The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Dependents:   hello SerialTestv11 SerialTestv12 Sierpinski ... more

mbed 2

This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.

TARGET_KL43Z/TOOLCHAIN_IAR/fsl_spi.h

Committer:
AnnaBridge
Date:
2019-02-20
Revision:
172:65be27845400
Parent:
171:3a7713b1edbc

File content as of revision 172:65be27845400:

/*
 * Copyright (c) 2015, Freescale Semiconductor, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
 *   contributors may be used tom  endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#ifndef _FSL_SPI_H_
#define _FSL_SPI_H_

#include "fsl_common.h"

/*!
 * @addtogroup spi_driver
 * @{
 */


/*******************************************************************************
 * Definitions
 ******************************************************************************/

/*! @name Driver version */
/*@{*/
/*! @brief SPI driver version 2.0.1. */
#define FSL_SPI_DRIVER_VERSION (MAKE_VERSION(2, 0, 1))
/*@}*/

#ifndef SPI_DUMMYDATA
/*! @brief SPI dummy transfer data, the data is sent while txBuff is NULL. */
#define SPI_DUMMYDATA (0xFFU)
#endif

/*! @brief Return status for the SPI driver.*/
enum _spi_status
{
    kStatus_SPI_Busy = MAKE_STATUS(kStatusGroup_SPI, 0), /*!< SPI bus is busy */
    kStatus_SPI_Idle = MAKE_STATUS(kStatusGroup_SPI, 1), /*!< SPI is idle */
    kStatus_SPI_Error = MAKE_STATUS(kStatusGroup_SPI, 2) /*!< SPI  error */
};

/*! @brief SPI clock polarity configuration.*/
typedef enum _spi_clock_polarity
{
    kSPI_ClockPolarityActiveHigh = 0x0U, /*!< Active-high SPI clock (idles low). */
    kSPI_ClockPolarityActiveLow          /*!< Active-low SPI clock (idles high). */
} spi_clock_polarity_t;

/*! @brief SPI clock phase configuration.*/
typedef enum _spi_clock_phase
{
    kSPI_ClockPhaseFirstEdge = 0x0U, /*!< First edge on SPSCK occurs at the middle of the first
                                      *   cycle of a data transfer. */
    kSPI_ClockPhaseSecondEdge        /*!< First edge on SPSCK occurs at the start of the
                                      *   first cycle of a data transfer. */
} spi_clock_phase_t;

/*! @brief SPI data shifter direction options.*/
typedef enum _spi_shift_direction
{
    kSPI_MsbFirst = 0x0U, /*!< Data transfers start with most significant bit. */
    kSPI_LsbFirst         /*!< Data transfers start with least significant bit. */
} spi_shift_direction_t;

/*! @brief SPI slave select output mode options.*/
typedef enum _spi_ss_output_mode
{
    kSPI_SlaveSelectAsGpio = 0x0U,         /*!< Slave select pin configured as GPIO. */
    kSPI_SlaveSelectFaultInput = 0x2U,     /*!< Slave select pin configured for fault detection. */
    kSPI_SlaveSelectAutomaticOutput = 0x3U /*!< Slave select pin configured for automatic SPI output. */
} spi_ss_output_mode_t;

/*! @brief SPI pin mode options.*/
typedef enum _spi_pin_mode
{
    kSPI_PinModeNormal = 0x0U, /*!< Pins operate in normal, single-direction mode.*/
    kSPI_PinModeInput = 0x1U,  /*!< Bidirectional mode. Master: MOSI pin is input;
                                *   Slave: MISO pin is input. */
    kSPI_PinModeOutput = 0x3U  /*!< Bidirectional mode. Master: MOSI pin is output;
                                *   Slave: MISO pin is output. */
} spi_pin_mode_t;

/*! @brief SPI data length mode options.*/
typedef enum _spi_data_bitcount_mode
{
    kSPI_8BitMode = 0x0U, /*!< 8-bit data transmission mode*/
    kSPI_16BitMode        /*!< 16-bit data transmission mode*/
} spi_data_bitcount_mode_t;

