The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Dependents:   hello SerialTestv11 SerialTestv12 Sierpinski ... more

mbed 2

This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.

TARGET_LPC54114/TOOLCHAIN_GCC_ARM/fsl_clock.h

Committer:
AnnaBridge
Date:
2019-02-20
Revision:
172:65be27845400
Parent:
171:3a7713b1edbc

File content as of revision 172:65be27845400:

/*
 * Copyright (c) 2016, Freescale Semiconductor, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef _FSL_CLOCK_H_
#define _FSL_CLOCK_H_

#include "fsl_device_registers.h"
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>

/*! @addtogroup clock */
/*! @{ */

/*! @file */

/*******************************************************************************
 * Definitions
 *****************************************************************************/
/*! @brief Clock ip name array for FLEXCOMM. */
#define FLEXCOMM_CLOCKS                                                        \
    {                                                                          \
        kCLOCK_FlexComm0, kCLOCK_FlexComm1, kCLOCK_FlexComm2, kCLOCK_FlexComm3, \
					kCLOCK_FlexComm4, kCLOCK_FlexComm5, kCLOCK_FlexComm6, kCLOCK_FlexComm7 \
    }
/*! @brief Clock ip name array for LPUART. */
#define LPUART_CLOCKS                                                                                         \
    {                                                                                                         \
        kCLOCK_MinUart0, kCLOCK_MinUart1, kCLOCK_MinUart2, kCLOCK_MinUart3, kCLOCK_MinUart4, kCLOCK_MinUart5, \
            kCLOCK_MinUart6, kCLOCK_MinUart7                                                                  \
    }

/*! @brief Clock ip name array for BI2C. */
#define BI2C_CLOCKS                                                                                                    \
    {                                                                                                                  \
        kCLOCK_BI2c0, kCLOCK_BI2c1, kCLOCK_BI2c2, kCLOCK_BI2c3, kCLOCK_BI2c4, kCLOCK_BI2c5, kCLOCK_BI2c6, kCLOCK_BI2c7 \
    }
/*! @brief Clock ip name array for LSPI. */
#define LPSI_CLOCKS                                                                                                    \
    {                                                                                                                  \
        kCLOCK_LSpi0, kCLOCK_LSpi1, kCLOCK_LSpi2, kCLOCK_LSpi3, kCLOCK_LSpi4, kCLOCK_LSpi5, kCLOCK_LSpi6, kCLOCK_LSpi7 \
    }
/*! @brief Clock ip name array for FLEXI2S. */
#define FLEXI2S_CLOCKS                                                                                        \
    {                                                                                                         \
        kCLOCK_FlexI2s0, kCLOCK_FlexI2s1, kCLOCK_FlexI2s2, kCLOCK_FlexI2s3, kCLOCK_FlexI2s4, kCLOCK_FlexI2s5, \
            kCLOCK_FlexI2s6, kCLOCK_FlexI2s7                                                                  \
    }
/*! @brief Clock ip name array for UTICK. */
#define UTICK_CLOCKS \
    {                \
        kCLOCK_Utick \
    }
/*! @brief Clock ip name array for DMIC. */
#define DMIC_CLOCKS \
    {               \
        kCLOCK_DMic \
    }
/*! @brief Clock ip name array for DMA. */
#define DMA_CLOCKS \
    {              \
        kCLOCK_Dma \
    }
/*! @brief Clock ip name array for CT32B. */
#define CTIMER_CLOCKS                                                             \
    {                                                                             \
        kCLOCK_Ct32b0, kCLOCK_Ct32b1, kCLOCK_Ct32b2, kCLOCK_Ct32b3, kCLOCK_Ct32b4 \
    }

/*! @brief Clock ip name array for GPIO. */
#define GPIO_CLOCKS                \
    {                              \
        kCLOCK_Gpio0, kCLOCK_Gpio1 \
    }
/*! @brief Clock ip name array for ADC. */
#define ADC_CLOCKS  \
    {               \
        kCLOCK_Adc0 \
    }
/*! @brief Clock ip name array for MRT. */
#define MRT_CLOCKS \
    {              \
        kCLOCK_Mrt \
    }
/*! @brief Clock ip name array for MRT. */
#define SCT_CLOCKS  \
    {               \
        kCLOCK_Sct0 \
    }
/*! @brief Clock ip name array for RTC. */
#define RTC_CLOCKS \
    {              \
        kCLOCK_Rtc \
    }
/*! @brief Clock ip name array for WWDT. */
#define WWDT_CLOCKS \
    {               \
        kCLOCK_Wwdt \
    }
/*! @brief Clock ip name array for CRC. */
#define CRC_CLOCKS \
    {              \
        kCLOCK_Crc \
    }
/*! @brief Clock ip name array for USBD. */
#define USBD_CLOCKS  \
    {                \
        kCLOCK_Usbd0 \
    }

