The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.
Dependents: hello SerialTestv11 SerialTestv12 Sierpinski ... more
mbed 2
This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.
TARGET_VBLUNO51/TOOLCHAIN_IAR/nrf_clock.h
- Committer:
- AnnaBridge
- Date:
- 2019-02-20
- Revision:
- 172:65be27845400
- Parent:
- 171:3a7713b1edbc
File content as of revision 172:65be27845400:
/* * Copyright (c) 2015 Nordic Semiconductor ASA * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA * integrated circuit in a product or a software update for such product, must reproduce * the above copyright notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be * used to endorse or promote products derived from this software without specific prior * written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary or object form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_CLOCK_H__ #define NRF_CLOCK_H__ #include <stddef.h> #include <stdbool.h> #include "nrf.h" /** * @defgroup nrf_clock_hal Clock HAL * @{ * @ingroup nrf_clock * @brief Hardware access layer for managing the low-frequency clock (LFCLK) and the high-frequency clock (HFCLK). */ #define NRF_CLOCK_TASK_TRIGGER (1UL) #define NRF_CLOCK_EVENT_CLEAR (0UL) /** * @brief Low-frequency clock sources. * @details Used by LFCLKSRC, LFCLKSTAT, and LFCLKSRCCOPY registers. */ typedef enum { NRF_CLOCK_LFCLK_RC = CLOCK_LFCLKSRC_SRC_RC, /**< Internal 32 kHz RC oscillator. */ NRF_CLOCK_LFCLK_Xtal = CLOCK_LFCLKSRC_SRC_Xtal, /**< External 32 kHz crystal. */ NRF_CLOCK_LFCLK_Synth = CLOCK_LFCLKSRC_SRC_Synth /**< Internal 32 kHz synthesizer from HFCLK system clock. */ } nrf_clock_lfclk_t; /** * @brief High-frequency clock sources. */ typedef enum { NRF_CLOCK_HFCLK_LOW_ACCURACY = CLOCK_HFCLKSTAT_SRC_RC, /**< Internal 16 MHz RC oscillator. */ NRF_CLOCK_HFCLK_HIGH_ACCURACY = CLOCK_HFCLKSTAT_SRC_Xtal /**< External 16 MHz/32 MHz crystal oscillator. */ } nrf_clock_hfclk_t; /** * @brief Trigger status of task LFCLKSTART/HFCLKSTART. * @details Used by LFCLKRUN and HFCLKRUN registers. */ typedef enum { NRF_CLOCK_START_TASK_NOT_TRIGGERED = CLOCK_LFCLKRUN_STATUS_NotTriggered, /**< Task LFCLKSTART/HFCLKSTART has not been triggered. */ NRF_CLOCK_START_TASK_TRIGGERED = CLOCK_LFCLKRUN_STATUS_Triggered /**< Task LFCLKSTART/HFCLKSTART has been triggered. */ } nrf_clock_start_task_status_t; /** * @brief Crystal frequency selection. */ typedef enum { #ifdef NRF51 NRF_CLOCK_XTALFREQ_Default = CLOCK_XTALFREQ_XTALFREQ_16MHz, /**< Default. 32 MHz. */ NRF_CLOCK_XTALFREQ_16MHz = CLOCK_XTALFREQ_XTALFREQ_16MHz, /**< 16 MHz crystal. */ NRF_CLOCK_XTALFREQ_32MHz = CLOCK_XTALFREQ_XTALFREQ_32MHz /**< 32 MHz crystal. */ #elif defined NRF52 NRF_CLOCK_XTALFREQ_Default, /**< Default. 64MHz. */ #endif } nrf_clock_xtalfreq_t; /** * @brief Interrupts. */ typedef enum { NRF_CLOCK_INT_HF_STARTED_MASK = CLOCK_INTENSET_HFCLKSTARTED_Msk, /**< Interrupt on HFCLKSTARTED event. */ NRF_CLOCK_INT_LF_STARTED_MASK = CLOCK_INTENSET_LFCLKSTARTED_Msk, /**< Interrupt on LFCLKSTARTED event. */ NRF_CLOCK_INT_DONE_MASK = CLOCK_INTENSET_DONE_Msk, /**< Interrupt on DONE event. */ NRF_CLOCK_INT_CTTO_MASK = CLOCK_INTENSET_CTTO_Msk /**< Interrupt on CTTO event. */ } nrf_clock_int_mask_t; /** * @brief Tasks. * * @details The NRF_CLOCK_TASK_LFCLKSTOP task cannot be set when the low-frequency clock is not running. * The NRF_CLOCK_TASK_HFCLKSTOP task cannot be set when the high-frequency clock is not running. */ typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */ { NRF_CLOCK_TASK_HFCLKSTART = offsetof(NRF_CLOCK_Type, TASKS_HFCLKSTART), /**< Start HFCLK clock source.