/*! @brief SPI interrupt sources.*/
enum _spi_interrupt_enable
{
    kSPI_RxFullAndModfInterruptEnable = 0x1U, /*!< Receive buffer full (SPRF) and mode fault (MODF) interrupt */
    kSPI_TxEmptyInterruptEnable = 0x2U,       /*!< Transmit buffer empty interrupt */
    kSPI_MatchInterruptEnable = 0x4U,         /*!< Match interrupt */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
    kSPI_RxFifoNearFullInterruptEnable = 0x8U,   /*!< Receive FIFO nearly full interrupt */
    kSPI_TxFifoNearEmptyInterruptEnable = 0x10U, /*!< Transmit FIFO nearly empty interrupt */
#endif                                           /* FSL_FEATURE_SPI_HAS_FIFO */
};

/*! @brief SPI status flags.*/
enum _spi_flags
{
    kSPI_RxBufferFullFlag = SPI_S_SPRF_MASK,   /*!< Read buffer full flag */
    kSPI_MatchFlag = SPI_S_SPMF_MASK,          /*!< Match flag */
    kSPI_TxBufferEmptyFlag = SPI_S_SPTEF_MASK, /*!< Transmit buffer empty flag */
    kSPI_ModeFaultFlag = SPI_S_MODF_MASK,      /*!< Mode fault flag */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
    kSPI_RxFifoNearFullFlag = SPI_S_RNFULLF_MASK,  /*!< Rx FIFO near full */
    kSPI_TxFifoNearEmptyFlag = SPI_S_TNEAREF_MASK, /*!< Tx FIFO near empty */
    kSPI_TxFifoFullFlag = SPI_S_TXFULLF_MASK,      /*!< Tx FIFO full */
    kSPI_RxFifoEmptyFlag = SPI_S_RFIFOEF_MASK,     /*!< Rx FIFO empty */
    kSPI_TxFifoError = SPI_CI_TXFERR_MASK << 8U,   /*!< Tx FIFO error */
    kSPI_RxFifoError = SPI_CI_RXFERR_MASK << 8U,   /*!< Rx FIFO error */
    kSPI_TxOverflow = SPI_CI_TXFOF_MASK << 8U,     /*!< Tx FIFO Overflow */
    kSPI_RxOverflow = SPI_CI_RXFOF_MASK << 8U      /*!< Rx FIFO Overflow */
#endif                                             /* FSL_FEATURE_SPI_HAS_FIFO */
};

#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*! @brief SPI FIFO write-1-to-clear interrupt flags.*/
typedef enum _spi_w1c_interrupt
{
    kSPI_RxFifoFullClearInterrupt = SPI_CI_SPRFCI_MASK,    /*!< Receive FIFO full interrupt */
    kSPI_TxFifoEmptyClearInterrupt = SPI_CI_SPTEFCI_MASK,  /*!< Transmit FIFO empty interrupt */
    kSPI_RxNearFullClearInterrupt = SPI_CI_RNFULLFCI_MASK, /*!< Receive FIFO nearly full interrupt */
    kSPI_TxNearEmptyClearInterrupt = SPI_CI_TNEAREFCI_MASK /*!< Transmit FIFO nearly empty interrupt */
} spi_w1c_interrupt_t;

/*! @brief SPI TX FIFO watermark settings.*/
typedef enum _spi_txfifo_watermark
{
    kSPI_TxFifoOneFourthEmpty = 0, /*!< SPI tx watermark at 1/4 FIFO size */
    kSPI_TxFifoOneHalfEmpty = 1    /*!< SPI tx watermark at 1/2 FIFO size */
} spi_txfifo_watermark_t;

/*! @brief SPI RX FIFO watermark settings.*/
typedef enum _spi_rxfifo_watermark
{
    kSPI_RxFifoThreeFourthsFull = 0, /*!< SPI rx watermark at 3/4 FIFO size */
    kSPI_RxFifoOneHalfFull = 1       /*!< SPI rx watermark at 1/2 FIFO size */
} spi_rxfifo_watermark_t;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */

#if defined(FSL_FEATURE_SPI_HAS_DMA_SUPPORT) && FSL_FEATURE_SPI_HAS_DMA_SUPPORT
/*! @brief SPI DMA source*/
enum _spi_dma_enable_t
{
    kSPI_TxDmaEnable = SPI_C2_TXDMAE_MASK,                        /*!< Tx DMA request source */
    kSPI_RxDmaEnable = SPI_C2_RXDMAE_MASK,                        /*!< Rx DMA request source */
    kSPI_DmaAllEnable = (SPI_C2_TXDMAE_MASK | SPI_C2_RXDMAE_MASK) /*!< All DMA request source*/
};
#endif /* FSL_FEATURE_SPI_HAS_DMA_SUPPORT */