/*! @brief Clock ip name array for GINT. GINT0 & GINT1 share same slot */
#define GINT_CLOCKS              \
    {                            \
        kCLOCK_Gint, kCLOCK_Gint \
    }

/*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */
/*------------------------------------------------------------------------------
 clock_ip_name_t definition:
------------------------------------------------------------------------------*/

#define CLK_GATE_REG_OFFSET_SHIFT 8U
#define CLK_GATE_REG_OFFSET_MASK 0xFFFFFF00U
#define CLK_GATE_BIT_SHIFT_SHIFT 0U
#define CLK_GATE_BIT_SHIFT_MASK 0x000000FFU

#define CLK_GATE_DEFINE(reg_offset, bit_shift)                                  \
    ((((reg_offset) << CLK_GATE_REG_OFFSET_SHIFT) & CLK_GATE_REG_OFFSET_MASK) | \
     (((bit_shift) << CLK_GATE_BIT_SHIFT_SHIFT) & CLK_GATE_BIT_SHIFT_MASK))

#define CLK_GATE_ABSTRACT_REG_OFFSET(x) (((uint32_t)(x)&CLK_GATE_REG_OFFSET_MASK) >> CLK_GATE_REG_OFFSET_SHIFT)
#define CLK_GATE_ABSTRACT_BITS_SHIFT(x) (((uint32_t)(x)&CLK_GATE_BIT_SHIFT_MASK) >> CLK_GATE_BIT_SHIFT_SHIFT)

#define AHB_CLK_CTRL0 0
#define AHB_CLK_CTRL1 1
#define ASYNC_CLK_CTRL0 2

/*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */
typedef enum _clock_ip_name
{
    kCLOCK_IpInvalid = 0U,
    kCLOCK_Rom = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 1),
    kCLOCK_Sram1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 3),
    kCLOCK_Sram2 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 4),
    kCLOCK_Regfile = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 6),
    kCLOCK_Flash = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 7),
    kCLOCK_Fmc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 8),
    kCLOCK_InputMux = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 11),
    kCLOCK_Iocon = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 13),
    kCLOCK_Gpio0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 14),
    kCLOCK_Gpio1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 15),
    kCLOCK_Gpio2 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 16),
    kCLOCK_Gpio3 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 17),
    kCLOCK_Pint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 18),
    kCLOCK_Gint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 19), /* GPIO_GLOBALINT0 and GPIO_GLOBALINT1 share the same slot  */
    kCLOCK_Dma = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 20),
    kCLOCK_Crc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 21),
    kCLOCK_Wwdt = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 22),
    kCLOCK_Rtc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 23),
    kCLOCK_Mailbox = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 26),
    kCLOCK_Adc0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 27),
    kCLOCK_Mrt = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 0),
    kCLOCK_Sct0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 2),
    kCLOCK_SctIpu0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 6),
    kCLOCK_Utick = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 10),
	kCLOCK_FlexComm0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
    kCLOCK_FlexComm1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
    kCLOCK_FlexComm2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
    kCLOCK_FlexComm3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
    kCLOCK_FlexComm4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
    kCLOCK_FlexComm5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
    kCLOCK_FlexComm6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
    kCLOCK_FlexComm7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
    kCLOCK_MinUart0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
    kCLOCK_MinUart1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
    kCLOCK_MinUart2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
    kCLOCK_MinUart3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
    kCLOCK_MinUart4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
    kCLOCK_MinUart5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
    kCLOCK_MinUart6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
    kCLOCK_MinUart7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
    kCLOCK_LSpi0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
    kCLOCK_LSpi1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
    kCLOCK_LSpi2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
    kCLOCK_LSpi3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
    kCLOCK_LSpi4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
    kCLOCK_LSpi5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
    kCLOCK_LSpi6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
    kCLOCK_LSpi7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
    kCLOCK_BI2c0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
    kCLOCK_BI2c1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
    kCLOCK_BI2c2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
    kCLOCK_BI2c3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
    kCLOCK_BI2c4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
    kCLOCK_BI2c5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
    kCLOCK_BI2c6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
    kCLOCK_BI2c7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
    kCLOCK_FlexI2s0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
    kCLOCK_FlexI2s1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
    kCLOCK_FlexI2s2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
    kCLOCK_FlexI2s3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
    kCLOCK_FlexI2s4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
    kCLOCK_FlexI2s5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
    kCLOCK_FlexI2s6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
    kCLOCK_FlexI2s7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
    kCLOCK_DMic = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 19),
    kCLOCK_Ct32b2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 22),
    kCLOCK_Usbd0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 25),
    kCLOCK_Ct32b0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 26),
    kCLOCK_Ct32b1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 27),
    kCLOCK_Pvtvf0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 28),
    kCLOCK_Pvtvf1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 28),
    kCLOCK_BodyBias0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 29),
    kCLOCK_EzhArchB0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 31),

    kCLOCK_Ct32b3 = CLK_GATE_DEFINE(ASYNC_CLK_CTRL0, 13),
    kCLOCK_Ct32b4 = CLK_GATE_DEFINE(ASYNC_CLK_CTRL0, 14)
} clock_ip_name_t;

