kojto 110:165afa46840b 3469 * @brief Instance structure for the floating-point FIR decimator.
Kojto 110:165afa46840b 3470 */
Kojto 110:165afa46840b 3471
Kojto 110:165afa46840b 3472 typedef struct
Kojto 110:165afa46840b 3473 {
Kojto 110:165afa46840b 3474 uint8_t M; /**< decimation factor. */
Kojto 110:165afa46840b 3475 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 3476 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 110:165afa46840b 3477 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 3478
Kojto 110:165afa46840b 3479 } arm_fir_decimate_instance_f32;
Kojto 110:165afa46840b 3480
Kojto 110:165afa46840b 3481
Kojto 110:165afa46840b 3482
Kojto 110:165afa46840b 3483 /**
Kojto 110:165afa46840b 3484 * @brief Processing function for the floating-point FIR decimator.
Kojto 110:165afa46840b 3485 * @param[in] *S points to an instance of the floating-point FIR decimator structure.
Kojto 110:165afa46840b 3486 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3487 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3488 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3489 * @return none
Kojto 110:165afa46840b 3490 */
Kojto 110:165afa46840b 3491
Kojto 110:165afa46840b 3492 void arm_fir_decimate_f32(
Kojto 110:165afa46840b 3493 const arm_fir_decimate_instance_f32 * S,
Kojto 110:165afa46840b 3494 float32_t * pSrc,
Kojto 110:165afa46840b 3495 float32_t * pDst,
Kojto 110:165afa46840b 3496 uint32_t blockSize);
Kojto 110:165afa46840b 3497
Kojto 110:165afa46840b 3498
Kojto 110:165afa46840b 3499 /**
Kojto 110:165afa46840b 3500 * @brief Initialization function for the floating-point FIR decimator.
Kojto 110:165afa46840b 3501 * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
Kojto 110:165afa46840b 3502 * @param[in] numTaps number of coefficients in the filter.
Kojto 110:165afa46840b 3503 * @param[in] M decimation factor.
Kojto 110:165afa46840b 3504 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 3505 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3506 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3507 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 110:165afa46840b 3508 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 110:165afa46840b 3509 */
Kojto 110:165afa46840b 3510
Kojto 110:165afa46840b 3511 arm_status arm_fir_decimate_init_f32(
Kojto 110:165afa46840b 3512 arm_fir_decimate_instance_f32 * S,
Kojto 110:165afa46840b 3513 uint16_t numTaps,
Kojto 110:165afa46840b 3514 uint8_t M,
Kojto 110:165afa46840b 3515 float32_t * pCoeffs,
Kojto 110:165afa46840b 3516 float32_t * pState,
Kojto 110:165afa46840b 3517 uint32_t blockSize);
Kojto 110:165afa46840b 3518
Kojto 110:165afa46840b 3519 /**
Kojto 110:165afa46840b 3520 * @brief Processing function for the Q15 FIR decimator.
Kojto 110:165afa46840b 3521 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
Kojto 110:165afa46840b 3522 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3523 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3524 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3525 * @return none
Kojto 110:165afa46840b 3526 */
Kojto 110:165afa46840b 3527
Kojto 110:165afa46840b 3528 void arm_fir_decimate_q15(
Kojto 110:165afa46840b 3529 const arm_fir_decimate_instance_q15 * S,
Kojto 110:165afa46840b 3530 q15_t * pSrc,
Kojto 110:165afa46840b 3531 q15_t * pDst,
Kojto 110:165afa46840b 3532 uint32_t blockSize);
Kojto 110:165afa46840b 3533
Kojto 110:165afa46840b 3534 /**
Kojto 110:165afa46840b 3535 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
Kojto 110:165afa46840b 3536 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
Kojto 110:165afa46840b 3537 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3538 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3539 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3540 * @return none
Kojto 110:165afa46840b 3541 */
Kojto 110:165afa46840b 3542
Kojto 110:165afa46840b 3543 void arm_fir_decimate_fast_q15(
Kojto 110:165afa46840b 3544 const arm_fir_decimate_instance_q15 * S,
Kojto 110:165afa46840b 3545 q15_t * pSrc,
Kojto 110:165afa46840b 3546 q15_t * pDst,
Kojto 110:165afa46840b 3547 uint32_t blockSize);
Kojto 110:165afa46840b 3548
Kojto 110:165afa46840b 3549
Kojto 110:165afa46840b 3550
Kojto 110:165afa46840b 3551 /**
Kojto 110:165afa46840b 3552 * @brief Initialization function for the Q15 FIR decimator.
Kojto 110:165afa46840b 3553 * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
Kojto 110:165afa46840b 3554 * @param[in] numTaps number of coefficients in the filter.
Kojto 110:165afa46840b 3555 * @param[in] M decimation factor.
Kojto 110:165afa46840b 3556 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 3557 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3558 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3559 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 110:165afa46840b 3560 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 110:165afa46840b 3561 */
Kojto 110:165afa46840b 3562
Kojto 110:165afa46840b 3563 arm_status arm_fir_decimate_init_q15(
Kojto 110:165afa46840b 3564 arm_fir_decimate_instance_q15 * S,
Kojto 110:165afa46840b 3565 uint16_t numTaps,
Kojto 110:165afa46840b 3566 uint8_t M,
Kojto 110:165afa46840b 3567 q15_t * pCoeffs,
Kojto 110:165afa46840b 3568 q15_t * pState,
Kojto 110:165afa46840b 3569 uint32_t blockSize);
Kojto 110:165afa46840b 3570
Kojto 110:165afa46840b 3571 /**
Kojto 110:165afa46840b 3572 * @brief Processing function for the Q31 FIR decimator.
Kojto 110:165afa46840b 3573 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
Kojto 110:165afa46840b 3574 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3575 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3576 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3577 * @return none
Kojto 110:165afa46840b 3578 */
Kojto 110:165afa46840b 3579
Kojto 110:165afa46840b 3580 void arm_fir_decimate_q31(
Kojto 110:165afa46840b 3581 const arm_fir_decimate_instance_q31 * S,
Kojto 110:165afa46840b 3582 q31_t * pSrc,
Kojto 110:165afa46840b 3583 q31_t * pDst,
Kojto 110:165afa46840b 3584 uint32_t blockSize);
Kojto 110:165afa46840b 3585
Kojto 110:165afa46840b 3586 /**
Kojto 110:165afa46840b 3587 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
Kojto 110:165afa46840b 3588 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
Kojto 110:165afa46840b 3589 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3590 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3591 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3592 * @return none
Kojto 110:165afa46840b 3593 */
Kojto 110:165afa46840b 3594
Kojto 110:165afa46840b 3595 void arm_fir_decimate_fast_q31(
Kojto 110:165afa46840b 3596 arm_fir_decimate_instance_q31 * S,
Kojto 110:165afa46840b 3597 q31_t * pSrc,
Kojto 110:165afa46840b 3598 q31_t * pDst,
Kojto 110:165afa46840b 3599 uint32_t blockSize);
Kojto 110:165afa46840b 3600
Kojto 110:165afa46840b 3601
Kojto 110:165afa46840b 3602 /**
Kojto 110:165afa46840b 3603 * @brief Initialization function for the Q31 FIR decimator.
Kojto 110:165afa46840b 3604 * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
Kojto 110:165afa46840b 3605 * @param[in] numTaps number of coefficients in the filter.
Kojto 110:165afa46840b 3606 * @param[in] M decimation factor.
Kojto 110:165afa46840b 3607 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 3608 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3609 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3610 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 110:165afa46840b 3611 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 110:165afa46840b 3612 */
Kojto 110:165afa46840b 3613
Kojto 110:165afa46840b 3614 arm_status arm_fir_decimate_init_q31(
Kojto 110:165afa46840b 3615 arm_fir_decimate_instance_q31 * S,
Kojto 110:165afa46840b 3616 uint16_t numTaps,
Kojto 110:165afa46840b 3617 uint8_t M,
Kojto 110:165afa46840b 3618 q31_t * pCoeffs,
Kojto 110:165afa46840b 3619 q31_t * pState,
Kojto 110:165afa46840b 3620 uint32_t blockSize);
Kojto 110:165afa46840b 3621
Kojto 110:165afa46840b 3622
Kojto 110:165afa46840b 3623
Kojto 110:165afa46840b 3624 /**
Kojto 110:165afa46840b 3625 * @brief Instance structure for the Q15 FIR interpolator.
Kojto 110:165afa46840b 3626 */
Kojto 110:165afa46840b 3627
Kojto 110:165afa46840b 3628 typedef struct
Kojto 110:165afa46840b 3629 {
Kojto 110:165afa46840b 3630 uint8_t L; /**< upsample factor. */
Kojto 110:165afa46840b 3631 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 110:165afa46840b 3632 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 110:165afa46840b 3633 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
Kojto 110:165afa46840b 3634 } arm_fir_interpolate_instance_q15;
Kojto 110:165afa46840b 3635
Kojto 110:165afa46840b 3636 /**
Kojto 110:165afa46840b 3637 * @brief Instance structure for the Q31 FIR interpolator.
Kojto 110:165afa46840b 3638 */
Kojto 110:165afa46840b 3639
Kojto 110:165afa46840b 3640 typedef struct
Kojto 110:165afa46840b 3641 {
Kojto 110:165afa46840b 3642 uint8_t L; /**< upsample factor. */
Kojto 110:165afa46840b 3643 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 110:165afa46840b 3644 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 110:165afa46840b 3645 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
Kojto 110:165afa46840b 3646 } arm_fir_interpolate_instance_q31;
Kojto 110:165afa46840b 3647
Kojto 110:165afa46840b 3648 /**
Kojto 110:165afa46840b 3649 * @brief Instance structure for the floating-point FIR interpolator.
Kojto 110:165afa46840b 3650 */
Kojto 110:165afa46840b 3651
Kojto 110:165afa46840b 3652 typedef struct
Kojto 110:165afa46840b 3653 {
Kojto 110:165afa46840b 3654 uint8_t L; /**< upsample factor. */
Kojto 110:165afa46840b 3655 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 110:165afa46840b 3656 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 110:165afa46840b 3657 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
Kojto 110:165afa46840b 3658 } arm_fir_interpolate_instance_f32;
Kojto 110:165afa46840b 3659
Kojto 110:165afa46840b 3660
Kojto 110:165afa46840b 3661 /**
Kojto 110:165afa46840b 3662 * @brief Processing function for the Q15 FIR interpolator.
Kojto 110:165afa46840b 3663 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
Kojto 110:165afa46840b 3664 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3665 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 3666 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3667 * @return none.
Kojto 110:165afa46840b 3668 */
Kojto 110:165afa46840b 3669
Kojto 110:165afa46840b 3670 void arm_fir_interpolate_q15(
Kojto 110:165afa46840b 3671 const arm_fir_interpolate_instance_q15 * S,
Kojto 110:165afa46840b 3672 q15_t * pSrc,
Kojto 110:165afa46840b 3673 q15_t * pDst,
Kojto 110:165afa46840b 3674 uint32_t blockSize);
Kojto 110:165afa46840b 3675
Kojto 110:165afa46840b 3676
Kojto 110:165afa46840b 3677 /**
Kojto 110:165afa46840b 3678 * @brief Initialization function for the Q15 FIR interpolator.
Kojto 110:165afa46840b 3679 * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
Kojto 110:165afa46840b 3680 * @param[in] L upsample factor.
Kojto 110:165afa46840b 3681 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 110:165afa46840b 3682 * @param[in] *pCoeffs points to the filter coefficient buffer.
Kojto 110:165afa46840b 3683 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3684 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3685 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 110:165afa46840b 3686 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 110:165afa46840b 3687 */
Kojto 110:165afa46840b 3688
Kojto 110:165afa46840b 3689 arm_status arm_fir_interpolate_init_q15(
Kojto 110:165afa46840b 3690 arm_fir_interpolate_instance_q15 * S,
Kojto 110:165afa46840b 3691 uint8_t L,
Kojto 110:165afa46840b 3692 uint16_t numTaps,
Kojto 110:165afa46840b 3693 q15_t * pCoeffs,
Kojto 110:165afa46840b 3694 q15_t * pState,
Kojto 110:165afa46840b 3695 uint32_t blockSize);
Kojto 110:165afa46840b 3696
Kojto 110:165afa46840b 3697 /**
Kojto 110:165afa46840b 3698 * @brief Processing function for the Q31 FIR interpolator.
Kojto 110:165afa46840b 3699 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
Kojto 110:165afa46840b 3700 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3701 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 3702 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3703 * @return none.
Kojto 110:165afa46840b 3704 */
Kojto 110:165afa46840b 3705
Kojto 110:165afa46840b 3706 void arm_fir_interpolate_q31(
Kojto 110:165afa46840b 3707 const arm_fir_interpolate_instance_q31 * S,
Kojto 110:165afa46840b 3708 q31_t * pSrc,
Kojto 110:165afa46840b 3709 q31_t * pDst,
Kojto 110:165afa46840b 3710 uint32_t blockSize);
Kojto 110:165afa46840b 3711
Kojto 110:165afa46840b 3712 /**
Kojto 110:165afa46840b 3713 * @brief Initialization function for the Q31 FIR interpolator.
Kojto 110:165afa46840b 3714 * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
Kojto 110:165afa46840b 3715 * @param[in] L upsample factor.
Kojto 110:165afa46840b 3716 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 110:165afa46840b 3717 * @param[in] *pCoeffs points to the filter coefficient buffer.
Kojto 110:165afa46840b 3718 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3719 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3720 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 110:165afa46840b 3721 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 110:165afa46840b 3722 */
Kojto 110:165afa46840b 3723
Kojto 110:165afa46840b 3724 arm_status arm_fir_interpolate_init_q31(
Kojto 110:165afa46840b 3725 arm_fir_interpolate_instance_q31 * S,
Kojto 110:165afa46840b 3726 uint8_t L,
Kojto 110:165afa46840b 3727 uint16_t numTaps,
Kojto 110:165afa46840b 3728 q31_t * pCoeffs,
Kojto 110:165afa46840b 3729 q31_t * pState,
Kojto 110:165afa46840b 3730 uint32_t blockSize);
Kojto 110:165afa46840b 3731
Kojto 110:165afa46840b 3732
Kojto 110:165afa46840b 3733 /**
Kojto 110:165afa46840b 3734 * @brief Processing function for the floating-point FIR interpolator.
Kojto 110:165afa46840b 3735 * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
Kojto 110:165afa46840b 3736 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3737 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 3738 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3739 * @return none.
Kojto 110:165afa46840b 3740 */
Kojto 110:165afa46840b 3741
Kojto 110:165afa46840b 3742 void arm_fir_interpolate_f32(
Kojto 110:165afa46840b 3743 const arm_fir_interpolate_instance_f32 * S,
Kojto 110:165afa46840b 3744 float32_t * pSrc,
Kojto 110:165afa46840b 3745 float32_t * pDst,
Kojto 110:165afa46840b 3746 uint32_t blockSize);
Kojto 110:165afa46840b 3747
Kojto 110:165afa46840b 3748 /**
Kojto 110:165afa46840b 3749 * @brief Initialization function for the floating-point FIR interpolator.
Kojto 110:165afa46840b 3750 * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
Kojto 110:165afa46840b 3751 * @param[in] L upsample factor.
Kojto 110:165afa46840b 3752 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 110:165afa46840b 3753 * @param[in] *pCoeffs points to the filter coefficient buffer.
Kojto 110:165afa46840b 3754 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3755 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 3756 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 110:165afa46840b 3757 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 110:165afa46840b 3758 */
Kojto 110:165afa46840b 3759
Kojto 110:165afa46840b 3760 arm_status arm_fir_interpolate_init_f32(
Kojto 110:165afa46840b 3761 arm_fir_interpolate_instance_f32 * S,
Kojto 110:165afa46840b 3762 uint8_t L,
Kojto 110:165afa46840b 3763 uint16_t numTaps,
Kojto 110:165afa46840b 3764 float32_t * pCoeffs,
Kojto 110:165afa46840b 3765 float32_t * pState,
Kojto 110:165afa46840b 3766 uint32_t blockSize);
Kojto 110:165afa46840b 3767
Kojto 110:165afa46840b 3768 /**
Kojto 110:165afa46840b 3769 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
Kojto 110:165afa46840b 3770 */
Kojto 110:165afa46840b 3771
Kojto 110:165afa46840b 3772 typedef struct
Kojto 110:165afa46840b 3773 {
Kojto 110:165afa46840b 3774 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 110:165afa46840b 3775 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 110:165afa46840b 3776 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 110:165afa46840b 3777 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
Kojto 110:165afa46840b 3778
Kojto 110:165afa46840b 3779 } arm_biquad_cas_df1_32x64_ins_q31;
Kojto 110:165afa46840b 3780
Kojto 110:165afa46840b 3781
Kojto 110:165afa46840b 3782 /**
Kojto 110:165afa46840b 3783 * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
Kojto 110:165afa46840b 3784 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3785 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3786 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 3787 * @return none.
Kojto 110:165afa46840b 3788 */
Kojto 110:165afa46840b 3789
Kojto 110:165afa46840b 3790 void arm_biquad_cas_df1_32x64_q31(
Kojto 110:165afa46840b 3791 const arm_biquad_cas_df1_32x64_ins_q31 * S,
Kojto 110:165afa46840b 3792 q31_t * pSrc,
Kojto 110:165afa46840b 3793 q31_t * pDst,
Kojto 110:165afa46840b 3794 uint32_t blockSize);
Kojto 110:165afa46840b 3795
Kojto 110:165afa46840b 3796
Kojto 110:165afa46840b 3797 /**
Kojto 110:165afa46840b 3798 * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
Kojto 110:165afa46840b 3799 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 110:165afa46840b 3800 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 3801 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3802 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
Kojto 110:165afa46840b 3803 * @return none
Kojto 110:165afa46840b 3804 */
Kojto 110:165afa46840b 3805
Kojto 110:165afa46840b 3806 void arm_biquad_cas_df1_32x64_init_q31(
Kojto 110:165afa46840b 3807 arm_biquad_cas_df1_32x64_ins_q31 * S,
Kojto 110:165afa46840b 3808 uint8_t numStages,
Kojto 110:165afa46840b 3809 q31_t * pCoeffs,
Kojto 110:165afa46840b 3810 q63_t * pState,
Kojto 110:165afa46840b 3811 uint8_t postShift);
Kojto 110:165afa46840b 3812
Kojto 110:165afa46840b 3813
Kojto 110:165afa46840b 3814
Kojto 110:165afa46840b 3815 /**
Kojto 110:165afa46840b 3816 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 110:165afa46840b 3817 */
Kojto 110:165afa46840b 3818
Kojto 110:165afa46840b 3819 typedef struct
Kojto 110:165afa46840b 3820 {
Kojto 110:165afa46840b 3821 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 110:165afa46840b 3822 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
Kojto 110:165afa46840b 3823 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 110:165afa46840b 3824 } arm_biquad_cascade_df2T_instance_f32;
Kojto 110:165afa46840b 3825
Kojto 110:165afa46840b 3826
Kojto 110:165afa46840b 3827
Kojto 110:165afa46840b 3828 /**
Kojto 110:165afa46840b 3829 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 110:165afa46840b 3830 */
Kojto 110:165afa46840b 3831
Kojto 110:165afa46840b 3832 typedef struct
Kojto 110:165afa46840b 3833 {
Kojto 110:165afa46840b 3834 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 110:165afa46840b 3835 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 110:165afa46840b 3836 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 110:165afa46840b 3837 } arm_biquad_cascade_stereo_df2T_instance_f32;
Kojto 110:165afa46840b 3838
Kojto 110:165afa46840b 3839
Kojto 110:165afa46840b 3840
Kojto 110:165afa46840b 3841 /**
Kojto 110:165afa46840b 3842 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 110:165afa46840b 3843 */
Kojto 110:165afa46840b 3844
Kojto 110:165afa46840b 3845 typedef struct
Kojto 110:165afa46840b 3846 {
Kojto 110:165afa46840b 3847 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 110:165afa46840b 3848 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
Kojto 110:165afa46840b 3849 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 110:165afa46840b 3850 } arm_biquad_cascade_df2T_instance_f64;
Kojto 110:165afa46840b 3851
Kojto 110:165afa46840b 3852
Kojto 110:165afa46840b 3853 /**
Kojto 110:165afa46840b 3854 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 110:165afa46840b 3855 * @param[in] *S points to an instance of the filter data structure.
Kojto 110:165afa46840b 3856 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3857 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3858 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 3859 * @return none.
Kojto 110:165afa46840b 3860 */
Kojto 110:165afa46840b 3861
Kojto 110:165afa46840b 3862 void arm_biquad_cascade_df2T_f32(
Kojto 110:165afa46840b 3863 const arm_biquad_cascade_df2T_instance_f32 * S,
Kojto 110:165afa46840b 3864 float32_t * pSrc,
Kojto 110:165afa46840b 3865 float32_t * pDst,
Kojto 110:165afa46840b 3866 uint32_t blockSize);
Kojto 110:165afa46840b 3867
Kojto 110:165afa46840b 3868
Kojto 110:165afa46840b 3869 /**
Kojto 110:165afa46840b 3870 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
Kojto 110:165afa46840b 3871 * @param[in] *S points to an instance of the filter data structure.
Kojto 110:165afa46840b 3872 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3873 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3874 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 3875 * @return none.
Kojto 110:165afa46840b 3876 */
Kojto 110:165afa46840b 3877
Kojto 110:165afa46840b 3878 void arm_biquad_cascade_stereo_df2T_f32(
Kojto 110:165afa46840b 3879 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
Kojto 110:165afa46840b 3880 float32_t * pSrc,
Kojto 110:165afa46840b 3881 float32_t * pDst,
Kojto 110:165afa46840b 3882 uint32_t blockSize);
Kojto 110:165afa46840b 3883
Kojto 110:165afa46840b 3884 /**
Kojto 110:165afa46840b 3885 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 110:165afa46840b 3886 * @param[in] *S points to an instance of the filter data structure.
Kojto 110:165afa46840b 3887 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 3888 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 3889 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 3890 * @return none.
Kojto 110:165afa46840b 3891 */
Kojto 110:165afa46840b 3892
Kojto 110:165afa46840b 3893 void arm_biquad_cascade_df2T_f64(
Kojto 110:165afa46840b 3894 const arm_biquad_cascade_df2T_instance_f64 * S,
Kojto 110:165afa46840b 3895 float64_t * pSrc,
Kojto 110:165afa46840b 3896 float64_t * pDst,
Kojto 110:165afa46840b 3897 uint32_t blockSize);
Kojto 110:165afa46840b 3898
Kojto 110:165afa46840b 3899
Kojto 110:165afa46840b 3900 /**
Kojto 110:165afa46840b 3901 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 110:165afa46840b 3902 * @param[in,out] *S points to an instance of the filter data structure.
Kojto 110:165afa46840b 3903 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 110:165afa46840b 3904 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 3905 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3906 * @return none
Kojto 110:165afa46840b 3907 */
Kojto 110:165afa46840b 3908
Kojto 110:165afa46840b 3909 void arm_biquad_cascade_df2T_init_f32(
Kojto 110:165afa46840b 3910 arm_biquad_cascade_df2T_instance_f32 * S,
Kojto 110:165afa46840b 3911 uint8_t numStages,
Kojto 110:165afa46840b 3912 float32_t * pCoeffs,
Kojto 110:165afa46840b 3913 float32_t * pState);
Kojto 110:165afa46840b 3914
Kojto 110:165afa46840b 3915
Kojto 110:165afa46840b 3916 /**
Kojto 110:165afa46840b 3917 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 110:165afa46840b 3918 * @param[in,out] *S points to an instance of the filter data structure.
Kojto 110:165afa46840b 3919 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 110:165afa46840b 3920 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 3921 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3922 * @return none
Kojto 110:165afa46840b 3923 */
Kojto 110:165afa46840b 3924
Kojto 110:165afa46840b 3925 void arm_biquad_cascade_stereo_df2T_init_f32(
Kojto 110:165afa46840b 3926 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
Kojto 110:165afa46840b 3927 uint8_t numStages,
Kojto 110:165afa46840b 3928 float32_t * pCoeffs,
Kojto 110:165afa46840b 3929 float32_t * pState);
Kojto 110:165afa46840b 3930
Kojto 110:165afa46840b 3931
Kojto 110:165afa46840b 3932 /**
Kojto 110:165afa46840b 3933 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 110:165afa46840b 3934 * @param[in,out] *S points to an instance of the filter data structure.
Kojto 110:165afa46840b 3935 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 110:165afa46840b 3936 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 110:165afa46840b 3937 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 3938 * @return none
Kojto 110:165afa46840b 3939 */
Kojto 110:165afa46840b 3940
Kojto 110:165afa46840b 3941 void arm_biquad_cascade_df2T_init_f64(
Kojto 110:165afa46840b 3942 arm_biquad_cascade_df2T_instance_f64 * S,
Kojto 110:165afa46840b 3943 uint8_t numStages,
Kojto 110:165afa46840b 3944 float64_t * pCoeffs,
Kojto 110:165afa46840b 3945 float64_t * pState);
Kojto 110:165afa46840b 3946
Kojto 110:165afa46840b 3947
Kojto 110:165afa46840b 3948
Kojto 110:165afa46840b 3949 /**
Kojto 110:165afa46840b 3950 * @brief Instance structure for the Q15 FIR lattice filter.
Kojto 110:165afa46840b 3951 */
Kojto 110:165afa46840b 3952
Kojto 110:165afa46840b 3953 typedef struct
Kojto 110:165afa46840b 3954 {
Kojto 110:165afa46840b 3955 uint16_t numStages; /**< number of filter stages. */
Kojto 110:165afa46840b 3956 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 110:165afa46840b 3957 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 110:165afa46840b 3958 } arm_fir_lattice_instance_q15;
Kojto 110:165afa46840b 3959
Kojto 110:165afa46840b 3960 /**
Kojto 110:165afa46840b 3961 * @brief Instance structure for the Q31 FIR lattice filter.
Kojto 110:165afa46840b 3962 */
Kojto 110:165afa46840b 3963
Kojto 110:165afa46840b 3964 typedef struct
Kojto 110:165afa46840b 3965 {
Kojto 110:165afa46840b 3966 uint16_t numStages; /**< number of filter stages. */
Kojto 110:165afa46840b 3967 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 110:165afa46840b 3968 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 110:165afa46840b 3969 } arm_fir_lattice_instance_q31;
Kojto 110:165afa46840b 3970
Kojto 110:165afa46840b 3971 /**
Kojto 110:165afa46840b 3972 * @brief Instance structure for the floating-point FIR lattice filter.
Kojto 110:165afa46840b 3973 */
Kojto 110:165afa46840b 3974
Kojto 110:165afa46840b 3975 typedef struct
Kojto 110:165afa46840b 3976 {
Kojto 110:165afa46840b 3977 uint16_t numStages; /**< number of filter stages. */
Kojto 110:165afa46840b 3978 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 110:165afa46840b 3979 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 110:165afa46840b 3980 } arm_fir_lattice_instance_f32;
Kojto 110:165afa46840b 3981
Kojto 110:165afa46840b 3982 /**
Kojto 110:165afa46840b 3983 * @brief Initialization function for the Q15 FIR lattice filter.
Kojto 110:165afa46840b 3984 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
Kojto 110:165afa46840b 3985 * @param[in] numStages number of filter stages.
Kojto 110:165afa46840b 3986 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 110:165afa46840b 3987 * @param[in] *pState points to the state buffer. The array is of length numStages.
Kojto 110:165afa46840b 3988 * @return none.
Kojto 110:165afa46840b 3989 */
Kojto 110:165afa46840b 3990
Kojto 110:165afa46840b 3991 void arm_fir_lattice_init_q15(
Kojto 110:165afa46840b 3992 arm_fir_lattice_instance_q15 * S,
Kojto 110:165afa46840b 3993 uint16_t numStages,
Kojto 110:165afa46840b 3994 q15_t * pCoeffs,
Kojto 110:165afa46840b 3995 q15_t * pState);
Kojto 110:165afa46840b 3996
Kojto 110:165afa46840b 3997
Kojto 110:165afa46840b 3998 /**
Kojto 110:165afa46840b 3999 * @brief Processing function for the Q15 FIR lattice filter.
Kojto 110:165afa46840b 4000 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
Kojto 110:165afa46840b 4001 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4002 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 4003 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4004 * @return none.
Kojto 110:165afa46840b 4005 */
Kojto 110:165afa46840b 4006 void arm_fir_lattice_q15(
Kojto 110:165afa46840b 4007 const arm_fir_lattice_instance_q15 * S,
Kojto 110:165afa46840b 4008 q15_t * pSrc,
Kojto 110:165afa46840b 4009 q15_t * pDst,
Kojto 110:165afa46840b 4010 uint32_t blockSize);
Kojto 110:165afa46840b 4011
Kojto 110:165afa46840b 4012 /**
Kojto 110:165afa46840b 4013 * @brief Initialization function for the Q31 FIR lattice filter.
Kojto 110:165afa46840b 4014 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
Kojto 110:165afa46840b 4015 * @param[in] numStages number of filter stages.
Kojto 110:165afa46840b 4016 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 110:165afa46840b 4017 * @param[in] *pState points to the state buffer. The array is of length numStages.
Kojto 110:165afa46840b 4018 * @return none.
Kojto 110:165afa46840b 4019 */
Kojto 110:165afa46840b 4020
Kojto 110:165afa46840b 4021 void arm_fir_lattice_init_q31(
Kojto 110:165afa46840b 4022 arm_fir_lattice_instance_q31 * S,
Kojto 110:165afa46840b 4023 uint16_t numStages,
Kojto 110:165afa46840b 4024 q31_t * pCoeffs,
Kojto 110:165afa46840b 4025 q31_t * pState);
Kojto 110:165afa46840b 4026
Kojto 110:165afa46840b 4027
Kojto 110:165afa46840b 4028 /**
Kojto 110:165afa46840b 4029 * @brief Processing function for the Q31 FIR lattice filter.
Kojto 110:165afa46840b 4030 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
Kojto 110:165afa46840b 4031 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4032 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 4033 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4034 * @return none.