/*! @brief SPI master user configure structure.*/
typedef struct _spi_master_config
{
    bool enableMaster;               /*!< Enable SPI at initialization time */
    bool enableStopInWaitMode;       /*!< SPI stop in wait mode */
    spi_clock_polarity_t polarity;   /*!< Clock polarity */
    spi_clock_phase_t phase;         /*!< Clock phase */
    spi_shift_direction_t direction; /*!< MSB or LSB */
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
    spi_data_bitcount_mode_t dataMode; /*!< 8bit or 16bit mode */
#endif                                 /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
    spi_txfifo_watermark_t txWatermark; /*!< Tx watermark settings */
    spi_rxfifo_watermark_t rxWatermark; /*!< Rx watermark settings */
#endif                                  /* FSL_FEATURE_SPI_HAS_FIFO */
    spi_ss_output_mode_t outputMode;    /*!< SS pin setting */
    spi_pin_mode_t pinMode;             /*!< SPI pin mode select */
    uint32_t baudRate_Bps;              /*!< Baud Rate for SPI in Hz */
} spi_master_config_t;

/*! @brief SPI slave user configure structure.*/
typedef struct _spi_slave_config
{
    bool enableSlave;                /*!< Enable SPI at initialization time */
    bool enableStopInWaitMode;       /*!< SPI stop in wait mode */
    spi_clock_polarity_t polarity;   /*!< Clock polarity */
    spi_clock_phase_t phase;         /*!< Clock phase */
    spi_shift_direction_t direction; /*!< MSB or LSB */
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
    spi_data_bitcount_mode_t dataMode; /*!< 8bit or 16bit mode */
#endif                                 /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
    spi_txfifo_watermark_t txWatermark; /*!< Tx watermark settings */
    spi_rxfifo_watermark_t rxWatermark; /*!< Rx watermark settings */
#endif                                  /* FSL_FEATURE_SPI_HAS_FIFO */
} spi_slave_config_t;

/*! @brief SPI transfer structure */
typedef struct _spi_transfer
{
    uint8_t *txData; /*!< Send buffer */
    uint8_t *rxData; /*!< Receive buffer */
    size_t dataSize; /*!< Transfer bytes */
    uint32_t flags;  /*!< SPI control flag, useless to SPI.*/
} spi_transfer_t;

typedef struct _spi_master_handle spi_master_handle_t;

/*! @brief  Slave handle is the same with master handle  */
typedef spi_master_handle_t spi_slave_handle_t;

/*! @brief SPI master callback for finished transmit */
typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t status, void *userData);

/*! @brief SPI master callback for finished transmit */
typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status, void *userData);

/*! @brief SPI transfer handle structure */
struct _spi_master_handle
{
    uint8_t *volatile txData;         /*!< Transfer buffer */
    uint8_t *volatile rxData;         /*!< Receive buffer */
    volatile size_t txRemainingBytes; /*!< Send data remaining in bytes */
    volatile size_t rxRemainingBytes; /*!< Receive data remaining in bytes */
    volatile uint32_t state;          /*!< SPI internal state */
    size_t transferSize;              /*!< Bytes to be transferred */
    uint8_t bytePerFrame;             /*!< SPI mode, 2bytes or 1byte in a frame */
    uint8_t watermark;                /*!< Watermark value for SPI transfer */
    spi_master_callback_t callback;   /*!< SPI callback */
    void *userData;                   /*!< Callback parameter */
};

#if defined(__cplusplus)
extern "C" {
#endif
/*******************************************************************************
 * APIs
 ******************************************************************************/
/*!
 * @name Initialization and deinitialization
 * @{
 */

/*!
 * @brief  Sets the SPI master configuration structure to default values.
 *
 * The purpose of this API is to get the configuration structure initialized for use in SPI_MasterInit().
 * User may use the initialized structure unchanged in SPI_MasterInit(), or modify
 * some fields of the structure before calling SPI_MasterInit(). After calling this API,
 * the master is ready to transfer.
 * Example:
   @code
   spi_master_config_t config;
   SPI_MasterGetDefaultConfig(&config);
   @endcode
 *
 * @param config pointer to master config structure
 */
void SPI_MasterGetDefaultConfig(spi_master_config_t *config);