/*! @brief Clock name used to get clock frequency. */
typedef enum _clock_name
{
    kCLOCK_CoreSysClk,  /*!< Core/system clock  (aka MAIN_CLK)                       */
    kCLOCK_BusClk,      /*!< Bus clock (AHB clock)                                   */
    kCLOCK_FroHf,       /*!< FRO48/96                                                */
    kCLOCK_Fro12M,      /*!< FRO12M                                                  */
    kCLOCK_ExtClk,      /*!< External Clock                                          */
    kCLOCK_PllOut,      /*!< PLL Output                                              */
    kCLOCK_UsbClk,      /*!< USB input                                               */
    kClock_WdtOsc,      /*!< Watchdog Oscillator                                     */
    kCLOCK_Frg,         /*!< Frg Clock                                               */
    kCLOCK_Dmic,        /*!< Digital Mic clock                                       */
    kCLOCK_AsyncApbClk, /*!< Async APB clock																			    */
    kCLOCK_FlexI2S,     /*!< FlexI2S clock                                           */
    kCLOCK_Flexcomm0,   /*!< Flexcomm0Clock                                          */
    kCLOCK_Flexcomm1,   /*!< Flexcomm1Clock                                          */
    kCLOCK_Flexcomm2,   /*!< Flexcomm2Clock                                          */
    kCLOCK_Flexcomm3,   /*!< Flexcomm3Clock                                          */
    kCLOCK_Flexcomm4,   /*!< Flexcomm4Clock                                          */
    kCLOCK_Flexcomm5,   /*!< Flexcomm5Clock                                          */
    kCLOCK_Flexcomm6,   /*!< Flexcomm6Clock                                          */
    kCLOCK_Flexcomm7,   /*!< Flexcomm7Clock                                          */
} clock_name_t;

/**
 * Clock source selections for the asynchronous APB clock
 */
typedef enum _async_clock_src
{
    kCLOCK_AsyncMainClk = 0, /*!< Main System clock */
    kCLOCK_AsyncFro12Mhz,    /*!< 12MHz FRO */
} async_clock_src_t;

/*! @brief Clock Mux Switches
*  The encoding is as follows each connection identified is 64bits wide
*  starting from LSB upwards
*
*  [4 bits for choice, where 1 is A, 2 is B, 3 is C and 4 is D, 0 means end of descriptor] [8 bits mux ID]*
*
*/

#define MUX_A(m, choice) (((m) << 0) | ((choice + 1) << 8))
#define MUX_B(m, choice) (((m) << 12) | ((choice + 1) << 20))
#define MUX_C(m, choice) (((m) << 24) | ((choice + 1) << 32))
#define MUX_D(m, choice) (((m) << 36) | ((choice + 1) << 44))
#define MUX_E(m, choice) (((m) << 48) | ((choice + 1) << 56))

#define CM_MAINCLKSELA 0
#define CM_MAINCLKSELB 1
#define CM_CLKOUTCLKSELA 2
#define CM_CLKOUTCLKSELB 3
#define CM_SYSPLLCLKSEL 4
#define CM_USBPLLCLKSEL 5
#define CM_AUDPLLCLKSEL 6
#define CM_SCTPLLCLKSEL 7
#define CM_SPIFICLKSEL 8
#define CM_ADCASYNCCLKSEL 9
#define CM_USBCLKSEL 10
#define CM_USB1CLKSEL 11
#define CM_FXCOMCLKSEL0 12
#define CM_FXCOMCLKSEL1 13
#define CM_FXCOMCLKSEL2 14
#define CM_FXCOMCLKSEL3 15
#define CM_FXCOMCLKSEL4 16
#define CM_FXCOMCLKSEL5 17
#define CM_FXCOMCLKSEL6 18
#define CM_FXCOMCLKSEL7 19
#define CM_FXCOMCLKSEL8 20
#define CM_FXCOMCLKSEL9 21
#define CM_FXCOMCLKSEL10 22
#define CM_FXCOMCLKSEL11 23
#define CM_FXI2S0MCLKCLKSEL 24
#define CM_FXI2S1MCLKCLKSEL 25
#define CM_FRGCLKSEL 26
#define CM_DMICCLKSEL 27