Kojto 110:165afa46840b 4035 */
Kojto 110:165afa46840b 4036
Kojto 110:165afa46840b 4037 void arm_fir_lattice_q31(
Kojto 110:165afa46840b 4038 const arm_fir_lattice_instance_q31 * S,
Kojto 110:165afa46840b 4039 q31_t * pSrc,
Kojto 110:165afa46840b 4040 q31_t * pDst,
Kojto 110:165afa46840b 4041 uint32_t blockSize);
Kojto 110:165afa46840b 4042
Kojto 110:165afa46840b 4043 /**
Kojto 110:165afa46840b 4044 * @brief Initialization function for the floating-point FIR lattice filter.
Kojto 110:165afa46840b 4045 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
Kojto 110:165afa46840b 4046 * @param[in] numStages number of filter stages.
Kojto 110:165afa46840b 4047 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 110:165afa46840b 4048 * @param[in] *pState points to the state buffer. The array is of length numStages.
Kojto 110:165afa46840b 4049 * @return none.
Kojto 110:165afa46840b 4050 */
Kojto 110:165afa46840b 4051
Kojto 110:165afa46840b 4052 void arm_fir_lattice_init_f32(
Kojto 110:165afa46840b 4053 arm_fir_lattice_instance_f32 * S,
Kojto 110:165afa46840b 4054 uint16_t numStages,
Kojto 110:165afa46840b 4055 float32_t * pCoeffs,
Kojto 110:165afa46840b 4056 float32_t * pState);
Kojto 110:165afa46840b 4057
Kojto 110:165afa46840b 4058 /**
Kojto 110:165afa46840b 4059 * @brief Processing function for the floating-point FIR lattice filter.
Kojto 110:165afa46840b 4060 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
Kojto 110:165afa46840b 4061 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4062 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 4063 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4064 * @return none.
Kojto 110:165afa46840b 4065 */
Kojto 110:165afa46840b 4066
Kojto 110:165afa46840b 4067 void arm_fir_lattice_f32(
Kojto 110:165afa46840b 4068 const arm_fir_lattice_instance_f32 * S,
Kojto 110:165afa46840b 4069 float32_t * pSrc,
Kojto 110:165afa46840b 4070 float32_t * pDst,
Kojto 110:165afa46840b 4071 uint32_t blockSize);
Kojto 110:165afa46840b 4072
Kojto 110:165afa46840b 4073 /**
Kojto 110:165afa46840b 4074 * @brief Instance structure for the Q15 IIR lattice filter.
Kojto 110:165afa46840b 4075 */
Kojto 110:165afa46840b 4076 typedef struct
Kojto 110:165afa46840b 4077 {
Kojto 110:165afa46840b 4078 uint16_t numStages; /**< number of stages in the filter. */
Kojto 110:165afa46840b 4079 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 110:165afa46840b 4080 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 110:165afa46840b 4081 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 110:165afa46840b 4082 } arm_iir_lattice_instance_q15;
Kojto 110:165afa46840b 4083
Kojto 110:165afa46840b 4084 /**
Kojto 110:165afa46840b 4085 * @brief Instance structure for the Q31 IIR lattice filter.
Kojto 110:165afa46840b 4086 */
Kojto 110:165afa46840b 4087 typedef struct
Kojto 110:165afa46840b 4088 {
Kojto 110:165afa46840b 4089 uint16_t numStages; /**< number of stages in the filter. */
Kojto 110:165afa46840b 4090 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 110:165afa46840b 4091 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 110:165afa46840b 4092 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 110:165afa46840b 4093 } arm_iir_lattice_instance_q31;
Kojto 110:165afa46840b 4094
Kojto 110:165afa46840b 4095 /**
Kojto 110:165afa46840b 4096 * @brief Instance structure for the floating-point IIR lattice filter.
Kojto 110:165afa46840b 4097 */
Kojto 110:165afa46840b 4098 typedef struct
Kojto 110:165afa46840b 4099 {
Kojto 110:165afa46840b 4100 uint16_t numStages; /**< number of stages in the filter. */
Kojto 110:165afa46840b 4101 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 110:165afa46840b 4102 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 110:165afa46840b 4103 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 110:165afa46840b 4104 } arm_iir_lattice_instance_f32;
Kojto 110:165afa46840b 4105
Kojto 110:165afa46840b 4106 /**
Kojto 110:165afa46840b 4107 * @brief Processing function for the floating-point IIR lattice filter.
Kojto 110:165afa46840b 4108 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
Kojto 110:165afa46840b 4109 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4110 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 4111 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4112 * @return none.
Kojto 110:165afa46840b 4113 */
Kojto 110:165afa46840b 4114
Kojto 110:165afa46840b 4115 void arm_iir_lattice_f32(
Kojto 110:165afa46840b 4116 const arm_iir_lattice_instance_f32 * S,
Kojto 110:165afa46840b 4117 float32_t * pSrc,
Kojto 110:165afa46840b 4118 float32_t * pDst,
Kojto 110:165afa46840b 4119 uint32_t blockSize);
Kojto 110:165afa46840b 4120
Kojto 110:165afa46840b 4121 /**
Kojto 110:165afa46840b 4122 * @brief Initialization function for the floating-point IIR lattice filter.
Kojto 110:165afa46840b 4123 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
Kojto 110:165afa46840b 4124 * @param[in] numStages number of stages in the filter.
Kojto 110:165afa46840b 4125 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
Kojto 110:165afa46840b 4126 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
Kojto 110:165afa46840b 4127 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
Kojto 110:165afa46840b 4128 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4129 * @return none.
Kojto 110:165afa46840b 4130 */
Kojto 110:165afa46840b 4131
Kojto 110:165afa46840b 4132 void arm_iir_lattice_init_f32(
Kojto 110:165afa46840b 4133 arm_iir_lattice_instance_f32 * S,
Kojto 110:165afa46840b 4134 uint16_t numStages,
Kojto 110:165afa46840b 4135 float32_t * pkCoeffs,
Kojto 110:165afa46840b 4136 float32_t * pvCoeffs,
Kojto 110:165afa46840b 4137 float32_t * pState,
Kojto 110:165afa46840b 4138 uint32_t blockSize);
Kojto 110:165afa46840b 4139
Kojto 110:165afa46840b 4140
Kojto 110:165afa46840b 4141 /**
Kojto 110:165afa46840b 4142 * @brief Processing function for the Q31 IIR lattice filter.
Kojto 110:165afa46840b 4143 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
Kojto 110:165afa46840b 4144 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4145 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 4146 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4147 * @return none.
Kojto 110:165afa46840b 4148 */
Kojto 110:165afa46840b 4149
Kojto 110:165afa46840b 4150 void arm_iir_lattice_q31(
Kojto 110:165afa46840b 4151 const arm_iir_lattice_instance_q31 * S,
Kojto 110:165afa46840b 4152 q31_t * pSrc,
Kojto 110:165afa46840b 4153 q31_t * pDst,
Kojto 110:165afa46840b 4154 uint32_t blockSize);
Kojto 110:165afa46840b 4155
Kojto 110:165afa46840b 4156
Kojto 110:165afa46840b 4157 /**
Kojto 110:165afa46840b 4158 * @brief Initialization function for the Q31 IIR lattice filter.
Kojto 110:165afa46840b 4159 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
Kojto 110:165afa46840b 4160 * @param[in] numStages number of stages in the filter.
Kojto 110:165afa46840b 4161 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
Kojto 110:165afa46840b 4162 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
Kojto 110:165afa46840b 4163 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
Kojto 110:165afa46840b 4164 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4165 * @return none.
Kojto 110:165afa46840b 4166 */
Kojto 110:165afa46840b 4167
Kojto 110:165afa46840b 4168 void arm_iir_lattice_init_q31(
Kojto 110:165afa46840b 4169 arm_iir_lattice_instance_q31 * S,
Kojto 110:165afa46840b 4170 uint16_t numStages,
Kojto 110:165afa46840b 4171 q31_t * pkCoeffs,
Kojto 110:165afa46840b 4172 q31_t * pvCoeffs,
Kojto 110:165afa46840b 4173 q31_t * pState,
Kojto 110:165afa46840b 4174 uint32_t blockSize);
Kojto 110:165afa46840b 4175
Kojto 110:165afa46840b 4176
Kojto 110:165afa46840b 4177 /**
Kojto 110:165afa46840b 4178 * @brief Processing function for the Q15 IIR lattice filter.
Kojto 110:165afa46840b 4179 * @param[in] *S points to an instance of the Q15 IIR lattice structure.
Kojto 110:165afa46840b 4180 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4181 * @param[out] *pDst points to the block of output data.
Kojto 110:165afa46840b 4182 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4183 * @return none.
Kojto 110:165afa46840b 4184 */
Kojto 110:165afa46840b 4185
Kojto 110:165afa46840b 4186 void arm_iir_lattice_q15(
Kojto 110:165afa46840b 4187 const arm_iir_lattice_instance_q15 * S,
Kojto 110:165afa46840b 4188 q15_t * pSrc,
Kojto 110:165afa46840b 4189 q15_t * pDst,
Kojto 110:165afa46840b 4190 uint32_t blockSize);
Kojto 110:165afa46840b 4191
Kojto 110:165afa46840b 4192
Kojto 110:165afa46840b 4193 /**
Kojto 110:165afa46840b 4194 * @brief Initialization function for the Q15 IIR lattice filter.
Kojto 110:165afa46840b 4195 * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
Kojto 110:165afa46840b 4196 * @param[in] numStages number of stages in the filter.
Kojto 110:165afa46840b 4197 * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
Kojto 110:165afa46840b 4198 * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
Kojto 110:165afa46840b 4199 * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
Kojto 110:165afa46840b 4200 * @param[in] blockSize number of samples to process per call.
Kojto 110:165afa46840b 4201 * @return none.
Kojto 110:165afa46840b 4202 */
Kojto 110:165afa46840b 4203
Kojto 110:165afa46840b 4204 void arm_iir_lattice_init_q15(
Kojto 110:165afa46840b 4205 arm_iir_lattice_instance_q15 * S,
Kojto 110:165afa46840b 4206 uint16_t numStages,
Kojto 110:165afa46840b 4207 q15_t * pkCoeffs,
Kojto 110:165afa46840b 4208 q15_t * pvCoeffs,
Kojto 110:165afa46840b 4209 q15_t * pState,
Kojto 110:165afa46840b 4210 uint32_t blockSize);
Kojto 110:165afa46840b 4211
Kojto 110:165afa46840b 4212 /**
Kojto 110:165afa46840b 4213 * @brief Instance structure for the floating-point LMS filter.
Kojto 110:165afa46840b 4214 */
Kojto 110:165afa46840b 4215
Kojto 110:165afa46840b 4216 typedef struct
Kojto 110:165afa46840b 4217 {
Kojto 110:165afa46840b 4218 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 4219 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 4220 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 110:165afa46840b 4221 float32_t mu; /**< step size that controls filter coefficient updates. */
Kojto 110:165afa46840b 4222 } arm_lms_instance_f32;
Kojto 110:165afa46840b 4223
Kojto 110:165afa46840b 4224 /**
Kojto 110:165afa46840b 4225 * @brief Processing function for floating-point LMS filter.
Kojto 110:165afa46840b 4226 * @param[in] *S points to an instance of the floating-point LMS filter structure.
Kojto 110:165afa46840b 4227 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4228 * @param[in] *pRef points to the block of reference data.
Kojto 110:165afa46840b 4229 * @param[out] *pOut points to the block of output data.
Kojto 110:165afa46840b 4230 * @param[out] *pErr points to the block of error data.
Kojto 110:165afa46840b 4231 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4232 * @return none.
Kojto 110:165afa46840b 4233 */
Kojto 110:165afa46840b 4234
Kojto 110:165afa46840b 4235 void arm_lms_f32(
Kojto 110:165afa46840b 4236 const arm_lms_instance_f32 * S,
Kojto 110:165afa46840b 4237 float32_t * pSrc,
Kojto 110:165afa46840b 4238 float32_t * pRef,
Kojto 110:165afa46840b 4239 float32_t * pOut,
Kojto 110:165afa46840b 4240 float32_t * pErr,
Kojto 110:165afa46840b 4241 uint32_t blockSize);
Kojto 110:165afa46840b 4242
Kojto 110:165afa46840b 4243 /**
Kojto 110:165afa46840b 4244 * @brief Initialization function for floating-point LMS filter.
Kojto 110:165afa46840b 4245 * @param[in] *S points to an instance of the floating-point LMS filter structure.
Kojto 110:165afa46840b 4246 * @param[in] numTaps number of filter coefficients.
Kojto 110:165afa46840b 4247 * @param[in] *pCoeffs points to the coefficient buffer.
Kojto 110:165afa46840b 4248 * @param[in] *pState points to state buffer.
Kojto 110:165afa46840b 4249 * @param[in] mu step size that controls filter coefficient updates.
Kojto 110:165afa46840b 4250 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4251 * @return none.
Kojto 110:165afa46840b 4252 */
Kojto 110:165afa46840b 4253
Kojto 110:165afa46840b 4254 void arm_lms_init_f32(
Kojto 110:165afa46840b 4255 arm_lms_instance_f32 * S,
Kojto 110:165afa46840b 4256 uint16_t numTaps,
Kojto 110:165afa46840b 4257 float32_t * pCoeffs,
Kojto 110:165afa46840b 4258 float32_t * pState,
Kojto 110:165afa46840b 4259 float32_t mu,
Kojto 110:165afa46840b 4260 uint32_t blockSize);
Kojto 110:165afa46840b 4261
Kojto 110:165afa46840b 4262 /**
Kojto 110:165afa46840b 4263 * @brief Instance structure for the Q15 LMS filter.
Kojto 110:165afa46840b 4264 */
Kojto 110:165afa46840b 4265
Kojto 110:165afa46840b 4266 typedef struct
Kojto 110:165afa46840b 4267 {
Kojto 110:165afa46840b 4268 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 4269 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 4270 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 110:165afa46840b 4271 q15_t mu; /**< step size that controls filter coefficient updates. */
Kojto 110:165afa46840b 4272 uint32_t postShift; /**< bit shift applied to coefficients. */
Kojto 110:165afa46840b 4273 } arm_lms_instance_q15;
Kojto 110:165afa46840b 4274
Kojto 110:165afa46840b 4275
Kojto 110:165afa46840b 4276 /**
Kojto 110:165afa46840b 4277 * @brief Initialization function for the Q15 LMS filter.
Kojto 110:165afa46840b 4278 * @param[in] *S points to an instance of the Q15 LMS filter structure.
Kojto 110:165afa46840b 4279 * @param[in] numTaps number of filter coefficients.
Kojto 110:165afa46840b 4280 * @param[in] *pCoeffs points to the coefficient buffer.
Kojto 110:165afa46840b 4281 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 4282 * @param[in] mu step size that controls filter coefficient updates.
Kojto 110:165afa46840b 4283 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4284 * @param[in] postShift bit shift applied to coefficients.
Kojto 110:165afa46840b 4285 * @return none.
Kojto 110:165afa46840b 4286 */
Kojto 110:165afa46840b 4287
Kojto 110:165afa46840b 4288 void arm_lms_init_q15(
Kojto 110:165afa46840b 4289 arm_lms_instance_q15 * S,
Kojto 110:165afa46840b 4290 uint16_t numTaps,
Kojto 110:165afa46840b 4291 q15_t * pCoeffs,
Kojto 110:165afa46840b 4292 q15_t * pState,
Kojto 110:165afa46840b 4293 q15_t mu,
Kojto 110:165afa46840b 4294 uint32_t blockSize,
Kojto 110:165afa46840b 4295 uint32_t postShift);
Kojto 110:165afa46840b 4296
Kojto 110:165afa46840b 4297 /**
Kojto 110:165afa46840b 4298 * @brief Processing function for Q15 LMS filter.
Kojto 110:165afa46840b 4299 * @param[in] *S points to an instance of the Q15 LMS filter structure.
Kojto 110:165afa46840b 4300 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4301 * @param[in] *pRef points to the block of reference data.
Kojto 110:165afa46840b 4302 * @param[out] *pOut points to the block of output data.
Kojto 110:165afa46840b 4303 * @param[out] *pErr points to the block of error data.
Kojto 110:165afa46840b 4304 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4305 * @return none.
Kojto 110:165afa46840b 4306 */
Kojto 110:165afa46840b 4307
Kojto 110:165afa46840b 4308 void arm_lms_q15(
Kojto 110:165afa46840b 4309 const arm_lms_instance_q15 * S,
Kojto 110:165afa46840b 4310 q15_t * pSrc,
Kojto 110:165afa46840b 4311 q15_t * pRef,
Kojto 110:165afa46840b 4312 q15_t * pOut,
Kojto 110:165afa46840b 4313 q15_t * pErr,
Kojto 110:165afa46840b 4314 uint32_t blockSize);
Kojto 110:165afa46840b 4315
Kojto 110:165afa46840b 4316
Kojto 110:165afa46840b 4317 /**
Kojto 110:165afa46840b 4318 * @brief Instance structure for the Q31 LMS filter.
Kojto 110:165afa46840b 4319 */
Kojto 110:165afa46840b 4320
Kojto 110:165afa46840b 4321 typedef struct
Kojto 110:165afa46840b 4322 {
Kojto 110:165afa46840b 4323 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 4324 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 4325 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 110:165afa46840b 4326 q31_t mu; /**< step size that controls filter coefficient updates. */
Kojto 110:165afa46840b 4327 uint32_t postShift; /**< bit shift applied to coefficients. */
Kojto 110:165afa46840b 4328
Kojto 110:165afa46840b 4329 } arm_lms_instance_q31;
Kojto 110:165afa46840b 4330
Kojto 110:165afa46840b 4331 /**
Kojto 110:165afa46840b 4332 * @brief Processing function for Q31 LMS filter.
Kojto 110:165afa46840b 4333 * @param[in] *S points to an instance of the Q15 LMS filter structure.
Kojto 110:165afa46840b 4334 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4335 * @param[in] *pRef points to the block of reference data.
Kojto 110:165afa46840b 4336 * @param[out] *pOut points to the block of output data.
Kojto 110:165afa46840b 4337 * @param[out] *pErr points to the block of error data.
Kojto 110:165afa46840b 4338 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4339 * @return none.
Kojto 110:165afa46840b 4340 */
Kojto 110:165afa46840b 4341
Kojto 110:165afa46840b 4342 void arm_lms_q31(
Kojto 110:165afa46840b 4343 const arm_lms_instance_q31 * S,
Kojto 110:165afa46840b 4344 q31_t * pSrc,
Kojto 110:165afa46840b 4345 q31_t * pRef,
Kojto 110:165afa46840b 4346 q31_t * pOut,
Kojto 110:165afa46840b 4347 q31_t * pErr,
Kojto 110:165afa46840b 4348 uint32_t blockSize);
Kojto 110:165afa46840b 4349
Kojto 110:165afa46840b 4350 /**
Kojto 110:165afa46840b 4351 * @brief Initialization function for Q31 LMS filter.
Kojto 110:165afa46840b 4352 * @param[in] *S points to an instance of the Q31 LMS filter structure.
Kojto 110:165afa46840b 4353 * @param[in] numTaps number of filter coefficients.
Kojto 110:165afa46840b 4354 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 110:165afa46840b 4355 * @param[in] *pState points to state buffer.
Kojto 110:165afa46840b 4356 * @param[in] mu step size that controls filter coefficient updates.
Kojto 110:165afa46840b 4357 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4358 * @param[in] postShift bit shift applied to coefficients.
Kojto 110:165afa46840b 4359 * @return none.
Kojto 110:165afa46840b 4360 */
Kojto 110:165afa46840b 4361
Kojto 110:165afa46840b 4362 void arm_lms_init_q31(
Kojto 110:165afa46840b 4363 arm_lms_instance_q31 * S,
Kojto 110:165afa46840b 4364 uint16_t numTaps,
Kojto 110:165afa46840b 4365 q31_t * pCoeffs,
Kojto 110:165afa46840b 4366 q31_t * pState,
Kojto 110:165afa46840b 4367 q31_t mu,
Kojto 110:165afa46840b 4368 uint32_t blockSize,
Kojto 110:165afa46840b 4369 uint32_t postShift);
Kojto 110:165afa46840b 4370
Kojto 110:165afa46840b 4371 /**
Kojto 110:165afa46840b 4372 * @brief Instance structure for the floating-point normalized LMS filter.
Kojto 110:165afa46840b 4373 */
Kojto 110:165afa46840b 4374
Kojto 110:165afa46840b 4375 typedef struct
Kojto 110:165afa46840b 4376 {
Kojto 110:165afa46840b 4377 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 4378 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 4379 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 110:165afa46840b 4380 float32_t mu; /**< step size that control filter coefficient updates. */
Kojto 110:165afa46840b 4381 float32_t energy; /**< saves previous frame energy. */
Kojto 110:165afa46840b 4382 float32_t x0; /**< saves previous input sample. */
Kojto 110:165afa46840b 4383 } arm_lms_norm_instance_f32;
Kojto 110:165afa46840b 4384
Kojto 110:165afa46840b 4385 /**
Kojto 110:165afa46840b 4386 * @brief Processing function for floating-point normalized LMS filter.
Kojto 110:165afa46840b 4387 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
Kojto 110:165afa46840b 4388 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4389 * @param[in] *pRef points to the block of reference data.
Kojto 110:165afa46840b 4390 * @param[out] *pOut points to the block of output data.
Kojto 110:165afa46840b 4391 * @param[out] *pErr points to the block of error data.
Kojto 110:165afa46840b 4392 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4393 * @return none.
Kojto 110:165afa46840b 4394 */
Kojto 110:165afa46840b 4395
Kojto 110:165afa46840b 4396 void arm_lms_norm_f32(
Kojto 110:165afa46840b 4397 arm_lms_norm_instance_f32 * S,
Kojto 110:165afa46840b 4398 float32_t * pSrc,
Kojto 110:165afa46840b 4399 float32_t * pRef,
Kojto 110:165afa46840b 4400 float32_t * pOut,
Kojto 110:165afa46840b 4401 float32_t * pErr,
Kojto 110:165afa46840b 4402 uint32_t blockSize);
Kojto 110:165afa46840b 4403
Kojto 110:165afa46840b 4404 /**
Kojto 110:165afa46840b 4405 * @brief Initialization function for floating-point normalized LMS filter.
Kojto 110:165afa46840b 4406 * @param[in] *S points to an instance of the floating-point LMS filter structure.
Kojto 110:165afa46840b 4407 * @param[in] numTaps number of filter coefficients.
Kojto 110:165afa46840b 4408 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 110:165afa46840b 4409 * @param[in] *pState points to state buffer.
Kojto 110:165afa46840b 4410 * @param[in] mu step size that controls filter coefficient updates.
Kojto 110:165afa46840b 4411 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4412 * @return none.
Kojto 110:165afa46840b 4413 */
Kojto 110:165afa46840b 4414
Kojto 110:165afa46840b 4415 void arm_lms_norm_init_f32(
Kojto 110:165afa46840b 4416 arm_lms_norm_instance_f32 * S,
Kojto 110:165afa46840b 4417 uint16_t numTaps,
Kojto 110:165afa46840b 4418 float32_t * pCoeffs,
Kojto 110:165afa46840b 4419 float32_t * pState,
Kojto 110:165afa46840b 4420 float32_t mu,
Kojto 110:165afa46840b 4421 uint32_t blockSize);
Kojto 110:165afa46840b 4422
Kojto 110:165afa46840b 4423
Kojto 110:165afa46840b 4424 /**
Kojto 110:165afa46840b 4425 * @brief Instance structure for the Q31 normalized LMS filter.
Kojto 110:165afa46840b 4426 */
Kojto 110:165afa46840b 4427 typedef struct
Kojto 110:165afa46840b 4428 {
Kojto 110:165afa46840b 4429 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 4430 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 4431 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 110:165afa46840b 4432 q31_t mu; /**< step size that controls filter coefficient updates. */
Kojto 110:165afa46840b 4433 uint8_t postShift; /**< bit shift applied to coefficients. */
Kojto 110:165afa46840b 4434 q31_t *recipTable; /**< points to the reciprocal initial value table. */
Kojto 110:165afa46840b 4435 q31_t energy; /**< saves previous frame energy. */
Kojto 110:165afa46840b 4436 q31_t x0; /**< saves previous input sample. */
Kojto 110:165afa46840b 4437 } arm_lms_norm_instance_q31;
Kojto 110:165afa46840b 4438
Kojto 110:165afa46840b 4439 /**
Kojto 110:165afa46840b 4440 * @brief Processing function for Q31 normalized LMS filter.
Kojto 110:165afa46840b 4441 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
Kojto 110:165afa46840b 4442 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4443 * @param[in] *pRef points to the block of reference data.
Kojto 110:165afa46840b 4444 * @param[out] *pOut points to the block of output data.
Kojto 110:165afa46840b 4445 * @param[out] *pErr points to the block of error data.
Kojto 110:165afa46840b 4446 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4447 * @return none.
Kojto 110:165afa46840b 4448 */
Kojto 110:165afa46840b 4449
Kojto 110:165afa46840b 4450 void arm_lms_norm_q31(
Kojto 110:165afa46840b 4451 arm_lms_norm_instance_q31 * S,
Kojto 110:165afa46840b 4452 q31_t * pSrc,
Kojto 110:165afa46840b 4453 q31_t * pRef,
Kojto 110:165afa46840b 4454 q31_t * pOut,
Kojto 110:165afa46840b 4455 q31_t * pErr,
Kojto 110:165afa46840b 4456 uint32_t blockSize);
Kojto 110:165afa46840b 4457
Kojto 110:165afa46840b 4458 /**
Kojto 110:165afa46840b 4459 * @brief Initialization function for Q31 normalized LMS filter.
Kojto 110:165afa46840b 4460 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
Kojto 110:165afa46840b 4461 * @param[in] numTaps number of filter coefficients.
Kojto 110:165afa46840b 4462 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 110:165afa46840b 4463 * @param[in] *pState points to state buffer.
Kojto 110:165afa46840b 4464 * @param[in] mu step size that controls filter coefficient updates.
Kojto 110:165afa46840b 4465 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4466 * @param[in] postShift bit shift applied to coefficients.
Kojto 110:165afa46840b 4467 * @return none.
Kojto 110:165afa46840b 4468 */
Kojto 110:165afa46840b 4469
Kojto 110:165afa46840b 4470 void arm_lms_norm_init_q31(
Kojto 110:165afa46840b 4471 arm_lms_norm_instance_q31 * S,
Kojto 110:165afa46840b 4472 uint16_t numTaps,
Kojto 110:165afa46840b 4473 q31_t * pCoeffs,
Kojto 110:165afa46840b 4474 q31_t * pState,
Kojto 110:165afa46840b 4475 q31_t mu,
Kojto 110:165afa46840b 4476 uint32_t blockSize,
Kojto 110:165afa46840b 4477 uint8_t postShift);
Kojto 110:165afa46840b 4478
Kojto 110:165afa46840b 4479 /**
Kojto 110:165afa46840b 4480 * @brief Instance structure for the Q15 normalized LMS filter.
Kojto 110:165afa46840b 4481 */
Kojto 110:165afa46840b 4482
Kojto 110:165afa46840b 4483 typedef struct
Kojto 110:165afa46840b 4484 {
Kojto 110:165afa46840b 4485 uint16_t numTaps; /**< Number of coefficients in the filter. */
Kojto 110:165afa46840b 4486 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 110:165afa46840b 4487 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 110:165afa46840b 4488 q15_t mu; /**< step size that controls filter coefficient updates. */
Kojto 110:165afa46840b 4489 uint8_t postShift; /**< bit shift applied to coefficients. */
Kojto 110:165afa46840b 4490 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
Kojto 110:165afa46840b 4491 q15_t energy; /**< saves previous frame energy. */
Kojto 110:165afa46840b 4492 q15_t x0; /**< saves previous input sample. */
Kojto 110:165afa46840b 4493 } arm_lms_norm_instance_q15;
Kojto 110:165afa46840b 4494
Kojto 110:165afa46840b 4495 /**
Kojto 110:165afa46840b 4496 * @brief Processing function for Q15 normalized LMS filter.
Kojto 110:165afa46840b 4497 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
Kojto 110:165afa46840b 4498 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4499 * @param[in] *pRef points to the block of reference data.
Kojto 110:165afa46840b 4500 * @param[out] *pOut points to the block of output data.
Kojto 110:165afa46840b 4501 * @param[out] *pErr points to the block of error data.
Kojto 110:165afa46840b 4502 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4503 * @return none.
Kojto 110:165afa46840b 4504 */
Kojto 110:165afa46840b 4505
Kojto 110:165afa46840b 4506 void arm_lms_norm_q15(
Kojto 110:165afa46840b 4507 arm_lms_norm_instance_q15 * S,
Kojto 110:165afa46840b 4508 q15_t * pSrc,
Kojto 110:165afa46840b 4509 q15_t * pRef,
Kojto 110:165afa46840b 4510 q15_t * pOut,
Kojto 110:165afa46840b 4511 q15_t * pErr,
Kojto 110:165afa46840b 4512 uint32_t blockSize);
Kojto 110:165afa46840b 4513
Kojto 110:165afa46840b 4514
Kojto 110:165afa46840b 4515 /**
Kojto 110:165afa46840b 4516 * @brief Initialization function for Q15 normalized LMS filter.
Kojto 110:165afa46840b 4517 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
Kojto 110:165afa46840b 4518 * @param[in] numTaps number of filter coefficients.
Kojto 110:165afa46840b 4519 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 110:165afa46840b 4520 * @param[in] *pState points to state buffer.
Kojto 110:165afa46840b 4521 * @param[in] mu step size that controls filter coefficient updates.
Kojto 110:165afa46840b 4522 * @param[in] blockSize number of samples to process.
Kojto 110:165afa46840b 4523 * @param[in] postShift bit shift applied to coefficients.
Kojto 110:165afa46840b 4524 * @return none.