/*!
 * @brief Initializes the SPI with master configuration.
 *
 * The configuration structure can be filled by user from scratch, or be set with default
 * values by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
 * Example
   @code
   spi_master_config_t config = {
   .baudRate_Bps = 400000,
   ...
   };
   SPI_MasterInit(SPI0, &config);
   @endcode
 *
 * @param base SPI base pointer
 * @param config pointer to master configuration structure
 * @param srcClock_Hz Source clock frequency.
 */
void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz);

/*!
 * @brief  Sets the SPI slave configuration structure to default values.
 *
 * The purpose of this API is to get the configuration structure initialized for use in SPI_SlaveInit().
 * Modify some fields of the structure before calling SPI_SlaveInit().
 * Example:
   @code
   spi_slave_config_t config;
   SPI_SlaveGetDefaultConfig(&config);
   @endcode
 *
 * @param config pointer to slave configuration structure
 */
void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config);

/*!
 * @brief Initializes the SPI with slave configuration.
 *
 * The configuration structure can be filled by user from scratch or be set with
 * default values by SPI_SlaveGetDefaultConfig().
 * After calling this API, the slave is ready to transfer.
 * Example
   @code
    spi_slave_config_t config = {
    .polarity = kSPIClockPolarity_ActiveHigh;
    .phase = kSPIClockPhase_FirstEdge;
    .direction = kSPIMsbFirst;
    ...
    };
    SPI_MasterInit(SPI0, &config);
   @endcode
 *
 * @param base SPI base pointer
 * @param config pointer to master configuration structure
 */
void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config);

/*!
 * @brief De-initializes the SPI.
 *
 * Calling this API resets the SPI module, gates the SPI clock.
 * The SPI module can't work unless calling the SPI_MasterInit/SPI_SlaveInit to initialize module.
 *
 * @param base SPI base pointer
 */
void SPI_Deinit(SPI_Type *base);

/*!
 * @brief Enables or disables the SPI.
 *
 * @param base SPI base pointer
 * @param enable pass true to enable module, false to disable module
 */
static inline void SPI_Enable(SPI_Type *base, bool enable)
{
    if (enable)
    {
        base->C1 |= SPI_C1_SPE_MASK;
    }
    else
    {
        base->C1 &= ~SPI_C1_SPE_MASK;
    }
}

/*! @} */

/*!
 * @name Status
 * @{
 */

/*!
 * @brief Gets the status flag.
 *
 * @param base SPI base pointer
 * @return SPI Status, use status flag to AND #_spi_flags could get the related status.
 */
uint32_t SPI_GetStatusFlags(SPI_Type *base);

#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*!
 * @brief Clear the interrupt if enable INCTLR.
 *
 * @param base SPI base pointer
 * @param interrupt Interrupt need to be cleared
 *      The parameter could be any combination of the following values:
 *          @arg kSPIRxFifoFullClearInt
 *          @arg kSPITxFifoEmptyClearInt
 *          @arg kSPIRxNearFullClearInt
 *          @arg kSPITxNearEmptyClearInt
 */
static inline void SPI_ClearInterrupt(SPI_Type *base, uint32_t mask)
{
    base->CI |= mask;
}
#endif /* FSL_FEATURE_SPI_HAS_FIFO */

/*! @} */

/*!
 * @name Interrupts
 * @{
 */

/*!
 * @brief Enables the interrupt for the SPI.
 *
 * @param base SPI base pointer
 * @param mask SPI interrupt source. The parameter can be any combination of the following values:
 *        @arg kSPI_RxFullAndModfInterruptEnable
 *        @arg kSPI_TxEmptyInterruptEnable
 *        @arg kSPI_MatchInterruptEnable
 *        @arg kSPI_RxFifoNearFullInterruptEnable
 *        @arg kSPI_TxFifoNearEmptyInterruptEnable
 */
void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask);