#define CM_ASYNCAPB 28

typedef enum _clock_attach_id
{

    kFRO12M_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 0),
    kEXT_CLK_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 1) | MUX_B(CM_MAINCLKSELB, 0),
    kWDT_OSC_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 2) | MUX_B(CM_MAINCLKSELB, 0),
    kFRO_HF_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 3) | MUX_B(CM_MAINCLKSELB, 0),
    kSYS_PLL_to_MAIN_CLK = MUX_A(CM_MAINCLKSELB, 2),
    kOSC32K_to_MAIN_CLK = MUX_A(CM_MAINCLKSELB, 3),

    kFRO12M_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 0),
    kEXT_CLK_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 1),
    kWDT_OSC_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 2),
    kOSC32K_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 3),
    kNONE_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 7),

    kMAIN_CLK_to_ASYNC_APB = MUX_A(CM_ASYNCAPB, 0),
    kFRO12M_to_ASYNC_APB = MUX_A(CM_ASYNCAPB, 1),

    kMAIN_CLK_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 0),
    kSYS_PLL_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 1),
    kFRO_HF_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 2),
    kNONE_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 7),

    kMAIN_CLK_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 0),
    kSYS_PLL_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 1),
    kFRO_HF_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 3),
    kNONE_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 7),

    kFRO12M_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 0),
    kFRO_HF_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 1),
    kSYS_PLL_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 2),
    kMCLK_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 3),
    kFRG_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 4),
    kNONE_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 7),

    kFRO12M_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 0),
    kFRO_HF_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 1),
    kSYS_PLL_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 2),
    kMCLK_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 3),
    kFRG_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 4),
    kNONE_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 7),

    kFRO12M_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 0),
    kFRO_HF_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 1),
    kSYS_PLL_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 2),
    kMCLK_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 3),
    kFRG_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 4),
    kNONE_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 7),

    kFRO12M_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 0),
    kFRO_HF_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 1),
    kSYS_PLL_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 2),
    kMCLK_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 3),
    kFRG_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 4),
    kNONE_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 7),

    kFRO12M_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 0),
    kFRO_HF_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 1),
    kSYS_PLL_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 2),
    kMCLK_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 3),
    kFRG_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 4),
    kNONE_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 7),

    kFRO12M_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 0),
    kFRO_HF_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 1),
    kSYS_PLL_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 2),
    kMCLK_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 3),
    kFRG_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 4),
    kNONE_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 7),

    kFRO12M_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 0),
    kFRO_HF_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 1),
    kSYS_PLL_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 2),
    kMCLK_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 3),
    kFRG_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 4),
    kNONE_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 7),

    kFRO12M_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 0),
    kFRO_HF_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 1),
    kSYS_PLL_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 2),
    kMCLK_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 3),
    kFRG_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 4),
    kNONE_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 7),

    kMAIN_CLK_to_FRG = MUX_A(CM_FRGCLKSEL, 0),
    kSYS_PLL_to_FRG = MUX_A(CM_FRGCLKSEL, 1),
    kFRO12M_to_FRG = MUX_A(CM_FRGCLKSEL, 2),
    kFRO_HF_to_FRG = MUX_A(CM_FRGCLKSEL, 3),
    kNONE_to_FRG = MUX_A(CM_FRGCLKSEL, 7),

    kFRO_HF_to_MCLK = MUX_A(CM_FXI2S0MCLKCLKSEL, 0),
    kSYS_PLL_to_MCLK = MUX_A(CM_FXI2S0MCLKCLKSEL, 1),
    kNONE_to_MCLK = MUX_A(CM_FXI2S0MCLKCLKSEL, 7),

    kFRO12M_to_DMIC = MUX_A(CM_DMICCLKSEL, 0),
    kFRO_HF_to_DMIC = MUX_A(CM_DMICCLKSEL, 1),
    kSYS_PLL_to_DMIC = MUX_A(CM_DMICCLKSEL, 2),
    kMCLK_to_DMIC = MUX_A(CM_DMICCLKSEL, 3),
    kMAIN_CLK_to_DMIC = MUX_A(CM_DMICCLKSEL, 4),
    kWDT_CLK_to_DMIC = MUX_A(CM_DMICCLKSEL, 5),
    kNONE_to_DMIC = MUX_A(CM_DMICCLKSEL, 7),

    kFRO_HF_to_USB_CLK = MUX_A(CM_USBCLKSEL, 0),
    kSYS_PLL_to_USB_CLK = MUX_A(CM_USBCLKSEL, 1),
    kNONE_to_USB_CLK = MUX_A(CM_USBCLKSEL, 7),

    kMAIN_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 0),
    kEXT_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 1),
    kWDT_OSC_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 2),
    kFRO_HF_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 3),
    kSYS_PLL_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 4),
    kFRO12M_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 5),
    kOSC32K_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 6),
    kNONE_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 7),
    kNONE_to_NONE = 0x80000000U,
} clock_attach_id_t;

/*  Clock dividers */
typedef enum _clock_div_name
{
    kCLOCK_DivSystickClk = 0,
    kCLOCK_DivTraceClk = 1,
    kCLOCK_DivAhbClk = 32,
    kCLOCK_DivClkOut = 33,
    kCLOCK_DivSpifiClk = 36,
    kCLOCK_DivAdcAsyncClk = 37,
    kCLOCK_DivUsbClk = 38,
    kCLOCK_DivFrg = 40,
    kCLOCK_DivDmicClk = 42,
    kCLOCK_DivFxI2s0MClk = 43
} clock_div_name_t;

