Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: hello SerialTestv11 SerialTestv12 Sierpinski ... more
Diff: TARGET_DISCO_L072CZ_LRWAN1/arm_math.h
- Revision:
- 145:64910690c574
- Parent:
- 143:86740a56073b
--- a/TARGET_DISCO_L072CZ_LRWAN1/arm_math.h Thu Jun 08 14:53:05 2017 +0100
+++ b/TARGET_DISCO_L072CZ_LRWAN1/arm_math.h Wed Jun 21 17:31:38 2017 +0100
@@ -1,42 +1,30 @@
/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2015 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_math.h
-*
-* Description: Public header file for CMSIS DSP Library
-*
-* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
+ * Project: CMSIS DSP Library
+ * Title: arm_math.h
+ * Description: Public header file for CMSIS DSP Library
+ *
+ * $Date: 27. January 2017
+ * $Revision: V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
/**
\mainpage CMSIS DSP Software Library
@@ -66,26 +54,34 @@
* ------------
*
* The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
- * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
- * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
- * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
- * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
- * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
- * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
- * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
- * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
- * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
- * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
- * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
- * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
- * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
- * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
+ * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit)
+ * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit)
+ * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit)
+ * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on)
+ * - arm_cortexM7l_math.lib (Cortex-M7, Little endian)
+ * - arm_cortexM7b_math.lib (Cortex-M7, Big endian)
+ * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit)
+ * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit)
+ * - arm_cortexM4l_math.lib (Cortex-M4, Little endian)
+ * - arm_cortexM4b_math.lib (Cortex-M4, Big endian)
+ * - arm_cortexM3l_math.lib (Cortex-M3, Little endian)
+ * - arm_cortexM3b_math.lib (Cortex-M3, Big endian)
+ * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian)
+ * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian)
+ * - arm_ARMv8MBLl_math.lib (ARMv8M Baseline, Little endian)
+ * - arm_ARMv8MMLl_math.lib (ARMv8M Mainline, Little endian)
+ * - arm_ARMv8MMLlfsp_math.lib (ARMv8M Mainline, Little endian, Single Precision Floating Point Unit)
+ * - arm_ARMv8MMLld_math.lib (ARMv8M Mainline, Little endian, DSP instructions)
+ * - arm_ARMv8MMLldfsp_math.lib (ARMv8M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit)
*
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
* Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
- * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
+ * public header file <code> arm_math.h</code> for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
* Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
* ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
+ * For ARMv8M cores define pre processor MACRO ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML.
+ * Set Pre processor MACRO __DSP_PRESENT if ARMv8M Mainline core supports DSP instructions.
+ *
*
* Examples
* --------
@@ -134,14 +130,23 @@
* and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
* ARM_MATH_CM7 for building the library on cortex-M7.
*
+ * - ARM_MATH_ARMV8MxL:
+ *
+ * Define macro ARM_MATH_ARMV8MBL for building the library on ARMv8M Baseline target, ARM_MATH_ARMV8MBL for building library
+ * on ARMv8M Mainline target.
+ *
* - __FPU_PRESENT:
*
- * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
+ * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for floating point libraries.
+ *
+ * - __DSP_PRESENT:
+ *
+ * Initialize macro __DSP_PRESENT = 1 when ARMv8M Mainline core supports DSP instructions.
