The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.
Dependents: hello SerialTestv11 SerialTestv12 Sierpinski ... more
mbed 2
This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.
TARGET_TY51822R3/TOOLCHAIN_IAR/app_util.h
- Committer:
- AnnaBridge
- Date:
- 2019-02-20
- Revision:
- 172:65be27845400
- Parent:
- 171:3a7713b1edbc
File content as of revision 172:65be27845400:
/* * Copyright (c) 2012 Nordic Semiconductor ASA * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA * integrated circuit in a product or a software update for such product, must reproduce * the above copyright notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be * used to endorse or promote products derived from this software without specific prior * written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary or object form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup app_util Utility Functions and Definitions * @{ * @ingroup app_common * * @brief Various types and definitions available to all applications. */ #ifndef APP_UTIL_H__ #define APP_UTIL_H__ #include <stdint.h> #include <stdbool.h> #include "compiler_abstraction.h" #include "nrf.h" //lint -save -e27 -e10 -e19 #if defined ( __CC_ARM ) extern char STACK$$Base; extern char STACK$$Length; #define STACK_BASE &STACK$$Base #define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&STACK$$Length)) #elif defined ( __ICCARM__ ) extern char CSTACK$$Base; extern char CSTACK$$Length; #define STACK_BASE &CSTACK$$Base #define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&CSTACK$$Length)) #elif defined ( __GNUC__ ) extern uint32_t __StackTop; extern uint32_t __StackLimit; #define STACK_BASE &__StackLimit #define STACK_TOP &__StackTop #endif //lint -restore enum { UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */ UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */ UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */ }; /**@brief Implementation specific macro for delayed macro expansion used in string concatenation * * @param[in] lhs Left hand side in concatenation * @param[in] rhs Right hand side in concatenation */ #define STRING_CONCATENATE_IMPL(lhs, rhs) lhs ## rhs /**@brief Macro used to concatenate string using delayed macro expansion * * @note This macro will delay concatenation until the expressions have been resolved * * @param[in] lhs Left hand side in concatenation * @param[in] rhs Right hand side in concatenation */ #define STRING_CONCATENATE(lhs, rhs) STRING_CONCATENATE_IMPL(lhs, rhs) // Disable lint-warnings/errors for STATIC_ASSERT //lint --emacro(10,STATIC_ASSERT) //lint --emacro(18,STATIC_ASSERT) //lint --emacro(19,STATIC_ASSERT) //lint --emacro(30,STATIC_ASSERT) //lint --emacro(37,STATIC_ASSERT) //lint --emacro(42,STATIC_ASSERT) //lint --emacro(26,STATIC_ASSERT) //lint --emacro(102,STATIC_ASSERT) //lint --emacro(533,STATIC_ASSERT) //lint --emacro(534,STATIC_ASSERT) //lint --emacro(132,STATIC_ASSERT) //lint --emacro(414,STATIC_ASSERT) //lint --emacro(578,STATIC_ASSERT) //lint --emacro(628,STATIC_ASSERT) //lint --emacro(648,STATIC_ASSERT) //lint --emacro(830,STATIC_ASSERT) /**@brief Macro for doing static (i.e. compile time) assertion. * * @note If the EXPR isn't resolvable, then the error message won't be shown. * * @note The output of STATIC_ASSERT will be different across different compilers. * * @param[in] EXPR Constant expression to be verified. */ #if defined ( __COUNTER__ ) #define STATIC_ASSERT(EXPR) \ ;enum { STRING_CONCATENATE(static_assert_, __COUNTER__) = 1/(!!(EXPR)) } #else #define STATIC_ASSERT(EXPR) \ ;enum { STRING_CONCATENATE(assert_line_, __LINE__) = 1/(!!(EXPR)) } #endif /**@brief Implementation details for NUM_VAR_ARGS */ #define NUM_VA_ARGS_IMPL( \ _0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \ _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \ _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \ _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \ _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, \ _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, \ _61, _62, N, ...) N /**@brief Macro to get the number of arguments in a call variadic macro call * * param[in] ... List of arguments * * @retval Number of variadic arguments in the argument list */ #define NUM_VA_ARGS(...) NUM_VA_ARGS_IMPL(__VA_ARGS__, 63, 62, 61, \ 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \ 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \ 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \ 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) /**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */ typedef uint8_t uint16_le_t[2]; /**@brief Type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */ typedef uint8_t uint32_le_t[4]; /**@brief Byte array type. */ typedef struct { uint16_t size; /**< Number of array entries. */ uint8_t * p_data; /**< Pointer to array entries. */ } uint8_array_t; /**@brief Macro for performing rounded integer division (as opposed to truncating the result). * * @param[in] A Numerator. * @param[in] B Denominator. * * @return Rounded (integer) result of dividing A by B. */ #define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B)) /**@brief Macro for checking if an integer is a power of two. * * @param[in] A Number to be tested. * * @return true if value is power of two. * @return false if value not power of two. */ #define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) ) /**@brief Macro for converting milliseconds to ticks. * * @param[in] TIME Number of milliseconds to convert. * @param[in] RESOLUTION Unit to be converted to in [us/ticks]. */ #define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION)) /**@brief Macro for performing integer division, making sure the result is rounded up. * * @details One typical use for this is to compute the number of objects with size B is needed to * hold A number of bytes. * * @param[in] A Numerator. * @param[in] B Denominator. * * @return Integer result of dividing A by B, rounded up. */ #define CEIL_DIV(A, B) \ (((A) + (B) - 1) / (B)) /**@brief Macro for creating a buffer aligned to 4 bytes. * * @param[in] NAME Name of the buffor. * @param[in] MIN_SIZE Size of this buffor (it will be rounded up to multiples of 4 bytes). */ #define WORD_ALIGNED_MEM_BUFF(NAME, MIN_SIZE) static uint32_t NAME[CEIL_DIV(MIN_SIZE, sizeof(uint32_t))] /**@brief Macro for calculating the number of words that are needed to hold a number of bytes. * * @details Adds 3 and divides by 4. * * @param[in] n_bytes The number of bytes. * * @return The number of words that @p n_bytes take up (rounded up). */ #define BYTES_TO_WORDS(n_bytes) (((n_bytes) + 3) >> 2) /**@brief The number of bytes in a word. */ #define BYTES_PER_WORD (4) /**@brief Macro for increasing a number to the nearest (larger) multiple of another number. * * @param[in] alignment The number to align to. * @param[in] number The number to align (increase). * * @return The aligned (increased) @p number. */ #define ALIGN_NUM(alignment, number) ((number - 1) + alignment - ((number - 1) % alignment)) /**@brief Function for changing the value unit. * * @param[in] value Value to be rescaled. * @param[in] old_unit_reversal Reversal of the incoming unit. * @param[in] new_unit_reversal Reversal of the desired unit. * * @return Number of bytes written. */ static __INLINE uint64_t value_rescale(uint32_t value, uint32_t old_unit_reversal, uint16_t new_unit_reversal) { return (uint64_t)ROUNDED_DIV((uint64_t)value * new_unit_reversal, old_unit_reversal); } /**@brief Function for encoding a uint16 value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8); return sizeof(uint16_t); } /**@brief Function for encoding a three-byte value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint24_encode(uint32_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8); p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16); return 3; } /**@brief Function for encoding a uint32 value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8); p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16); p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24); return sizeof(uint32_t); } /**@brief Function for encoding a uint48 value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint48_encode(uint64_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x0000000000FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0x00000000FF00) >> 8); p_encoded_data[2] = (uint8_t) ((value & 0x000000FF0000) >> 16); p_encoded_data[3] = (uint8_t) ((value & 0x0000FF000000) >> 24); p_encoded_data[4] = (uint8_t) ((value & 0x00FF00000000) >> 32); p_encoded_data[5] = (uint8_t) ((value & 0xFF0000000000) >> 40); return 6; } /**@brief Function for decoding a uint16 value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data) { return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) | (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 )); } /**@brief Function for decoding a uint16 value in big-endian format. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint16_t uint16_big_decode(const uint8_t * p_encoded_data) { return ( (((uint16_t)((uint8_t *)p_encoded_data)[0]) << 8 ) | (((uint16_t)((uint8_t *)p_encoded_data)[1])) ); } /**@brief Function for decoding a three-byte value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value (uint32_t). */ static __INLINE uint32_t uint24_decode(const uint8_t * p_encoded_data) { return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) | (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) | (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16)); } /**@brief Function for decoding a uint32 value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data) { return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) | (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) | (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) | (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 )); } /**@brief Function for decoding a uint32 value in big-endian format. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint32_t uint32_big_decode(const uint8_t * p_encoded_data) { return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 24) | (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 16) | (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 8) | (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 0) ); } /**@brief Function for encoding a uint32 value in big-endian format. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data will be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint32_big_encode(uint32_t value, uint8_t * p_encoded_data) { #ifdef NRF51 p_encoded_data[0] = (uint8_t) ((value & 0xFF000000) >> 24); p_encoded_data[1] = (uint8_t) ((value & 0x00FF0000) >> 16); p_encoded_data[2] = (uint8_t) ((value & 0x0000FF00) >> 8); p_encoded_data[3] = (uint8_t) ((value & 0x000000FF) >> 0); #elif NRF52 *(uint32_t *)p_encoded_data = __REV(value); #endif return sizeof(uint32_t); } /**@brief Function for decoding a uint48 value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. (uint64_t) */ static __INLINE uint64_t uint48_decode(const uint8_t * p_encoded_data) { return ( (((uint64_t)((uint8_t *)p_encoded_data)[0]) << 0) | (((uint64_t)((uint8_t *)p_encoded_data)[1]) << 8) | (((uint64_t)((uint8_t *)p_encoded_data)[2]) << 16) | (((uint64_t)((uint8_t *)p_encoded_data)[3]) << 24) | (((uint64_t)((uint8_t *)p_encoded_data)[4]) << 32) | (((uint64_t)((uint8_t *)p_encoded_data)[5]) << 40 )); } /** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts. * * @details The calculation is based on a linearized version of the battery's discharge * curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and * is considered to be the lower boundary. * * The discharge curve for CR2032 is non-linear. In this model it is split into * 4 linear sections: * - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV) * - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV) * - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV) * - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV) * * These numbers are by no means accurate. Temperature and * load in the actual application is not accounted for! * * @param[in] mvolts The voltage in mV * * @return Battery level in percent. */ static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts) { uint8_t battery_level; if (mvolts >= 3000) { battery_level = 100; } else if (mvolts > 2900) { battery_level = 100 - ((3000 - mvolts) * 58) / 100; } else if (mvolts > 2740) { battery_level = 42 - ((2900 - mvolts) * 24) / 160; } else if (mvolts > 2440) { battery_level = 18 - ((2740 - mvolts) * 12) / 300; } else if (mvolts > 2100) { battery_level = 6 - ((2440 - mvolts) * 6) / 340; } else { battery_level = 0; } return battery_level; } /**@brief Function for checking if a pointer value is aligned to a 4 byte boundary. * * @param[in] p Pointer value to be checked. * * @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise. */ static __INLINE bool is_word_aligned(void const* p) { return (((uintptr_t)p & 0x03) == 0); } /** * @brief Function for checking if provided address is located in stack space. * * @param[in] ptr Pointer to be checked. * * @return true if address is in stack space, false otherwise. */ static __INLINE bool is_address_from_stack(void * ptr) { if (((uint32_t)ptr >= (uint32_t)STACK_BASE) && ((uint32_t)ptr < (uint32_t)STACK_TOP) ) { return true; } else { return false; } } #endif // APP_UTIL_H__ /** @} */