/*******************************************************************************
 * API
 ******************************************************************************/

#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */

static inline void CLOCK_EnableClock(clock_ip_name_t clk)
{
    uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk);
    if (index < 2)
    {
        SYSCON->AHBCLKCTRLSET[index] = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
    }
    else
    {
        ASYNC_SYSCON->ASYNCAPBCLKCTRLSET = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
    }
}

static inline void CLOCK_DisableClock(clock_ip_name_t clk)
{
    uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk);
    if (index < 2)
    {
        SYSCON->AHBCLKCTRLCLR[index] = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
    }
    else
    {
        ASYNC_SYSCON->ASYNCAPBCLKCTRLCLR = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
    }
}
/**
 * @brief FLASH Access time definitions
 */
typedef enum _clock_flashtim
{
    kCLOCK_Flash1Cycle = 0, /*!< Flash accesses use 1 CPU clock */
    kCLOCK_Flash2Cycle,     /*!< Flash accesses use 2 CPU clocks */
    kCLOCK_Flash3Cycle,     /*!< Flash accesses use 3 CPU clocks */
    kCLOCK_Flash4Cycle,     /*!< Flash accesses use 4 CPU clocks */
    kCLOCK_Flash5Cycle,     /*!< Flash accesses use 5 CPU clocks */
    kCLOCK_Flash6Cycle,     /*!< Flash accesses use 6 CPU clocks */
    kCLOCK_Flash7Cycle,     /*!< Flash accesses use 7 CPU clocks */
    kCLOCK_Flash8Cycle      /*!< Flash accesses use 8 CPU clocks */
} clock_flashtim_t;

/**
 * @brief	Set FLASH memory access time in clocks
 * @param	clks	: Clock cycles for FLASH access
 * @return	Nothing
 */
static inline void CLOCK_SetFLASHAccessCycles(clock_flashtim_t clks)
{
    uint32_t tmp;

    tmp = SYSCON->FLASHCFG & ~(SYSCON_FLASHCFG_FLASHTIM_MASK);

    /* Don't alter lower bits */
    SYSCON->FLASHCFG = tmp | ((uint32_t)clks << SYSCON_FLASHCFG_FLASHTIM_SHIFT);
}

/**
 * @brief	Initialize the Core clock to given frequency (12, 48 or 96 MHz).
 * Turns on FRO and uses default CCO, if freq is 12000000, then high speed output is off, else high speed output is
 * enabled.
 * @param	iFreq	: Desired frequency (must be one of CLK_FRO_12MHZ or CLK_FRO_48MHZ or CLK_FRO_96MHZ)
 * @return	returns success or fail status.
 */
status_t CLOCK_SetupFROClocking(uint32_t iFreq);
/**
 * @brief	Configure the clock selection muxes.
 * @param	connection	: Clock to be configured.
 * @return	Nothing
 */
void CLOCK_AttachClk(clock_attach_id_t connection);
/**
 * @brief	Setup peripheral clock dividers.
 * @param	div_name	: Clock divider name
 * @param divided_by_value: Value to be divided
 * @param reset :  Whether to reset the divider counter.
 * @return	Nothing
 */
void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset);
/**
 * @brief	Set the flash wait states for the input freuqency.
 * @param	iFreq	: Input frequency
 * @return	Nothing
 */
void CLOCK_SetFLASHAccessCyclesForFreq(uint32_t iFreq);
/*! @brief	Return Frequency of selected clock
 *  @return	Frequency of selected clock
 */
uint32_t CLOCK_GetFreq(clock_name_t clockName);

/*! @brief	Return Input frequency for the Fractional baud rate generator
 *  @return	Input Frequency for FRG
 */
uint32_t CLOCK_GetFRGInputClock(void);
    
/*! @brief	Set output of the Fractional baud rate generator
 * @param	freq	: Desired output frequency
 * @return	Error Code 0 - fail 1 - success
 */
uint32_t CLOCK_SetFRGClock(uint32_t freq);
    
