The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.
Dependents: hello SerialTestv11 SerialTestv12 Sierpinski ... more
mbed 2
This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.
TARGET_KL82Z/TOOLCHAIN_IAR/fsl_pit.h
- Committer:
- AnnaBridge
- Date:
- 2019-02-20
- Revision:
- 172:65be27845400
- Parent:
- 171:3a7713b1edbc
File content as of revision 172:65be27845400:
/* * Copyright (c) 2015, Freescale Semiconductor, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of Freescale Semiconductor, Inc. nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _FSL_PIT_H_ #define _FSL_PIT_H_ #include "fsl_common.h" /*! * @addtogroup pit * @{ */ /******************************************************************************* * Definitions ******************************************************************************/ /*! @name Driver version */ /*@{*/ #define FSL_PIT_DRIVER_VERSION (MAKE_VERSION(2, 0, 0)) /*!< Version 2.0.0 */ /*@}*/ /*! * @brief List of PIT channels * @note Actual number of available channels is SoC dependent */ typedef enum _pit_chnl { kPIT_Chnl_0 = 0U, /*!< PIT channel number 0*/ kPIT_Chnl_1, /*!< PIT channel number 1 */ kPIT_Chnl_2, /*!< PIT channel number 2 */ kPIT_Chnl_3, /*!< PIT channel number 3 */ } pit_chnl_t; /*! @brief List of PIT interrupts */ typedef enum _pit_interrupt_enable { kPIT_TimerInterruptEnable = PIT_TCTRL_TIE_MASK, /*!< Timer interrupt enable*/ } pit_interrupt_enable_t; /*! @brief List of PIT status flags */ typedef enum _pit_status_flags { kPIT_TimerFlag = PIT_TFLG_TIF_MASK, /*!< Timer flag */ } pit_status_flags_t; /*! * @brief PIT config structure * * This structure holds the configuration settings for the PIT peripheral. To initialize this * structure to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a * pointer to your config structure instance. * * The config struct can be made const so it resides in flash */ typedef struct _pit_config { bool enableRunInDebug; /*!< true: Timers run in debug mode; false: Timers stop in debug mode */ } pit_config_t; /******************************************************************************* * API ******************************************************************************/ #if defined(__cplusplus) extern "C" { #endif /*! * @name Initialization and deinitialization * @{ */ /*! * @brief Ungates the PIT clock, enables the PIT module and configures the peripheral for basic operation. * * @note This API should be called at the beginning of the application using the PIT driver. * * @param base PIT peripheral base address * @param config Pointer to user's PIT config structure */ void PIT_Init(PIT_Type *base, const pit_config_t *config); /*! * @brief Gate the PIT clock and disable the PIT module * * @param base PIT peripheral base address */ void PIT_Deinit(PIT_Type *base); /*! * @brief Fill in the PIT config struct with the default settings * * The default values are: * @code * config->enableRunInDebug = false; * @endcode * @param config Pointer to user's PIT config structure. */ static inline void PIT_GetDefaultConfig(pit_config_t *config) { assert(config); /* Timers are stopped in Debug mode */ config->enableRunInDebug = false; } #if defined(FSL_FEATURE_PIT_HAS_CHAIN_MODE) && FSL_FEATURE_PIT_HAS_CHAIN_MODE /*! * @brief Enables or disables chaining a timer with the previous timer. * * When a timer has a chain mode enabled, it only counts after the previous * timer has expired. If the timer n-1 has counted down to 0, counter n * decrements the value by one. Each timer is 32-bits, this allows the developers * to chain timers together and form a longer timer (64-bits and larger). The first timer * (timer 0) cannot be chained to any other timer. * * @param base PIT peripheral base address * @param channel Timer channel number which is chained with the previous timer * @param enable Enable or disable chain. * true: Current timer is chained with the previous timer. * false: Timer doesn't chain with other timers. */ static inline void PIT_SetTimerChainMode(PIT_Type *base, pit_chnl_t channel, bool enable) { if (enable) { base->CHANNEL[channel].TCTRL |= PIT_TCTRL_CHN_MASK; } else { base->CHANNEL[channel].TCTRL &= ~PIT_TCTRL_CHN_MASK; } } #endif /* FSL_FEATURE_PIT_HAS_CHAIN_MODE */ /*! @}*/ /*! * @name Interrupt Interface * @{ */ /*! * @brief Enables the selected PIT interrupts. * * @param base PIT peripheral base address * @param channel Timer channel number * @param mask The interrupts to enable. This is a logical OR of members of the * enumeration ::pit_interrupt_enable_t */ static inline void PIT_EnableInterrupts(PIT_Type *base, pit_chnl_t