*
* <hr>
* CMSIS-DSP in ARM::CMSIS Pack
* -----------------------------
- *
+ *
* The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
* |File/Folder |Content |
* |------------------------------|------------------------------------------------------------------------|
@@ -149,7 +154,7 @@
* |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
* |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
* |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
- *
+ *
* <hr>
* Revision History of CMSIS-DSP
* ------------
@@ -288,28 +293,62 @@
#ifndef _ARM_MATH_H
#define _ARM_MATH_H
+/* Compiler specific diagnostic adjustment */
+#if defined ( __CC_ARM )
+
+#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+
+#elif defined ( __GNUC__ )
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wsign-conversion"
+#pragma GCC diagnostic ignored "-Wconversion"
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+
+#elif defined ( __ICCARM__ )
+
+#elif defined ( __TI_ARM__ )
+
+#elif defined ( __CSMC__ )
+
+#elif defined ( __TASKING__ )
+
+#else
+ #error Unknown compiler
+#endif
+
+
#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
#if defined(ARM_MATH_CM7)
#include "core_cm7.h"
+ #define ARM_MATH_DSP
#elif defined (ARM_MATH_CM4)
#include "core_cm4.h"
+ #define ARM_MATH_DSP
#elif defined (ARM_MATH_CM3)
#include "core_cm3.h"
#elif defined (ARM_MATH_CM0)
#include "core_cm0.h"
-#define ARM_MATH_CM0_FAMILY
- #elif defined (ARM_MATH_CM0PLUS)
-#include "core_cm0plus.h"
+ #define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_CM0PLUS)
+ #include "core_cm0plus.h"
+ #define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_ARMV8MBL)
+ #include "core_armv8mbl.h"
#define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_ARMV8MML)
+ #include "core_armv8mml.h"
+ #if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1))
+ #define ARM_MATH_DSP
+ #endif
#else
- #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
+ #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML"
#endif
#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
#include "string.h"
#include "math.h"
-#ifdef __cplusplus
+#ifdef __cplusplus
extern "C"
{
#endif
@@ -319,11 +358,11 @@
* @brief Macros required for reciprocal calculation in Normalized LMS
*/
-#define DELTA_Q31 (0x100)
-#define DELTA_Q15 0x5
-#define INDEX_MASK 0x0000003F
+#define DELTA_Q31 (0x100)
+#define DELTA_Q15 0x5
+#define INDEX_MASK 0x0000003F
#ifndef PI
-#define PI 3.14159265358979f
+ #define PI 3.14159265358979f
#endif
/**
@@ -334,16 +373,15 @@
#define FAST_MATH_Q31_SHIFT (32 - 10)
#define FAST_MATH_Q15_SHIFT (16 - 10)
#define CONTROLLER_Q31_SHIFT (32 - 9)
-#define TABLE_SIZE 256
-#define TABLE_SPACING_Q31 0x400000
-#define TABLE_SPACING_Q15 0x80
+#define TABLE_SPACING_Q31 0x400000
+#define TABLE_SPACING_Q15 0x80
/**
* @brief Macros required for SINE and COSINE Controller functions
*/
/* 1.31(q31) Fixed value of 2/360 */
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */
-#define INPUT_SPACING 0xB60B61
+#define INPUT_SPACING 0xB60B61
/**
* @brief Macro for Unaligned Support
@@ -356,7 +394,7 @@
#else
#define ALIGN4 __align(4)
#endif
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/**
* @brief Error status returned by some functions in the library.
@@ -406,59 +444,78 @@
/**
* @brief definition to read/write two 16 bit values.
*/
-#if defined __CC_ARM
+#if defined ( __CC_ARM )
#define __SIMD32_TYPE int32_t __packed
#define CMSIS_UNUSED __attribute__((unused))
-#elif defined __ICCARM__
+ #define CMSIS_INLINE __attribute__((always_inline))
+
+#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+ #define __SIMD32_TYPE int32_t
+ #define CMSIS_UNUSED __attribute__((unused))
+ #define CMSIS_INLINE __attribute__((always_inline))
+
+#elif defined ( __GNUC__ )
+ #define __SIMD32_TYPE int32_t
+ #define CMSIS_UNUSED __attribute__((unused))
+ #define CMSIS_INLINE __attribute__((always_inline))
+
+#elif defined ( __ICCARM__ )
#define __SIMD32_TYPE int32_t __packed
#define CMSIS_UNUSED
-#elif defined __GNUC__
+ #define CMSIS_INLINE
+
+#elif defined ( __TI_ARM__ )
#define __SIMD32_TYPE int32_t
#define CMSIS_UNUSED __attribute__((unused))
-#elif defined __CSMC__ /* Cosmic */
+ #define CMSIS_INLINE
+
+#elif defined ( __CSMC__ )
#define __SIMD32_TYPE int32_t
#define CMSIS_UNUSED
-#elif defined __TASKING__
+ #define CMSIS_INLINE
+
+#elif defined ( __TASKING__ )
#define __SIMD32_TYPE __unaligned int32_t
#define CMSIS_UNUSED
+ #define CMSIS_INLINE
+
#else
#error Unknown compiler
#endif
-#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
+#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
-
#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
-
-#define __SIMD64(addr) (*(int64_t **) & (addr))
-
-#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+#define __SIMD64(addr) (*(int64_t **) & (addr))
+
+/* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+#if !defined (ARM_MATH_DSP)
/**
* @brief definition to pack two 16 bit values.