/*! @brief	Return Frequency of FRO 12MHz
 *  @return	Frequency of FRO 12MHz
 */
uint32_t CLOCK_GetFro12MFreq(void);
/*! @brief	Return Frequency of External Clock
 *  @return	Frequency of External Clock. If no external clock is used returns 0.
 */
uint32_t CLOCK_GetExtClkFreq(void);
/*! @brief	Return Frequency of Watchdog Oscillator
 *  @return	Frequency of Watchdog Oscillator
 */
uint32_t CLOCK_GetWdtOscFreq(void);
/*! @brief	Return Frequency of High-Freq output of FRO
 *  @return	Frequency of High-Freq output of FRO
 */
uint32_t CLOCK_GetFroHfFreq(void);
/*! @brief	Return Frequency of PLL
 *  @return	Frequency of PLL
 */
uint32_t CLOCK_GetPllOutFreq(void);
/*! @brief	Return Frequency of 32kHz osc
 *  @return	Frequency of 32kHz osc
 */
uint32_t CLOCK_GetOsc32KFreq(void);
/*! @brief	Return Frequency of Core System
 *  @return	Frequency of Core System
 */
uint32_t CLOCK_GetCoreSysClkFreq(void);
/*! @brief	Return Frequency of I2S MCLK Clock
 *  @return	Frequency of I2S MCLK Clock
 */
uint32_t CLOCK_GetI2SMClkFreq(void);
/*! @brief	Return Frequency of Flexcomm functional Clock
 *  @return	Frequency of Flexcomm functional Clock
 */
uint32_t CLOCK_GetFlexCommClkFreq(uint32_t id);
/*! @brief	Return Asynchronous APB Clock source
 *  @return	Asynchronous APB CLock source
 */
__STATIC_INLINE async_clock_src_t CLOCK_GetAsyncApbClkSrc(void)
{
    return (async_clock_src_t)(ASYNC_SYSCON->ASYNCAPBCLKSELA & 0x3);
}
/*! @brief	Return Frequency of Asynchronous APB Clock
 *  @return	Frequency of Asynchronous APB Clock Clock
 */
uint32_t CLOCK_GetAsyncApbClkFreq(void);
/*! @brief	Return System PLL input clock rate
 *  @return	System PLL input clock rate
 */
uint32_t CLOCK_GetSystemPLLInClockRate(void);

/*! @brief	Return System PLL output clock rate
 *  @param	recompute	: Forces a PLL rate recomputation if true
 *  @return	System PLL output clock rate
 *  @note	The PLL rate is cached in the driver in a variable as
 *  the rate computation function can take some time to perform. It
 *  is recommended to use 'false' with the 'recompute' parameter.
 */
uint32_t CLOCK_GetSystemPLLOutClockRate(bool recompute);

/*! @brief	Enables and disables PLL bypass mode
 *  @brief	bypass	: true to bypass PLL (PLL output = PLL input, false to disable bypass
 *  @return	System PLL output clock rate
 */
__STATIC_INLINE void CLOCK_SetBypassPLL(bool bypass)
{
    if (bypass)
    {
        SYSCON->SYSPLLCTRL |= (1UL << SYSCON_SYSPLLCTRL_BYPASS_SHIFT);
    }
    else
    {
        SYSCON->SYSPLLCTRL &= ~(1UL << SYSCON_SYSPLLCTRL_BYPASS_SHIFT);
    }
}

/*! @brief	Check if PLL is locked or not
 *  @return	true if the PLL is locked, false if not locked
 */
__STATIC_INLINE bool CLOCK_IsSystemPLLLocked(void)
{
    return (bool)((SYSCON->SYSPLLSTAT & SYSCON_SYSPLLSTAT_LOCK_MASK) != 0);
}

/*! @brief Store the current PLL rate
 *  @param	rate: Current rate of the PLL
 *  @return	Nothing
 **/
void CLOCK_SetStoredPLLClockRate(uint32_t rate);

/*! @brief PLL configuration structure flags for 'flags' field
 * These flags control how the PLL configuration function sets up the PLL setup structure.<br>
 *
 * When the PLL_CONFIGFLAG_USEINRATE flag is selected, the 'InputRate' field in the
 * configuration structure must be assigned with the expected PLL frequency. If the
 * PLL_CONFIGFLAG_USEINRATE is not used, 'InputRate' is ignored in the configuration
 * function and the driver will determine the PLL rate from the currently selected
 * PLL source. This flag might be used to configure the PLL input clock more accurately
 * when using the WDT oscillator or a more dyanmic CLKIN source.<br>
 *
 * When the PLL_CONFIGFLAG_FORCENOFRACT flag is selected, the PLL hardware for the
 * automatic bandwidth selection, Spread Spectrum (SS) support, and fractional M-divider
 * are not used.<br>
 */
#define PLL_CONFIGFLAG_USEINRATE (1 << 0) /*!< Flag to use InputRate in PLL configuration structure for setup */
#define PLL_CONFIGFLAG_FORCENOFRACT                                                                                    \
    (1                                                                                                                 \
     << 2) /*!< Force non-fractional output mode, PLL output will not use the fractional, automatic bandwidth, or SS \ \
                \ \ \                                                                                                                     \
                  \ \ \ \ \                                                                                                                     \
                    \ \ \ \ \ \ \                                                                                                                     \
                      hardware */