/*!
 * @brief Disables the interrupt for the SPI.
 *
 * @param base SPI base pointer
 * @param mask SPI interrupt source. The parameter can be any combination of the following values:
 *        @arg kSPI_RxFullAndModfInterruptEnable
 *        @arg kSPI_TxEmptyInterruptEnable
 *        @arg kSPI_MatchInterruptEnable
 *        @arg kSPI_RxFifoNearFullInterruptEnable
 *        @arg kSPI_TxFifoNearEmptyInterruptEnable
 */
void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask);

/*! @} */

/*!
 * @name DMA Control
 * @{
 */

#if defined(FSL_FEATURE_SPI_HAS_DMA_SUPPORT) && FSL_FEATURE_SPI_HAS_DMA_SUPPORT
/*!
 * @brief Enables the DMA source for SPI.
 *
 * @param base SPI base pointer
 * @param source SPI DMA source.
 * @param enable True means enable DMA, false means disable DMA
 */
static inline void SPI_EnableDMA(SPI_Type *base, uint32_t mask, bool enable)
{
    if (enable)
    {
        base->C2 |= mask;
    }
    else
    {
        base->C2 &= ~mask;
    }
}
#endif /* FSL_FEATURE_SPI_HAS_DMA_SUPPORT */

/*!
 * @brief  Gets the SPI tx/rx data register address.
 *
 * This API is used to provide a transfer address for the SPI DMA transfer configuration.
 *
 * @param base SPI base pointer
 * @return data register address
 */
static inline uint32_t SPI_GetDataRegisterAddress(SPI_Type *base)
{
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
    return (uint32_t)(&(base->DL));
#else
    return (uint32_t)(&(base->D));
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
}

/*! @} */

/*!
 * @name Bus Operations
 * @{
 */

/*!
 * @brief Sets the baud rate for SPI transfer. This is only used in master.
 *
 * @param base SPI base pointer
 * @param baudRate_Bps baud rate needed in Hz.
 * @param srcClock_Hz SPI source clock frequency in Hz.
 */
void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz);

/*!
 * @brief Sets the match data for SPI.
 *
 * The match data is a hardware comparison value. When the value received in the SPI receive data
 * buffer equals the hardware comparison value, the SPI Match Flag in the S register (S[SPMF]) sets.
 * This can also generate an interrupt if the enable bit sets.
 *
 * @param base SPI base pointer
 * @param matchData Match data.
 */
static inline void SPI_SetMatchData(SPI_Type *base, uint32_t matchData)
{
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
    base->ML = matchData & 0xFFU;
    base->MH = (matchData >> 8U) & 0xFFU;
#else
    base->M = matchData;
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
}

#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*!
 * @brief Enables or disables the FIFO if there is a FIFO.
 *
 * @param base SPI base pointer
 * @param enable True means enable FIFO, false means disable FIFO.
 */
void SPI_EnableFIFO(SPI_Type *base, bool enable);
#endif

/*!
 * @brief Sends a buffer of data bytes using a blocking method.
 *
 * @note This function blocks via polling until all bytes have been sent.
 *
 * @param base SPI base pointer
 * @param buffer The data bytes to send
 * @param size The number of data bytes to send
 */
void SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size);

/*!
 * @brief Writes a data into the SPI data register.
 *
 * @param base SPI base pointer
 * @param data needs to be write.
 */
void SPI_WriteData(SPI_Type *base, uint16_t data);

/*!
 * @brief Gets a data from the SPI data register.
 *
 * @param base SPI base pointer
 * @return Data in the register.
 */
uint16_t SPI_ReadData(SPI_Type *base);

/*! @} */

/*!
 * @name Transactional
 * @{
 */

/*!
 * @brief Initializes the SPI master handle.
 *
 * This function initializes the SPI master handle which can be used for other SPI master transactional APIs. Usually,
 * for a specified SPI instance, call this API once to get the initialized handle.
 *
 * @param base SPI peripheral base address.
 * @param handle SPI handle pointer.
 * @param callback Callback function.
 * @param userData User data.
 */
void SPI_MasterTransferCreateHandle(SPI_Type *base,
                                    spi_master_handle_t *handle,
                                    spi_master_callback_t callback,
                                    void *userData);

/*!
 * @brief Transfers a block of data using a polling method.
 *
 * @param base SPI base pointer
 * @param xfer pointer to spi_xfer_config_t structure
 * @retval kStatus_Success Successfully start a transfer.
 * @retval kStatus_InvalidArgument Input argument is invalid.
 */
status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer);