*/
-#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
- (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
-#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
- (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
-
-#endif
-
+#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
+ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
+#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
+ (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
+
+/* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+#endif /* !defined (ARM_MATH_DSP) */
/**
* @brief definition to pack four 8 bit values.
*/
#ifndef ARM_MATH_BIG_ENDIAN
-#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
- (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
- (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
- (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
#else
-#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
- (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
- (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
- (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
#endif
@@ -466,7 +523,7 @@
/**
* @brief Clips Q63 to Q31 values.
*/
- static __INLINE q31_t clip_q63_to_q31(
+ CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31(
q63_t x)
{
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
@@ -476,7 +533,7 @@
/**
* @brief Clips Q63 to Q15 values.
*/
- static __INLINE q15_t clip_q63_to_q15(
+ CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15(
q63_t x)
{
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
@@ -486,7 +543,7 @@
/**
* @brief Clips Q31 to Q7 values.
*/
- static __INLINE q7_t clip_q31_to_q7(
+ CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7(
q31_t x)
{
return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
@@ -496,7 +553,7 @@
/**
* @brief Clips Q31 to Q15 values.
*/
- static __INLINE q15_t clip_q31_to_q15(
+ CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15(
q31_t x)
{
return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
@@ -507,7 +564,7 @@
* @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
*/
- static __INLINE q63_t mult32x64(
+ CMSIS_INLINE __STATIC_INLINE q63_t mult32x64(
q63_t x,
q31_t y)
{
@@ -515,64 +572,60 @@
(((q63_t) (x >> 32) * y)));
}
-
-//#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
-//#define __CLZ __clz
-//#endif
-
-//note: function can be removed when all toolchain support __CLZ for Cortex-M0
+/*
+ #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
+ #define __CLZ __clz
+ #endif
+ */
+/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
-
- static __INLINE uint32_t __CLZ(
+ CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ(
q31_t data);
-
- static __INLINE uint32_t __CLZ(
+ CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ(
q31_t data)
{
uint32_t count = 0;
uint32_t mask = 0x80000000;
- while((data & mask) == 0)
+ while ((data & mask) == 0)
{
count += 1u;
mask = mask >> 1u;
}
return (count);
-
}
-
#endif
/**
* @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
*/
- static __INLINE uint32_t arm_recip_q31(
+ CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31(
q31_t in,
q31_t * dst,
q31_t * pRecipTable)
{
-
- uint32_t out, tempVal;
+ q31_t out;
+ uint32_t tempVal;
uint32_t index, i;
uint32_t signBits;
- if(in > 0)
+ if (in > 0)
{
- signBits = __CLZ(in) - 1;
+ signBits = ((uint32_t) (__CLZ( in) - 1));
}
else
{
- signBits = __CLZ(-in) - 1;
+ signBits = ((uint32_t) (__CLZ(-in) - 1));
}
/* Convert input sample to 1.31 format */
- in = in << signBits;
+ in = (in << signBits);
/* calculation of index for initial approximated Val */
- index = (uint32_t) (in >> 24u);
+ index = (uint32_t)(in >> 24);
index = (index & INDEX_MASK);
/* 1.31 with exp 1 */
@@ -582,11 +635,11 @@
/* running approximation for two iterations */
for (i = 0u; i < 2u; i++)
{
- tempVal = (q31_t) (((q63_t) in * out) >> 31u);
- tempVal = 0x7FFFFFFF - tempVal;
+ tempVal = (uint32_t) (((q63_t) in * out) >> 31);
+ tempVal = 0x7FFFFFFFu - tempVal;
/* 1.31 with exp 1 */
- //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
- out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
+ /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