/*! @brief PLL Spread Spectrum (SS) Programmable modulation frequency
 * See (MF) field in the SYSPLLSSCTRL1 register in the UM.
 */
typedef enum _ss_progmodfm
{
    kSS_MF_512 = (0 << 20), /*!< Nss = 512 (fm ? 3.9 - 7.8 kHz) */
    kSS_MF_384 = (1 << 20), /*!< Nss ?= 384 (fm ? 5.2 - 10.4 kHz) */
    kSS_MF_256 = (2 << 20), /*!< Nss = 256 (fm ? 7.8 - 15.6 kHz) */
    kSS_MF_128 = (3 << 20), /*!< Nss = 128 (fm ? 15.6 - 31.3 kHz) */
    kSS_MF_64 = (4 << 20),  /*!< Nss = 64 (fm ? 32.3 - 64.5 kHz) */
    kSS_MF_32 = (5 << 20),  /*!< Nss = 32 (fm ? 62.5- 125 kHz) */
    kSS_MF_24 = (6 << 20),  /*!< Nss ?= 24 (fm ? 83.3- 166.6 kHz) */
    kSS_MF_16 = (7 << 20)   /*!< Nss = 16 (fm ? 125- 250 kHz) */
} ss_progmodfm_t;

/*! @brief PLL Spread Spectrum (SS) Programmable frequency modulation depth
 * See (MR) field in the SYSPLLSSCTRL1 register in the UM.
 */
typedef enum _ss_progmoddp
{
    kSS_MR_K0 = (0 << 23),   /*!< k = 0 (no spread spectrum) */
    kSS_MR_K1 = (1 << 23),   /*!< k = 1 */
    kSS_MR_K1_5 = (2 << 23), /*!< k = 1.5 */
    kSS_MR_K2 = (3 << 23),   /*!< k = 2 */
    kSS_MR_K3 = (4 << 23),   /*!< k = 3 */
    kSS_MR_K4 = (5 << 23),   /*!< k = 4 */
    kSS_MR_K6 = (6 << 23),   /*!< k = 6 */
    kSS_MR_K8 = (7 << 23)    /*!< k = 8 */
} ss_progmoddp_t;

/*! @brief PLL Spread Spectrum (SS) Modulation waveform control
 * See (MC) field in the SYSPLLSSCTRL1 register in the UM.<br>
 * Compensation for low pass filtering of the PLL to get a triangular
 * modulation at the output of the PLL, giving a flat frequency spectrum.
 */
typedef enum _ss_modwvctrl
{
    kSS_MC_NOC = (0 << 26),  /*!< no compensation */
    kSS_MC_RECC = (2 << 26), /*!< recommended setting */
    kSS_MC_MAXC = (3 << 26), /*!< max. compensation */
} ss_modwvctrl_t;

/*! @brief PLL configuration structure
 *
 * This structure can be used to configure the settings for a PLL
 * setup structure. Fill in the desired configuration for the PLL
 * and call the PLL setup function to fill in a PLL setup structure.
 */
typedef struct _pll_config
{
    uint32_t desiredRate; /*!< Desired PLL rate in Hz */
    uint32_t inputRate;   /*!< PLL input clock in Hz, only used if PLL_CONFIGFLAG_USEINRATE flag is set */
    uint32_t flags;       /*!< PLL configuration flags, Or'ed value of PLL_CONFIGFLAG_* definitions */
    ss_progmodfm_t ss_mf; /*!< SS Programmable modulation frequency, only applicable when not using
                             PLL_CONFIGFLAG_FORCENOFRACT flag */
    ss_progmoddp_t ss_mr; /*!< SS Programmable frequency modulation depth, only applicable when not using
                             PLL_CONFIGFLAG_FORCENOFRACT flag */
    ss_modwvctrl_t
        ss_mc; /*!< SS Modulation waveform control, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag */
    bool mfDither; /*!< false for fixed modulation frequency or true for dithering, only applicable when not using
                      PLL_CONFIGFLAG_FORCENOFRACT flag */

} pll_config_t;

/*! @brief PLL setup structure flags for 'flags' field
* These flags control how the PLL setup function sets up the PLL
*/
#define PLL_SETUPFLAG_POWERUP (1 << 0)  /*!< Setup will power on the PLL after setup */
#define PLL_SETUPFLAG_WAITLOCK (1 << 1) /*!< Setup will wait for PLL lock, implies the PLL will be pwoered on */
#define PLL_SETUPFLAG_ADGVOLT (1 << 2)  /*!< Optimize system voltage for the new PLL rate */

/*! @brief PLL setup structure
* This structure can be used to pre-build a PLL setup configuration
* at run-time and quickly set the PLL to the configuration. It can be
* populated with the PLL setup function. If powering up or waiting
* for PLL lock, the PLL input clock source should be configured prior
* to PLL setup.
*/
typedef struct _pll_setup
{
    uint32_t syspllctrl;      /*!< PLL control register SYSPLLCTRL */
    uint32_t syspllndec;      /*!< PLL NDEC register SYSPLLNDEC */
    uint32_t syspllpdec;      /*!< PLL PDEC register SYSPLLPDEC */
    uint32_t syspllssctrl[2]; /*!< PLL SSCTL registers SYSPLLSSCTRL */
    uint32_t pllRate;         /*!< Acutal PLL rate */
    uint32_t flags;           /*!< PLL setup flags, Or'ed value of PLL_SETUPFLAG_* definitions */
} pll_setup_t;