Kojto 110:165afa46840b 4525 */
Kojto 110:165afa46840b 4526
Kojto 110:165afa46840b 4527 void arm_lms_norm_init_q15(
Kojto 110:165afa46840b 4528 arm_lms_norm_instance_q15 * S,
Kojto 110:165afa46840b 4529 uint16_t numTaps,
Kojto 110:165afa46840b 4530 q15_t * pCoeffs,
Kojto 110:165afa46840b 4531 q15_t * pState,
Kojto 110:165afa46840b 4532 q15_t mu,
Kojto 110:165afa46840b 4533 uint32_t blockSize,
Kojto 110:165afa46840b 4534 uint8_t postShift);
Kojto 110:165afa46840b 4535
Kojto 110:165afa46840b 4536 /**
Kojto 110:165afa46840b 4537 * @brief Correlation of floating-point sequences.
Kojto 110:165afa46840b 4538 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 4539 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 4540 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 4541 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 4542 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 110:165afa46840b 4543 * @return none.
Kojto 110:165afa46840b 4544 */
Kojto 110:165afa46840b 4545
Kojto 110:165afa46840b 4546 void arm_correlate_f32(
Kojto 110:165afa46840b 4547 float32_t * pSrcA,
Kojto 110:165afa46840b 4548 uint32_t srcALen,
Kojto 110:165afa46840b 4549 float32_t * pSrcB,
Kojto 110:165afa46840b 4550 uint32_t srcBLen,
Kojto 110:165afa46840b 4551 float32_t * pDst);
Kojto 110:165afa46840b 4552
Kojto 110:165afa46840b 4553
Kojto 110:165afa46840b 4554 /**
Kojto 110:165afa46840b 4555 * @brief Correlation of Q15 sequences
Kojto 110:165afa46840b 4556 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 4557 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 4558 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 4559 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 4560 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 110:165afa46840b 4561 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 110:165afa46840b 4562 * @return none.
Kojto 110:165afa46840b 4563 */
Kojto 110:165afa46840b 4564 void arm_correlate_opt_q15(
Kojto 110:165afa46840b 4565 q15_t * pSrcA,
Kojto 110:165afa46840b 4566 uint32_t srcALen,
Kojto 110:165afa46840b 4567 q15_t * pSrcB,
Kojto 110:165afa46840b 4568 uint32_t srcBLen,
Kojto 110:165afa46840b 4569 q15_t * pDst,
Kojto 110:165afa46840b 4570 q15_t * pScratch);
Kojto 110:165afa46840b 4571
Kojto 110:165afa46840b 4572
Kojto 110:165afa46840b 4573 /**
Kojto 110:165afa46840b 4574 * @brief Correlation of Q15 sequences.
Kojto 110:165afa46840b 4575 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 4576 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 4577 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 4578 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 4579 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 110:165afa46840b 4580 * @return none.
Kojto 110:165afa46840b 4581 */
Kojto 110:165afa46840b 4582
Kojto 110:165afa46840b 4583 void arm_correlate_q15(
Kojto 110:165afa46840b 4584 q15_t * pSrcA,
Kojto 110:165afa46840b 4585 uint32_t srcALen,
Kojto 110:165afa46840b 4586 q15_t * pSrcB,
Kojto 110:165afa46840b 4587 uint32_t srcBLen,
Kojto 110:165afa46840b 4588 q15_t * pDst);
Kojto 110:165afa46840b 4589
Kojto 110:165afa46840b 4590 /**
Kojto 110:165afa46840b 4591 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
Kojto 110:165afa46840b 4592 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 4593 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 4594 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 4595 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 4596 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 110:165afa46840b 4597 * @return none.
Kojto 110:165afa46840b 4598 */
Kojto 110:165afa46840b 4599
Kojto 110:165afa46840b 4600 void arm_correlate_fast_q15(
Kojto 110:165afa46840b 4601 q15_t * pSrcA,
Kojto 110:165afa46840b 4602 uint32_t srcALen,
Kojto 110:165afa46840b 4603 q15_t * pSrcB,
Kojto 110:165afa46840b 4604 uint32_t srcBLen,
Kojto 110:165afa46840b 4605 q15_t * pDst);
Kojto 110:165afa46840b 4606
Kojto 110:165afa46840b 4607
Kojto 110:165afa46840b 4608
Kojto 110:165afa46840b 4609 /**
Kojto 110:165afa46840b 4610 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
Kojto 110:165afa46840b 4611 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 4612 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 4613 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 4614 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 4615 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 110:165afa46840b 4616 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 110:165afa46840b 4617 * @return none.
Kojto 110:165afa46840b 4618 */
Kojto 110:165afa46840b 4619
Kojto 110:165afa46840b 4620 void arm_correlate_fast_opt_q15(
Kojto 110:165afa46840b 4621 q15_t * pSrcA,
Kojto 110:165afa46840b 4622 uint32_t srcALen,
Kojto 110:165afa46840b 4623 q15_t * pSrcB,
Kojto 110:165afa46840b 4624 uint32_t srcBLen,
Kojto 110:165afa46840b 4625 q15_t * pDst,
Kojto 110:165afa46840b 4626 q15_t * pScratch);
Kojto 110:165afa46840b 4627
Kojto 110:165afa46840b 4628 /**
Kojto 110:165afa46840b 4629 * @brief Correlation of Q31 sequences.
Kojto 110:165afa46840b 4630 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 4631 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 4632 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 4633 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 4634 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 110:165afa46840b 4635 * @return none.
Kojto 110:165afa46840b 4636 */
Kojto 110:165afa46840b 4637
Kojto 110:165afa46840b 4638 void arm_correlate_q31(
Kojto 110:165afa46840b 4639 q31_t * pSrcA,
Kojto 110:165afa46840b 4640 uint32_t srcALen,
Kojto 110:165afa46840b 4641 q31_t * pSrcB,
Kojto 110:165afa46840b 4642 uint32_t srcBLen,
Kojto 110:165afa46840b 4643 q31_t * pDst);
Kojto 110:165afa46840b 4644
Kojto 110:165afa46840b 4645 /**
Kojto 110:165afa46840b 4646 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 110:165afa46840b 4647 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 4648 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 4649 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 4650 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 4651 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 110:165afa46840b 4652 * @return none.
Kojto 110:165afa46840b 4653 */
Kojto 110:165afa46840b 4654
Kojto 110:165afa46840b 4655 void arm_correlate_fast_q31(
Kojto 110:165afa46840b 4656 q31_t * pSrcA,
Kojto 110:165afa46840b 4657 uint32_t srcALen,
Kojto 110:165afa46840b 4658 q31_t * pSrcB,
Kojto 110:165afa46840b 4659 uint32_t srcBLen,
Kojto 110:165afa46840b 4660 q31_t * pDst);
Kojto 110:165afa46840b 4661
Kojto 110:165afa46840b 4662
Kojto 110:165afa46840b 4663
Kojto 110:165afa46840b 4664 /**
Kojto 110:165afa46840b 4665 * @brief Correlation of Q7 sequences.
Kojto 110:165afa46840b 4666 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 4667 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 4668 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 4669 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 4670 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 110:165afa46840b 4671 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 110:165afa46840b 4672 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 110:165afa46840b 4673 * @return none.
Kojto 110:165afa46840b 4674 */
Kojto 110:165afa46840b 4675
Kojto 110:165afa46840b 4676 void arm_correlate_opt_q7(
Kojto 110:165afa46840b 4677 q7_t * pSrcA,
Kojto 110:165afa46840b 4678 uint32_t srcALen,
Kojto 110:165afa46840b 4679 q7_t * pSrcB,
Kojto 110:165afa46840b 4680 uint32_t srcBLen,
Kojto 110:165afa46840b 4681 q7_t * pDst,
Kojto 110:165afa46840b 4682 q15_t * pScratch1,
Kojto 110:165afa46840b 4683 q15_t * pScratch2);
Kojto 110:165afa46840b 4684
Kojto 110:165afa46840b 4685
Kojto 110:165afa46840b 4686 /**
Kojto 110:165afa46840b 4687 * @brief Correlation of Q7 sequences.
Kojto 110:165afa46840b 4688 * @param[in] *pSrcA points to the first input sequence.
Kojto 110:165afa46840b 4689 * @param[in] srcALen length of the first input sequence.
Kojto 110:165afa46840b 4690 * @param[in] *pSrcB points to the second input sequence.
Kojto 110:165afa46840b 4691 * @param[in] srcBLen length of the second input sequence.
Kojto 110:165afa46840b 4692 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 110:165afa46840b 4693 * @return none.
Kojto 110:165afa46840b 4694 */
Kojto 110:165afa46840b 4695
Kojto 110:165afa46840b 4696 void arm_correlate_q7(
Kojto 110:165afa46840b 4697 q7_t * pSrcA,
Kojto 110:165afa46840b 4698 uint32_t srcALen,
Kojto 110:165afa46840b 4699 q7_t * pSrcB,
Kojto 110:165afa46840b 4700 uint32_t srcBLen,
Kojto 110:165afa46840b 4701 q7_t * pDst);
Kojto 110:165afa46840b 4702
Kojto 110:165afa46840b 4703
Kojto 110:165afa46840b 4704 /**
Kojto 110:165afa46840b 4705 * @brief Instance structure for the floating-point sparse FIR filter.
Kojto 110:165afa46840b 4706 */
Kojto 110:165afa46840b 4707 typedef struct
Kojto 110:165afa46840b 4708 {
Kojto 110:165afa46840b 4709 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 4710 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 110:165afa46840b 4711 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 110:165afa46840b 4712 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 110:165afa46840b 4713 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 110:165afa46840b 4714 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 110:165afa46840b 4715 } arm_fir_sparse_instance_f32;
Kojto 110:165afa46840b 4716
Kojto 110:165afa46840b 4717 /**
Kojto 110:165afa46840b 4718 * @brief Instance structure for the Q31 sparse FIR filter.
Kojto 110:165afa46840b 4719 */
Kojto 110:165afa46840b 4720
Kojto 110:165afa46840b 4721 typedef struct
Kojto 110:165afa46840b 4722 {
Kojto 110:165afa46840b 4723 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 4724 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 110:165afa46840b 4725 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 110:165afa46840b 4726 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 110:165afa46840b 4727 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 110:165afa46840b 4728 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 110:165afa46840b 4729 } arm_fir_sparse_instance_q31;
Kojto 110:165afa46840b 4730
Kojto 110:165afa46840b 4731 /**
Kojto 110:165afa46840b 4732 * @brief Instance structure for the Q15 sparse FIR filter.
Kojto 110:165afa46840b 4733 */
Kojto 110:165afa46840b 4734
Kojto 110:165afa46840b 4735 typedef struct
Kojto 110:165afa46840b 4736 {
Kojto 110:165afa46840b 4737 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 4738 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 110:165afa46840b 4739 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 110:165afa46840b 4740 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 110:165afa46840b 4741 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 110:165afa46840b 4742 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 110:165afa46840b 4743 } arm_fir_sparse_instance_q15;
Kojto 110:165afa46840b 4744
Kojto 110:165afa46840b 4745 /**
Kojto 110:165afa46840b 4746 * @brief Instance structure for the Q7 sparse FIR filter.
Kojto 110:165afa46840b 4747 */
Kojto 110:165afa46840b 4748
Kojto 110:165afa46840b 4749 typedef struct
Kojto 110:165afa46840b 4750 {
Kojto 110:165afa46840b 4751 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 110:165afa46840b 4752 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 110:165afa46840b 4753 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 110:165afa46840b 4754 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 110:165afa46840b 4755 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 110:165afa46840b 4756 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 110:165afa46840b 4757 } arm_fir_sparse_instance_q7;
Kojto 110:165afa46840b 4758
Kojto 110:165afa46840b 4759 /**
Kojto 110:165afa46840b 4760 * @brief Processing function for the floating-point sparse FIR filter.
Kojto 110:165afa46840b 4761 * @param[in] *S points to an instance of the floating-point sparse FIR structure.
Kojto 110:165afa46840b 4762 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4763 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 4764 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 110:165afa46840b 4765 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 4766 * @return none.
Kojto 110:165afa46840b 4767 */
Kojto 110:165afa46840b 4768
Kojto 110:165afa46840b 4769 void arm_fir_sparse_f32(
Kojto 110:165afa46840b 4770 arm_fir_sparse_instance_f32 * S,
Kojto 110:165afa46840b 4771 float32_t * pSrc,
Kojto 110:165afa46840b 4772 float32_t * pDst,
Kojto 110:165afa46840b 4773 float32_t * pScratchIn,
Kojto 110:165afa46840b 4774 uint32_t blockSize);
Kojto 110:165afa46840b 4775
Kojto 110:165afa46840b 4776 /**
Kojto 110:165afa46840b 4777 * @brief Initialization function for the floating-point sparse FIR filter.
Kojto 110:165afa46840b 4778 * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
Kojto 110:165afa46840b 4779 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 110:165afa46840b 4780 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 110:165afa46840b 4781 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 4782 * @param[in] *pTapDelay points to the array of offset times.
Kojto 110:165afa46840b 4783 * @param[in] maxDelay maximum offset time supported.
Kojto 110:165afa46840b 4784 * @param[in] blockSize number of samples that will be processed per block.
Kojto 110:165afa46840b 4785 * @return none
Kojto 110:165afa46840b 4786 */
Kojto 110:165afa46840b 4787
Kojto 110:165afa46840b 4788 void arm_fir_sparse_init_f32(
Kojto 110:165afa46840b 4789 arm_fir_sparse_instance_f32 * S,
Kojto 110:165afa46840b 4790 uint16_t numTaps,
Kojto 110:165afa46840b 4791 float32_t * pCoeffs,
Kojto 110:165afa46840b 4792 float32_t * pState,
Kojto 110:165afa46840b 4793 int32_t * pTapDelay,
Kojto 110:165afa46840b 4794 uint16_t maxDelay,
Kojto 110:165afa46840b 4795 uint32_t blockSize);
Kojto 110:165afa46840b 4796
Kojto 110:165afa46840b 4797 /**
Kojto 110:165afa46840b 4798 * @brief Processing function for the Q31 sparse FIR filter.
Kojto 110:165afa46840b 4799 * @param[in] *S points to an instance of the Q31 sparse FIR structure.
Kojto 110:165afa46840b 4800 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4801 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 4802 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 110:165afa46840b 4803 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 4804 * @return none.
Kojto 110:165afa46840b 4805 */
Kojto 110:165afa46840b 4806
Kojto 110:165afa46840b 4807 void arm_fir_sparse_q31(
Kojto 110:165afa46840b 4808 arm_fir_sparse_instance_q31 * S,
Kojto 110:165afa46840b 4809 q31_t * pSrc,
Kojto 110:165afa46840b 4810 q31_t * pDst,
Kojto 110:165afa46840b 4811 q31_t * pScratchIn,
Kojto 110:165afa46840b 4812 uint32_t blockSize);
Kojto 110:165afa46840b 4813
Kojto 110:165afa46840b 4814 /**
Kojto 110:165afa46840b 4815 * @brief Initialization function for the Q31 sparse FIR filter.
Kojto 110:165afa46840b 4816 * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
Kojto 110:165afa46840b 4817 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 110:165afa46840b 4818 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 110:165afa46840b 4819 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 4820 * @param[in] *pTapDelay points to the array of offset times.
Kojto 110:165afa46840b 4821 * @param[in] maxDelay maximum offset time supported.
Kojto 110:165afa46840b 4822 * @param[in] blockSize number of samples that will be processed per block.
Kojto 110:165afa46840b 4823 * @return none
Kojto 110:165afa46840b 4824 */
Kojto 110:165afa46840b 4825
Kojto 110:165afa46840b 4826 void arm_fir_sparse_init_q31(
Kojto 110:165afa46840b 4827 arm_fir_sparse_instance_q31 * S,
Kojto 110:165afa46840b 4828 uint16_t numTaps,
Kojto 110:165afa46840b 4829 q31_t * pCoeffs,
Kojto 110:165afa46840b 4830 q31_t * pState,
Kojto 110:165afa46840b 4831 int32_t * pTapDelay,
Kojto 110:165afa46840b 4832 uint16_t maxDelay,
Kojto 110:165afa46840b 4833 uint32_t blockSize);
Kojto 110:165afa46840b 4834
Kojto 110:165afa46840b 4835 /**
Kojto 110:165afa46840b 4836 * @brief Processing function for the Q15 sparse FIR filter.
Kojto 110:165afa46840b 4837 * @param[in] *S points to an instance of the Q15 sparse FIR structure.
Kojto 110:165afa46840b 4838 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4839 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 4840 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 110:165afa46840b 4841 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
Kojto 110:165afa46840b 4842 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 4843 * @return none.
Kojto 110:165afa46840b 4844 */
Kojto 110:165afa46840b 4845
Kojto 110:165afa46840b 4846 void arm_fir_sparse_q15(
Kojto 110:165afa46840b 4847 arm_fir_sparse_instance_q15 * S,
Kojto 110:165afa46840b 4848 q15_t * pSrc,
Kojto 110:165afa46840b 4849 q15_t * pDst,
Kojto 110:165afa46840b 4850 q15_t * pScratchIn,
Kojto 110:165afa46840b 4851 q31_t * pScratchOut,
Kojto 110:165afa46840b 4852 uint32_t blockSize);
Kojto 110:165afa46840b 4853
Kojto 110:165afa46840b 4854
Kojto 110:165afa46840b 4855 /**
Kojto 110:165afa46840b 4856 * @brief Initialization function for the Q15 sparse FIR filter.
Kojto 110:165afa46840b 4857 * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
Kojto 110:165afa46840b 4858 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 110:165afa46840b 4859 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 110:165afa46840b 4860 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 4861 * @param[in] *pTapDelay points to the array of offset times.
Kojto 110:165afa46840b 4862 * @param[in] maxDelay maximum offset time supported.
Kojto 110:165afa46840b 4863 * @param[in] blockSize number of samples that will be processed per block.
Kojto 110:165afa46840b 4864 * @return none
Kojto 110:165afa46840b 4865 */
Kojto 110:165afa46840b 4866
Kojto 110:165afa46840b 4867 void arm_fir_sparse_init_q15(
Kojto 110:165afa46840b 4868 arm_fir_sparse_instance_q15 * S,
Kojto 110:165afa46840b 4869 uint16_t numTaps,
Kojto 110:165afa46840b 4870 q15_t * pCoeffs,
Kojto 110:165afa46840b 4871 q15_t * pState,
Kojto 110:165afa46840b 4872 int32_t * pTapDelay,
Kojto 110:165afa46840b 4873 uint16_t maxDelay,
Kojto 110:165afa46840b 4874 uint32_t blockSize);
Kojto 110:165afa46840b 4875
Kojto 110:165afa46840b 4876 /**
Kojto 110:165afa46840b 4877 * @brief Processing function for the Q7 sparse FIR filter.
Kojto 110:165afa46840b 4878 * @param[in] *S points to an instance of the Q7 sparse FIR structure.
Kojto 110:165afa46840b 4879 * @param[in] *pSrc points to the block of input data.
Kojto 110:165afa46840b 4880 * @param[out] *pDst points to the block of output data
Kojto 110:165afa46840b 4881 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 110:165afa46840b 4882 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
Kojto 110:165afa46840b 4883 * @param[in] blockSize number of input samples to process per call.
Kojto 110:165afa46840b 4884 * @return none.
Kojto 110:165afa46840b 4885 */
Kojto 110:165afa46840b 4886
Kojto 110:165afa46840b 4887 void arm_fir_sparse_q7(
Kojto 110:165afa46840b 4888 arm_fir_sparse_instance_q7 * S,
Kojto 110:165afa46840b 4889 q7_t * pSrc,
Kojto 110:165afa46840b 4890 q7_t * pDst,
Kojto 110:165afa46840b 4891 q7_t * pScratchIn,
Kojto 110:165afa46840b 4892 q31_t * pScratchOut,
Kojto 110:165afa46840b 4893 uint32_t blockSize);
Kojto 110:165afa46840b 4894
Kojto 110:165afa46840b 4895 /**
Kojto 110:165afa46840b 4896 * @brief Initialization function for the Q7 sparse FIR filter.
Kojto 110:165afa46840b 4897 * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
Kojto 110:165afa46840b 4898 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 110:165afa46840b 4899 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 110:165afa46840b 4900 * @param[in] *pState points to the state buffer.
Kojto 110:165afa46840b 4901 * @param[in] *pTapDelay points to the array of offset times.
Kojto 110:165afa46840b 4902 * @param[in] maxDelay maximum offset time supported.
Kojto 110:165afa46840b 4903 * @param[in] blockSize number of samples that will be processed per block.
Kojto 110:165afa46840b 4904 * @return none
Kojto 110:165afa46840b 4905 */
Kojto 110:165afa46840b 4906
Kojto 110:165afa46840b 4907 void arm_fir_sparse_init_q7(
Kojto 110:165afa46840b 4908 arm_fir_sparse_instance_q7 * S,
Kojto 110:165afa46840b 4909 uint16_t numTaps,
Kojto 110:165afa46840b 4910 q7_t * pCoeffs,
Kojto 110:165afa46840b 4911 q7_t * pState,
Kojto 110:165afa46840b 4912 int32_t * pTapDelay,
Kojto 110:165afa46840b 4913 uint16_t maxDelay,
Kojto 110:165afa46840b 4914 uint32_t blockSize);
Kojto 110:165afa46840b 4915
Kojto 110:165afa46840b 4916
Kojto 110:165afa46840b 4917 /*
Kojto 110:165afa46840b 4918 * @brief Floating-point sin_cos function.
Kojto 110:165afa46840b 4919 * @param[in] theta input value in degrees
Kojto 110:165afa46840b 4920 * @param[out] *pSinVal points to the processed sine output.
Kojto 110:165afa46840b 4921 * @param[out] *pCosVal points to the processed cos output.
Kojto 110:165afa46840b 4922 * @return none.
Kojto 110:165afa46840b 4923 */
Kojto 110:165afa46840b 4924
Kojto 110:165afa46840b 4925 void arm_sin_cos_f32(
Kojto 110:165afa46840b 4926 float32_t theta,
Kojto 110:165afa46840b 4927 float32_t * pSinVal,
Kojto 110:165afa46840b 4928 float32_t * pCcosVal);
Kojto 110:165afa46840b 4929
Kojto 110:165afa46840b 4930 /*
Kojto 110:165afa46840b 4931 * @brief Q31 sin_cos function.
Kojto 110:165afa46840b 4932 * @param[in] theta scaled input value in degrees
Kojto 110:165afa46840b 4933 * @param[out] *pSinVal points to the processed sine output.
Kojto 110:165afa46840b 4934 * @param[out] *pCosVal points to the processed cosine output.
Kojto 110:165afa46840b 4935 * @return none.
Kojto 110:165afa46840b 4936 */
Kojto 110:165afa46840b 4937
Kojto 110:165afa46840b 4938 void arm_sin_cos_q31(
Kojto 110:165afa46840b 4939 q31_t theta,
Kojto 110:165afa46840b 4940 q31_t * pSinVal,
Kojto 110:165afa46840b 4941 q31_t * pCosVal);
Kojto 110:165afa46840b 4942
Kojto 110:165afa46840b 4943
Kojto 110:165afa46840b 4944 /**
Kojto 110:165afa46840b 4945 * @brief Floating-point complex conjugate.
Kojto 110:165afa46840b 4946 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 4947 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 4948 * @param[in] numSamples number of complex samples in each vector
Kojto 110:165afa46840b 4949 * @return none.
Kojto 110:165afa46840b 4950 */
Kojto 110:165afa46840b 4951
Kojto 110:165afa46840b 4952 void arm_cmplx_conj_f32(
Kojto 110:165afa46840b 4953 float32_t * pSrc,
Kojto 110:165afa46840b 4954 float32_t * pDst,
Kojto 110:165afa46840b 4955 uint32_t numSamples);
Kojto 110:165afa46840b 4956
Kojto 110:165afa46840b 4957 /**
Kojto 110:165afa46840b 4958 * @brief Q31 complex conjugate.
Kojto 110:165afa46840b 4959 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 4960 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 4961 * @param[in] numSamples number of complex samples in each vector
Kojto 110:165afa46840b 4962 * @return none.
Kojto 110:165afa46840b 4963 */
Kojto 110:165afa46840b 4964
Kojto 110:165afa46840b 4965 void arm_cmplx_conj_q31(
Kojto 110:165afa46840b 4966 q31_t * pSrc,
Kojto 110:165afa46840b 4967 q31_t * pDst,
Kojto 110:165afa46840b 4968 uint32_t numSamples);
Kojto 110:165afa46840b 4969
Kojto 110:165afa46840b 4970 /**
Kojto 110:165afa46840b 4971 * @brief Q15 complex conjugate.
Kojto 110:165afa46840b 4972 * @param[in] *pSrc points to the input vector
Kojto 110:165afa46840b 4973 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 4974 * @param[in] numSamples number of complex samples in each vector
Kojto 110:165afa46840b 4975 * @return none.
Kojto 110:165afa46840b 4976 */
Kojto 110:165afa46840b 4977
Kojto 110:165afa46840b 4978 void arm_cmplx_conj_q15(
Kojto 110:165afa46840b 4979 q15_t * pSrc,
Kojto 110:165afa46840b 4980 q15_t * pDst,
Kojto 110:165afa46840b 4981 uint32_t numSamples);
Kojto 110:165afa46840b 4982
Kojto 110:165afa46840b 4983
Kojto 110:165afa46840b 4984
Kojto 110:165afa46840b 4985 /**
Kojto 110:165afa46840b 4986 * @brief Floating-point complex magnitude squared
Kojto 110:165afa46840b 4987 * @param[in] *pSrc points to the complex input vector
Kojto 110:165afa46840b 4988 * @param[out] *pDst points to the real output vector
Kojto 110:165afa46840b 4989 * @param[in] numSamples number of complex samples in the input vector
Kojto 110:165afa46840b 4990 * @return none.
Kojto 110:165afa46840b 4991 */
Kojto 110:165afa46840b 4992
Kojto 110:165afa46840b 4993 void arm_cmplx_mag_squared_f32(
Kojto 110:165afa46840b 4994 float32_t * pSrc,
Kojto 110:165afa46840b 4995 float32_t * pDst,
Kojto 110:165afa46840b 4996 uint32_t numSamples);
Kojto 110:165afa46840b 4997
Kojto 110:165afa46840b 4998 /**
Kojto 110:165afa46840b 4999 * @brief Q31 complex magnitude squared
Kojto 110:165afa46840b 5000 * @param[in] *pSrc points to the complex input vector
Kojto 110:165afa46840b 5001 * @param[out] *pDst points to the real output vector
Kojto 110:165afa46840b 5002 * @param[in] numSamples number of complex samples in the input vector
Kojto 110:165afa46840b 5003 * @return none.
Kojto 110:165afa46840b 5004 */
Kojto 110:165afa46840b 5005
Kojto 110:165afa46840b 5006 void arm_cmplx_mag_squared_q31(
Kojto 110:165afa46840b 5007 q31_t * pSrc,
Kojto 110:165afa46840b 5008 q31_t * pDst,
Kojto 110:165afa46840b 5009 uint32_t numSamples);
Kojto 110:165afa46840b 5010
Kojto 110:165afa46840b 5011 /**
Kojto 110:165afa46840b 5012 * @brief Q15 complex magnitude squared
Kojto 110:165afa46840b 5013 * @param[in] *pSrc points to the complex input vector
Kojto 110:165afa46840b 5014 * @param[out] *pDst points to the real output vector
Kojto 110:165afa46840b 5015 * @param[in] numSamples number of complex samples in the input vector
Kojto 110:165afa46840b 5016 * @return none.
Kojto 110:165afa46840b 5017 */
Kojto 110:165afa46840b 5018
Kojto 110:165afa46840b 5019 void arm_cmplx_mag_squared_q15(
Kojto 110:165afa46840b 5020 q15_t * pSrc,
Kojto 110:165afa46840b 5021 q15_t * pDst,
Kojto 110:165afa46840b 5022 uint32_t numSamples);
Kojto 110:165afa46840b 5023
Kojto 110:165afa46840b 5024
Kojto 110:165afa46840b 5025 /**
Kojto 110:165afa46840b 5026 * @ingroup groupController
Kojto 110:165afa46840b 5027 */
Kojto 110:165afa46840b 5028
Kojto 110:165afa46840b 5029 /**
Kojto 110:165afa46840b 5030 * @defgroup PID PID Motor Control
Kojto 110:165afa46840b 5031 *
Kojto 110:165afa46840b 5032 * A Proportional Integral Derivative (PID) controller is a generic feedback control
Kojto 110:165afa46840b 5033 * loop mechanism widely used in industrial control systems.
Kojto 110:165afa46840b 5034 * A PID controller is the most commonly used type of feedback controller.
Kojto 110:165afa46840b 5035 *
Kojto 110:165afa46840b 5036 * This set of functions implements (PID) controllers
Kojto 110:165afa46840b 5037 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
Kojto 110:165afa46840b 5038 * of data and each call to the function returns a single processed value.
Kojto 110:165afa46840b 5039 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
Kojto 110:165afa46840b 5040 * is the input sample value. The functions return the output value.
Kojto 110:165afa46840b 5041 *
Kojto 110:165afa46840b 5042 * \par Algorithm:
Kojto 110:165afa46840b 5043 * <pre>
Kojto 110:165afa46840b 5044 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
Kojto 110:165afa46840b 5045 * A0 = Kp + Ki + Kd
Kojto 110:165afa46840b 5046 * A1 = (-Kp ) - (2 * Kd )
Kojto 110:165afa46840b 5047 * A2 = Kd </pre>
Kojto 110:165afa46840b 5048 *
Kojto 110:165afa46840b 5049 * \par
Kojto 110:165afa46840b 5050 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
Kojto 110:165afa46840b 5051 *
Kojto 110:165afa46840b 5052 * \par
Kojto 110:165afa46840b 5053 * \image html PID.gif "Proportional Integral Derivative Controller"
Kojto 110:165afa46840b 5054 *
Kojto 110:165afa46840b 5055 * \par
Kojto 110:165afa46840b 5056 * The PID controller calculates an "error" value as the difference between
Kojto 110:165afa46840b 5057 * the measured output and the reference input.
Kojto 110:165afa46840b 5058 * The controller attempts to minimize the error by adjusting the process control inputs.