+ out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
}
/* write output */
@@ -594,36 +647,36 @@
/* return num of signbits of out = 1/in value */
return (signBits + 1u);
-
}
+
/**
* @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
*/
- static __INLINE uint32_t arm_recip_q15(
+ CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15(
q15_t in,
q15_t * dst,
q15_t * pRecipTable)
{
-
- uint32_t out = 0, tempVal = 0;
+ q15_t out = 0;
+ uint32_t tempVal = 0;
uint32_t index = 0, i = 0;
uint32_t signBits = 0;
- if(in > 0)
+ if (in > 0)
{
- signBits = __CLZ(in) - 17;
+ signBits = ((uint32_t)(__CLZ( in) - 17));
}
else
{
- signBits = __CLZ(-in) - 17;
+ signBits = ((uint32_t)(__CLZ(-in) - 17));
}
/* Convert input sample to 1.15 format */
- in = in << signBits;
+ in = (in << signBits);
/* calculation of index for initial approximated Val */
- index = in >> 8;
+ index = (uint32_t)(in >> 8);
index = (index & INDEX_MASK);
/* 1.15 with exp 1 */
@@ -631,12 +684,13 @@
/* calculation of reciprocal value */
/* running approximation for two iterations */
- for (i = 0; i < 2; i++)
+ for (i = 0u; i < 2u; i++)
{
- tempVal = (q15_t) (((q31_t) in * out) >> 15);
- tempVal = 0x7FFF - tempVal;
+ tempVal = (uint32_t) (((q31_t) in * out) >> 15);
+ tempVal = 0x7FFFu - tempVal;
/* 1.15 with exp 1 */
out = (q15_t) (((q31_t) out * tempVal) >> 14);
+ /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
}
/* write output */
@@ -644,7 +698,6 @@
/* return num of signbits of out = 1/in value */
return (signBits + 1);
-
}
@@ -652,8 +705,7 @@
* @brief C custom defined intrinisic function for only M0 processors
*/
#if defined(ARM_MATH_CM0_FAMILY)
-
- static __INLINE q31_t __SSAT(
+ CMSIS_INLINE __STATIC_INLINE q31_t __SSAT(
q31_t x,
uint32_t y)
{
@@ -666,11 +718,11 @@
posMax = posMax * 2;
}
- if(x > 0)
+ if (x > 0)
{
posMax = (posMax - 1);
- if(x > posMax)
+ if (x > posMax)
{
x = posMax;
}
@@ -679,400 +731,377 @@
{
negMin = -posMax;
- if(x < negMin)
+ if (x < negMin)
{
x = negMin;
}
}
return (x);
-
-
}
-
#endif /* end of ARM_MATH_CM0_FAMILY */
-
/*
* @brief C custom defined intrinsic function for M3 and M0 processors
*/
-#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+/* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+#if !defined (ARM_MATH_DSP)
/*
* @brief C custom defined QADD8 for M3 and M0 processors
*/
- static __INLINE q31_t __QADD8(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t sum;
- q7_t r, s, t, u;
-
- r = (q7_t) x;
- s = (q7_t) y;
-
- r = __SSAT((q31_t) (r + s), 8);
- s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
- t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
- u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
-
- sum =
- (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
- (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
-
- return sum;
-
+ q31_t r, s, t, u;
+
+ r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
}
+
/*
* @brief C custom defined QSUB8 for M3 and M0 processors
*/
- static __INLINE q31_t __QSUB8(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t sum;
q31_t r, s, t, u;
- r = (q7_t) x;
- s = (q7_t) y;
-
- r = __SSAT((r - s), 8);
- s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
- t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
- u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
-
- sum =
- (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
- 0x000000FF);
-
- return sum;
+ r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
}
+
/*
* @brief C custom defined QADD16 for M3 and M0 processors
*/
-
- /*
- * @brief C custom defined QADD16 for M3 and M0 processors
- */
- static __INLINE q31_t __QADD16(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t sum;
- q31_t r, s;
-
- r = (q15_t) x;
- s = (q15_t) y;
-
- r = __SSAT(r + s, 16);
- s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
-
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
- return sum;
-
+/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
+ q31_t r = 0, s = 0;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
}
+
/*
* @brief C custom defined SHADD16 for M3 and M0 processors
*/
- static __INLINE q31_t __SHADD16(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t sum;
q31_t r, s;