*/ NRF_CLOCK_TASK_HFCLKSTOP = offsetof(NRF_CLOCK_Type, TASKS_HFCLKSTOP), /**< Stop HFCLK clock source.*/ NRF_CLOCK_TASK_LFCLKSTART = offsetof(NRF_CLOCK_Type, TASKS_LFCLKSTART), /**< Start LFCLK clock source.*/ NRF_CLOCK_TASK_LFCLKSTOP = offsetof(NRF_CLOCK_Type, TASKS_LFCLKSTOP), /**< Stop LFCLK clock source.*/ NRF_CLOCK_TASK_CAL = offsetof(NRF_CLOCK_Type, TASKS_CAL), /**< Start calibration of LFCLK RC oscillator.*/ NRF_CLOCK_TASK_CTSTART = offsetof(NRF_CLOCK_Type, TASKS_CTSTART), /**< Start calibration timer.*/ NRF_CLOCK_TASK_CTSTOP = offsetof(NRF_CLOCK_Type, TASKS_CTSTOP) /**< Stop calibration timer.*/ } nrf_clock_task_t; /*lint -restore */ /** * @brief Events. */ typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */ { NRF_CLOCK_EVENT_HFCLKSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_HFCLKSTARTED), /**< HFCLK oscillator started.*/ NRF_CLOCK_EVENT_LFCLKSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_LFCLKSTARTED), /**< LFCLK oscillator started.*/ NRF_CLOCK_EVENT_DONE = offsetof(NRF_CLOCK_Type, EVENTS_DONE), /**< Calibration of LFCLK RC oscillator completed.*/ NRF_CLOCK_EVENT_CTTO = offsetof(NRF_CLOCK_Type, EVENTS_CTTO) /**< Calibration timer time-out.*/ } nrf_clock_event_t; /*lint -restore */ /** * @brief Function for enabling a specific interrupt. * * @param[in] int_mask Interrupt. */ __STATIC_INLINE void nrf_clock_int_enable(uint32_t int_mask); /** * @brief Function for disabling a specific interrupt. * * @param[in] int_mask Interrupt. */ __STATIC_INLINE void nrf_clock_int_disable(uint32_t int_mask); /** * @brief Function for retrieving the state of a specific interrupt. * * @param[in] int_mask Interrupt. * * @retval true If the interrupt is enabled. * @retval false If the interrupt is not enabled. */ __STATIC_INLINE bool nrf_clock_int_enable_check(nrf_clock_int_mask_t int_mask); /** * @brief Function for retrieving the address of a specific task. * @details This function can be used by the PPI module. * * @param[in] task Task. * * @return Address of the requested task register. */ __STATIC_INLINE uint32_t nrf_clock_task_address_get(nrf_clock_task_t task); /** * @brief Function for setting a specific task. * * @param[in] task Task. */ __STATIC_INLINE void nrf_clock_task_trigger(nrf_clock_task_t task); /** * @brief Function for retrieving the address of a specific event. * @details This function can be used by the PPI module. * * @param[in] event Event. * * @return Address of the requested event register. */ __STATIC_INLINE uint32_t nrf_clock_event_address_get(nrf_clock_event_t event); /** * @brief Function for clearing a specific event. * * @param[in] event Event. */ __STATIC_INLINE void nrf_clock_event_clear(nrf_clock_event_t event); /** * @brief Function for retrieving the state of a specific event. * * @param[in] event Event. * * @retval true If the event is set. * @retval false If the event is not set. */ __STATIC_INLINE bool nrf_clock_event_check(nrf_clock_event_t event); /** * @brief Function for changing the low-frequency clock source. * @details This function cannot be called when the low-frequency clock is running. * * @param[in] source New low-frequency clock source. * */ __STATIC_INLINE void nrf_clock_lf_src_set(nrf_clock_lfclk_t source); /** * @brief Function for retrieving the selected source for the low-frequency clock. * * @retval NRF_CLOCK_LFCLK_RC If the internal 32 kHz RC oscillator is the selected source for the low-frequency clock. * @retval NRF_CLOCK_LFCLK_Xtal If an external 32 kHz crystal oscillator is the selected source for the low-frequency clock. * @retval NRF_CLOCK_LFCLK_Synth If the internal 32 kHz synthesizer from the HFCLK is