Kojto 110:165afa46840b 5059 * The proportional value determines the reaction to the current error,
Kojto 110:165afa46840b 5060 * the integral value determines the reaction based on the sum of recent errors,
Kojto 110:165afa46840b 5061 * and the derivative value determines the reaction based on the rate at which the error has been changing.
Kojto 110:165afa46840b 5062 *
Kojto 110:165afa46840b 5063 * \par Instance Structure
Kojto 110:165afa46840b 5064 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
Kojto 110:165afa46840b 5065 * A separate instance structure must be defined for each PID Controller.
Kojto 110:165afa46840b 5066 * There are separate instance structure declarations for each of the 3 supported data types.
Kojto 110:165afa46840b 5067 *
Kojto 110:165afa46840b 5068 * \par Reset Functions
Kojto 110:165afa46840b 5069 * There is also an associated reset function for each data type which clears the state array.
Kojto 110:165afa46840b 5070 *
Kojto 110:165afa46840b 5071 * \par Initialization Functions
Kojto 110:165afa46840b 5072 * There is also an associated initialization function for each data type.
Kojto 110:165afa46840b 5073 * The initialization function performs the following operations:
Kojto 110:165afa46840b 5074 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
Kojto 110:165afa46840b 5075 * - Zeros out the values in the state buffer.
Kojto 110:165afa46840b 5076 *
Kojto 110:165afa46840b 5077 * \par
Kojto 110:165afa46840b 5078 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
Kojto 110:165afa46840b 5079 *
Kojto 110:165afa46840b 5080 * \par Fixed-Point Behavior
Kojto 110:165afa46840b 5081 * Care must be taken when using the fixed-point versions of the PID Controller functions.
Kojto 110:165afa46840b 5082 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
Kojto 110:165afa46840b 5083 * Refer to the function specific documentation below for usage guidelines.
Kojto 110:165afa46840b 5084 */
Kojto 110:165afa46840b 5085
Kojto 110:165afa46840b 5086 /**
Kojto 110:165afa46840b 5087 * @addtogroup PID
Kojto 110:165afa46840b 5088 * @{
Kojto 110:165afa46840b 5089 */
Kojto 110:165afa46840b 5090
Kojto 110:165afa46840b 5091 /**
Kojto 110:165afa46840b 5092 * @brief Process function for the floating-point PID Control.
Kojto 110:165afa46840b 5093 * @param[in,out] *S is an instance of the floating-point PID Control structure
Kojto 110:165afa46840b 5094 * @param[in] in input sample to process
Kojto 110:165afa46840b 5095 * @return out processed output sample.
Kojto 110:165afa46840b 5096 */
Kojto 110:165afa46840b 5097
Kojto 110:165afa46840b 5098
Kojto 110:165afa46840b 5099 static __INLINE float32_t arm_pid_f32(
Kojto 110:165afa46840b 5100 arm_pid_instance_f32 * S,
Kojto 110:165afa46840b 5101 float32_t in)
Kojto 110:165afa46840b 5102 {
Kojto 110:165afa46840b 5103 float32_t out;
Kojto 110:165afa46840b 5104
Kojto 110:165afa46840b 5105 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
Kojto 110:165afa46840b 5106 out = (S->A0 * in) +
Kojto 110:165afa46840b 5107 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
Kojto 110:165afa46840b 5108
Kojto 110:165afa46840b 5109 /* Update state */
Kojto 110:165afa46840b 5110 S->state[1] = S->state[0];
Kojto 110:165afa46840b 5111 S->state[0] = in;
Kojto 110:165afa46840b 5112 S->state[2] = out;
Kojto 110:165afa46840b 5113
Kojto 110:165afa46840b 5114 /* return to application */
Kojto 110:165afa46840b 5115 return (out);
Kojto 110:165afa46840b 5116
Kojto 110:165afa46840b 5117 }
Kojto 110:165afa46840b 5118
Kojto 110:165afa46840b 5119 /**
Kojto 110:165afa46840b 5120 * @brief Process function for the Q31 PID Control.
Kojto 110:165afa46840b 5121 * @param[in,out] *S points to an instance of the Q31 PID Control structure
Kojto 110:165afa46840b 5122 * @param[in] in input sample to process
Kojto 110:165afa46840b 5123 * @return out processed output sample.
Kojto 110:165afa46840b 5124 *
Kojto 110:165afa46840b 5125 * <b>Scaling and Overflow Behavior:</b>
Kojto 110:165afa46840b 5126 * \par
Kojto 110:165afa46840b 5127 * The function is implemented using an internal 64-bit accumulator.
Kojto 110:165afa46840b 5128 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
Kojto 110:165afa46840b 5129 * Thus, if the accumulator result overflows it wraps around rather than clip.
Kojto 110:165afa46840b 5130 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
Kojto 110:165afa46840b 5131 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
Kojto 110:165afa46840b 5132 */
Kojto 110:165afa46840b 5133
Kojto 110:165afa46840b 5134 static __INLINE q31_t arm_pid_q31(
Kojto 110:165afa46840b 5135 arm_pid_instance_q31 * S,
Kojto 110:165afa46840b 5136 q31_t in)
Kojto 110:165afa46840b 5137 {
Kojto 110:165afa46840b 5138 q63_t acc;
Kojto 110:165afa46840b 5139 q31_t out;
Kojto 110:165afa46840b 5140
Kojto 110:165afa46840b 5141 /* acc = A0 * x[n] */
Kojto 110:165afa46840b 5142 acc = (q63_t) S->A0 * in;
Kojto 110:165afa46840b 5143
Kojto 110:165afa46840b 5144 /* acc += A1 * x[n-1] */
Kojto 110:165afa46840b 5145 acc += (q63_t) S->A1 * S->state[0];
Kojto 110:165afa46840b 5146
Kojto 110:165afa46840b 5147 /* acc += A2 * x[n-2] */
Kojto 110:165afa46840b 5148 acc += (q63_t) S->A2 * S->state[1];
Kojto 110:165afa46840b 5149
Kojto 110:165afa46840b 5150 /* convert output to 1.31 format to add y[n-1] */
Kojto 110:165afa46840b 5151 out = (q31_t) (acc >> 31u);
Kojto 110:165afa46840b 5152
Kojto 110:165afa46840b 5153 /* out += y[n-1] */
Kojto 110:165afa46840b 5154 out += S->state[2];
Kojto 110:165afa46840b 5155
Kojto 110:165afa46840b 5156 /* Update state */
Kojto 110:165afa46840b 5157 S->state[1] = S->state[0];
Kojto 110:165afa46840b 5158 S->state[0] = in;
Kojto 110:165afa46840b 5159 S->state[2] = out;
Kojto 110:165afa46840b 5160
Kojto 110:165afa46840b 5161 /* return to application */
Kojto 110:165afa46840b 5162 return (out);
Kojto 110:165afa46840b 5163
Kojto 110:165afa46840b 5164 }
Kojto 110:165afa46840b 5165
Kojto 110:165afa46840b 5166 /**
Kojto 110:165afa46840b 5167 * @brief Process function for the Q15 PID Control.
Kojto 110:165afa46840b 5168 * @param[in,out] *S points to an instance of the Q15 PID Control structure
Kojto 110:165afa46840b 5169 * @param[in] in input sample to process
Kojto 110:165afa46840b 5170 * @return out processed output sample.
Kojto 110:165afa46840b 5171 *
Kojto 110:165afa46840b 5172 * <b>Scaling and Overflow Behavior:</b>
Kojto 110:165afa46840b 5173 * \par
Kojto 110:165afa46840b 5174 * The function is implemented using a 64-bit internal accumulator.
Kojto 110:165afa46840b 5175 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
Kojto 110:165afa46840b 5176 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
Kojto 110:165afa46840b 5177 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
Kojto 110:165afa46840b 5178 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
Kojto 110:165afa46840b 5179 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
Kojto 110:165afa46840b 5180 */
Kojto 110:165afa46840b 5181
Kojto 110:165afa46840b 5182 static __INLINE q15_t arm_pid_q15(
Kojto 110:165afa46840b 5183 arm_pid_instance_q15 * S,
Kojto 110:165afa46840b 5184 q15_t in)
Kojto 110:165afa46840b 5185 {
Kojto 110:165afa46840b 5186 q63_t acc;
Kojto 110:165afa46840b 5187 q15_t out;
Kojto 110:165afa46840b 5188
Kojto 110:165afa46840b 5189 #ifndef ARM_MATH_CM0_FAMILY
Kojto 110:165afa46840b 5190 __SIMD32_TYPE *vstate;
Kojto 110:165afa46840b 5191
Kojto 110:165afa46840b 5192 /* Implementation of PID controller */
Kojto 110:165afa46840b 5193
Kojto 110:165afa46840b 5194 /* acc = A0 * x[n] */
Kojto 110:165afa46840b 5195 acc = (q31_t) __SMUAD(S->A0, in);
Kojto 110:165afa46840b 5196
Kojto 110:165afa46840b 5197 /* acc += A1 * x[n-1] + A2 * x[n-2] */
Kojto 110:165afa46840b 5198 vstate = __SIMD32_CONST(S->state);
Kojto 110:165afa46840b 5199 acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
Kojto 110:165afa46840b 5200
Kojto 110:165afa46840b 5201 #else
Kojto 110:165afa46840b 5202 /* acc = A0 * x[n] */
Kojto 110:165afa46840b 5203 acc = ((q31_t) S->A0) * in;
Kojto 110:165afa46840b 5204
Kojto 110:165afa46840b 5205 /* acc += A1 * x[n-1] + A2 * x[n-2] */
Kojto 110:165afa46840b 5206 acc += (q31_t) S->A1 * S->state[0];
Kojto 110:165afa46840b 5207 acc += (q31_t) S->A2 * S->state[1];
Kojto 110:165afa46840b 5208
Kojto 110:165afa46840b 5209 #endif
Kojto 110:165afa46840b 5210
Kojto 110:165afa46840b 5211 /* acc += y[n-1] */
Kojto 110:165afa46840b 5212 acc += (q31_t) S->state[2] << 15;
Kojto 110:165afa46840b 5213
Kojto 110:165afa46840b 5214 /* saturate the output */
Kojto 110:165afa46840b 5215 out = (q15_t) (__SSAT((acc >> 15), 16));
Kojto 110:165afa46840b 5216
Kojto 110:165afa46840b 5217 /* Update state */
Kojto 110:165afa46840b 5218 S->state[1] = S->state[0];
Kojto 110:165afa46840b 5219 S->state[0] = in;
Kojto 110:165afa46840b 5220 S->state[2] = out;
Kojto 110:165afa46840b 5221
Kojto 110:165afa46840b 5222 /* return to application */
Kojto 110:165afa46840b 5223 return (out);
Kojto 110:165afa46840b 5224
Kojto 110:165afa46840b 5225 }
Kojto 110:165afa46840b 5226
Kojto 110:165afa46840b 5227 /**
Kojto 110:165afa46840b 5228 * @} end of PID group
Kojto 110:165afa46840b 5229 */
Kojto 110:165afa46840b 5230
Kojto 110:165afa46840b 5231
Kojto 110:165afa46840b 5232 /**
Kojto 110:165afa46840b 5233 * @brief Floating-point matrix inverse.
Kojto 110:165afa46840b 5234 * @param[in] *src points to the instance of the input floating-point matrix structure.
Kojto 110:165afa46840b 5235 * @param[out] *dst points to the instance of the output floating-point matrix structure.
Kojto 110:165afa46840b 5236 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
Kojto 110:165afa46840b 5237 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
Kojto 110:165afa46840b 5238 */
Kojto 110:165afa46840b 5239
Kojto 110:165afa46840b 5240 arm_status arm_mat_inverse_f32(
Kojto 110:165afa46840b 5241 const arm_matrix_instance_f32 * src,
Kojto 110:165afa46840b 5242 arm_matrix_instance_f32 * dst);
Kojto 110:165afa46840b 5243
Kojto 110:165afa46840b 5244
Kojto 110:165afa46840b 5245 /**
Kojto 110:165afa46840b 5246 * @brief Floating-point matrix inverse.
Kojto 110:165afa46840b 5247 * @param[in] *src points to the instance of the input floating-point matrix structure.
Kojto 110:165afa46840b 5248 * @param[out] *dst points to the instance of the output floating-point matrix structure.
Kojto 110:165afa46840b 5249 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
Kojto 110:165afa46840b 5250 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
Kojto 110:165afa46840b 5251 */
Kojto 110:165afa46840b 5252
Kojto 110:165afa46840b 5253 arm_status arm_mat_inverse_f64(
Kojto 110:165afa46840b 5254 const arm_matrix_instance_f64 * src,
Kojto 110:165afa46840b 5255 arm_matrix_instance_f64 * dst);
Kojto 110:165afa46840b 5256
Kojto 110:165afa46840b 5257
Kojto 110:165afa46840b 5258
Kojto 110:165afa46840b 5259 /**
Kojto 110:165afa46840b 5260 * @ingroup groupController
Kojto 110:165afa46840b 5261 */
Kojto 110:165afa46840b 5262
Kojto 110:165afa46840b 5263
Kojto 110:165afa46840b 5264 /**
Kojto 110:165afa46840b 5265 * @defgroup clarke Vector Clarke Transform
Kojto 110:165afa46840b 5266 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
Kojto 110:165afa46840b 5267 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
Kojto 110:165afa46840b 5268 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
Kojto 110:165afa46840b 5269 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
Kojto 110:165afa46840b 5270 * \image html clarke.gif Stator current space vector and its components in (a,b).
Kojto 110:165afa46840b 5271 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
Kojto 110:165afa46840b 5272 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
Kojto 110:165afa46840b 5273 *
Kojto 110:165afa46840b 5274 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 110:165afa46840b 5275 * The library provides separate functions for Q31 and floating-point data types.
Kojto 110:165afa46840b 5276 * \par Algorithm
Kojto 110:165afa46840b 5277 * \image html clarkeFormula.gif
Kojto 110:165afa46840b 5278 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
Kojto 110:165afa46840b 5279 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
Kojto 110:165afa46840b 5280 * \par Fixed-Point Behavior
Kojto 110:165afa46840b 5281 * Care must be taken when using the Q31 version of the Clarke transform.
Kojto 110:165afa46840b 5282 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 110:165afa46840b 5283 * Refer to the function specific documentation below for usage guidelines.
Kojto 110:165afa46840b 5284 */
Kojto 110:165afa46840b 5285
Kojto 110:165afa46840b 5286 /**
Kojto 110:165afa46840b 5287 * @addtogroup clarke
Kojto 110:165afa46840b 5288 * @{
Kojto 110:165afa46840b 5289 */
Kojto 110:165afa46840b 5290
Kojto 110:165afa46840b 5291 /**
Kojto 110:165afa46840b 5292 *
Kojto 110:165afa46840b 5293 * @brief Floating-point Clarke transform
Kojto 110:165afa46840b 5294 * @param[in] Ia input three-phase coordinate <code>a</code>
Kojto 110:165afa46840b 5295 * @param[in] Ib input three-phase coordinate <code>b</code>
Kojto 110:165afa46840b 5296 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 110:165afa46840b 5297 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 110:165afa46840b 5298 * @return none.
Kojto 110:165afa46840b 5299 */
Kojto 110:165afa46840b 5300
Kojto 110:165afa46840b 5301 static __INLINE void arm_clarke_f32(
Kojto 110:165afa46840b 5302 float32_t Ia,
Kojto 110:165afa46840b 5303 float32_t Ib,
Kojto 110:165afa46840b 5304 float32_t * pIalpha,
Kojto 110:165afa46840b 5305 float32_t * pIbeta)
Kojto 110:165afa46840b 5306 {
Kojto 110:165afa46840b 5307 /* Calculate pIalpha using the equation, pIalpha = Ia */
Kojto 110:165afa46840b 5308 *pIalpha = Ia;
Kojto 110:165afa46840b 5309
Kojto 110:165afa46840b 5310 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
Kojto 110:165afa46840b 5311 *pIbeta =
Kojto 110:165afa46840b 5312 ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
Kojto 110:165afa46840b 5313
Kojto 110:165afa46840b 5314 }
Kojto 110:165afa46840b 5315
Kojto 110:165afa46840b 5316 /**
Kojto 110:165afa46840b 5317 * @brief Clarke transform for Q31 version
Kojto 110:165afa46840b 5318 * @param[in] Ia input three-phase coordinate <code>a</code>
Kojto 110:165afa46840b 5319 * @param[in] Ib input three-phase coordinate <code>b</code>
Kojto 110:165afa46840b 5320 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 110:165afa46840b 5321 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 110:165afa46840b 5322 * @return none.
Kojto 110:165afa46840b 5323 *
Kojto 110:165afa46840b 5324 * <b>Scaling and Overflow Behavior:</b>
Kojto 110:165afa46840b 5325 * \par
Kojto 110:165afa46840b 5326 * The function is implemented using an internal 32-bit accumulator.
Kojto 110:165afa46840b 5327 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 110:165afa46840b 5328 * There is saturation on the addition, hence there is no risk of overflow.
Kojto 110:165afa46840b 5329 */
Kojto 110:165afa46840b 5330
Kojto 110:165afa46840b 5331 static __INLINE void arm_clarke_q31(
Kojto 110:165afa46840b 5332 q31_t Ia,
Kojto 110:165afa46840b 5333 q31_t Ib,
Kojto 110:165afa46840b 5334 q31_t * pIalpha,
Kojto 110:165afa46840b 5335 q31_t * pIbeta)
Kojto 110:165afa46840b 5336 {
Kojto 110:165afa46840b 5337 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 110:165afa46840b 5338
Kojto 110:165afa46840b 5339 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
Kojto 110:165afa46840b 5340 *pIalpha = Ia;
Kojto 110:165afa46840b 5341
Kojto 110:165afa46840b 5342 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
Kojto 110:165afa46840b 5343 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
Kojto 110:165afa46840b 5344
Kojto 110:165afa46840b 5345 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
Kojto 110:165afa46840b 5346 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
Kojto 110:165afa46840b 5347
Kojto 110:165afa46840b 5348 /* pIbeta is calculated by adding the intermediate products */
Kojto 110:165afa46840b 5349 *pIbeta = __QADD(product1, product2);
Kojto 110:165afa46840b 5350 }
Kojto 110:165afa46840b 5351
Kojto 110:165afa46840b 5352 /**
Kojto 110:165afa46840b 5353 * @} end of clarke group
Kojto 110:165afa46840b 5354 */
Kojto 110:165afa46840b 5355
Kojto 110:165afa46840b 5356 /**
Kojto 110:165afa46840b 5357 * @brief Converts the elements of the Q7 vector to Q31 vector.
Kojto 110:165afa46840b 5358 * @param[in] *pSrc input pointer
Kojto 110:165afa46840b 5359 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 5360 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 5361 * @return none.
Kojto 110:165afa46840b 5362 */
Kojto 110:165afa46840b 5363 void arm_q7_to_q31(
Kojto 110:165afa46840b 5364 q7_t * pSrc,
Kojto 110:165afa46840b 5365 q31_t * pDst,
Kojto 110:165afa46840b 5366 uint32_t blockSize);
Kojto 110:165afa46840b 5367
Kojto 110:165afa46840b 5368
Kojto 110:165afa46840b 5369
Kojto 110:165afa46840b 5370
Kojto 110:165afa46840b 5371 /**
Kojto 110:165afa46840b 5372 * @ingroup groupController
Kojto 110:165afa46840b 5373 */
Kojto 110:165afa46840b 5374
Kojto 110:165afa46840b 5375 /**
Kojto 110:165afa46840b 5376 * @defgroup inv_clarke Vector Inverse Clarke Transform
Kojto 110:165afa46840b 5377 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
Kojto 110:165afa46840b 5378 *
Kojto 110:165afa46840b 5379 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 110:165afa46840b 5380 * The library provides separate functions for Q31 and floating-point data types.
Kojto 110:165afa46840b 5381 * \par Algorithm
Kojto 110:165afa46840b 5382 * \image html clarkeInvFormula.gif
Kojto 110:165afa46840b 5383 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
Kojto 110:165afa46840b 5384 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
Kojto 110:165afa46840b 5385 * \par Fixed-Point Behavior
Kojto 110:165afa46840b 5386 * Care must be taken when using the Q31 version of the Clarke transform.
Kojto 110:165afa46840b 5387 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 110:165afa46840b 5388 * Refer to the function specific documentation below for usage guidelines.
Kojto 110:165afa46840b 5389 */
Kojto 110:165afa46840b 5390
Kojto 110:165afa46840b 5391 /**
Kojto 110:165afa46840b 5392 * @addtogroup inv_clarke
Kojto 110:165afa46840b 5393 * @{
Kojto 110:165afa46840b 5394 */
Kojto 110:165afa46840b 5395
Kojto 110:165afa46840b 5396 /**
Kojto 110:165afa46840b 5397 * @brief Floating-point Inverse Clarke transform
Kojto 110:165afa46840b 5398 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
Kojto 110:165afa46840b 5399 * @param[in] Ibeta input two-phase orthogonal vector axis beta
Kojto 110:165afa46840b 5400 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
Kojto 110:165afa46840b 5401 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
Kojto 110:165afa46840b 5402 * @return none.
Kojto 110:165afa46840b 5403 */
Kojto 110:165afa46840b 5404
Kojto 110:165afa46840b 5405
Kojto 110:165afa46840b 5406 static __INLINE void arm_inv_clarke_f32(
Kojto 110:165afa46840b 5407 float32_t Ialpha,
Kojto 110:165afa46840b 5408 float32_t Ibeta,
Kojto 110:165afa46840b 5409 float32_t * pIa,
Kojto 110:165afa46840b 5410 float32_t * pIb)
Kojto 110:165afa46840b 5411 {
Kojto 110:165afa46840b 5412 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
Kojto 110:165afa46840b 5413 *pIa = Ialpha;
Kojto 110:165afa46840b 5414
Kojto 110:165afa46840b 5415 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
Kojto 110:165afa46840b 5416 *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
Kojto 110:165afa46840b 5417
Kojto 110:165afa46840b 5418 }
Kojto 110:165afa46840b 5419
Kojto 110:165afa46840b 5420 /**
Kojto 110:165afa46840b 5421 * @brief Inverse Clarke transform for Q31 version
Kojto 110:165afa46840b 5422 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
Kojto 110:165afa46840b 5423 * @param[in] Ibeta input two-phase orthogonal vector axis beta
Kojto 110:165afa46840b 5424 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
Kojto 110:165afa46840b 5425 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
Kojto 110:165afa46840b 5426 * @return none.
Kojto 110:165afa46840b 5427 *
Kojto 110:165afa46840b 5428 * <b>Scaling and Overflow Behavior:</b>
Kojto 110:165afa46840b 5429 * \par
Kojto 110:165afa46840b 5430 * The function is implemented using an internal 32-bit accumulator.
Kojto 110:165afa46840b 5431 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 110:165afa46840b 5432 * There is saturation on the subtraction, hence there is no risk of overflow.
Kojto 110:165afa46840b 5433 */
Kojto 110:165afa46840b 5434
Kojto 110:165afa46840b 5435 static __INLINE void arm_inv_clarke_q31(
Kojto 110:165afa46840b 5436 q31_t Ialpha,
Kojto 110:165afa46840b 5437 q31_t Ibeta,
Kojto 110:165afa46840b 5438 q31_t * pIa,
Kojto 110:165afa46840b 5439 q31_t * pIb)
Kojto 110:165afa46840b 5440 {
Kojto 110:165afa46840b 5441 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 110:165afa46840b 5442
Kojto 110:165afa46840b 5443 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
Kojto 110:165afa46840b 5444 *pIa = Ialpha;
Kojto 110:165afa46840b 5445
Kojto 110:165afa46840b 5446 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
Kojto 110:165afa46840b 5447 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
Kojto 110:165afa46840b 5448
Kojto 110:165afa46840b 5449 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
Kojto 110:165afa46840b 5450 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
Kojto 110:165afa46840b 5451
Kojto 110:165afa46840b 5452 /* pIb is calculated by subtracting the products */
Kojto 110:165afa46840b 5453 *pIb = __QSUB(product2, product1);
Kojto 110:165afa46840b 5454
Kojto 110:165afa46840b 5455 }
Kojto 110:165afa46840b 5456
Kojto 110:165afa46840b 5457 /**
Kojto 110:165afa46840b 5458 * @} end of inv_clarke group
Kojto 110:165afa46840b 5459 */
Kojto 110:165afa46840b 5460
Kojto 110:165afa46840b 5461 /**
Kojto 110:165afa46840b 5462 * @brief Converts the elements of the Q7 vector to Q15 vector.
Kojto 110:165afa46840b 5463 * @param[in] *pSrc input pointer
Kojto 110:165afa46840b 5464 * @param[out] *pDst output pointer
Kojto 110:165afa46840b 5465 * @param[in] blockSize number of samples to process
Kojto 110:165afa46840b 5466 * @return none.
Kojto 110:165afa46840b 5467 */
Kojto 110:165afa46840b 5468 void arm_q7_to_q15(
Kojto 110:165afa46840b 5469 q7_t * pSrc,
Kojto 110:165afa46840b 5470 q15_t * pDst,
Kojto 110:165afa46840b 5471 uint32_t blockSize);
Kojto 110:165afa46840b 5472
Kojto 110:165afa46840b 5473
Kojto 110:165afa46840b 5474
Kojto 110:165afa46840b 5475 /**
Kojto 110:165afa46840b 5476 * @ingroup groupController
Kojto 110:165afa46840b 5477 */
Kojto 110:165afa46840b 5478
Kojto 110:165afa46840b 5479 /**
Kojto 110:165afa46840b 5480 * @defgroup park Vector Park Transform
Kojto 110:165afa46840b 5481 *
Kojto 110:165afa46840b 5482 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
Kojto 110:165afa46840b 5483 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
Kojto 110:165afa46840b 5484 * from the stationary to the moving reference frame and control the spatial relationship between
Kojto 110:165afa46840b 5485 * the stator vector current and rotor flux vector.
Kojto 110:165afa46840b 5486 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
Kojto 110:165afa46840b 5487 * current vector and the relationship from the two reference frames:
Kojto 110:165afa46840b 5488 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
Kojto 110:165afa46840b 5489 *
Kojto 110:165afa46840b 5490 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 110:165afa46840b 5491 * The library provides separate functions for Q31 and floating-point data types.
Kojto 110:165afa46840b 5492 * \par Algorithm
Kojto 110:165afa46840b 5493 * \image html parkFormula.gif
Kojto 110:165afa46840b 5494 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
Kojto 110:165afa46840b 5495 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
Kojto 110:165afa46840b 5496 * cosine and sine values of theta (rotor flux position).
Kojto 110:165afa46840b 5497 * \par Fixed-Point Behavior
Kojto 110:165afa46840b 5498 * Care must be taken when using the Q31 version of the Park transform.
Kojto 110:165afa46840b 5499 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 110:165afa46840b 5500 * Refer to the function specific documentation below for usage guidelines.
Kojto 110:165afa46840b 5501 */
Kojto 110:165afa46840b 5502
Kojto 110:165afa46840b 5503 /**
Kojto 110:165afa46840b 5504 * @addtogroup park
Kojto 110:165afa46840b 5505 * @{
Kojto 110:165afa46840b 5506 */
Kojto 110:165afa46840b 5507
Kojto 110:165afa46840b 5508 /**
Kojto 110:165afa46840b 5509 * @brief Floating-point Park transform
Kojto 110:165afa46840b 5510 * @param[in] Ialpha input two-phase vector coordinate alpha
Kojto 110:165afa46840b 5511 * @param[in] Ibeta input two-phase vector coordinate beta
Kojto 110:165afa46840b 5512 * @param[out] *pId points to output rotor reference frame d
Kojto 110:165afa46840b 5513 * @param[out] *pIq points to output rotor reference frame q
Kojto 110:165afa46840b 5514 * @param[in] sinVal sine value of rotation angle theta
Kojto 110:165afa46840b 5515 * @param[in] cosVal cosine value of rotation angle theta
Kojto 110:165afa46840b 5516 * @return none.
Kojto 110:165afa46840b 5517 *
Kojto 110:165afa46840b 5518 * The function implements the forward Park transform.
Kojto 110:165afa46840b 5519 *
Kojto 110:165afa46840b 5520 */
Kojto 110:165afa46840b 5521
Kojto 110:165afa46840b 5522 static __INLINE void arm_park_f32(
Kojto 110:165afa46840b 5523 float32_t Ialpha,
Kojto 110:165afa46840b 5524 float32_t Ibeta,
Kojto 110:165afa46840b 5525 float32_t * pId,
Kojto 110:165afa46840b 5526 float32_t * pIq,
Kojto 110:165afa46840b 5527 float32_t sinVal,
Kojto 110:165afa46840b 5528 float32_t cosVal)
Kojto 110:165afa46840b 5529 {
Kojto 110:165afa46840b 5530 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
Kojto 110:165afa46840b 5531 *pId = Ialpha * cosVal + Ibeta * sinVal;
Kojto 110:165afa46840b 5532
Kojto 110:165afa46840b 5533 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
Kojto 110:165afa46840b 5534 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
Kojto 110:165afa46840b 5535
Kojto 110:165afa46840b 5536 }
Kojto 110:165afa46840b 5537
Kojto 110:165afa46840b 5538 /**
Kojto 110:165afa46840b 5539 * @brief Park transform for Q31 version
Kojto 110:165afa46840b 5540 * @param[in] Ialpha input two-phase vector coordinate alpha
Kojto 110:165afa46840b 5541 * @param[in] Ibeta input two-phase vector coordinate beta
Kojto 110:165afa46840b 5542 * @param[out] *pId points to output rotor reference frame d
Kojto 110:165afa46840b 5543 * @param[out] *pIq points to output rotor reference frame q
Kojto 110:165afa46840b 5544 * @param[in] sinVal sine value of rotation angle theta
Kojto 110:165afa46840b 5545 * @param[in] cosVal cosine value of rotation angle theta
Kojto 110:165afa46840b 5546 * @return none.