- r = (q15_t) x;
- s = (q15_t) y;
-
- r = ((r >> 1) + (s >> 1));
- s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
-
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
- return sum;
-
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
}
+
/*
* @brief C custom defined QSUB16 for M3 and M0 processors
*/
- static __INLINE q31_t __QSUB16(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t sum;
q31_t r, s;
- r = (q15_t) x;
- s = (q15_t) y;
-
- r = __SSAT(r - s, 16);
- s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
-
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
- return sum;
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
}
+
/*
* @brief C custom defined SHSUB16 for M3 and M0 processors
*/
- static __INLINE q31_t __SHSUB16(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t diff;
q31_t r, s;
- r = (q15_t) x;
- s = (q15_t) y;
-
- r = ((r >> 1) - (s >> 1));
- s = (((x >> 17) - (y >> 17)) << 16);
-
- diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
- return diff;
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
}
+
/*
* @brief C custom defined QASX for M3 and M0 processors
*/
- static __INLINE q31_t __QASX(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QASX(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t sum = 0;
-
- sum =
- ((sum +
- clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
- clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
-
- return sum;
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
}
+
/*
* @brief C custom defined SHASX for M3 and M0 processors
*/
- static __INLINE q31_t __SHASX(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t sum;
q31_t r, s;
- r = (q15_t) x;
- s = (q15_t) y;
-
- r = ((r >> 1) - (y >> 17));
- s = (((x >> 17) + (s >> 1)) << 16);
-
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
- return sum;
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
}
/*
* @brief C custom defined QSAX for M3 and M0 processors
*/
- static __INLINE q31_t __QSAX(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t sum = 0;
-
- sum =
- ((sum +
- clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
- clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
-
- return sum;
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
}
+
/*
* @brief C custom defined SHSAX for M3 and M0 processors
*/
- static __INLINE q31_t __SHSAX(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX(
+ uint32_t x,
+ uint32_t y)
{
-
- q31_t sum;
q31_t r, s;
- r = (q15_t) x;
- s = (q15_t) y;
-
- r = ((r >> 1) + (y >> 17));
- s = (((x >> 17) - (s >> 1)) << 16);
-
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
-
- return sum;
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
}
+
/*
* @brief C custom defined SMUSDX for M3 and M0 processors
*/
- static __INLINE q31_t __SMUSDX(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX(
+ uint32_t x,
+ uint32_t y)
{
-
- return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
- ((q15_t) (x >> 16) * (q15_t) y)));
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
}
/*
* @brief C custom defined SMUADX for M3 and M0 processors
*/
- static __INLINE q31_t __SMUADX(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX(
+ uint32_t x,
+ uint32_t y)
{
-
- return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
- ((q15_t) (x >> 16) * (q15_t) y)));
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
}
+
/*
* @brief C custom defined QADD for M3 and M0 processors
*/
- static __INLINE q31_t __QADD(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE int32_t __QADD(
+ int32_t x,
+ int32_t y)
{
- return clip_q63_to_q31((q63_t) x + y);
+ return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
}
+
/*
* @brief C custom defined QSUB for M3 and M0 processors
*/
- static __INLINE q31_t __QSUB(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE int32_t __QSUB(
+ int32_t x,
+ int32_t y)
{
- return clip_q63_to_q31((q63_t) x - y);
+ return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
}
+
/*
* @brief C custom defined SMLAD for M3 and M0 processors
*/
- static __INLINE q31_t __SMLAD(
- q31_t x,
- q31_t y,
- q31_t sum)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
{
-