the selected source for the low-frequency clock. */ __STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_src_get(void); /** * @brief Function for retrieving the active source of the low-frequency clock. * * @retval NRF_CLOCK_LFCLK_RC If the internal 32 kHz RC oscillator is the active source of the low-frequency clock. * @retval NRF_CLOCK_LFCLK_Xtal If an external 32 kHz crystal oscillator is the active source of the low-frequency clock. * @retval NRF_CLOCK_LFCLK_Synth If the internal 32 kHz synthesizer from the HFCLK is the active source of the low-frequency clock. */ __STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_actv_src_get(void); /** * @brief Function for retrieving the clock source for the LFCLK clock when the task LKCLKSTART is triggered. * * @retval NRF_CLOCK_LFCLK_RC If the internal 32 kHz RC oscillator is running and generating the LFCLK clock. * @retval NRF_CLOCK_LFCLK_Xtal If an external 32 kHz crystal oscillator is running and generating the LFCLK clock. * @retval NRF_CLOCK_LFCLK_Synth If the internal 32 kHz synthesizer from the HFCLK is running and generating the LFCLK clock. */ __STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_srccopy_get(void); /** * @brief Function for retrieving the state of the LFCLK clock. * * @retval false If the LFCLK clock is not running. * @retval true If the LFCLK clock is running. */ __STATIC_INLINE bool nrf_clock_lf_is_running(void); /** * @brief Function for retrieving the trigger status of the task LFCLKSTART. * * @retval NRF_CLOCK_START_TASK_NOT_TRIGGERED If the task LFCLKSTART has not been triggered. * @retval NRF_CLOCK_START_TASK_TRIGGERED If the task LFCLKSTART has been triggered. */ __STATIC_INLINE nrf_clock_start_task_status_t nrf_clock_lf_start_task_status_get(void); /** * @brief Function for retrieving the active source of the high-frequency clock. * * @retval NRF_CLOCK_HFCLK_LOW_ACCURACY If the internal 16 MHz RC oscillator is the active source of the high-frequency clock. * @retval NRF_CLOCK_HFCLK_HIGH_ACCURACY If an external 16 MHz/32 MHz crystal oscillator is the active source of the high-frequency clock. */ __STATIC_INLINE nrf_clock_hfclk_t nrf_clock_hf_src_get(void); /** * @brief Function for retrieving the state of the HFCLK clock. * * @param[in] clk_src Clock source to be checked. * * @retval false If the HFCLK clock is not running. * @retval true If the HFCLK clock is running. */ __STATIC_INLINE bool nrf_clock_hf_is_running(nrf_clock_hfclk_t clk_src); /** * @brief Function for retrieving the trigger status of the task HFCLKSTART. * * @retval NRF_CLOCK_START_TASK_NOT_TRIGGERED If the task HFCLKSTART has not been triggered. * @retval NRF_CLOCK_START_TASK_TRIGGERED If the task HFCLKSTART has been triggered. */ __STATIC_INLINE nrf_clock_start_task_status_t nrf_clock_hf_start_task_status_get(void); /** * @brief Function for retrieving the frequency selection of the external crystal. * * @retval NRF_CLOCK_XTALFREQ_16MHz If a 16 MHz crystal is used as source for the HFCLK oscillator. * @retval NRF_CLOCK_XTALFREQ_32MHz If a 32 MHz crystal is used as source for the HFCLK oscillator. */ __STATIC_INLINE nrf_clock_xtalfreq_t nrf_clock_xtalfreq_get(void); /** * @brief Function for changing the frequency selection of the external crystal. * * @param[in] xtalfreq New frequency selection for the external crystal. */ __STATIC_INLINE void nrf_clock_xtalfreq_set(nrf_clock_xtalfreq_t xtalfreq); /** * @brief Function for changing the calibration timer interval. * * @param[in] interval New calibration timer interval in 0.25 s resolution (range: 0.25 seconds to 31.75 seconds). */ __STATIC_INLINE