Kojto 110:165afa46840b 5547 *
Kojto 110:165afa46840b 5548 * <b>Scaling and Overflow Behavior:</b>
Kojto 110:165afa46840b 5549 * \par
Kojto 110:165afa46840b 5550 * The function is implemented using an internal 32-bit accumulator.
Kojto 110:165afa46840b 5551 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 110:165afa46840b 5552 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
Kojto 110:165afa46840b 5553 */
Kojto 110:165afa46840b 5554
Kojto 110:165afa46840b 5555
Kojto 110:165afa46840b 5556 static __INLINE void arm_park_q31(
Kojto 110:165afa46840b 5557 q31_t Ialpha,
Kojto 110:165afa46840b 5558 q31_t Ibeta,
Kojto 110:165afa46840b 5559 q31_t * pId,
Kojto 110:165afa46840b 5560 q31_t * pIq,
Kojto 110:165afa46840b 5561 q31_t sinVal,
Kojto 110:165afa46840b 5562 q31_t cosVal)
Kojto 110:165afa46840b 5563 {
Kojto 110:165afa46840b 5564 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 110:165afa46840b 5565 q31_t product3, product4; /* Temporary variables used to store intermediate results */
Kojto 110:165afa46840b 5566
Kojto 110:165afa46840b 5567 /* Intermediate product is calculated by (Ialpha * cosVal) */
Kojto 110:165afa46840b 5568 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
Kojto 110:165afa46840b 5569
Kojto 110:165afa46840b 5570 /* Intermediate product is calculated by (Ibeta * sinVal) */
Kojto 110:165afa46840b 5571 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
Kojto 110:165afa46840b 5572
Kojto 110:165afa46840b 5573
Kojto 110:165afa46840b 5574 /* Intermediate product is calculated by (Ialpha * sinVal) */
Kojto 110:165afa46840b 5575 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
Kojto 110:165afa46840b 5576
Kojto 110:165afa46840b 5577 /* Intermediate product is calculated by (Ibeta * cosVal) */
Kojto 110:165afa46840b 5578 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
Kojto 110:165afa46840b 5579
Kojto 110:165afa46840b 5580 /* Calculate pId by adding the two intermediate products 1 and 2 */
Kojto 110:165afa46840b 5581 *pId = __QADD(product1, product2);
Kojto 110:165afa46840b 5582
Kojto 110:165afa46840b 5583 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
Kojto 110:165afa46840b 5584 *pIq = __QSUB(product4, product3);
Kojto 110:165afa46840b 5585 }
Kojto 110:165afa46840b 5586
Kojto 110:165afa46840b 5587 /**
Kojto 110:165afa46840b 5588 * @} end of park group
Kojto 110:165afa46840b 5589 */
Kojto 110:165afa46840b 5590
Kojto 110:165afa46840b 5591 /**
Kojto 110:165afa46840b 5592 * @brief Converts the elements of the Q7 vector to floating-point vector.
Kojto 110:165afa46840b 5593 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 5594 * @param[out] *pDst is output pointer
Kojto 110:165afa46840b 5595 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 5596 * @return none.
Kojto 110:165afa46840b 5597 */
Kojto 110:165afa46840b 5598 void arm_q7_to_float(
Kojto 110:165afa46840b 5599 q7_t * pSrc,
Kojto 110:165afa46840b 5600 float32_t * pDst,
Kojto 110:165afa46840b 5601 uint32_t blockSize);
Kojto 110:165afa46840b 5602
Kojto 110:165afa46840b 5603
Kojto 110:165afa46840b 5604 /**
Kojto 110:165afa46840b 5605 * @ingroup groupController
Kojto 110:165afa46840b 5606 */
Kojto 110:165afa46840b 5607
Kojto 110:165afa46840b 5608 /**
Kojto 110:165afa46840b 5609 * @defgroup inv_park Vector Inverse Park transform
Kojto 110:165afa46840b 5610 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
Kojto 110:165afa46840b 5611 *
Kojto 110:165afa46840b 5612 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 110:165afa46840b 5613 * The library provides separate functions for Q31 and floating-point data types.
Kojto 110:165afa46840b 5614 * \par Algorithm
Kojto 110:165afa46840b 5615 * \image html parkInvFormula.gif
Kojto 110:165afa46840b 5616 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
Kojto 110:165afa46840b 5617 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
Kojto 110:165afa46840b 5618 * cosine and sine values of theta (rotor flux position).
Kojto 110:165afa46840b 5619 * \par Fixed-Point Behavior
Kojto 110:165afa46840b 5620 * Care must be taken when using the Q31 version of the Park transform.
Kojto 110:165afa46840b 5621 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 110:165afa46840b 5622 * Refer to the function specific documentation below for usage guidelines.
Kojto 110:165afa46840b 5623 */
Kojto 110:165afa46840b 5624
Kojto 110:165afa46840b 5625 /**
Kojto 110:165afa46840b 5626 * @addtogroup inv_park
Kojto 110:165afa46840b 5627 * @{
Kojto 110:165afa46840b 5628 */
Kojto 110:165afa46840b 5629
Kojto 110:165afa46840b 5630 /**
Kojto 110:165afa46840b 5631 * @brief Floating-point Inverse Park transform
Kojto 110:165afa46840b 5632 * @param[in] Id input coordinate of rotor reference frame d
Kojto 110:165afa46840b 5633 * @param[in] Iq input coordinate of rotor reference frame q
Kojto 110:165afa46840b 5634 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 110:165afa46840b 5635 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 110:165afa46840b 5636 * @param[in] sinVal sine value of rotation angle theta
Kojto 110:165afa46840b 5637 * @param[in] cosVal cosine value of rotation angle theta
Kojto 110:165afa46840b 5638 * @return none.
Kojto 110:165afa46840b 5639 */
Kojto 110:165afa46840b 5640
Kojto 110:165afa46840b 5641 static __INLINE void arm_inv_park_f32(
Kojto 110:165afa46840b 5642 float32_t Id,
Kojto 110:165afa46840b 5643 float32_t Iq,
Kojto 110:165afa46840b 5644 float32_t * pIalpha,
Kojto 110:165afa46840b 5645 float32_t * pIbeta,
Kojto 110:165afa46840b 5646 float32_t sinVal,
Kojto 110:165afa46840b 5647 float32_t cosVal)
Kojto 110:165afa46840b 5648 {
Kojto 110:165afa46840b 5649 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
Kojto 110:165afa46840b 5650 *pIalpha = Id * cosVal - Iq * sinVal;
Kojto 110:165afa46840b 5651
Kojto 110:165afa46840b 5652 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
Kojto 110:165afa46840b 5653 *pIbeta = Id * sinVal + Iq * cosVal;
Kojto 110:165afa46840b 5654
Kojto 110:165afa46840b 5655 }
Kojto 110:165afa46840b 5656
Kojto 110:165afa46840b 5657
Kojto 110:165afa46840b 5658 /**
Kojto 110:165afa46840b 5659 * @brief Inverse Park transform for Q31 version
Kojto 110:165afa46840b 5660 * @param[in] Id input coordinate of rotor reference frame d
Kojto 110:165afa46840b 5661 * @param[in] Iq input coordinate of rotor reference frame q
Kojto 110:165afa46840b 5662 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 110:165afa46840b 5663 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 110:165afa46840b 5664 * @param[in] sinVal sine value of rotation angle theta
Kojto 110:165afa46840b 5665 * @param[in] cosVal cosine value of rotation angle theta
Kojto 110:165afa46840b 5666 * @return none.
Kojto 110:165afa46840b 5667 *
Kojto 110:165afa46840b 5668 * <b>Scaling and Overflow Behavior:</b>
Kojto 110:165afa46840b 5669 * \par
Kojto 110:165afa46840b 5670 * The function is implemented using an internal 32-bit accumulator.
Kojto 110:165afa46840b 5671 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 110:165afa46840b 5672 * There is saturation on the addition, hence there is no risk of overflow.
Kojto 110:165afa46840b 5673 */
Kojto 110:165afa46840b 5674
Kojto 110:165afa46840b 5675
Kojto 110:165afa46840b 5676 static __INLINE void arm_inv_park_q31(
Kojto 110:165afa46840b 5677 q31_t Id,
Kojto 110:165afa46840b 5678 q31_t Iq,
Kojto 110:165afa46840b 5679 q31_t * pIalpha,
Kojto 110:165afa46840b 5680 q31_t * pIbeta,
Kojto 110:165afa46840b 5681 q31_t sinVal,
Kojto 110:165afa46840b 5682 q31_t cosVal)
Kojto 110:165afa46840b 5683 {
Kojto 110:165afa46840b 5684 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 110:165afa46840b 5685 q31_t product3, product4; /* Temporary variables used to store intermediate results */
Kojto 110:165afa46840b 5686
Kojto 110:165afa46840b 5687 /* Intermediate product is calculated by (Id * cosVal) */
Kojto 110:165afa46840b 5688 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
Kojto 110:165afa46840b 5689
Kojto 110:165afa46840b 5690 /* Intermediate product is calculated by (Iq * sinVal) */
Kojto 110:165afa46840b 5691 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
Kojto 110:165afa46840b 5692
Kojto 110:165afa46840b 5693
Kojto 110:165afa46840b 5694 /* Intermediate product is calculated by (Id * sinVal) */
Kojto 110:165afa46840b 5695 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
Kojto 110:165afa46840b 5696
Kojto 110:165afa46840b 5697 /* Intermediate product is calculated by (Iq * cosVal) */
Kojto 110:165afa46840b 5698 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
Kojto 110:165afa46840b 5699
Kojto 110:165afa46840b 5700 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
Kojto 110:165afa46840b 5701 *pIalpha = __QSUB(product1, product2);
Kojto 110:165afa46840b 5702
Kojto 110:165afa46840b 5703 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
Kojto 110:165afa46840b 5704 *pIbeta = __QADD(product4, product3);
Kojto 110:165afa46840b 5705
Kojto 110:165afa46840b 5706 }
Kojto 110:165afa46840b 5707
Kojto 110:165afa46840b 5708 /**
Kojto 110:165afa46840b 5709 * @} end of Inverse park group
Kojto 110:165afa46840b 5710 */
Kojto 110:165afa46840b 5711
Kojto 110:165afa46840b 5712
Kojto 110:165afa46840b 5713 /**
Kojto 110:165afa46840b 5714 * @brief Converts the elements of the Q31 vector to floating-point vector.
Kojto 110:165afa46840b 5715 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 5716 * @param[out] *pDst is output pointer
Kojto 110:165afa46840b 5717 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 5718 * @return none.
Kojto 110:165afa46840b 5719 */
Kojto 110:165afa46840b 5720 void arm_q31_to_float(
Kojto 110:165afa46840b 5721 q31_t * pSrc,
Kojto 110:165afa46840b 5722 float32_t * pDst,
Kojto 110:165afa46840b 5723 uint32_t blockSize);
Kojto 110:165afa46840b 5724
Kojto 110:165afa46840b 5725 /**
Kojto 110:165afa46840b 5726 * @ingroup groupInterpolation
Kojto 110:165afa46840b 5727 */
Kojto 110:165afa46840b 5728
Kojto 110:165afa46840b 5729 /**
Kojto 110:165afa46840b 5730 * @defgroup LinearInterpolate Linear Interpolation
Kojto 110:165afa46840b 5731 *
Kojto 110:165afa46840b 5732 * Linear interpolation is a method of curve fitting using linear polynomials.
Kojto 110:165afa46840b 5733 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
Kojto 110:165afa46840b 5734 *
Kojto 110:165afa46840b 5735 * \par
Kojto 110:165afa46840b 5736 * \image html LinearInterp.gif "Linear interpolation"
Kojto 110:165afa46840b 5737 *
Kojto 110:165afa46840b 5738 * \par
Kojto 110:165afa46840b 5739 * A Linear Interpolate function calculates an output value(y), for the input(x)
Kojto 110:165afa46840b 5740 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
Kojto 110:165afa46840b 5741 *
Kojto 110:165afa46840b 5742 * \par Algorithm:
Kojto 110:165afa46840b 5743 * <pre>
Kojto 110:165afa46840b 5744 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
Kojto 110:165afa46840b 5745 * where x0, x1 are nearest values of input x
Kojto 110:165afa46840b 5746 * y0, y1 are nearest values to output y
Kojto 110:165afa46840b 5747 * </pre>
Kojto 110:165afa46840b 5748 *
Kojto 110:165afa46840b 5749 * \par
Kojto 110:165afa46840b 5750 * This set of functions implements Linear interpolation process
Kojto 110:165afa46840b 5751 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
Kojto 110:165afa46840b 5752 * sample of data and each call to the function returns a single processed value.
Kojto 110:165afa46840b 5753 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
Kojto 110:165afa46840b 5754 * <code>x</code> is the input sample value. The functions returns the output value.
Kojto 110:165afa46840b 5755 *
Kojto 110:165afa46840b 5756 * \par
Kojto 110:165afa46840b 5757 * if x is outside of the table boundary, Linear interpolation returns first value of the table
Kojto 110:165afa46840b 5758 * if x is below input range and returns last value of table if x is above range.
Kojto 110:165afa46840b 5759 */
Kojto 110:165afa46840b 5760
Kojto 110:165afa46840b 5761 /**
Kojto 110:165afa46840b 5762 * @addtogroup LinearInterpolate
Kojto 110:165afa46840b 5763 * @{
Kojto 110:165afa46840b 5764 */
Kojto 110:165afa46840b 5765
Kojto 110:165afa46840b 5766 /**
Kojto 110:165afa46840b 5767 * @brief Process function for the floating-point Linear Interpolation Function.
Kojto 110:165afa46840b 5768 * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
Kojto 110:165afa46840b 5769 * @param[in] x input sample to process
Kojto 110:165afa46840b 5770 * @return y processed output sample.
Kojto 110:165afa46840b 5771 *
Kojto 110:165afa46840b 5772 */
Kojto 110:165afa46840b 5773
Kojto 110:165afa46840b 5774 static __INLINE float32_t arm_linear_interp_f32(
Kojto 110:165afa46840b 5775 arm_linear_interp_instance_f32 * S,
Kojto 110:165afa46840b 5776 float32_t x)
Kojto 110:165afa46840b 5777 {
Kojto 110:165afa46840b 5778
Kojto 110:165afa46840b 5779 float32_t y;
Kojto 110:165afa46840b 5780 float32_t x0, x1; /* Nearest input values */
Kojto 110:165afa46840b 5781 float32_t y0, y1; /* Nearest output values */
Kojto 110:165afa46840b 5782 float32_t xSpacing = S->xSpacing; /* spacing between input values */
Kojto 110:165afa46840b 5783 int32_t i; /* Index variable */
Kojto 110:165afa46840b 5784 float32_t *pYData = S->pYData; /* pointer to output table */
Kojto 110:165afa46840b 5785
Kojto 110:165afa46840b 5786 /* Calculation of index */
Kojto 110:165afa46840b 5787 i = (int32_t) ((x - S->x1) / xSpacing);
Kojto 110:165afa46840b 5788
Kojto 110:165afa46840b 5789 if(i < 0)
Kojto 110:165afa46840b 5790 {
Kojto 110:165afa46840b 5791 /* Iniatilize output for below specified range as least output value of table */
Kojto 110:165afa46840b 5792 y = pYData[0];
Kojto 110:165afa46840b 5793 }
Kojto 110:165afa46840b 5794 else if((uint32_t)i >= S->nValues)
Kojto 110:165afa46840b 5795 {
Kojto 110:165afa46840b 5796 /* Iniatilize output for above specified range as last output value of table */
Kojto 110:165afa46840b 5797 y = pYData[S->nValues - 1];
Kojto 110:165afa46840b 5798 }
Kojto 110:165afa46840b 5799 else
Kojto 110:165afa46840b 5800 {
Kojto 110:165afa46840b 5801 /* Calculation of nearest input values */
Kojto 110:165afa46840b 5802 x0 = S->x1 + i * xSpacing;
Kojto 110:165afa46840b 5803 x1 = S->x1 + (i + 1) * xSpacing;
Kojto 110:165afa46840b 5804
Kojto 110:165afa46840b 5805 /* Read of nearest output values */
Kojto 110:165afa46840b 5806 y0 = pYData[i];
Kojto 110:165afa46840b 5807 y1 = pYData[i + 1];
Kojto 110:165afa46840b 5808
Kojto 110:165afa46840b 5809 /* Calculation of output */
Kojto 110:165afa46840b 5810 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
Kojto 110:165afa46840b 5811
Kojto 110:165afa46840b 5812 }
Kojto 110:165afa46840b 5813
Kojto 110:165afa46840b 5814 /* returns output value */
Kojto 110:165afa46840b 5815 return (y);
Kojto 110:165afa46840b 5816 }
Kojto 110:165afa46840b 5817
Kojto 110:165afa46840b 5818 /**
Kojto 110:165afa46840b 5819 *
Kojto 110:165afa46840b 5820 * @brief Process function for the Q31 Linear Interpolation Function.
Kojto 110:165afa46840b 5821 * @param[in] *pYData pointer to Q31 Linear Interpolation table
Kojto 110:165afa46840b 5822 * @param[in] x input sample to process
Kojto 110:165afa46840b 5823 * @param[in] nValues number of table values
Kojto 110:165afa46840b 5824 * @return y processed output sample.
Kojto 110:165afa46840b 5825 *
Kojto 110:165afa46840b 5826 * \par
Kojto 110:165afa46840b 5827 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 110:165afa46840b 5828 * This function can support maximum of table size 2^12.
Kojto 110:165afa46840b 5829 *
Kojto 110:165afa46840b 5830 */
Kojto 110:165afa46840b 5831
Kojto 110:165afa46840b 5832
Kojto 110:165afa46840b 5833 static __INLINE q31_t arm_linear_interp_q31(
Kojto 110:165afa46840b 5834 q31_t * pYData,
Kojto 110:165afa46840b 5835 q31_t x,
Kojto 110:165afa46840b 5836 uint32_t nValues)
Kojto 110:165afa46840b 5837 {
Kojto 110:165afa46840b 5838 q31_t y; /* output */
Kojto 110:165afa46840b 5839 q31_t y0, y1; /* Nearest output values */
Kojto 110:165afa46840b 5840 q31_t fract; /* fractional part */
Kojto 110:165afa46840b 5841 int32_t index; /* Index to read nearest output values */
Kojto 110:165afa46840b 5842
Kojto 110:165afa46840b 5843 /* Input is in 12.20 format */
Kojto 110:165afa46840b 5844 /* 12 bits for the table index */
Kojto 110:165afa46840b 5845 /* Index value calculation */
Kojto 110:165afa46840b 5846 index = ((x & 0xFFF00000) >> 20);
Kojto 110:165afa46840b 5847
Kojto 110:165afa46840b 5848 if(index >= (int32_t)(nValues - 1))
Kojto 110:165afa46840b 5849 {
Kojto 110:165afa46840b 5850 return (pYData[nValues - 1]);
Kojto 110:165afa46840b 5851 }
Kojto 110:165afa46840b 5852 else if(index < 0)
Kojto 110:165afa46840b 5853 {
Kojto 110:165afa46840b 5854 return (pYData[0]);
Kojto 110:165afa46840b 5855 }
Kojto 110:165afa46840b 5856 else
Kojto 110:165afa46840b 5857 {
Kojto 110:165afa46840b 5858
Kojto 110:165afa46840b 5859 /* 20 bits for the fractional part */
Kojto 110:165afa46840b 5860 /* shift left by 11 to keep fract in 1.31 format */
Kojto 110:165afa46840b 5861 fract = (x & 0x000FFFFF) << 11;
Kojto 110:165afa46840b 5862
Kojto 110:165afa46840b 5863 /* Read two nearest output values from the index in 1.31(q31) format */
Kojto 110:165afa46840b 5864 y0 = pYData[index];
Kojto 110:165afa46840b 5865 y1 = pYData[index + 1u];
Kojto 110:165afa46840b 5866
Kojto 110:165afa46840b 5867 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
Kojto 110:165afa46840b 5868 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
Kojto 110:165afa46840b 5869
Kojto 110:165afa46840b 5870 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
Kojto 110:165afa46840b 5871 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
Kojto 110:165afa46840b 5872
Kojto 110:165afa46840b 5873 /* Convert y to 1.31 format */
Kojto 110:165afa46840b 5874 return (y << 1u);
Kojto 110:165afa46840b 5875
Kojto 110:165afa46840b 5876 }
Kojto 110:165afa46840b 5877
Kojto 110:165afa46840b 5878 }
Kojto 110:165afa46840b 5879
Kojto 110:165afa46840b 5880 /**
Kojto 110:165afa46840b 5881 *
Kojto 110:165afa46840b 5882 * @brief Process function for the Q15 Linear Interpolation Function.
Kojto 110:165afa46840b 5883 * @param[in] *pYData pointer to Q15 Linear Interpolation table
Kojto 110:165afa46840b 5884 * @param[in] x input sample to process
Kojto 110:165afa46840b 5885 * @param[in] nValues number of table values
Kojto 110:165afa46840b 5886 * @return y processed output sample.
Kojto 110:165afa46840b 5887 *
Kojto 110:165afa46840b 5888 * \par
Kojto 110:165afa46840b 5889 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 110:165afa46840b 5890 * This function can support maximum of table size 2^12.
Kojto 110:165afa46840b 5891 *
Kojto 110:165afa46840b 5892 */
Kojto 110:165afa46840b 5893
Kojto 110:165afa46840b 5894
Kojto 110:165afa46840b 5895 static __INLINE q15_t arm_linear_interp_q15(
Kojto 110:165afa46840b 5896 q15_t * pYData,
Kojto 110:165afa46840b 5897 q31_t x,
Kojto 110:165afa46840b 5898 uint32_t nValues)
Kojto 110:165afa46840b 5899 {
Kojto 110:165afa46840b 5900 q63_t y; /* output */
Kojto 110:165afa46840b 5901 q15_t y0, y1; /* Nearest output values */
Kojto 110:165afa46840b 5902 q31_t fract; /* fractional part */
Kojto 110:165afa46840b 5903 int32_t index; /* Index to read nearest output values */
Kojto 110:165afa46840b 5904
Kojto 110:165afa46840b 5905 /* Input is in 12.20 format */
Kojto 110:165afa46840b 5906 /* 12 bits for the table index */
Kojto 110:165afa46840b 5907 /* Index value calculation */
Kojto 110:165afa46840b 5908 index = ((x & 0xFFF00000) >> 20u);
Kojto 110:165afa46840b 5909
Kojto 110:165afa46840b 5910 if(index >= (int32_t)(nValues - 1))
Kojto 110:165afa46840b 5911 {
Kojto 110:165afa46840b 5912 return (pYData[nValues - 1]);
Kojto 110:165afa46840b 5913 }
Kojto 110:165afa46840b 5914 else if(index < 0)
Kojto 110:165afa46840b 5915 {
Kojto 110:165afa46840b 5916 return (pYData[0]);
Kojto 110:165afa46840b 5917 }
Kojto 110:165afa46840b 5918 else
Kojto 110:165afa46840b 5919 {
Kojto 110:165afa46840b 5920 /* 20 bits for the fractional part */
Kojto 110:165afa46840b 5921 /* fract is in 12.20 format */
Kojto 110:165afa46840b 5922 fract = (x & 0x000FFFFF);
Kojto 110:165afa46840b 5923
Kojto 110:165afa46840b 5924 /* Read two nearest output values from the index */
Kojto 110:165afa46840b 5925 y0 = pYData[index];
Kojto 110:165afa46840b 5926 y1 = pYData[index + 1u];
Kojto 110:165afa46840b 5927
Kojto 110:165afa46840b 5928 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
Kojto 110:165afa46840b 5929 y = ((q63_t) y0 * (0xFFFFF - fract));
Kojto 110:165afa46840b 5930
Kojto 110:165afa46840b 5931 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
Kojto 110:165afa46840b 5932 y += ((q63_t) y1 * (fract));
Kojto 110:165afa46840b 5933
Kojto 110:165afa46840b 5934 /* convert y to 1.15 format */
Kojto 110:165afa46840b 5935 return (y >> 20);
Kojto 110:165afa46840b 5936 }
Kojto 110:165afa46840b 5937
Kojto 110:165afa46840b 5938
Kojto 110:165afa46840b 5939 }
Kojto 110:165afa46840b 5940
Kojto 110:165afa46840b 5941 /**
Kojto 110:165afa46840b 5942 *
Kojto 110:165afa46840b 5943 * @brief Process function for the Q7 Linear Interpolation Function.
Kojto 110:165afa46840b 5944 * @param[in] *pYData pointer to Q7 Linear Interpolation table
Kojto 110:165afa46840b 5945 * @param[in] x input sample to process
Kojto 110:165afa46840b 5946 * @param[in] nValues number of table values
Kojto 110:165afa46840b 5947 * @return y processed output sample.
Kojto 110:165afa46840b 5948 *
Kojto 110:165afa46840b 5949 * \par
Kojto 110:165afa46840b 5950 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 110:165afa46840b 5951 * This function can support maximum of table size 2^12.
Kojto 110:165afa46840b 5952 */
Kojto 110:165afa46840b 5953
Kojto 110:165afa46840b 5954
Kojto 110:165afa46840b 5955 static __INLINE q7_t arm_linear_interp_q7(
Kojto 110:165afa46840b 5956 q7_t * pYData,
Kojto 110:165afa46840b 5957 q31_t x,
Kojto 110:165afa46840b 5958 uint32_t nValues)
Kojto 110:165afa46840b 5959 {
Kojto 110:165afa46840b 5960 q31_t y; /* output */
Kojto 110:165afa46840b 5961 q7_t y0, y1; /* Nearest output values */
Kojto 110:165afa46840b 5962 q31_t fract; /* fractional part */
Kojto 110:165afa46840b 5963 uint32_t index; /* Index to read nearest output values */
Kojto 110:165afa46840b 5964
Kojto 110:165afa46840b 5965 /* Input is in 12.20 format */
Kojto 110:165afa46840b 5966 /* 12 bits for the table index */
Kojto 110:165afa46840b 5967 /* Index value calculation */
Kojto 110:165afa46840b 5968 if (x < 0)
Kojto 110:165afa46840b 5969 {
Kojto 110:165afa46840b 5970 return (pYData[0]);
Kojto 110:165afa46840b 5971 }
Kojto 110:165afa46840b 5972 index = (x >> 20) & 0xfff;
Kojto 110:165afa46840b 5973
Kojto 110:165afa46840b 5974
Kojto 110:165afa46840b 5975 if(index >= (nValues - 1))
Kojto 110:165afa46840b 5976 {
Kojto 110:165afa46840b 5977 return (pYData[nValues - 1]);
Kojto 110:165afa46840b 5978 }
Kojto 110:165afa46840b 5979 else
Kojto 110:165afa46840b 5980 {
Kojto 110:165afa46840b 5981
Kojto 110:165afa46840b 5982 /* 20 bits for the fractional part */
Kojto 110:165afa46840b 5983 /* fract is in 12.20 format */
Kojto 110:165afa46840b 5984 fract = (x & 0x000FFFFF);
Kojto 110:165afa46840b 5985
Kojto 110:165afa46840b 5986 /* Read two nearest output values from the index and are in 1.7(q7) format */
Kojto 110:165afa46840b 5987 y0 = pYData[index];
Kojto 110:165afa46840b 5988 y1 = pYData[index + 1u];
Kojto 110:165afa46840b 5989
Kojto 110:165afa46840b 5990 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
Kojto 110:165afa46840b 5991 y = ((y0 * (0xFFFFF - fract)));
Kojto 110:165afa46840b 5992
Kojto 110:165afa46840b 5993 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
Kojto 110:165afa46840b 5994 y += (y1 * fract);
Kojto 110:165afa46840b 5995
Kojto 110:165afa46840b 5996 /* convert y to 1.7(q7) format */
Kojto 110:165afa46840b 5997 return (y >> 20u);
Kojto 110:165afa46840b 5998
Kojto 110:165afa46840b 5999 }
Kojto 110:165afa46840b 6000
Kojto 110:165afa46840b 6001 }
Kojto 110:165afa46840b 6002 /**
Kojto 110:165afa46840b 6003 * @} end of LinearInterpolate group
Kojto 110:165afa46840b 6004 */
Kojto 110:165afa46840b 6005
Kojto 110:165afa46840b 6006 /**
Kojto 110:165afa46840b 6007 * @brief Fast approximation to the trigonometric sine function for floating-point data.
Kojto 110:165afa46840b 6008 * @param[in] x input value in radians.
Kojto 110:165afa46840b 6009 * @return sin(x).
Kojto 110:165afa46840b 6010 */
Kojto 110:165afa46840b 6011
Kojto 110:165afa46840b 6012 float32_t arm_sin_f32(
Kojto 110:165afa46840b 6013 float32_t x);
Kojto 110:165afa46840b 6014
Kojto 110:165afa46840b 6015 /**
Kojto 110:165afa46840b 6016 * @brief Fast approximation to the trigonometric sine function for Q31 data.
Kojto 110:165afa46840b 6017 * @param[in] x Scaled input value in radians.
Kojto 110:165afa46840b 6018 * @return sin(x).
Kojto 110:165afa46840b 6019 */
Kojto 110:165afa46840b 6020
Kojto 110:165afa46840b 6021 q31_t arm_sin_q31(
Kojto 110:165afa46840b 6022 q31_t x);
Kojto 110:165afa46840b 6023
Kojto 110:165afa46840b 6024 /**
Kojto 110:165afa46840b 6025 * @brief Fast approximation to the trigonometric sine function for Q15 data.
Kojto 110:165afa46840b 6026 * @param[in] x Scaled input value in radians.
Kojto 110:165afa46840b 6027 * @return sin(x).
Kojto 110:165afa46840b 6028 */
Kojto 110:165afa46840b 6029
Kojto 110:165afa46840b 6030 q15_t arm_sin_q15(
Kojto 110:165afa46840b 6031 q15_t x);
Kojto 110:165afa46840b 6032
Kojto 110:165afa46840b 6033 /**
Kojto 110:165afa46840b 6034 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
Kojto 110:165afa46840b 6035 * @param[in] x input value in radians.
Kojto 110:165afa46840b 6036 * @return cos(x).