/*!
 * @brief Performs a non-blocking SPI interrupt transfer.
 *
 * @note The API immediately returns after transfer initialization is finished.
 * Call SPI_GetStatusIRQ() to get the transfer status.
 * @note If using the SPI with FIFO for the interrupt transfer, the transfer size is the integer times of the watermark.
 * Otherwise,
 * the last data may be lost because it cannot generate an interrupt request. Users can also call the functional API to
 * get the last
 * received data.
 *
 * @param base SPI peripheral base address.
 * @param handle pointer to spi_master_handle_t structure which stores the transfer state
 * @param xfer pointer to spi_xfer_config_t structure
 * @retval kStatus_Success Successfully start a transfer.
 * @retval kStatus_InvalidArgument Input argument is invalid.
 * @retval kStatus_SPI_Busy SPI is not idle, is running another transfer.
 */
status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer);

/*!
 * @brief Gets the bytes of the SPI interrupt transferred.
 *
 * @param base SPI peripheral base address.
 * @param handle Pointer to SPI transfer handle, this should be a static variable.
 * @param count Transferred bytes of SPI master.
 * @retval kStatus_SPI_Success Succeed get the transfer count.
 * @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
 */
status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count);

/*!
 * @brief Aborts an SPI transfer using interrupt.
 *
 * @param base SPI peripheral base address.
 * @param handle Pointer to SPI transfer handle, this should be a static variable.
 */
void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle);

/*!
 * @brief Interrupts the handler for the SPI.
 *
 * @param base SPI peripheral base address.
 * @param handle pointer to spi_master_handle_t structure which stores the transfer state.
 */
void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle);

/*!
 * @brief Initializes the SPI slave handle.
 *
 * This function initializes the SPI slave handle which can be used for other SPI slave transactional APIs. Usually,
 * for a specified SPI instance, call this API once to get the initialized handle.
 *
 * @param base SPI peripheral base address.
 * @param handle SPI handle pointer.
 * @param callback Callback function.
 * @param userData User data.
 */
void SPI_SlaveTransferCreateHandle(SPI_Type *base,
                                                 spi_slave_handle_t *handle,
                                                 spi_slave_callback_t callback,
                                   void *userData);

/*!
 * @brief Performs a non-blocking SPI slave interrupt transfer.
 *
 * @note The API returns immediately after the transfer initialization is finished.
 * Call SPI_GetStatusIRQ() to get the transfer status.
 * @note If using the SPI with FIFO for the interrupt transfer, the transfer size is the integer times the watermark.
 * Otherwise,
 * the last data may be lost because it cannot generate an interrupt request. Call the functional API to get the last
 * several
 * receive data.
 *
 * @param base SPI peripheral base address.
 * @param handle pointer to spi_master_handle_t structure which stores the transfer state
 * @param xfer pointer to spi_xfer_config_t structure
 * @retval kStatus_Success Successfully start a transfer.
 * @retval kStatus_InvalidArgument Input argument is invalid.
 * @retval kStatus_SPI_Busy SPI is not idle, is running another transfer.
 */
static inline status_t SPI_SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle, spi_transfer_t *xfer)
{
    return SPI_MasterTransferNonBlocking(base, handle, xfer);
}

/*!
 * @brief Gets the bytes of the SPI interrupt transferred.
 *
 * @param base SPI peripheral base address.
 * @param handle Pointer to SPI transfer handle, this should be a static variable.
 * @param count Transferred bytes of SPI slave.
 * @retval kStatus_SPI_Success Succeed get the transfer count.
 * @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
 */
static inline status_t SPI_SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle, size_t *count)
{
    return SPI_MasterTransferGetCount(base, handle, count);
}

/*!
 * @brief Aborts an SPI slave transfer using interrupt.
 *
 * @param base SPI peripheral base address.
 * @param handle Pointer to SPI transfer handle, this should be a static variable.
 */
static inline void SPI_SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)
{
    SPI_MasterTransferAbort(base, handle);
}

/*!
 * @brief Interrupts a handler for the SPI slave.
 *
 * @param base SPI peripheral base address.
 * @param handle pointer to spi_slave_handle_t structure which stores the transfer state
 */
void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle);

/*! @} */

#if defined(__cplusplus)
}
#endif

/*! @} */

#endif /* _FSL_SPI_H_*/