void nrf_clock_cal_timer_timeout_set(uint32_t interval); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_clock_int_enable(uint32_t int_mask) { NRF_CLOCK->INTENSET = int_mask; } __STATIC_INLINE void nrf_clock_int_disable(uint32_t int_mask) { NRF_CLOCK->INTENCLR = int_mask; } __STATIC_INLINE bool nrf_clock_int_enable_check(nrf_clock_int_mask_t int_mask) { return (bool)(NRF_CLOCK->INTENCLR & int_mask); } __STATIC_INLINE uint32_t nrf_clock_task_address_get(nrf_clock_task_t task) { return ((uint32_t )NRF_CLOCK + task); } __STATIC_INLINE void nrf_clock_task_trigger(nrf_clock_task_t task) { *((volatile uint32_t *)((uint8_t *)NRF_CLOCK + task)) = NRF_CLOCK_TASK_TRIGGER; } __STATIC_INLINE uint32_t nrf_clock_event_address_get(nrf_clock_event_t event) { return ((uint32_t)NRF_CLOCK + event); } __STATIC_INLINE void nrf_clock_event_clear(nrf_clock_event_t event) { *((volatile uint32_t *)((uint8_t *)NRF_CLOCK + event)) = NRF_CLOCK_EVENT_CLEAR; #if __CORTEX_M == 0x04 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)NRF_CLOCK + event)); (void)dummy; #endif } __STATIC_INLINE bool nrf_clock_event_check(nrf_clock_event_t event) { return (bool)*((volatile uint32_t *)((uint8_t *)NRF_CLOCK + event)); } __STATIC_INLINE void nrf_clock_lf_src_set(nrf_clock_lfclk_t source) { NRF_CLOCK->LFCLKSRC = (uint32_t)((source << CLOCK_LFCLKSRC_SRC_Pos) & CLOCK_LFCLKSRC_SRC_Msk); } __STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_src_get(void) { return (nrf_clock_lfclk_t)((NRF_CLOCK->LFCLKSRC & CLOCK_LFCLKSRC_SRC_Msk) >> CLOCK_LFCLKSRC_SRC_Pos); } __STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_actv_src_get(void) { return (nrf_clock_lfclk_t)((NRF_CLOCK->LFCLKSTAT & CLOCK_LFCLKSTAT_SRC_Msk) >> CLOCK_LFCLKSTAT_SRC_Pos); } __STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_srccopy_get(void) { return (nrf_clock_lfclk_t)((NRF_CLOCK->LFCLKSRCCOPY & CLOCK_LFCLKSRCCOPY_SRC_Msk) >> CLOCK_LFCLKSRCCOPY_SRC_Pos); } __STATIC_INLINE bool nrf_clock_lf_is_running(void) { return ((NRF_CLOCK->LFCLKSTAT & CLOCK_LFCLKSTAT_STATE_Msk) >> CLOCK_LFCLKSTAT_STATE_Pos); } __STATIC_INLINE nrf_clock_start_task_status_t nrf_clock_lf_start_task_status_get(void) { return (nrf_clock_start_task_status_t)((NRF_CLOCK->LFCLKRUN & CLOCK_LFCLKRUN_STATUS_Msk) >> CLOCK_LFCLKRUN_STATUS_Pos); } __STATIC_INLINE nrf_clock_hfclk_t nrf_clock_hf_src_get(void) { return (nrf_clock_hfclk_t)((NRF_CLOCK->HFCLKSTAT & CLOCK_HFCLKSTAT_SRC_Msk) >> CLOCK_HFCLKSTAT_SRC_Pos); } __STATIC_INLINE bool nrf_clock_hf_is_running(nrf_clock_hfclk_t clk_src) { return (NRF_CLOCK->HFCLKSTAT & (CLOCK_HFCLKSTAT_STATE_Msk | CLOCK_HFCLKSTAT_SRC_Msk)) == (CLOCK_HFCLKSTAT_STATE_Msk | (clk_src << CLOCK_HFCLKSTAT_SRC_Pos)); } __STATIC_INLINE nrf_clock_start_task_status_t nrf_clock_hf_start_task_status_get(void) { return (nrf_clock_start_task_status_t)((NRF_CLOCK->HFCLKRUN & CLOCK_HFCLKRUN_STATUS_Msk) >> CLOCK_HFCLKRUN_STATUS_Pos); } __STATIC_INLINE nrf_clock_xtalfreq_t nrf_clock_xtalfreq_get(void) { #ifdef NRF51 return (nrf_clock_xtalfreq_t)((NRF_CLOCK->XTALFREQ & CLOCK_XTALFREQ_XTALFREQ_Msk) >> CLOCK_XTALFREQ_XTALFREQ_Pos); #elif defined NRF52 return NRF_CLOCK_XTALFREQ_Default; #endif } __STATIC_INLINE void nrf_clock_xtalfreq_set(nrf_clock_xtalfreq_t xtalfreq) { #ifdef NRF51 NRF_CLOCK->XTALFREQ = (uint32_t)((xtalfreq << CLOCK_XTALFREQ_XTALFREQ_Pos) & CLOCK_XTALFREQ_XTALFREQ_Msk); #elif defined NRF52 return; #endif } __STATIC_INLINE void nrf_clock_cal_timer_timeout_set(uint32_t interval) { NRF_CLOCK->CTIV = ((interval << CLOCK_CTIV_CTIV_Pos) & CLOCK_CTIV_CTIV_Msk); } #endif // SUPPRESS_INLINE_IMPLEMENTATION /** *@} **/ #endif // NRF_CLOCK_H__