Kojto 110:165afa46840b 6037 */
Kojto 110:165afa46840b 6038
Kojto 110:165afa46840b 6039 float32_t arm_cos_f32(
Kojto 110:165afa46840b 6040 float32_t x);
Kojto 110:165afa46840b 6041
Kojto 110:165afa46840b 6042 /**
Kojto 110:165afa46840b 6043 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
Kojto 110:165afa46840b 6044 * @param[in] x Scaled input value in radians.
Kojto 110:165afa46840b 6045 * @return cos(x).
Kojto 110:165afa46840b 6046 */
Kojto 110:165afa46840b 6047
Kojto 110:165afa46840b 6048 q31_t arm_cos_q31(
Kojto 110:165afa46840b 6049 q31_t x);
Kojto 110:165afa46840b 6050
Kojto 110:165afa46840b 6051 /**
Kojto 110:165afa46840b 6052 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
Kojto 110:165afa46840b 6053 * @param[in] x Scaled input value in radians.
Kojto 110:165afa46840b 6054 * @return cos(x).
Kojto 110:165afa46840b 6055 */
Kojto 110:165afa46840b 6056
Kojto 110:165afa46840b 6057 q15_t arm_cos_q15(
Kojto 110:165afa46840b 6058 q15_t x);
Kojto 110:165afa46840b 6059
Kojto 110:165afa46840b 6060
Kojto 110:165afa46840b 6061 /**
Kojto 110:165afa46840b 6062 * @ingroup groupFastMath
Kojto 110:165afa46840b 6063 */
Kojto 110:165afa46840b 6064
Kojto 110:165afa46840b 6065
Kojto 110:165afa46840b 6066 /**
Kojto 110:165afa46840b 6067 * @defgroup SQRT Square Root
Kojto 110:165afa46840b 6068 *
Kojto 110:165afa46840b 6069 * Computes the square root of a number.
Kojto 110:165afa46840b 6070 * There are separate functions for Q15, Q31, and floating-point data types.
Kojto 110:165afa46840b 6071 * The square root function is computed using the Newton-Raphson algorithm.
Kojto 110:165afa46840b 6072 * This is an iterative algorithm of the form:
Kojto 110:165afa46840b 6073 * <pre>
Kojto 110:165afa46840b 6074 * x1 = x0 - f(x0)/f'(x0)
Kojto 110:165afa46840b 6075 * </pre>
Kojto 110:165afa46840b 6076 * where <code>x1</code> is the current estimate,
Kojto 110:165afa46840b 6077 * <code>x0</code> is the previous estimate, and
Kojto 110:165afa46840b 6078 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
Kojto 110:165afa46840b 6079 * For the square root function, the algorithm reduces to:
Kojto 110:165afa46840b 6080 * <pre>
Kojto 110:165afa46840b 6081 * x0 = in/2 [initial guess]
Kojto 110:165afa46840b 6082 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
Kojto 110:165afa46840b 6083 * </pre>
Kojto 110:165afa46840b 6084 */
Kojto 110:165afa46840b 6085
Kojto 110:165afa46840b 6086
Kojto 110:165afa46840b 6087 /**
Kojto 110:165afa46840b 6088 * @addtogroup SQRT
Kojto 110:165afa46840b 6089 * @{
Kojto 110:165afa46840b 6090 */
Kojto 110:165afa46840b 6091
Kojto 110:165afa46840b 6092 /**
Kojto 110:165afa46840b 6093 * @brief Floating-point square root function.
Kojto 110:165afa46840b 6094 * @param[in] in input value.
Kojto 110:165afa46840b 6095 * @param[out] *pOut square root of input value.
Kojto 110:165afa46840b 6096 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 110:165afa46840b 6097 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 110:165afa46840b 6098 */
Kojto 110:165afa46840b 6099
Kojto 110:165afa46840b 6100 static __INLINE arm_status arm_sqrt_f32(
Kojto 110:165afa46840b 6101 float32_t in,
Kojto 110:165afa46840b 6102 float32_t * pOut)
Kojto 110:165afa46840b 6103 {
Kojto 110:165afa46840b 6104 if(in >= 0.0f)
Kojto 110:165afa46840b 6105 {
Kojto 110:165afa46840b 6106
Kojto 110:165afa46840b 6107 // #if __FPU_USED
Kojto 110:165afa46840b 6108 #if (__FPU_USED == 1) && defined ( __CC_ARM )
Kojto 110:165afa46840b 6109 *pOut = __sqrtf(in);
Kojto 110:165afa46840b 6110 #else
Kojto 110:165afa46840b 6111 *pOut = sqrtf(in);
Kojto 110:165afa46840b 6112 #endif
Kojto 110:165afa46840b 6113
Kojto 110:165afa46840b 6114 return (ARM_MATH_SUCCESS);
Kojto 110:165afa46840b 6115 }
Kojto 110:165afa46840b 6116 else
Kojto 110:165afa46840b 6117 {
Kojto 110:165afa46840b 6118 *pOut = 0.0f;
Kojto 110:165afa46840b 6119 return (ARM_MATH_ARGUMENT_ERROR);
Kojto 110:165afa46840b 6120 }
Kojto 110:165afa46840b 6121
Kojto 110:165afa46840b 6122 }
Kojto 110:165afa46840b 6123
Kojto 110:165afa46840b 6124
Kojto 110:165afa46840b 6125 /**
Kojto 110:165afa46840b 6126 * @brief Q31 square root function.
Kojto 110:165afa46840b 6127 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
Kojto 110:165afa46840b 6128 * @param[out] *pOut square root of input value.
Kojto 110:165afa46840b 6129 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 110:165afa46840b 6130 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 110:165afa46840b 6131 */
Kojto 110:165afa46840b 6132 arm_status arm_sqrt_q31(
Kojto 110:165afa46840b 6133 q31_t in,
Kojto 110:165afa46840b 6134 q31_t * pOut);
Kojto 110:165afa46840b 6135
Kojto 110:165afa46840b 6136 /**
Kojto 110:165afa46840b 6137 * @brief Q15 square root function.
Kojto 110:165afa46840b 6138 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
Kojto 110:165afa46840b 6139 * @param[out] *pOut square root of input value.
Kojto 110:165afa46840b 6140 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 110:165afa46840b 6141 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 110:165afa46840b 6142 */
Kojto 110:165afa46840b 6143 arm_status arm_sqrt_q15(
Kojto 110:165afa46840b 6144 q15_t in,
Kojto 110:165afa46840b 6145 q15_t * pOut);
Kojto 110:165afa46840b 6146
Kojto 110:165afa46840b 6147 /**
Kojto 110:165afa46840b 6148 * @} end of SQRT group
Kojto 110:165afa46840b 6149 */
Kojto 110:165afa46840b 6150
Kojto 110:165afa46840b 6151
Kojto 110:165afa46840b 6152
Kojto 110:165afa46840b 6153
Kojto 110:165afa46840b 6154
Kojto 110:165afa46840b 6155
Kojto 110:165afa46840b 6156 /**
Kojto 110:165afa46840b 6157 * @brief floating-point Circular write function.
Kojto 110:165afa46840b 6158 */
Kojto 110:165afa46840b 6159
Kojto 110:165afa46840b 6160 static __INLINE void arm_circularWrite_f32(
Kojto 110:165afa46840b 6161 int32_t * circBuffer,
Kojto 110:165afa46840b 6162 int32_t L,
Kojto 110:165afa46840b 6163 uint16_t * writeOffset,
Kojto 110:165afa46840b 6164 int32_t bufferInc,
Kojto 110:165afa46840b 6165 const int32_t * src,
Kojto 110:165afa46840b 6166 int32_t srcInc,
Kojto 110:165afa46840b 6167 uint32_t blockSize)
Kojto 110:165afa46840b 6168 {
Kojto 110:165afa46840b 6169 uint32_t i = 0u;
Kojto 110:165afa46840b 6170 int32_t wOffset;
Kojto 110:165afa46840b 6171
Kojto 110:165afa46840b 6172 /* Copy the value of Index pointer that points
Kojto 110:165afa46840b 6173 * to the current location where the input samples to be copied */
Kojto 110:165afa46840b 6174 wOffset = *writeOffset;
Kojto 110:165afa46840b 6175
Kojto 110:165afa46840b 6176 /* Loop over the blockSize */
Kojto 110:165afa46840b 6177 i = blockSize;
Kojto 110:165afa46840b 6178
Kojto 110:165afa46840b 6179 while(i > 0u)
Kojto 110:165afa46840b 6180 {
Kojto 110:165afa46840b 6181 /* copy the input sample to the circular buffer */
Kojto 110:165afa46840b 6182 circBuffer[wOffset] = *src;
Kojto 110:165afa46840b 6183
Kojto 110:165afa46840b 6184 /* Update the input pointer */
Kojto 110:165afa46840b 6185 src += srcInc;
Kojto 110:165afa46840b 6186
Kojto 110:165afa46840b 6187 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 110:165afa46840b 6188 wOffset += bufferInc;
Kojto 110:165afa46840b 6189 if(wOffset >= L)
Kojto 110:165afa46840b 6190 wOffset -= L;
Kojto 110:165afa46840b 6191
Kojto 110:165afa46840b 6192 /* Decrement the loop counter */
Kojto 110:165afa46840b 6193 i--;
Kojto 110:165afa46840b 6194 }
Kojto 110:165afa46840b 6195
Kojto 110:165afa46840b 6196 /* Update the index pointer */
Kojto 110:165afa46840b 6197 *writeOffset = wOffset;
Kojto 110:165afa46840b 6198 }
Kojto 110:165afa46840b 6199
Kojto 110:165afa46840b 6200
Kojto 110:165afa46840b 6201
Kojto 110:165afa46840b 6202 /**
Kojto 110:165afa46840b 6203 * @brief floating-point Circular Read function.
Kojto 110:165afa46840b 6204 */
Kojto 110:165afa46840b 6205 static __INLINE void arm_circularRead_f32(
Kojto 110:165afa46840b 6206 int32_t * circBuffer,
Kojto 110:165afa46840b 6207 int32_t L,
Kojto 110:165afa46840b 6208 int32_t * readOffset,
Kojto 110:165afa46840b 6209 int32_t bufferInc,
Kojto 110:165afa46840b 6210 int32_t * dst,
Kojto 110:165afa46840b 6211 int32_t * dst_base,
Kojto 110:165afa46840b 6212 int32_t dst_length,
Kojto 110:165afa46840b 6213 int32_t dstInc,
Kojto 110:165afa46840b 6214 uint32_t blockSize)
Kojto 110:165afa46840b 6215 {
Kojto 110:165afa46840b 6216 uint32_t i = 0u;
Kojto 110:165afa46840b 6217 int32_t rOffset, dst_end;
Kojto 110:165afa46840b 6218
Kojto 110:165afa46840b 6219 /* Copy the value of Index pointer that points
Kojto 110:165afa46840b 6220 * to the current location from where the input samples to be read */
Kojto 110:165afa46840b 6221 rOffset = *readOffset;
Kojto 110:165afa46840b 6222 dst_end = (int32_t) (dst_base + dst_length);
Kojto 110:165afa46840b 6223
Kojto 110:165afa46840b 6224 /* Loop over the blockSize */
Kojto 110:165afa46840b 6225 i = blockSize;
Kojto 110:165afa46840b 6226
Kojto 110:165afa46840b 6227 while(i > 0u)
Kojto 110:165afa46840b 6228 {
Kojto 110:165afa46840b 6229 /* copy the sample from the circular buffer to the destination buffer */
Kojto 110:165afa46840b 6230 *dst = circBuffer[rOffset];
Kojto 110:165afa46840b 6231
Kojto 110:165afa46840b 6232 /* Update the input pointer */
Kojto 110:165afa46840b 6233 dst += dstInc;
Kojto 110:165afa46840b 6234
Kojto 110:165afa46840b 6235 if(dst == (int32_t *) dst_end)
Kojto 110:165afa46840b 6236 {
Kojto 110:165afa46840b 6237 dst = dst_base;
Kojto 110:165afa46840b 6238 }
Kojto 110:165afa46840b 6239
Kojto 110:165afa46840b 6240 /* Circularly update rOffset. Watch out for positive and negative value */
Kojto 110:165afa46840b 6241 rOffset += bufferInc;
Kojto 110:165afa46840b 6242
Kojto 110:165afa46840b 6243 if(rOffset >= L)
Kojto 110:165afa46840b 6244 {
Kojto 110:165afa46840b 6245 rOffset -= L;
Kojto 110:165afa46840b 6246 }
Kojto 110:165afa46840b 6247
Kojto 110:165afa46840b 6248 /* Decrement the loop counter */
Kojto 110:165afa46840b 6249 i--;
Kojto 110:165afa46840b 6250 }
Kojto 110:165afa46840b 6251
Kojto 110:165afa46840b 6252 /* Update the index pointer */
Kojto 110:165afa46840b 6253 *readOffset = rOffset;
Kojto 110:165afa46840b 6254 }
Kojto 110:165afa46840b 6255
Kojto 110:165afa46840b 6256 /**
Kojto 110:165afa46840b 6257 * @brief Q15 Circular write function.
Kojto 110:165afa46840b 6258 */
Kojto 110:165afa46840b 6259
Kojto 110:165afa46840b 6260 static __INLINE void arm_circularWrite_q15(
Kojto 110:165afa46840b 6261 q15_t * circBuffer,
Kojto 110:165afa46840b 6262 int32_t L,
Kojto 110:165afa46840b 6263 uint16_t * writeOffset,
Kojto 110:165afa46840b 6264 int32_t bufferInc,
Kojto 110:165afa46840b 6265 const q15_t * src,
Kojto 110:165afa46840b 6266 int32_t srcInc,
Kojto 110:165afa46840b 6267 uint32_t blockSize)
Kojto 110:165afa46840b 6268 {
Kojto 110:165afa46840b 6269 uint32_t i = 0u;
Kojto 110:165afa46840b 6270 int32_t wOffset;
Kojto 110:165afa46840b 6271
Kojto 110:165afa46840b 6272 /* Copy the value of Index pointer that points
Kojto 110:165afa46840b 6273 * to the current location where the input samples to be copied */
Kojto 110:165afa46840b 6274 wOffset = *writeOffset;
Kojto 110:165afa46840b 6275
Kojto 110:165afa46840b 6276 /* Loop over the blockSize */
Kojto 110:165afa46840b 6277 i = blockSize;
Kojto 110:165afa46840b 6278
Kojto 110:165afa46840b 6279 while(i > 0u)
Kojto 110:165afa46840b 6280 {
Kojto 110:165afa46840b 6281 /* copy the input sample to the circular buffer */
Kojto 110:165afa46840b 6282 circBuffer[wOffset] = *src;
Kojto 110:165afa46840b 6283
Kojto 110:165afa46840b 6284 /* Update the input pointer */
Kojto 110:165afa46840b 6285 src += srcInc;
Kojto 110:165afa46840b 6286
Kojto 110:165afa46840b 6287 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 110:165afa46840b 6288 wOffset += bufferInc;
Kojto 110:165afa46840b 6289 if(wOffset >= L)
Kojto 110:165afa46840b 6290 wOffset -= L;
Kojto 110:165afa46840b 6291
Kojto 110:165afa46840b 6292 /* Decrement the loop counter */
Kojto 110:165afa46840b 6293 i--;
Kojto 110:165afa46840b 6294 }
Kojto 110:165afa46840b 6295
Kojto 110:165afa46840b 6296 /* Update the index pointer */
Kojto 110:165afa46840b 6297 *writeOffset = wOffset;
Kojto 110:165afa46840b 6298 }
Kojto 110:165afa46840b 6299
Kojto 110:165afa46840b 6300
Kojto 110:165afa46840b 6301
Kojto 110:165afa46840b 6302 /**
Kojto 110:165afa46840b 6303 * @brief Q15 Circular Read function.
Kojto 110:165afa46840b 6304 */
Kojto 110:165afa46840b 6305 static __INLINE void arm_circularRead_q15(
Kojto 110:165afa46840b 6306 q15_t * circBuffer,
Kojto 110:165afa46840b 6307 int32_t L,
Kojto 110:165afa46840b 6308 int32_t * readOffset,
Kojto 110:165afa46840b 6309 int32_t bufferInc,
Kojto 110:165afa46840b 6310 q15_t * dst,
Kojto 110:165afa46840b 6311 q15_t * dst_base,
Kojto 110:165afa46840b 6312 int32_t dst_length,
Kojto 110:165afa46840b 6313 int32_t dstInc,
Kojto 110:165afa46840b 6314 uint32_t blockSize)
Kojto 110:165afa46840b 6315 {
Kojto 110:165afa46840b 6316 uint32_t i = 0;
Kojto 110:165afa46840b 6317 int32_t rOffset, dst_end;
Kojto 110:165afa46840b 6318
Kojto 110:165afa46840b 6319 /* Copy the value of Index pointer that points
Kojto 110:165afa46840b 6320 * to the current location from where the input samples to be read */
Kojto 110:165afa46840b 6321 rOffset = *readOffset;
Kojto 110:165afa46840b 6322
Kojto 110:165afa46840b 6323 dst_end = (int32_t) (dst_base + dst_length);
Kojto 110:165afa46840b 6324
Kojto 110:165afa46840b 6325 /* Loop over the blockSize */
Kojto 110:165afa46840b 6326 i = blockSize;
Kojto 110:165afa46840b 6327
Kojto 110:165afa46840b 6328 while(i > 0u)
Kojto 110:165afa46840b 6329 {
Kojto 110:165afa46840b 6330 /* copy the sample from the circular buffer to the destination buffer */
Kojto 110:165afa46840b 6331 *dst = circBuffer[rOffset];
Kojto 110:165afa46840b 6332
Kojto 110:165afa46840b 6333 /* Update the input pointer */
Kojto 110:165afa46840b 6334 dst += dstInc;
Kojto 110:165afa46840b 6335
Kojto 110:165afa46840b 6336 if(dst == (q15_t *) dst_end)
Kojto 110:165afa46840b 6337 {
Kojto 110:165afa46840b 6338 dst = dst_base;
Kojto 110:165afa46840b 6339 }
Kojto 110:165afa46840b 6340
Kojto 110:165afa46840b 6341 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 110:165afa46840b 6342 rOffset += bufferInc;
Kojto 110:165afa46840b 6343
Kojto 110:165afa46840b 6344 if(rOffset >= L)
Kojto 110:165afa46840b 6345 {
Kojto 110:165afa46840b 6346 rOffset -= L;
Kojto 110:165afa46840b 6347 }
Kojto 110:165afa46840b 6348
Kojto 110:165afa46840b 6349 /* Decrement the loop counter */
Kojto 110:165afa46840b 6350 i--;
Kojto 110:165afa46840b 6351 }
Kojto 110:165afa46840b 6352
Kojto 110:165afa46840b 6353 /* Update the index pointer */
Kojto 110:165afa46840b 6354 *readOffset = rOffset;
Kojto 110:165afa46840b 6355 }
Kojto 110:165afa46840b 6356
Kojto 110:165afa46840b 6357
Kojto 110:165afa46840b 6358 /**
Kojto 110:165afa46840b 6359 * @brief Q7 Circular write function.
Kojto 110:165afa46840b 6360 */
Kojto 110:165afa46840b 6361
Kojto 110:165afa46840b 6362 static __INLINE void arm_circularWrite_q7(
Kojto 110:165afa46840b 6363 q7_t * circBuffer,
Kojto 110:165afa46840b 6364 int32_t L,
Kojto 110:165afa46840b 6365 uint16_t * writeOffset,
Kojto 110:165afa46840b 6366 int32_t bufferInc,
Kojto 110:165afa46840b 6367 const q7_t * src,
Kojto 110:165afa46840b 6368 int32_t srcInc,
Kojto 110:165afa46840b 6369 uint32_t blockSize)
Kojto 110:165afa46840b 6370 {
Kojto 110:165afa46840b 6371 uint32_t i = 0u;
Kojto 110:165afa46840b 6372 int32_t wOffset;
Kojto 110:165afa46840b 6373
Kojto 110:165afa46840b 6374 /* Copy the value of Index pointer that points
Kojto 110:165afa46840b 6375 * to the current location where the input samples to be copied */
Kojto 110:165afa46840b 6376 wOffset = *writeOffset;
Kojto 110:165afa46840b 6377
Kojto 110:165afa46840b 6378 /* Loop over the blockSize */
Kojto 110:165afa46840b 6379 i = blockSize;
Kojto 110:165afa46840b 6380
Kojto 110:165afa46840b 6381 while(i > 0u)
Kojto 110:165afa46840b 6382 {
Kojto 110:165afa46840b 6383 /* copy the input sample to the circular buffer */
Kojto 110:165afa46840b 6384 circBuffer[wOffset] = *src;
Kojto 110:165afa46840b 6385
Kojto 110:165afa46840b 6386 /* Update the input pointer */
Kojto 110:165afa46840b 6387 src += srcInc;
Kojto 110:165afa46840b 6388
Kojto 110:165afa46840b 6389 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 110:165afa46840b 6390 wOffset += bufferInc;
Kojto 110:165afa46840b 6391 if(wOffset >= L)
Kojto 110:165afa46840b 6392 wOffset -= L;
Kojto 110:165afa46840b 6393
Kojto 110:165afa46840b 6394 /* Decrement the loop counter */
Kojto 110:165afa46840b 6395 i--;
Kojto 110:165afa46840b 6396 }
Kojto 110:165afa46840b 6397
Kojto 110:165afa46840b 6398 /* Update the index pointer */
Kojto 110:165afa46840b 6399 *writeOffset = wOffset;
Kojto 110:165afa46840b 6400 }
Kojto 110:165afa46840b 6401
Kojto 110:165afa46840b 6402
Kojto 110:165afa46840b 6403
Kojto 110:165afa46840b 6404 /**
Kojto 110:165afa46840b 6405 * @brief Q7 Circular Read function.
Kojto 110:165afa46840b 6406 */
Kojto 110:165afa46840b 6407 static __INLINE void arm_circularRead_q7(
Kojto 110:165afa46840b 6408 q7_t * circBuffer,
Kojto 110:165afa46840b 6409 int32_t L,
Kojto 110:165afa46840b 6410 int32_t * readOffset,
Kojto 110:165afa46840b 6411 int32_t bufferInc,
Kojto 110:165afa46840b 6412 q7_t * dst,
Kojto 110:165afa46840b 6413 q7_t * dst_base,
Kojto 110:165afa46840b 6414 int32_t dst_length,
Kojto 110:165afa46840b 6415 int32_t dstInc,
Kojto 110:165afa46840b 6416 uint32_t blockSize)
Kojto 110:165afa46840b 6417 {
Kojto 110:165afa46840b 6418 uint32_t i = 0;
Kojto 110:165afa46840b 6419 int32_t rOffset, dst_end;
Kojto 110:165afa46840b 6420
Kojto 110:165afa46840b 6421 /* Copy the value of Index pointer that points
Kojto 110:165afa46840b 6422 * to the current location from where the input samples to be read */
Kojto 110:165afa46840b 6423 rOffset = *readOffset;
Kojto 110:165afa46840b 6424
Kojto 110:165afa46840b 6425 dst_end = (int32_t) (dst_base + dst_length);
Kojto 110:165afa46840b 6426
Kojto 110:165afa46840b 6427 /* Loop over the blockSize */
Kojto 110:165afa46840b 6428 i = blockSize;
Kojto 110:165afa46840b 6429
Kojto 110:165afa46840b 6430 while(i > 0u)
Kojto 110:165afa46840b 6431 {
Kojto 110:165afa46840b 6432 /* copy the sample from the circular buffer to the destination buffer */
Kojto 110:165afa46840b 6433 *dst = circBuffer[rOffset];
Kojto 110:165afa46840b 6434
Kojto 110:165afa46840b 6435 /* Update the input pointer */
Kojto 110:165afa46840b 6436 dst += dstInc;
Kojto 110:165afa46840b 6437
Kojto 110:165afa46840b 6438 if(dst == (q7_t *) dst_end)
Kojto 110:165afa46840b 6439 {
Kojto 110:165afa46840b 6440 dst = dst_base;
Kojto 110:165afa46840b 6441 }
Kojto 110:165afa46840b 6442
Kojto 110:165afa46840b 6443 /* Circularly update rOffset. Watch out for positive and negative value */
Kojto 110:165afa46840b 6444 rOffset += bufferInc;
Kojto 110:165afa46840b 6445
Kojto 110:165afa46840b 6446 if(rOffset >= L)
Kojto 110:165afa46840b 6447 {
Kojto 110:165afa46840b 6448 rOffset -= L;
Kojto 110:165afa46840b 6449 }
Kojto 110:165afa46840b 6450
Kojto 110:165afa46840b 6451 /* Decrement the loop counter */
Kojto 110:165afa46840b 6452 i--;
Kojto 110:165afa46840b 6453 }
Kojto 110:165afa46840b 6454
Kojto 110:165afa46840b 6455 /* Update the index pointer */
Kojto 110:165afa46840b 6456 *readOffset = rOffset;
Kojto 110:165afa46840b 6457 }
Kojto 110:165afa46840b 6458
Kojto 110:165afa46840b 6459
Kojto 110:165afa46840b 6460 /**
Kojto 110:165afa46840b 6461 * @brief Sum of the squares of the elements of a Q31 vector.
Kojto 110:165afa46840b 6462 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6463 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6464 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6465 * @return none.
Kojto 110:165afa46840b 6466 */
Kojto 110:165afa46840b 6467
Kojto 110:165afa46840b 6468 void arm_power_q31(
Kojto 110:165afa46840b 6469 q31_t * pSrc,
Kojto 110:165afa46840b 6470 uint32_t blockSize,
Kojto 110:165afa46840b 6471 q63_t * pResult);
Kojto 110:165afa46840b 6472
Kojto 110:165afa46840b 6473 /**
Kojto 110:165afa46840b 6474 * @brief Sum of the squares of the elements of a floating-point vector.
Kojto 110:165afa46840b 6475 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6476 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6477 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6478 * @return none.
Kojto 110:165afa46840b 6479 */
Kojto 110:165afa46840b 6480
Kojto 110:165afa46840b 6481 void arm_power_f32(
Kojto 110:165afa46840b 6482 float32_t * pSrc,
Kojto 110:165afa46840b 6483 uint32_t blockSize,
Kojto 110:165afa46840b 6484 float32_t * pResult);
Kojto 110:165afa46840b 6485
Kojto 110:165afa46840b 6486 /**
Kojto 110:165afa46840b 6487 * @brief Sum of the squares of the elements of a Q15 vector.
Kojto 110:165afa46840b 6488 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6489 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6490 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6491 * @return none.
Kojto 110:165afa46840b 6492 */
Kojto 110:165afa46840b 6493
Kojto 110:165afa46840b 6494 void arm_power_q15(
Kojto 110:165afa46840b 6495 q15_t * pSrc,
Kojto 110:165afa46840b 6496 uint32_t blockSize,
Kojto 110:165afa46840b 6497 q63_t * pResult);
Kojto 110:165afa46840b 6498
Kojto 110:165afa46840b 6499 /**
Kojto 110:165afa46840b 6500 * @brief Sum of the squares of the elements of a Q7 vector.
Kojto 110:165afa46840b 6501 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6502 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6503 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6504 * @return none.
Kojto 110:165afa46840b 6505 */
Kojto 110:165afa46840b 6506
Kojto 110:165afa46840b 6507 void arm_power_q7(
Kojto 110:165afa46840b 6508 q7_t * pSrc,
Kojto 110:165afa46840b 6509 uint32_t blockSize,
Kojto 110:165afa46840b 6510 q31_t * pResult);
Kojto 110:165afa46840b 6511
Kojto 110:165afa46840b 6512 /**
Kojto 110:165afa46840b 6513 * @brief Mean value of a Q7 vector.
Kojto 110:165afa46840b 6514 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6515 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6516 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6517 * @return none.
Kojto 110:165afa46840b 6518 */
Kojto 110:165afa46840b 6519
Kojto 110:165afa46840b 6520 void arm_mean_q7(
Kojto 110:165afa46840b 6521 q7_t * pSrc,
Kojto 110:165afa46840b 6522 uint32_t blockSize,
Kojto 110:165afa46840b 6523 q7_t * pResult);
Kojto 110:165afa46840b 6524
Kojto 110:165afa46840b 6525 /**
Kojto 110:165afa46840b 6526 * @brief Mean value of a Q15 vector.
Kojto 110:165afa46840b 6527 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6528 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6529 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6530 * @return none.
Kojto 110:165afa46840b 6531 */
Kojto 110:165afa46840b 6532 void arm_mean_q15(
Kojto 110:165afa46840b 6533 q15_t * pSrc,
Kojto 110:165afa46840b 6534 uint32_t blockSize,
Kojto 110:165afa46840b 6535 q15_t * pResult);
Kojto 110:165afa46840b 6536
Kojto 110:165afa46840b 6537 /**
Kojto 110:165afa46840b 6538 * @brief Mean value of a Q31 vector.
Kojto 110:165afa46840b 6539 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6540 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6541 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6542 * @return none.
Kojto 110:165afa46840b 6543 */
Kojto 110:165afa46840b 6544 void arm_mean_q31(
Kojto 110:165afa46840b 6545 q31_t * pSrc,
Kojto 110:165afa46840b 6546 uint32_t blockSize,
Kojto 110:165afa46840b 6547 q31_t * pResult);
Kojto 110:165afa46840b 6548
Kojto 110:165afa46840b 6549 /**
Kojto 110:165afa46840b 6550 * @brief Mean value of a floating-point vector.
Kojto 110:165afa46840b 6551 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6552 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6553 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6554 * @return none.
Kojto 110:165afa46840b 6555 */
Kojto 110:165afa46840b 6556 void arm_mean_f32(
Kojto 110:165afa46840b 6557 float32_t * pSrc,
Kojto 110:165afa46840b 6558 uint32_t blockSize,
Kojto 110:165afa46840b 6559 float32_t * pResult);
Kojto 110:165afa46840b 6560
Kojto 110:165afa46840b 6561 /**
Kojto 110:165afa46840b 6562 * @brief Variance of the elements of a floating-point vector.