channel, uint32_t mask) { base->CHANNEL[channel].TCTRL |= mask; } /*! * @brief Disables the selected PIT interrupts. * * @param base PIT peripheral base address * @param channel Timer channel number * @param mask The interrupts to disable. This is a logical OR of members of the * enumeration ::pit_interrupt_enable_t */ static inline void PIT_DisableInterrupts(PIT_Type *base, pit_chnl_t channel, uint32_t mask) { base->CHANNEL[channel].TCTRL &= ~mask; } /*! * @brief Gets the enabled PIT interrupts. * * @param base PIT peripheral base address * @param channel Timer channel number * * @return The enabled interrupts. This is the logical OR of members of the * enumeration ::pit_interrupt_enable_t */ static inline uint32_t PIT_GetEnabledInterrupts(PIT_Type *base, pit_chnl_t channel) { return (base->CHANNEL[channel].TCTRL & PIT_TCTRL_TIE_MASK); } /*! @}*/ /*! * @name Status Interface * @{ */ /*! * @brief Gets the PIT status flags * * @param base PIT peripheral base address * @param channel Timer channel number * * @return The status flags. This is the logical OR of members of the * enumeration ::pit_status_flags_t */ static inline uint32_t PIT_GetStatusFlags(PIT_Type *base, pit_chnl_t channel) { return (base->CHANNEL[channel].TFLG & PIT_TFLG_TIF_MASK); } /*! * @brief Clears the PIT status flags. * * @param base PIT peripheral base address * @param channel Timer channel number * @param mask The status flags to clear. This is a logical OR of members of the * enumeration ::pit_status_flags_t */ static inline void PIT_ClearStatusFlags(PIT_Type *base, pit_chnl_t channel, uint32_t mask) { base->CHANNEL[channel].TFLG = mask; } /*! @}*/ /*! * @name Read and Write the timer period * @{ */ /*! * @brief Sets the timer period in units of count. * * Timers begin counting from the value set by this function until it reaches 0, * then it generates an interrupt and load this register value again. * Writing a new value to this register does not restart the timer. Instead, the value * is loaded after the timer expires. * * @note User can call the utility macros provided in fsl_common.h to convert to ticks * * @param base PIT peripheral base address * @param channel Timer channel number * @param count Timer period in units of ticks */ static inline void PIT_SetTimerPeriod(PIT_Type *base, pit_chnl_t channel, uint32_t count) { base->CHANNEL[channel].LDVAL = count; } /*! * @brief Reads the current timer counting value. * * This function returns the real-time timer counting value, in a range from 0 to a * timer period. * * @note User can call the utility macros provided in fsl_common.h to convert ticks to usec or msec * * @param base PIT peripheral base address * @param channel Timer channel number * * @return Current timer counting value in ticks */ static inline uint32_t PIT_GetCurrentTimerCount(PIT_Type *base, pit_chnl_t channel) { return base->CHANNEL[channel].CVAL; } /*! @}*/ /*! * @name Timer Start and Stop * @{ */ /*! * @brief Starts the timer counting. * * After calling this function, timers load period value, count down to 0 and * then load the respective start value again. Each time a timer reaches 0, * it generates a trigger pulse and sets the timeout interrupt flag. * * @param base PIT peripheral base address * @param channel Timer channel number. */ static inline void PIT_StartTimer(PIT_Type *base, pit_chnl_t channel) { base->CHANNEL[channel].TCTRL |= PIT_TCTRL_TEN_MASK; } /*! * @brief Stops the timer counting. * * This function stops every timer counting. Timers reload their periods * respectively after the next time they call the PIT_DRV_StartTimer. * * @param base PIT peripheral base address * @param channel Timer channel number. */ static inline void PIT_StopTimer(PIT_Type *base, pit_chnl_t channel) { base->CHANNEL[channel].TCTRL &= ~PIT_TCTRL_TEN_MASK; } /*! @}*/ #if defined(FSL_FEATURE_PIT_HAS_LIFETIME_TIMER) && FSL_FEATURE_PIT_HAS_LIFETIME_TIMER /*! * @brief Reads the current lifetime counter value. * * The lifetime timer is a 64-bit timer which chains timer 0 and timer 1 together. * Timer 0 and 1 are chained by calling the PIT_SetTimerChainMode before using this timer. * The period of lifetime timer is equal to the "period of timer 0 * period of timer 1". * For the 64-bit value, the higher 32-bit has the value of timer 1, and the lower 32-bit * has the value of timer 0. * * @param base PIT peripheral base address * * @return Current lifetime timer value */ uint64_t PIT_GetLifetimeTimerCount(PIT_Type *base); #endif /* FSL_FEATURE_PIT_HAS_LIFETIME_TIMER */ #if defined(__cplusplus) } #endif /*! @}*/ #endif /* _FSL_PIT_H_ */