- return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
- ((q15_t) x * (q15_t) y));
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q31_t)sum ) ) ));
}
+
/*
* @brief C custom defined SMLADX for M3 and M0 processors
*/
- static __INLINE q31_t __SMLADX(
- q31_t x,
- q31_t y,
- q31_t sum)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
{
-
- return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
- ((q15_t) x * (q15_t) (y >> 16)));
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
}
+
/*
* @brief C custom defined SMLSDX for M3 and M0 processors
*/
- static __INLINE q31_t __SMLSDX(
- q31_t x,
- q31_t y,
- q31_t sum)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
{
-
- return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
- ((q15_t) x * (q15_t) (y >> 16)));
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
}
+
/*
* @brief C custom defined SMLALD for M3 and M0 processors
*/
- static __INLINE q63_t __SMLALD(
- q31_t x,
- q31_t y,
- q63_t sum)
+ CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
{
-
- return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
- ((q15_t) x * (q15_t) y));
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q63_t)sum ) ) ));
}
+
/*
* @brief C custom defined SMLALDX for M3 and M0 processors
*/
- static __INLINE q63_t __SMLALDX(
- q31_t x,
- q31_t y,
- q63_t sum)
+ CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
{
-
- return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
- ((q15_t) x * (q15_t) (y >> 16));
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q63_t)sum ) ) ));
}
+
/*
* @brief C custom defined SMUAD for M3 and M0 processors
*/
- static __INLINE q31_t __SMUAD(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD(
+ uint32_t x,
+ uint32_t y)
{
-
- return (((x >> 16) * (y >> 16)) +
- (((x << 16) >> 16) * ((y << 16) >> 16)));
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
}
+
/*
* @brief C custom defined SMUSD for M3 and M0 processors
*/
- static __INLINE q31_t __SMUSD(
- q31_t x,
- q31_t y)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD(
+ uint32_t x,
+ uint32_t y)
{
-
- return (-((x >> 16) * (y >> 16)) +
- (((x << 16) >> 16) * ((y << 16) >> 16)));
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
}
/*
* @brief C custom defined SXTB16 for M3 and M0 processors
*/
- static __INLINE q31_t __SXTB16(
- q31_t x)
+ CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16(
+ uint32_t x)
+ {
+ return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
+ ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
+ }
+
+ /*
+ * @brief C custom defined SMMLA for M3 and M0 processors
+ */
+ CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA(
+ int32_t x,
+ int32_t y,
+ int32_t sum)
{
-
- return ((((x << 24) >> 24) & 0x0000FFFF) |
- (((x << 8) >> 8) & 0xFFFF0000));
+ return (sum + (int32_t) (((int64_t) x * y) >> 32));
+ }
+
+#if 0
+ /*
+ * @brief C custom defined PKHBT for unavailable DSP extension
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __PKHBT(
+ uint32_t x,
+ uint32_t y,
+ uint32_t leftshift)
+ {
+ return ( ((x ) & 0x0000FFFFUL) |
+ ((y << leftshift) & 0xFFFF0000UL) );
}
-
-#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+ /*
+ * @brief C custom defined PKHTB for unavailable DSP extension
+ */
+ CMSIS_INLINE __STATIC_INLINE uint32_t __PKHTB(
+ uint32_t x,
+ uint32_t y,
+ uint32_t rightshift)
+ {
+ return ( ((x ) & 0xFFFF0000UL) |
+ ((y >> rightshift) & 0x0000FFFFUL) );
+ }
+#endif
+
+/* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+#endif /* !defined (ARM_MATH_DSP) */
/**
@@ -1118,11 +1147,10 @@
/**
* @brief Processing function for the Q7 FIR filter.
- * @param[in] *S points to an instance of the Q7 FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
+ * @param[in] S points to an instance of the Q7 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
*/
void arm_fir_q7(
const arm_fir_instance_q7 * S,
@@ -1133,12 +1161,11 @@
/**
* @brief Initialization function for the Q7 FIR filter.
- * @param[in,out] *S points to an instance of the Q7 FIR structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed.
- * @return none
+ * @param[in,out] S points to an instance of the Q7 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed.