Kojto 110:165afa46840b 6563 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6564 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6565 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6566 * @return none.
Kojto 110:165afa46840b 6567 */
Kojto 110:165afa46840b 6568
Kojto 110:165afa46840b 6569 void arm_var_f32(
Kojto 110:165afa46840b 6570 float32_t * pSrc,
Kojto 110:165afa46840b 6571 uint32_t blockSize,
Kojto 110:165afa46840b 6572 float32_t * pResult);
Kojto 110:165afa46840b 6573
Kojto 110:165afa46840b 6574 /**
Kojto 110:165afa46840b 6575 * @brief Variance of the elements of a Q31 vector.
Kojto 110:165afa46840b 6576 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6577 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6578 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6579 * @return none.
Kojto 110:165afa46840b 6580 */
Kojto 110:165afa46840b 6581
Kojto 110:165afa46840b 6582 void arm_var_q31(
Kojto 110:165afa46840b 6583 q31_t * pSrc,
Kojto 110:165afa46840b 6584 uint32_t blockSize,
Kojto 110:165afa46840b 6585 q31_t * pResult);
Kojto 110:165afa46840b 6586
Kojto 110:165afa46840b 6587 /**
Kojto 110:165afa46840b 6588 * @brief Variance of the elements of a Q15 vector.
Kojto 110:165afa46840b 6589 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6590 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6591 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6592 * @return none.
Kojto 110:165afa46840b 6593 */
Kojto 110:165afa46840b 6594
Kojto 110:165afa46840b 6595 void arm_var_q15(
Kojto 110:165afa46840b 6596 q15_t * pSrc,
Kojto 110:165afa46840b 6597 uint32_t blockSize,
Kojto 110:165afa46840b 6598 q15_t * pResult);
Kojto 110:165afa46840b 6599
Kojto 110:165afa46840b 6600 /**
Kojto 110:165afa46840b 6601 * @brief Root Mean Square of the elements of a floating-point vector.
Kojto 110:165afa46840b 6602 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6603 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6604 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6605 * @return none.
Kojto 110:165afa46840b 6606 */
Kojto 110:165afa46840b 6607
Kojto 110:165afa46840b 6608 void arm_rms_f32(
Kojto 110:165afa46840b 6609 float32_t * pSrc,
Kojto 110:165afa46840b 6610 uint32_t blockSize,
Kojto 110:165afa46840b 6611 float32_t * pResult);
Kojto 110:165afa46840b 6612
Kojto 110:165afa46840b 6613 /**
Kojto 110:165afa46840b 6614 * @brief Root Mean Square of the elements of a Q31 vector.
Kojto 110:165afa46840b 6615 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6616 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6617 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6618 * @return none.
Kojto 110:165afa46840b 6619 */
Kojto 110:165afa46840b 6620
Kojto 110:165afa46840b 6621 void arm_rms_q31(
Kojto 110:165afa46840b 6622 q31_t * pSrc,
Kojto 110:165afa46840b 6623 uint32_t blockSize,
Kojto 110:165afa46840b 6624 q31_t * pResult);
Kojto 110:165afa46840b 6625
Kojto 110:165afa46840b 6626 /**
Kojto 110:165afa46840b 6627 * @brief Root Mean Square of the elements of a Q15 vector.
Kojto 110:165afa46840b 6628 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6629 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6630 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6631 * @return none.
Kojto 110:165afa46840b 6632 */
Kojto 110:165afa46840b 6633
Kojto 110:165afa46840b 6634 void arm_rms_q15(
Kojto 110:165afa46840b 6635 q15_t * pSrc,
Kojto 110:165afa46840b 6636 uint32_t blockSize,
Kojto 110:165afa46840b 6637 q15_t * pResult);
Kojto 110:165afa46840b 6638
Kojto 110:165afa46840b 6639 /**
Kojto 110:165afa46840b 6640 * @brief Standard deviation of the elements of a floating-point vector.
Kojto 110:165afa46840b 6641 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6642 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6643 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6644 * @return none.
Kojto 110:165afa46840b 6645 */
Kojto 110:165afa46840b 6646
Kojto 110:165afa46840b 6647 void arm_std_f32(
Kojto 110:165afa46840b 6648 float32_t * pSrc,
Kojto 110:165afa46840b 6649 uint32_t blockSize,
Kojto 110:165afa46840b 6650 float32_t * pResult);
Kojto 110:165afa46840b 6651
Kojto 110:165afa46840b 6652 /**
Kojto 110:165afa46840b 6653 * @brief Standard deviation of the elements of a Q31 vector.
Kojto 110:165afa46840b 6654 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6655 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6656 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6657 * @return none.
Kojto 110:165afa46840b 6658 */
Kojto 110:165afa46840b 6659
Kojto 110:165afa46840b 6660 void arm_std_q31(
Kojto 110:165afa46840b 6661 q31_t * pSrc,
Kojto 110:165afa46840b 6662 uint32_t blockSize,
Kojto 110:165afa46840b 6663 q31_t * pResult);
Kojto 110:165afa46840b 6664
Kojto 110:165afa46840b 6665 /**
Kojto 110:165afa46840b 6666 * @brief Standard deviation of the elements of a Q15 vector.
Kojto 110:165afa46840b 6667 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6668 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6669 * @param[out] *pResult is output value.
Kojto 110:165afa46840b 6670 * @return none.
Kojto 110:165afa46840b 6671 */
Kojto 110:165afa46840b 6672
Kojto 110:165afa46840b 6673 void arm_std_q15(
Kojto 110:165afa46840b 6674 q15_t * pSrc,
Kojto 110:165afa46840b 6675 uint32_t blockSize,
Kojto 110:165afa46840b 6676 q15_t * pResult);
Kojto 110:165afa46840b 6677
Kojto 110:165afa46840b 6678 /**
Kojto 110:165afa46840b 6679 * @brief Floating-point complex magnitude
Kojto 110:165afa46840b 6680 * @param[in] *pSrc points to the complex input vector
Kojto 110:165afa46840b 6681 * @param[out] *pDst points to the real output vector
Kojto 110:165afa46840b 6682 * @param[in] numSamples number of complex samples in the input vector
Kojto 110:165afa46840b 6683 * @return none.
Kojto 110:165afa46840b 6684 */
Kojto 110:165afa46840b 6685
Kojto 110:165afa46840b 6686 void arm_cmplx_mag_f32(
Kojto 110:165afa46840b 6687 float32_t * pSrc,
Kojto 110:165afa46840b 6688 float32_t * pDst,
Kojto 110:165afa46840b 6689 uint32_t numSamples);
Kojto 110:165afa46840b 6690
Kojto 110:165afa46840b 6691 /**
Kojto 110:165afa46840b 6692 * @brief Q31 complex magnitude
Kojto 110:165afa46840b 6693 * @param[in] *pSrc points to the complex input vector
Kojto 110:165afa46840b 6694 * @param[out] *pDst points to the real output vector
Kojto 110:165afa46840b 6695 * @param[in] numSamples number of complex samples in the input vector
Kojto 110:165afa46840b 6696 * @return none.
Kojto 110:165afa46840b 6697 */
Kojto 110:165afa46840b 6698
Kojto 110:165afa46840b 6699 void arm_cmplx_mag_q31(
Kojto 110:165afa46840b 6700 q31_t * pSrc,
Kojto 110:165afa46840b 6701 q31_t * pDst,
Kojto 110:165afa46840b 6702 uint32_t numSamples);
Kojto 110:165afa46840b 6703
Kojto 110:165afa46840b 6704 /**
Kojto 110:165afa46840b 6705 * @brief Q15 complex magnitude
Kojto 110:165afa46840b 6706 * @param[in] *pSrc points to the complex input vector
Kojto 110:165afa46840b 6707 * @param[out] *pDst points to the real output vector
Kojto 110:165afa46840b 6708 * @param[in] numSamples number of complex samples in the input vector
Kojto 110:165afa46840b 6709 * @return none.
Kojto 110:165afa46840b 6710 */
Kojto 110:165afa46840b 6711
Kojto 110:165afa46840b 6712 void arm_cmplx_mag_q15(
Kojto 110:165afa46840b 6713 q15_t * pSrc,
Kojto 110:165afa46840b 6714 q15_t * pDst,
Kojto 110:165afa46840b 6715 uint32_t numSamples);
Kojto 110:165afa46840b 6716
Kojto 110:165afa46840b 6717 /**
Kojto 110:165afa46840b 6718 * @brief Q15 complex dot product
Kojto 110:165afa46840b 6719 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 6720 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 6721 * @param[in] numSamples number of complex samples in each vector
Kojto 110:165afa46840b 6722 * @param[out] *realResult real part of the result returned here
Kojto 110:165afa46840b 6723 * @param[out] *imagResult imaginary part of the result returned here
Kojto 110:165afa46840b 6724 * @return none.
Kojto 110:165afa46840b 6725 */
Kojto 110:165afa46840b 6726
Kojto 110:165afa46840b 6727 void arm_cmplx_dot_prod_q15(
Kojto 110:165afa46840b 6728 q15_t * pSrcA,
Kojto 110:165afa46840b 6729 q15_t * pSrcB,
Kojto 110:165afa46840b 6730 uint32_t numSamples,
Kojto 110:165afa46840b 6731 q31_t * realResult,
Kojto 110:165afa46840b 6732 q31_t * imagResult);
Kojto 110:165afa46840b 6733
Kojto 110:165afa46840b 6734 /**
Kojto 110:165afa46840b 6735 * @brief Q31 complex dot product
Kojto 110:165afa46840b 6736 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 6737 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 6738 * @param[in] numSamples number of complex samples in each vector
Kojto 110:165afa46840b 6739 * @param[out] *realResult real part of the result returned here
Kojto 110:165afa46840b 6740 * @param[out] *imagResult imaginary part of the result returned here
Kojto 110:165afa46840b 6741 * @return none.
Kojto 110:165afa46840b 6742 */
Kojto 110:165afa46840b 6743
Kojto 110:165afa46840b 6744 void arm_cmplx_dot_prod_q31(
Kojto 110:165afa46840b 6745 q31_t * pSrcA,
Kojto 110:165afa46840b 6746 q31_t * pSrcB,
Kojto 110:165afa46840b 6747 uint32_t numSamples,
Kojto 110:165afa46840b 6748 q63_t * realResult,
Kojto 110:165afa46840b 6749 q63_t * imagResult);
Kojto 110:165afa46840b 6750
Kojto 110:165afa46840b 6751 /**
Kojto 110:165afa46840b 6752 * @brief Floating-point complex dot product
Kojto 110:165afa46840b 6753 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 6754 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 6755 * @param[in] numSamples number of complex samples in each vector
Kojto 110:165afa46840b 6756 * @param[out] *realResult real part of the result returned here
Kojto 110:165afa46840b 6757 * @param[out] *imagResult imaginary part of the result returned here
Kojto 110:165afa46840b 6758 * @return none.
Kojto 110:165afa46840b 6759 */
Kojto 110:165afa46840b 6760
Kojto 110:165afa46840b 6761 void arm_cmplx_dot_prod_f32(
Kojto 110:165afa46840b 6762 float32_t * pSrcA,
Kojto 110:165afa46840b 6763 float32_t * pSrcB,
Kojto 110:165afa46840b 6764 uint32_t numSamples,
Kojto 110:165afa46840b 6765 float32_t * realResult,
Kojto 110:165afa46840b 6766 float32_t * imagResult);
Kojto 110:165afa46840b 6767
Kojto 110:165afa46840b 6768 /**
Kojto 110:165afa46840b 6769 * @brief Q15 complex-by-real multiplication
Kojto 110:165afa46840b 6770 * @param[in] *pSrcCmplx points to the complex input vector
Kojto 110:165afa46840b 6771 * @param[in] *pSrcReal points to the real input vector
Kojto 110:165afa46840b 6772 * @param[out] *pCmplxDst points to the complex output vector
Kojto 110:165afa46840b 6773 * @param[in] numSamples number of samples in each vector
Kojto 110:165afa46840b 6774 * @return none.
Kojto 110:165afa46840b 6775 */
Kojto 110:165afa46840b 6776
Kojto 110:165afa46840b 6777 void arm_cmplx_mult_real_q15(
Kojto 110:165afa46840b 6778 q15_t * pSrcCmplx,
Kojto 110:165afa46840b 6779 q15_t * pSrcReal,
Kojto 110:165afa46840b 6780 q15_t * pCmplxDst,
Kojto 110:165afa46840b 6781 uint32_t numSamples);
Kojto 110:165afa46840b 6782
Kojto 110:165afa46840b 6783 /**
Kojto 110:165afa46840b 6784 * @brief Q31 complex-by-real multiplication
Kojto 110:165afa46840b 6785 * @param[in] *pSrcCmplx points to the complex input vector
Kojto 110:165afa46840b 6786 * @param[in] *pSrcReal points to the real input vector
Kojto 110:165afa46840b 6787 * @param[out] *pCmplxDst points to the complex output vector
Kojto 110:165afa46840b 6788 * @param[in] numSamples number of samples in each vector
Kojto 110:165afa46840b 6789 * @return none.
Kojto 110:165afa46840b 6790 */
Kojto 110:165afa46840b 6791
Kojto 110:165afa46840b 6792 void arm_cmplx_mult_real_q31(
Kojto 110:165afa46840b 6793 q31_t * pSrcCmplx,
Kojto 110:165afa46840b 6794 q31_t * pSrcReal,
Kojto 110:165afa46840b 6795 q31_t * pCmplxDst,
Kojto 110:165afa46840b 6796 uint32_t numSamples);
Kojto 110:165afa46840b 6797
Kojto 110:165afa46840b 6798 /**
Kojto 110:165afa46840b 6799 * @brief Floating-point complex-by-real multiplication
Kojto 110:165afa46840b 6800 * @param[in] *pSrcCmplx points to the complex input vector
Kojto 110:165afa46840b 6801 * @param[in] *pSrcReal points to the real input vector
Kojto 110:165afa46840b 6802 * @param[out] *pCmplxDst points to the complex output vector
Kojto 110:165afa46840b 6803 * @param[in] numSamples number of samples in each vector
Kojto 110:165afa46840b 6804 * @return none.
Kojto 110:165afa46840b 6805 */
Kojto 110:165afa46840b 6806
Kojto 110:165afa46840b 6807 void arm_cmplx_mult_real_f32(
Kojto 110:165afa46840b 6808 float32_t * pSrcCmplx,
Kojto 110:165afa46840b 6809 float32_t * pSrcReal,
Kojto 110:165afa46840b 6810 float32_t * pCmplxDst,
Kojto 110:165afa46840b 6811 uint32_t numSamples);
Kojto 110:165afa46840b 6812
Kojto 110:165afa46840b 6813 /**
Kojto 110:165afa46840b 6814 * @brief Minimum value of a Q7 vector.
Kojto 110:165afa46840b 6815 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6816 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6817 * @param[out] *result is output pointer
Kojto 110:165afa46840b 6818 * @param[in] index is the array index of the minimum value in the input buffer.
Kojto 110:165afa46840b 6819 * @return none.
Kojto 110:165afa46840b 6820 */
Kojto 110:165afa46840b 6821
Kojto 110:165afa46840b 6822 void arm_min_q7(
Kojto 110:165afa46840b 6823 q7_t * pSrc,
Kojto 110:165afa46840b 6824 uint32_t blockSize,
Kojto 110:165afa46840b 6825 q7_t * result,
Kojto 110:165afa46840b 6826 uint32_t * index);
Kojto 110:165afa46840b 6827
Kojto 110:165afa46840b 6828 /**
Kojto 110:165afa46840b 6829 * @brief Minimum value of a Q15 vector.
Kojto 110:165afa46840b 6830 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6831 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6832 * @param[out] *pResult is output pointer
Kojto 110:165afa46840b 6833 * @param[in] *pIndex is the array index of the minimum value in the input buffer.
Kojto 110:165afa46840b 6834 * @return none.
Kojto 110:165afa46840b 6835 */
Kojto 110:165afa46840b 6836
Kojto 110:165afa46840b 6837 void arm_min_q15(
Kojto 110:165afa46840b 6838 q15_t * pSrc,
Kojto 110:165afa46840b 6839 uint32_t blockSize,
Kojto 110:165afa46840b 6840 q15_t * pResult,
Kojto 110:165afa46840b 6841 uint32_t * pIndex);
Kojto 110:165afa46840b 6842
Kojto 110:165afa46840b 6843 /**
Kojto 110:165afa46840b 6844 * @brief Minimum value of a Q31 vector.
Kojto 110:165afa46840b 6845 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6846 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6847 * @param[out] *pResult is output pointer
Kojto 110:165afa46840b 6848 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
Kojto 110:165afa46840b 6849 * @return none.
Kojto 110:165afa46840b 6850 */
Kojto 110:165afa46840b 6851 void arm_min_q31(
Kojto 110:165afa46840b 6852 q31_t * pSrc,
Kojto 110:165afa46840b 6853 uint32_t blockSize,
Kojto 110:165afa46840b 6854 q31_t * pResult,
Kojto 110:165afa46840b 6855 uint32_t * pIndex);
Kojto 110:165afa46840b 6856
Kojto 110:165afa46840b 6857 /**
Kojto 110:165afa46840b 6858 * @brief Minimum value of a floating-point vector.
Kojto 110:165afa46840b 6859 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 6860 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 6861 * @param[out] *pResult is output pointer
Kojto 110:165afa46840b 6862 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
Kojto 110:165afa46840b 6863 * @return none.
Kojto 110:165afa46840b 6864 */
Kojto 110:165afa46840b 6865
Kojto 110:165afa46840b 6866 void arm_min_f32(
Kojto 110:165afa46840b 6867 float32_t * pSrc,
Kojto 110:165afa46840b 6868 uint32_t blockSize,
Kojto 110:165afa46840b 6869 float32_t * pResult,
Kojto 110:165afa46840b 6870 uint32_t * pIndex);
Kojto 110:165afa46840b 6871
Kojto 110:165afa46840b 6872 /**
Kojto 110:165afa46840b 6873 * @brief Maximum value of a Q7 vector.
Kojto 110:165afa46840b 6874 * @param[in] *pSrc points to the input buffer
Kojto 110:165afa46840b 6875 * @param[in] blockSize length of the input vector
Kojto 110:165afa46840b 6876 * @param[out] *pResult maximum value returned here
Kojto 110:165afa46840b 6877 * @param[out] *pIndex index of maximum value returned here
Kojto 110:165afa46840b 6878 * @return none.
Kojto 110:165afa46840b 6879 */
Kojto 110:165afa46840b 6880
Kojto 110:165afa46840b 6881 void arm_max_q7(
Kojto 110:165afa46840b 6882 q7_t * pSrc,
Kojto 110:165afa46840b 6883 uint32_t blockSize,
Kojto 110:165afa46840b 6884 q7_t * pResult,
Kojto 110:165afa46840b 6885 uint32_t * pIndex);
Kojto 110:165afa46840b 6886
Kojto 110:165afa46840b 6887 /**
Kojto 110:165afa46840b 6888 * @brief Maximum value of a Q15 vector.
Kojto 110:165afa46840b 6889 * @param[in] *pSrc points to the input buffer
Kojto 110:165afa46840b 6890 * @param[in] blockSize length of the input vector
Kojto 110:165afa46840b 6891 * @param[out] *pResult maximum value returned here
Kojto 110:165afa46840b 6892 * @param[out] *pIndex index of maximum value returned here
Kojto 110:165afa46840b 6893 * @return none.
Kojto 110:165afa46840b 6894 */
Kojto 110:165afa46840b 6895
Kojto 110:165afa46840b 6896 void arm_max_q15(
Kojto 110:165afa46840b 6897 q15_t * pSrc,
Kojto 110:165afa46840b 6898 uint32_t blockSize,
Kojto 110:165afa46840b 6899 q15_t * pResult,
Kojto 110:165afa46840b 6900 uint32_t * pIndex);
Kojto 110:165afa46840b 6901
Kojto 110:165afa46840b 6902 /**
Kojto 110:165afa46840b 6903 * @brief Maximum value of a Q31 vector.
Kojto 110:165afa46840b 6904 * @param[in] *pSrc points to the input buffer
Kojto 110:165afa46840b 6905 * @param[in] blockSize length of the input vector
Kojto 110:165afa46840b 6906 * @param[out] *pResult maximum value returned here
Kojto 110:165afa46840b 6907 * @param[out] *pIndex index of maximum value returned here
Kojto 110:165afa46840b 6908 * @return none.
Kojto 110:165afa46840b 6909 */
Kojto 110:165afa46840b 6910
Kojto 110:165afa46840b 6911 void arm_max_q31(
Kojto 110:165afa46840b 6912 q31_t * pSrc,
Kojto 110:165afa46840b 6913 uint32_t blockSize,
Kojto 110:165afa46840b 6914 q31_t * pResult,
Kojto 110:165afa46840b 6915 uint32_t * pIndex);
Kojto 110:165afa46840b 6916
Kojto 110:165afa46840b 6917 /**
Kojto 110:165afa46840b 6918 * @brief Maximum value of a floating-point vector.
Kojto 110:165afa46840b 6919 * @param[in] *pSrc points to the input buffer
Kojto 110:165afa46840b 6920 * @param[in] blockSize length of the input vector
Kojto 110:165afa46840b 6921 * @param[out] *pResult maximum value returned here
Kojto 110:165afa46840b 6922 * @param[out] *pIndex index of maximum value returned here
Kojto 110:165afa46840b 6923 * @return none.
Kojto 110:165afa46840b 6924 */
Kojto 110:165afa46840b 6925
Kojto 110:165afa46840b 6926 void arm_max_f32(
Kojto 110:165afa46840b 6927 float32_t * pSrc,
Kojto 110:165afa46840b 6928 uint32_t blockSize,
Kojto 110:165afa46840b 6929 float32_t * pResult,
Kojto 110:165afa46840b 6930 uint32_t * pIndex);
Kojto 110:165afa46840b 6931
Kojto 110:165afa46840b 6932 /**
Kojto 110:165afa46840b 6933 * @brief Q15 complex-by-complex multiplication
Kojto 110:165afa46840b 6934 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 6935 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 6936 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 6937 * @param[in] numSamples number of complex samples in each vector
Kojto 110:165afa46840b 6938 * @return none.
Kojto 110:165afa46840b 6939 */
Kojto 110:165afa46840b 6940
Kojto 110:165afa46840b 6941 void arm_cmplx_mult_cmplx_q15(
Kojto 110:165afa46840b 6942 q15_t * pSrcA,
Kojto 110:165afa46840b 6943 q15_t * pSrcB,
Kojto 110:165afa46840b 6944 q15_t * pDst,
Kojto 110:165afa46840b 6945 uint32_t numSamples);
Kojto 110:165afa46840b 6946
Kojto 110:165afa46840b 6947 /**
Kojto 110:165afa46840b 6948 * @brief Q31 complex-by-complex multiplication
Kojto 110:165afa46840b 6949 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 6950 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 6951 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 6952 * @param[in] numSamples number of complex samples in each vector
Kojto 110:165afa46840b 6953 * @return none.
Kojto 110:165afa46840b 6954 */
Kojto 110:165afa46840b 6955
Kojto 110:165afa46840b 6956 void arm_cmplx_mult_cmplx_q31(
Kojto 110:165afa46840b 6957 q31_t * pSrcA,
Kojto 110:165afa46840b 6958 q31_t * pSrcB,
Kojto 110:165afa46840b 6959 q31_t * pDst,
Kojto 110:165afa46840b 6960 uint32_t numSamples);
Kojto 110:165afa46840b 6961
Kojto 110:165afa46840b 6962 /**
Kojto 110:165afa46840b 6963 * @brief Floating-point complex-by-complex multiplication
Kojto 110:165afa46840b 6964 * @param[in] *pSrcA points to the first input vector
Kojto 110:165afa46840b 6965 * @param[in] *pSrcB points to the second input vector
Kojto 110:165afa46840b 6966 * @param[out] *pDst points to the output vector
Kojto 110:165afa46840b 6967 * @param[in] numSamples number of complex samples in each vector
Kojto 110:165afa46840b 6968 * @return none.
Kojto 110:165afa46840b 6969 */
Kojto 110:165afa46840b 6970
Kojto 110:165afa46840b 6971 void arm_cmplx_mult_cmplx_f32(
Kojto 110:165afa46840b 6972 float32_t * pSrcA,
Kojto 110:165afa46840b 6973 float32_t * pSrcB,
Kojto 110:165afa46840b 6974 float32_t * pDst,
Kojto 110:165afa46840b 6975 uint32_t numSamples);
Kojto 110:165afa46840b 6976
Kojto 110:165afa46840b 6977 /**
Kojto 110:165afa46840b 6978 * @brief Converts the elements of the floating-point vector to Q31 vector.
Kojto 110:165afa46840b 6979 * @param[in] *pSrc points to the floating-point input vector
Kojto 110:165afa46840b 6980 * @param[out] *pDst points to the Q31 output vector
Kojto 110:165afa46840b 6981 * @param[in] blockSize length of the input vector
Kojto 110:165afa46840b 6982 * @return none.
Kojto 110:165afa46840b 6983 */
Kojto 110:165afa46840b 6984 void arm_float_to_q31(
Kojto 110:165afa46840b 6985 float32_t * pSrc,
Kojto 110:165afa46840b 6986 q31_t * pDst,
Kojto 110:165afa46840b 6987 uint32_t blockSize);
Kojto 110:165afa46840b 6988
Kojto 110:165afa46840b 6989 /**
Kojto 110:165afa46840b 6990 * @brief Converts the elements of the floating-point vector to Q15 vector.
Kojto 110:165afa46840b 6991 * @param[in] *pSrc points to the floating-point input vector
Kojto 110:165afa46840b 6992 * @param[out] *pDst points to the Q15 output vector
Kojto 110:165afa46840b 6993 * @param[in] blockSize length of the input vector
Kojto 110:165afa46840b 6994 * @return none
Kojto 110:165afa46840b 6995 */
Kojto 110:165afa46840b 6996 void arm_float_to_q15(
Kojto 110:165afa46840b 6997 float32_t * pSrc,
Kojto 110:165afa46840b 6998 q15_t * pDst,
Kojto 110:165afa46840b 6999 uint32_t blockSize);
Kojto 110:165afa46840b 7000
Kojto 110:165afa46840b 7001 /**
Kojto 110:165afa46840b 7002 * @brief Converts the elements of the floating-point vector to Q7 vector.
Kojto 110:165afa46840b 7003 * @param[in] *pSrc points to the floating-point input vector
Kojto 110:165afa46840b 7004 * @param[out] *pDst points to the Q7 output vector
Kojto 110:165afa46840b 7005 * @param[in] blockSize length of the input vector
Kojto 110:165afa46840b 7006 * @return none
Kojto 110:165afa46840b 7007 */
Kojto 110:165afa46840b 7008 void arm_float_to_q7(
Kojto 110:165afa46840b 7009 float32_t * pSrc,
Kojto 110:165afa46840b 7010 q7_t * pDst,
Kojto 110:165afa46840b 7011 uint32_t blockSize);
Kojto 110:165afa46840b 7012
Kojto 110:165afa46840b 7013
Kojto 110:165afa46840b 7014 /**
Kojto 110:165afa46840b 7015 * @brief Converts the elements of the Q31 vector to Q15 vector.
Kojto 110:165afa46840b 7016 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 7017 * @param[out] *pDst is output pointer
Kojto 110:165afa46840b 7018 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 7019 * @return none.
Kojto 110:165afa46840b 7020 */
Kojto 110:165afa46840b 7021 void arm_q31_to_q15(
Kojto 110:165afa46840b 7022 q31_t * pSrc,
Kojto 110:165afa46840b 7023 q15_t * pDst,
Kojto 110:165afa46840b 7024 uint32_t blockSize);
Kojto 110:165afa46840b 7025
Kojto 110:165afa46840b 7026 /**
Kojto 110:165afa46840b 7027 * @brief Converts the elements of the Q31 vector to Q7 vector.
Kojto 110:165afa46840b 7028 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 7029 * @param[out] *pDst is output pointer
Kojto 110:165afa46840b 7030 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 7031 * @return none.
Kojto 110:165afa46840b 7032 */
Kojto 110:165afa46840b 7033 void arm_q31_to_q7(
Kojto 110:165afa46840b 7034 q31_t * pSrc,
Kojto 110:165afa46840b 7035 q7_t * pDst,
Kojto 110:165afa46840b 7036 uint32_t blockSize);
Kojto 110:165afa46840b 7037
Kojto 110:165afa46840b 7038 /**
Kojto 110:165afa46840b 7039 * @brief Converts the elements of the Q15 vector to floating-point vector.
Kojto 110:165afa46840b 7040 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 7041 * @param[out] *pDst is output pointer
Kojto 110:165afa46840b 7042 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 7043 * @return none.
Kojto 110:165afa46840b 7044 */
Kojto 110:165afa46840b 7045 void arm_q15_to_float(
Kojto 110:165afa46840b 7046 q15_t * pSrc,
Kojto 110:165afa46840b 7047 float32_t * pDst,
Kojto 110:165afa46840b 7048 uint32_t blockSize);
Kojto 110:165afa46840b 7049
Kojto 110:165afa46840b 7050
Kojto 110:165afa46840b 7051 /**
Kojto 110:165afa46840b 7052 * @brief Converts the elements of the Q15 vector to Q31 vector.
Kojto 110:165afa46840b 7053 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 7054 * @param[out] *pDst is output pointer
Kojto 110:165afa46840b 7055 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 7056 * @return none.
Kojto 110:165afa46840b 7057 */
Kojto 110:165afa46840b 7058 void arm_q15_to_q31(
Kojto 110:165afa46840b 7059 q15_t * pSrc,
Kojto 110:165afa46840b 7060 q31_t * pDst,
Kojto 110:165afa46840b 7061 uint32_t blockSize);
Kojto 110:165afa46840b 7062
Kojto 110:165afa46840b 7063
Kojto 110:165afa46840b 7064 /**
Kojto 110:165afa46840b 7065 * @brief Converts the elements of the Q15 vector to Q7 vector.