/*! @brief PLL status definitions
 */
typedef enum _pll_error
{
    kStatus_PLL_Success = MAKE_STATUS(kStatusGroup_Generic, 0),        /*!< PLL operation was successful */
    kStatus_PLL_OutputTooLow = MAKE_STATUS(kStatusGroup_Generic, 1),   /*!< PLL output rate request was too low */
    kStatus_PLL_OutputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 2),  /*!< PLL output rate request was too high */
    kStatus_PLL_InputTooLow = MAKE_STATUS(kStatusGroup_Generic, 3),    /*!< PLL input rate is too low */
    kStatus_PLL_InputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 4),   /*!< PLL input rate is too high */
    kStatus_PLL_OutsideIntLimit = MAKE_STATUS(kStatusGroup_Generic, 5) /*!< Requested output rate isn't possible */
} pll_error_t;

/*! @brief USB clock source definition. */
typedef enum _clock_usb_src
{
    kCLOCK_UsbSrcFro = (uint32_t)kCLOCK_FroHf,            /*!< Use FRO 96 or 48 MHz. */
    kCLOCK_UsbSrcSystemPll = (uint32_t)kCLOCK_PllOut,     /*!< Use System PLL output. */
    kCLOCK_UsbSrcMainClock = (uint32_t)kCLOCK_CoreSysClk, /*!< Use Main clock.    */
    kCLOCK_UsbSrcNone = SYSCON_USBCLKSEL_SEL(
        7) /*!< Use None, this may be selected in order to reduce power when no output is needed. */
} clock_usb_src_t;

/*! @brief	Return System PLL output clock rate from setup structure
 *  @param	pSetup	: Pointer to a PLL setup structure
 *  @return	System PLL output clock rate calculated from the setup structure
 */
uint32_t CLOCK_GetSystemPLLOutFromSetup(pll_setup_t *pSetup);

/*! @brief	Set PLL output based on the passed PLL setup data
 *  @param	pControl	: Pointer to populated PLL control structure to generate setup with
 *  @param	pSetup		: Pointer to PLL setup structure to be filled
 *  @return	PLL_ERROR_SUCCESS on success, or PLL setup error code
 *  @note	Actual frequency for setup may vary from the desired frequency based on the
 *  accuracy of input clocks, rounding, non-fractional PLL mode, etc.
 */
pll_error_t CLOCK_SetupPLLData(pll_config_t *pControl, pll_setup_t *pSetup);

/*! @brief	Set PLL output from PLL setup structure (precise frequency)
 * @param	pSetup	: Pointer to populated PLL setup structure
* @param flagcfg : Flag configuration for PLL config structure
 * @return	PLL_ERROR_SUCCESS on success, or PLL setup error code
 * @note	This function will power off the PLL, setup the PLL with the
 * new setup data, and then optionally powerup the PLL, wait for PLL lock,
 * and adjust system voltages to the new PLL rate. The function will not
 * alter any source clocks (ie, main systen clock) that may use the PLL,
 * so these should be setup prior to and after exiting the function.
 */
pll_error_t CLOCK_SetupSystemPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg);

/**
 * @brief	Set PLL output from PLL setup structure (precise frequency)
 * @param	pSetup	: Pointer to populated PLL setup structure
 * @return	kStatus_PLL_Success on success, or PLL setup error code
 * @note	This function will power off the PLL, setup the PLL with the
 * new setup data, and then optionally powerup the PLL, wait for PLL lock,
 * and adjust system voltages to the new PLL rate. The function will not
 * alter any source clocks (ie, main systen clock) that may use the PLL,
 * so these should be setup prior to and after exiting the function.
 */
pll_error_t CLOCK_SetPLLFreq(const pll_setup_t *pSetup);

/*! @brief	Set PLL output based on the multiplier and input frequency
 * @param	multiply_by	: multiplier
 * @param	input_freq	: Clock input frequency of the PLL
 * @return	Nothing
 * @note	Unlike the Chip_Clock_SetupSystemPLLPrec() function, this
 * function does not disable or enable PLL power, wait for PLL lock,
 * or adjust system voltages. These must be done in the application.
 * The function will not alter any source clocks (ie, main systen clock)
 * that may use the PLL, so these should be setup prior to and after
 * exiting the function.
 */
void CLOCK_SetupSystemPLLMult(uint32_t multiply_by, uint32_t input_freq);

/*! @brief Disable USB FS clock.
 *
 * Disable USB FS clock.
 */
static inline void CLOCK_DisableUsbfs0Clock(void)
{
    CLOCK_DisableClock(kCLOCK_Usbd0);
}
bool CLOCK_EnableUsbfs0Clock(clock_usb_src_t src, uint32_t freq);
#if defined(__cplusplus)
}
#endif /* __cplusplus */

/*! @} */

#endif /* _FSL_CLOCK_H_ */