Kojto 110:165afa46840b 7066 * @param[in] *pSrc is input pointer
Kojto 110:165afa46840b 7067 * @param[out] *pDst is output pointer
Kojto 110:165afa46840b 7068 * @param[in] blockSize is the number of samples to process
Kojto 110:165afa46840b 7069 * @return none.
Kojto 110:165afa46840b 7070 */
Kojto 110:165afa46840b 7071 void arm_q15_to_q7(
Kojto 110:165afa46840b 7072 q15_t * pSrc,
Kojto 110:165afa46840b 7073 q7_t * pDst,
Kojto 110:165afa46840b 7074 uint32_t blockSize);
Kojto 110:165afa46840b 7075
Kojto 110:165afa46840b 7076
Kojto 110:165afa46840b 7077 /**
Kojto 110:165afa46840b 7078 * @ingroup groupInterpolation
Kojto 110:165afa46840b 7079 */
Kojto 110:165afa46840b 7080
Kojto 110:165afa46840b 7081 /**
Kojto 110:165afa46840b 7082 * @defgroup BilinearInterpolate Bilinear Interpolation
Kojto 110:165afa46840b 7083 *
Kojto 110:165afa46840b 7084 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
Kojto 110:165afa46840b 7085 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
Kojto 110:165afa46840b 7086 * determines values between the grid points.
Kojto 110:165afa46840b 7087 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
Kojto 110:165afa46840b 7088 * Bilinear interpolation is often used in image processing to rescale images.
Kojto 110:165afa46840b 7089 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
Kojto 110:165afa46840b 7090 *
Kojto 110:165afa46840b 7091 * <b>Algorithm</b>
Kojto 110:165afa46840b 7092 * \par
Kojto 110:165afa46840b 7093 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
Kojto 110:165afa46840b 7094 * For floating-point, the instance structure is defined as:
Kojto 110:165afa46840b 7095 * <pre>
Kojto 110:165afa46840b 7096 * typedef struct
Kojto 110:165afa46840b 7097 * {
Kojto 110:165afa46840b 7098 * uint16_t numRows;
Kojto 110:165afa46840b 7099 * uint16_t numCols;
Kojto 110:165afa46840b 7100 * float32_t *pData;
Kojto 110:165afa46840b 7101 * } arm_bilinear_interp_instance_f32;
Kojto 110:165afa46840b 7102 * </pre>
Kojto 110:165afa46840b 7103 *
Kojto 110:165afa46840b 7104 * \par
Kojto 110:165afa46840b 7105 * where <code>numRows</code> specifies the number of rows in the table;
Kojto 110:165afa46840b 7106 * <code>numCols</code> specifies the number of columns in the table;
Kojto 110:165afa46840b 7107 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
Kojto 110:165afa46840b 7108 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
Kojto 110:165afa46840b 7109 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
Kojto 110:165afa46840b 7110 *
Kojto 110:165afa46840b 7111 * \par
Kojto 110:165afa46840b 7112 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
Kojto 110:165afa46840b 7113 * <pre>
Kojto 110:165afa46840b 7114 * XF = floor(x)
Kojto 110:165afa46840b 7115 * YF = floor(y)
Kojto 110:165afa46840b 7116 * </pre>
Kojto 110:165afa46840b 7117 * \par
Kojto 110:165afa46840b 7118 * The interpolated output point is computed as:
Kojto 110:165afa46840b 7119 * <pre>
Kojto 110:165afa46840b 7120 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
Kojto 110:165afa46840b 7121 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
Kojto 110:165afa46840b 7122 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
Kojto 110:165afa46840b 7123 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
Kojto 110:165afa46840b 7124 * </pre>
Kojto 110:165afa46840b 7125 * Note that the coordinates (x, y) contain integer and fractional components.
Kojto 110:165afa46840b 7126 * The integer components specify which portion of the table to use while the
Kojto 110:165afa46840b 7127 * fractional components control the interpolation processor.
Kojto 110:165afa46840b 7128 *
Kojto 110:165afa46840b 7129 * \par
Kojto 110:165afa46840b 7130 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
Kojto 110:165afa46840b 7131 */
Kojto 110:165afa46840b 7132
Kojto 110:165afa46840b 7133 /**
Kojto 110:165afa46840b 7134 * @addtogroup BilinearInterpolate
Kojto 110:165afa46840b 7135 * @{
Kojto 110:165afa46840b 7136 */
Kojto 110:165afa46840b 7137
Kojto 110:165afa46840b 7138 /**
Kojto 110:165afa46840b 7139 *
Kojto 110:165afa46840b 7140 * @brief Floating-point bilinear interpolation.
Kojto 110:165afa46840b 7141 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 110:165afa46840b 7142 * @param[in] X interpolation coordinate.
Kojto 110:165afa46840b 7143 * @param[in] Y interpolation coordinate.
Kojto 110:165afa46840b 7144 * @return out interpolated value.
Kojto 110:165afa46840b 7145 */
Kojto 110:165afa46840b 7146
Kojto 110:165afa46840b 7147
Kojto 110:165afa46840b 7148 static __INLINE float32_t arm_bilinear_interp_f32(
Kojto 110:165afa46840b 7149 const arm_bilinear_interp_instance_f32 * S,
Kojto 110:165afa46840b 7150 float32_t X,
Kojto 110:165afa46840b 7151 float32_t Y)
Kojto 110:165afa46840b 7152 {
Kojto 110:165afa46840b 7153 float32_t out;
Kojto 110:165afa46840b 7154 float32_t f00, f01, f10, f11;
Kojto 110:165afa46840b 7155 float32_t *pData = S->pData;
Kojto 110:165afa46840b 7156 int32_t xIndex, yIndex, index;
Kojto 110:165afa46840b 7157 float32_t xdiff, ydiff;
Kojto 110:165afa46840b 7158 float32_t b1, b2, b3, b4;
Kojto 110:165afa46840b 7159
Kojto 110:165afa46840b 7160 xIndex = (int32_t) X;
Kojto 110:165afa46840b 7161 yIndex = (int32_t) Y;
Kojto 110:165afa46840b 7162
Kojto 110:165afa46840b 7163 /* Care taken for table outside boundary */
Kojto 110:165afa46840b 7164 /* Returns zero output when values are outside table boundary */
Kojto 110:165afa46840b 7165 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
Kojto 110:165afa46840b 7166 || yIndex > (S->numCols - 1))
Kojto 110:165afa46840b 7167 {
Kojto 110:165afa46840b 7168 return (0);
Kojto 110:165afa46840b 7169 }
Kojto 110:165afa46840b 7170
Kojto 110:165afa46840b 7171 /* Calculation of index for two nearest points in X-direction */
Kojto 110:165afa46840b 7172 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
Kojto 110:165afa46840b 7173
Kojto 110:165afa46840b 7174
Kojto 110:165afa46840b 7175 /* Read two nearest points in X-direction */
Kojto 110:165afa46840b 7176 f00 = pData[index];
Kojto 110:165afa46840b 7177 f01 = pData[index + 1];
Kojto 110:165afa46840b 7178
Kojto 110:165afa46840b 7179 /* Calculation of index for two nearest points in Y-direction */
Kojto 110:165afa46840b 7180 index = (xIndex - 1) + (yIndex) * S->numCols;
Kojto 110:165afa46840b 7181
Kojto 110:165afa46840b 7182
Kojto 110:165afa46840b 7183 /* Read two nearest points in Y-direction */
Kojto 110:165afa46840b 7184 f10 = pData[index];
Kojto 110:165afa46840b 7185 f11 = pData[index + 1];
Kojto 110:165afa46840b 7186
Kojto 110:165afa46840b 7187 /* Calculation of intermediate values */
Kojto 110:165afa46840b 7188 b1 = f00;
Kojto 110:165afa46840b 7189 b2 = f01 - f00;
Kojto 110:165afa46840b 7190 b3 = f10 - f00;
Kojto 110:165afa46840b 7191 b4 = f00 - f01 - f10 + f11;
Kojto 110:165afa46840b 7192
Kojto 110:165afa46840b 7193 /* Calculation of fractional part in X */
Kojto 110:165afa46840b 7194 xdiff = X - xIndex;
Kojto 110:165afa46840b 7195
Kojto 110:165afa46840b 7196 /* Calculation of fractional part in Y */
Kojto 110:165afa46840b 7197 ydiff = Y - yIndex;
Kojto 110:165afa46840b 7198
Kojto 110:165afa46840b 7199 /* Calculation of bi-linear interpolated output */
Kojto 110:165afa46840b 7200 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
Kojto 110:165afa46840b 7201
Kojto 110:165afa46840b 7202 /* return to application */
Kojto 110:165afa46840b 7203 return (out);
Kojto 110:165afa46840b 7204
Kojto 110:165afa46840b 7205 }
Kojto 110:165afa46840b 7206
Kojto 110:165afa46840b 7207 /**
Kojto 110:165afa46840b 7208 *
Kojto 110:165afa46840b 7209 * @brief Q31 bilinear interpolation.
Kojto 110:165afa46840b 7210 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 110:165afa46840b 7211 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 110:165afa46840b 7212 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 110:165afa46840b 7213 * @return out interpolated value.
Kojto 110:165afa46840b 7214 */
Kojto 110:165afa46840b 7215
Kojto 110:165afa46840b 7216 static __INLINE q31_t arm_bilinear_interp_q31(
Kojto 110:165afa46840b 7217 arm_bilinear_interp_instance_q31 * S,
Kojto 110:165afa46840b 7218 q31_t X,
Kojto 110:165afa46840b 7219 q31_t Y)
Kojto 110:165afa46840b 7220 {
Kojto 110:165afa46840b 7221 q31_t out; /* Temporary output */
Kojto 110:165afa46840b 7222 q31_t acc = 0; /* output */
Kojto 110:165afa46840b 7223 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 110:165afa46840b 7224 q31_t x1, x2, y1, y2; /* Nearest output values */
Kojto 110:165afa46840b 7225 int32_t rI, cI; /* Row and column indices */
Kojto 110:165afa46840b 7226 q31_t *pYData = S->pData; /* pointer to output table values */
Kojto 110:165afa46840b 7227 uint32_t nCols = S->numCols; /* num of rows */
Kojto 110:165afa46840b 7228
Kojto 110:165afa46840b 7229
Kojto 110:165afa46840b 7230 /* Input is in 12.20 format */
Kojto 110:165afa46840b 7231 /* 12 bits for the table index */
Kojto 110:165afa46840b 7232 /* Index value calculation */
Kojto 110:165afa46840b 7233 rI = ((X & 0xFFF00000) >> 20u);
Kojto 110:165afa46840b 7234
Kojto 110:165afa46840b 7235 /* Input is in 12.20 format */
Kojto 110:165afa46840b 7236 /* 12 bits for the table index */
Kojto 110:165afa46840b 7237 /* Index value calculation */
Kojto 110:165afa46840b 7238 cI = ((Y & 0xFFF00000) >> 20u);
Kojto 110:165afa46840b 7239
Kojto 110:165afa46840b 7240 /* Care taken for table outside boundary */
Kojto 110:165afa46840b 7241 /* Returns zero output when values are outside table boundary */
Kojto 110:165afa46840b 7242 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 110:165afa46840b 7243 {
Kojto 110:165afa46840b 7244 return (0);
Kojto 110:165afa46840b 7245 }
Kojto 110:165afa46840b 7246
Kojto 110:165afa46840b 7247 /* 20 bits for the fractional part */
Kojto 110:165afa46840b 7248 /* shift left xfract by 11 to keep 1.31 format */
Kojto 110:165afa46840b 7249 xfract = (X & 0x000FFFFF) << 11u;
Kojto 110:165afa46840b 7250
Kojto 110:165afa46840b 7251 /* Read two nearest output values from the index */
Kojto 110:165afa46840b 7252 x1 = pYData[(rI) + nCols * (cI)];
Kojto 110:165afa46840b 7253 x2 = pYData[(rI) + nCols * (cI) + 1u];
Kojto 110:165afa46840b 7254
Kojto 110:165afa46840b 7255 /* 20 bits for the fractional part */
Kojto 110:165afa46840b 7256 /* shift left yfract by 11 to keep 1.31 format */
Kojto 110:165afa46840b 7257 yfract = (Y & 0x000FFFFF) << 11u;
Kojto 110:165afa46840b 7258
Kojto 110:165afa46840b 7259 /* Read two nearest output values from the index */
Kojto 110:165afa46840b 7260 y1 = pYData[(rI) + nCols * (cI + 1)];
Kojto 110:165afa46840b 7261 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
Kojto 110:165afa46840b 7262
Kojto 110:165afa46840b 7263 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
Kojto 110:165afa46840b 7264 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
Kojto 110:165afa46840b 7265 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
Kojto 110:165afa46840b 7266
Kojto 110:165afa46840b 7267 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
Kojto 110:165afa46840b 7268 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
Kojto 110:165afa46840b 7269 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
Kojto 110:165afa46840b 7270
Kojto 110:165afa46840b 7271 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
Kojto 110:165afa46840b 7272 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
Kojto 110:165afa46840b 7273 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
Kojto 110:165afa46840b 7274
Kojto 110:165afa46840b 7275 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
Kojto 110:165afa46840b 7276 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
Kojto 110:165afa46840b 7277 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
Kojto 110:165afa46840b 7278
Kojto 110:165afa46840b 7279 /* Convert acc to 1.31(q31) format */
Kojto 110:165afa46840b 7280 return (acc << 2u);
Kojto 110:165afa46840b 7281
Kojto 110:165afa46840b 7282 }
Kojto 110:165afa46840b 7283
Kojto 110:165afa46840b 7284 /**
Kojto 110:165afa46840b 7285 * @brief Q15 bilinear interpolation.
Kojto 110:165afa46840b 7286 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 110:165afa46840b 7287 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 110:165afa46840b 7288 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 110:165afa46840b 7289 * @return out interpolated value.
Kojto 110:165afa46840b 7290 */
Kojto 110:165afa46840b 7291
Kojto 110:165afa46840b 7292 static __INLINE q15_t arm_bilinear_interp_q15(
Kojto 110:165afa46840b 7293 arm_bilinear_interp_instance_q15 * S,
Kojto 110:165afa46840b 7294 q31_t X,
Kojto 110:165afa46840b 7295 q31_t Y)
Kojto 110:165afa46840b 7296 {
Kojto 110:165afa46840b 7297 q63_t acc = 0; /* output */
Kojto 110:165afa46840b 7298 q31_t out; /* Temporary output */
Kojto 110:165afa46840b 7299 q15_t x1, x2, y1, y2; /* Nearest output values */
Kojto 110:165afa46840b 7300 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 110:165afa46840b 7301 int32_t rI, cI; /* Row and column indices */
Kojto 110:165afa46840b 7302 q15_t *pYData = S->pData; /* pointer to output table values */
Kojto 110:165afa46840b 7303 uint32_t nCols = S->numCols; /* num of rows */
Kojto 110:165afa46840b 7304
Kojto 110:165afa46840b 7305 /* Input is in 12.20 format */
Kojto 110:165afa46840b 7306 /* 12 bits for the table index */
Kojto 110:165afa46840b 7307 /* Index value calculation */
Kojto 110:165afa46840b 7308 rI = ((X & 0xFFF00000) >> 20);
Kojto 110:165afa46840b 7309
Kojto 110:165afa46840b 7310 /* Input is in 12.20 format */
Kojto 110:165afa46840b 7311 /* 12 bits for the table index */
Kojto 110:165afa46840b 7312 /* Index value calculation */
Kojto 110:165afa46840b 7313 cI = ((Y & 0xFFF00000) >> 20);
Kojto 110:165afa46840b 7314
Kojto 110:165afa46840b 7315 /* Care taken for table outside boundary */
Kojto 110:165afa46840b 7316 /* Returns zero output when values are outside table boundary */
Kojto 110:165afa46840b 7317 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 110:165afa46840b 7318 {
Kojto 110:165afa46840b 7319 return (0);
Kojto 110:165afa46840b 7320 }
Kojto 110:165afa46840b 7321
Kojto 110:165afa46840b 7322 /* 20 bits for the fractional part */
Kojto 110:165afa46840b 7323 /* xfract should be in 12.20 format */
Kojto 110:165afa46840b 7324 xfract = (X & 0x000FFFFF);
Kojto 110:165afa46840b 7325
Kojto 110:165afa46840b 7326 /* Read two nearest output values from the index */
Kojto 110:165afa46840b 7327 x1 = pYData[(rI) + nCols * (cI)];
Kojto 110:165afa46840b 7328 x2 = pYData[(rI) + nCols * (cI) + 1u];
Kojto 110:165afa46840b 7329
Kojto 110:165afa46840b 7330
Kojto 110:165afa46840b 7331 /* 20 bits for the fractional part */
Kojto 110:165afa46840b 7332 /* yfract should be in 12.20 format */
Kojto 110:165afa46840b 7333 yfract = (Y & 0x000FFFFF);
Kojto 110:165afa46840b 7334
Kojto 110:165afa46840b 7335 /* Read two nearest output values from the index */
Kojto 110:165afa46840b 7336 y1 = pYData[(rI) + nCols * (cI + 1)];
Kojto 110:165afa46840b 7337 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
Kojto 110:165afa46840b 7338
Kojto 110:165afa46840b 7339 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
Kojto 110:165afa46840b 7340
Kojto 110:165afa46840b 7341 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
Kojto 110:165afa46840b 7342 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
Kojto 110:165afa46840b 7343 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
Kojto 110:165afa46840b 7344 acc = ((q63_t) out * (0xFFFFF - yfract));
Kojto 110:165afa46840b 7345
Kojto 110:165afa46840b 7346 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
Kojto 110:165afa46840b 7347 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
Kojto 110:165afa46840b 7348 acc += ((q63_t) out * (xfract));
Kojto 110:165afa46840b 7349
Kojto 110:165afa46840b 7350 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
Kojto 110:165afa46840b 7351 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
Kojto 110:165afa46840b 7352 acc += ((q63_t) out * (yfract));
Kojto 110:165afa46840b 7353
Kojto 110:165afa46840b 7354 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
Kojto 110:165afa46840b 7355 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
Kojto 110:165afa46840b 7356 acc += ((q63_t) out * (yfract));
Kojto 110:165afa46840b 7357
Kojto 110:165afa46840b 7358 /* acc is in 13.51 format and down shift acc by 36 times */
Kojto 110:165afa46840b 7359 /* Convert out to 1.15 format */
Kojto 110:165afa46840b 7360 return (acc >> 36);
Kojto 110:165afa46840b 7361
Kojto 110:165afa46840b 7362 }
Kojto 110:165afa46840b 7363
Kojto 110:165afa46840b 7364 /**
Kojto 110:165afa46840b 7365 * @brief Q7 bilinear interpolation.
Kojto 110:165afa46840b 7366 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 110:165afa46840b 7367 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 110:165afa46840b 7368 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 110:165afa46840b 7369 * @return out interpolated value.
Kojto 110:165afa46840b 7370 */
Kojto 110:165afa46840b 7371
Kojto 110:165afa46840b 7372 static __INLINE q7_t arm_bilinear_interp_q7(
Kojto 110:165afa46840b 7373 arm_bilinear_interp_instance_q7 * S,
Kojto 110:165afa46840b 7374 q31_t X,
Kojto 110:165afa46840b 7375 q31_t Y)
Kojto 110:165afa46840b 7376 {
Kojto 110:165afa46840b 7377 q63_t acc = 0; /* output */
Kojto 110:165afa46840b 7378 q31_t out; /* Temporary output */
Kojto 110:165afa46840b 7379 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 110:165afa46840b 7380 q7_t x1, x2, y1, y2; /* Nearest output values */
Kojto 110:165afa46840b 7381 int32_t rI, cI; /* Row and column indices */
Kojto 110:165afa46840b 7382 q7_t *pYData = S->pData; /* pointer to output table values */
Kojto 110:165afa46840b 7383 uint32_t nCols = S->numCols; /* num of rows */
Kojto 110:165afa46840b 7384
Kojto 110:165afa46840b 7385 /* Input is in 12.20 format */
Kojto 110:165afa46840b 7386 /* 12 bits for the table index */
Kojto 110:165afa46840b 7387 /* Index value calculation */
Kojto 110:165afa46840b 7388 rI = ((X & 0xFFF00000) >> 20);
Kojto 110:165afa46840b 7389
Kojto 110:165afa46840b 7390 /* Input is in 12.20 format */
Kojto 110:165afa46840b 7391 /* 12 bits for the table index */
Kojto 110:165afa46840b 7392 /* Index value calculation */
Kojto 110:165afa46840b 7393 cI = ((Y & 0xFFF00000) >> 20);
Kojto 110:165afa46840b 7394
Kojto 110:165afa46840b 7395 /* Care taken for table outside boundary */
Kojto 110:165afa46840b 7396 /* Returns zero output when values are outside table boundary */
Kojto 110:165afa46840b 7397 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 110:165afa46840b 7398 {
Kojto 110:165afa46840b 7399 return (0);
Kojto 110:165afa46840b 7400 }
Kojto 110:165afa46840b 7401
Kojto 110:165afa46840b 7402 /* 20 bits for the fractional part */
Kojto 110:165afa46840b 7403 /* xfract should be in 12.20 format */
Kojto 110:165afa46840b 7404 xfract = (X & 0x000FFFFF);
Kojto 110:165afa46840b 7405
Kojto 110:165afa46840b 7406 /* Read two nearest output values from the index */
Kojto 110:165afa46840b 7407 x1 = pYData[(rI) + nCols * (cI)];
Kojto 110:165afa46840b 7408 x2 = pYData[(rI) + nCols * (cI) + 1u];
Kojto 110:165afa46840b 7409
Kojto 110:165afa46840b 7410
Kojto 110:165afa46840b 7411 /* 20 bits for the fractional part */
Kojto 110:165afa46840b 7412 /* yfract should be in 12.20 format */
Kojto 110:165afa46840b 7413 yfract = (Y & 0x000FFFFF);
Kojto 110:165afa46840b 7414
Kojto 110:165afa46840b 7415 /* Read two nearest output values from the index */
Kojto 110:165afa46840b 7416 y1 = pYData[(rI) + nCols * (cI + 1)];
Kojto 110:165afa46840b 7417 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
Kojto 110:165afa46840b 7418
Kojto 110:165afa46840b 7419 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
Kojto 110:165afa46840b 7420 out = ((x1 * (0xFFFFF - xfract)));
Kojto 110:165afa46840b 7421 acc = (((q63_t) out * (0xFFFFF - yfract)));
Kojto 110:165afa46840b 7422
Kojto 110:165afa46840b 7423 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
Kojto 110:165afa46840b 7424 out = ((x2 * (0xFFFFF - yfract)));
Kojto 110:165afa46840b 7425 acc += (((q63_t) out * (xfract)));
Kojto 110:165afa46840b 7426
Kojto 110:165afa46840b 7427 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
Kojto 110:165afa46840b 7428 out = ((y1 * (0xFFFFF - xfract)));
Kojto 110:165afa46840b 7429 acc += (((q63_t) out * (yfract)));
Kojto 110:165afa46840b 7430
Kojto 110:165afa46840b 7431 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
Kojto 110:165afa46840b 7432 out = ((y2 * (yfract)));
Kojto 110:165afa46840b 7433 acc += (((q63_t) out * (xfract)));
Kojto 110:165afa46840b 7434
Kojto 110:165afa46840b 7435 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
Kojto 110:165afa46840b 7436 return (acc >> 40);
Kojto 110:165afa46840b 7437
Kojto 110:165afa46840b 7438 }
Kojto 110:165afa46840b 7439
Kojto 110:165afa46840b 7440 /**
Kojto 110:165afa46840b 7441 * @} end of BilinearInterpolate group
Kojto 110:165afa46840b 7442 */
Kojto 110:165afa46840b 7443
Kojto 110:165afa46840b 7444
Kojto 110:165afa46840b 7445 //SMMLAR
Kojto 110:165afa46840b 7446 #define multAcc_32x32_keep32_R(a, x, y) \
Kojto 110:165afa46840b 7447 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
Kojto 110:165afa46840b 7448
Kojto 110:165afa46840b 7449 //SMMLSR
Kojto 110:165afa46840b 7450 #define multSub_32x32_keep32_R(a, x, y) \
Kojto 110:165afa46840b 7451 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
Kojto 110:165afa46840b 7452
Kojto 110:165afa46840b 7453 //SMMULR
Kojto 110:165afa46840b 7454 #define mult_32x32_keep32_R(a, x, y) \
Kojto 110:165afa46840b 7455 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
Kojto 110:165afa46840b 7456
Kojto 110:165afa46840b 7457 //SMMLA
Kojto 110:165afa46840b 7458 #define multAcc_32x32_keep32(a, x, y) \
Kojto 110:165afa46840b 7459 a += (q31_t) (((q63_t) x * y) >> 32)
Kojto 110:165afa46840b 7460
Kojto 110:165afa46840b 7461 //SMMLS
Kojto 110:165afa46840b 7462 #define multSub_32x32_keep32(a, x, y) \
Kojto 110:165afa46840b 7463 a -= (q31_t) (((q63_t) x * y) >> 32)
Kojto 110:165afa46840b 7464
Kojto 110:165afa46840b 7465 //SMMUL
Kojto 110:165afa46840b 7466 #define mult_32x32_keep32(a, x, y) \
Kojto 110:165afa46840b 7467 a = (q31_t) (((q63_t) x * y ) >> 32)
Kojto 110:165afa46840b 7468
Kojto 110:165afa46840b 7469
Kojto 110:165afa46840b 7470 #if defined ( __CC_ARM ) //Keil
Kojto 110:165afa46840b 7471
Kojto 110:165afa46840b 7472 //Enter low optimization region - place directly above function definition
Kojto 110:165afa46840b 7473 #ifdef ARM_MATH_CM4
Kojto 110:165afa46840b 7474 #define LOW_OPTIMIZATION_ENTER \
Kojto 110:165afa46840b 7475 _Pragma ("push") \
Kojto 110:165afa46840b 7476 _Pragma ("O1")
Kojto 110:165afa46840b 7477 #else
Kojto 110:165afa46840b 7478 #define LOW_OPTIMIZATION_ENTER
Kojto 110:165afa46840b 7479 #endif
Kojto 110:165afa46840b 7480
Kojto 110:165afa46840b 7481 //Exit low optimization region - place directly after end of function definition
Kojto 110:165afa46840b 7482 #ifdef ARM_MATH_CM4
Kojto 110:165afa46840b 7483 #define LOW_OPTIMIZATION_EXIT \
Kojto 110:165afa46840b 7484 _Pragma ("pop")
Kojto 110:165afa46840b 7485 #else
Kojto 110:165afa46840b 7486 #define LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7487 #endif
Kojto 110:165afa46840b 7488
Kojto 110:165afa46840b 7489 //Enter low optimization region - place directly above function definition
Kojto 110:165afa46840b 7490 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 110:165afa46840b 7491
Kojto 110:165afa46840b 7492 //Exit low optimization region - place directly after end of function definition
Kojto 110:165afa46840b 7493 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7494
Kojto 110:165afa46840b 7495 #elif defined(__ICCARM__) //IAR
Kojto 110:165afa46840b 7496
Kojto 110:165afa46840b 7497 //Enter low optimization region - place directly above function definition
Kojto 110:165afa46840b 7498 #ifdef ARM_MATH_CM4
Kojto 110:165afa46840b 7499 #define LOW_OPTIMIZATION_ENTER \
Kojto 110:165afa46840b 7500 _Pragma ("optimize=low")
Kojto 110:165afa46840b 7501 #else
Kojto 110:165afa46840b 7502 #define LOW_OPTIMIZATION_ENTER
Kojto 110:165afa46840b 7503 #endif
Kojto 110:165afa46840b 7504
Kojto 110:165afa46840b 7505 //Exit low optimization region - place directly after end of function definition
Kojto 110:165afa46840b 7506 #define LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7507
Kojto 110:165afa46840b 7508 //Enter low optimization region - place directly above function definition
Kojto 110:165afa46840b 7509 #ifdef ARM_MATH_CM4
Kojto 110:165afa46840b 7510 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
Kojto 110:165afa46840b 7511 _Pragma ("optimize=low")
Kojto 110:165afa46840b 7512 #else
Kojto 110:165afa46840b 7513 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 110:165afa46840b 7514 #endif
Kojto 110:165afa46840b 7515
Kojto 110:165afa46840b 7516 //Exit low optimization region - place directly after end of function definition
Kojto 110:165afa46840b 7517 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7518
Kojto 110:165afa46840b 7519 #elif defined(__GNUC__)
Kojto 110:165afa46840b 7520
Kojto 110:165afa46840b 7521 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
Kojto 110:165afa46840b 7522
Kojto 110:165afa46840b 7523 #define LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7524
Kojto 110:165afa46840b 7525 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 110:165afa46840b 7526
Kojto 110:165afa46840b 7527 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7528
Kojto 110:165afa46840b 7529 #elif defined(__CSMC__) // Cosmic
Kojto 110:165afa46840b 7530
Kojto 110:165afa46840b 7531 #define LOW_OPTIMIZATION_ENTER
Kojto 110:165afa46840b 7532 #define LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7533 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 110:165afa46840b 7534 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7535
Kojto 110:165afa46840b 7536 #elif defined(__TASKING__) // TASKING
Kojto 110:165afa46840b 7537
Kojto 110:165afa46840b 7538 #define LOW_OPTIMIZATION_ENTER
Kojto 110:165afa46840b 7539 #define LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7540 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 110:165afa46840b 7541 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 110:165afa46840b 7542
Kojto 110:165afa46840b 7543 #endif
Kojto 110:165afa46840b 7544
Kojto 110:165afa46840b 7545
Kojto 110:165afa46840b 7546 #ifdef __cplusplus
Kojto 110:165afa46840b 7547 }
Kojto 110:165afa46840b 7548 #endif
Kojto 110:165afa46840b 7549
Kojto 110:165afa46840b 7550
Kojto 110:165afa46840b 7551 #endif /* _ARM_MATH_H */
Kojto 110:165afa46840b 7552
Kojto 110:165afa46840b 7553 /**
Kojto 110:165afa46840b 7554 *
Kojto 110:165afa46840b 7555 * End of file.
Kojto 110:165afa46840b 7556 */