*/
void arm_fir_init_q7(
arm_fir_instance_q7 * S,
@@ -1150,11 +1177,10 @@
/**
* @brief Processing function for the Q15 FIR filter.
- * @param[in] *S points to an instance of the Q15 FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
+ * @param[in] S points to an instance of the Q15 FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
*/
void arm_fir_q15(
const arm_fir_instance_q15 * S,
@@ -1162,13 +1188,13 @@
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q15 FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
+ * @param[in] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
*/
void arm_fir_fast_q15(
const arm_fir_instance_q15 * S,
@@ -1176,17 +1202,17 @@
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the Q15 FIR filter.
- * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed at a time.
+ * @param[in,out] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
* @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
* <code>numTaps</code> is not a supported value.
*/
-
arm_status arm_fir_init_q15(
arm_fir_instance_q15 * S,
uint16_t numTaps,
@@ -1194,13 +1220,13 @@
q15_t * pState,
uint32_t blockSize);
+
/**
* @brief Processing function for the Q31 FIR filter.
- * @param[in] *S points to an instance of the Q31 FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
+ * @param[in] S points to an instance of the Q31 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
*/
void arm_fir_q31(
const arm_fir_instance_q31 * S,
@@ -1208,13 +1234,13 @@
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q31 FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
+ * @param[in] S points to an instance of the Q31 FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
*/
void arm_fir_fast_q31(
const arm_fir_instance_q31 * S,
@@ -1222,14 +1248,14 @@
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the Q31 FIR filter.
- * @param[in,out] *S points to an instance of the Q31 FIR structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed at a time.
- * @return none.
+ * @param[in,out] S points to an instance of the Q31 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
*/
void arm_fir_init_q31(
arm_fir_instance_q31 * S,
@@ -1238,13 +1264,13 @@
q31_t * pState,
uint32_t blockSize);
+
/**
* @brief Processing function for the floating-point FIR filter.
- * @param[in] *S points to an instance of the floating-point FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
+ * @param[in] S points to an instance of the floating-point FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
*/
void arm_fir_f32(
const arm_fir_instance_f32 * S,
@@ -1252,14 +1278,14 @@
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the floating-point FIR filter.
- * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed at a time.
- * @return none.
+ * @param[in,out] S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
*/
void arm_fir_init_f32(
arm_fir_instance_f32 * S,
@@ -1274,14 +1300,12 @@
*/
typedef struct
{
- int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
-
+ int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
} arm_biquad_casd_df1_inst_q15;
-
/**
* @brief Instance structure for the Q31 Biquad cascade filter.
*/
@@ -1291,7 +1315,6 @@
q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
-
} arm_biquad_casd_df1_inst_q31;
/**
@@ -1299,40 +1322,34 @@
*/
typedef struct
{
- uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
-
-
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_casd_df1_inst_f32;
-
/**
* @brief Processing function for the Q15 Biquad cascade filter.
- * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_biquad_cascade_df1_q15(
const arm_biquad_casd_df1_inst_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the Q15 Biquad cascade filter.
- * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
void arm_biquad_cascade_df1_init_q15(
arm_biquad_casd_df1_inst_q15 * S,
uint8_t numStages,
@@ -1343,13 +1360,11 @@
/**
* @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_biquad_cascade_df1_fast_q15(
const arm_biquad_casd_df1_inst_q15 * S,
q15_t * pSrc,
@@ -1359,44 +1374,40 @@
/**
* @brief Processing function for the Q31 Biquad cascade filter
- * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ */
void arm_biquad_cascade_df1_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ */
void arm_biquad_cascade_df1_fast_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the Q31 Biquad cascade filter.
- * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
void arm_biquad_cascade_df1_init_q31(
arm_biquad_casd_df1_inst_q31 * S,
uint8_t numStages,
@@ -1404,30 +1415,28 @@
q31_t * pState,
int8_t postShift);
+
/**
* @brief Processing function for the floating-point Biquad cascade filter.
- * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
+ * @param[in] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ */
void arm_biquad_cascade_df1_f32(
const arm_biquad_casd_df1_inst_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the floating-point Biquad cascade filter.
- * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
void arm_biquad_cascade_df1_init_f32(
arm_biquad_casd_df1_inst_f32 * S,
uint8_t numStages,
@@ -1438,7 +1447,6 @@
/**
* @brief Instance structure for the floating-point matrix structure.
*/
-
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
@@ -1450,7 +1458,6 @@
/**
* @brief Instance structure for the floating-point matrix structure.
*/
-
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
@@ -1461,109 +1468,103 @@
/**
* @brief Instance structure for the Q15 matrix structure.
*/
-
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
q15_t *pData; /**< points to the data of the matrix. */
-
} arm_matrix_instance_q15;
/**
* @brief Instance structure for the Q31 matrix structure.
*/
-
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
q31_t *pData; /**< points to the data of the matrix. */
-
} arm_matrix_instance_q31;
-
/**
* @brief Floating-point matrix addition.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_add_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
+
/**
* @brief Q15 matrix addition.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_add_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst);
+
/**
* @brief Q31 matrix addition.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_add_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
+
/**
* @brief Floating-point, complex, matrix multiplication.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_cmplx_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
+
/**
* @brief Q15, complex, matrix multiplication.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_cmplx_mult_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pScratch);
+
/**
* @brief Q31, complex, matrix multiplication.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_cmplx_mult_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
@@ -1572,12 +1573,11 @@
/**
* @brief Floating-point matrix transpose.
- * @param[in] *pSrc points to the input matrix
- * @param[out] *pDst points to the output matrix
- * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_trans_f32(
const arm_matrix_instance_f32 * pSrc,
arm_matrix_instance_f32 * pDst);
@@ -1585,24 +1585,23 @@
/**
* @brief Q15 matrix transpose.
- * @param[in] *pSrc points to the input matrix
- * @param[out] *pDst points to the output matrix
- * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_trans_q15(
const arm_matrix_instance_q15 * pSrc,
arm_matrix_instance_q15 * pDst);
+
/**
* @brief Q31 matrix transpose.
- * @param[in] *pSrc points to the input matrix
- * @param[out] *pDst points to the output matrix
- * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_trans_q31(
const arm_matrix_instance_q31 * pSrc,
arm_matrix_instance_q31 * pDst);
@@ -1610,73 +1609,72 @@
/**
* @brief Floating-point matrix multiplication
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
+
/**
* @brief Q15 matrix multiplication
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @param[in] *pState points to the array for storing intermediate results
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_mult_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState);
+
/**
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @param[in] *pState points to the array for storing intermediate results
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_mult_fast_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState);
+
/**
* @brief Q31 matrix multiplication
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_mult_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
+
/**
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_mult_fast_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
@@ -1685,86 +1683,85 @@
/**
* @brief Floating-point matrix subtraction
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_sub_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
+
/**
* @brief Q15 matrix subtraction
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_sub_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst);
+
/**
* @brief Q31 matrix subtraction
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_sub_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
+
/**
* @brief Floating-point matrix scaling.
- * @param[in] *pSrc points to the input matrix
- * @param[in] scale scale factor
- * @param[out] *pDst points to the output matrix
+ * @param[in] pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] pDst points to the output matrix
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_scale_f32(
const arm_matrix_instance_f32 * pSrc,
float32_t scale,
arm_matrix_instance_f32 * pDst);
+
/**
* @brief Q15 matrix scaling.
- * @param[in] *pSrc points to input matrix
- * @param[in] scaleFract fractional portion of the scale factor
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to output matrix
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_scale_q15(
const arm_matrix_instance_q15 * pSrc,
q15_t scaleFract,
int32_t shift,
arm_matrix_instance_q15 * pDst);
+
/**
* @brief Q31 matrix scaling.
- * @param[in] *pSrc points to input matrix
- * @param[in] scaleFract fractional portion of the scale factor
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to output matrix structure
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
-
arm_status arm_mat_scale_q31(
const arm_matrix_instance_q31 * pSrc,
q31_t scaleFract,
@@ -1774,43 +1771,39 @@
/**
* @brief Q31 matrix initialization.
- * @param[in,out] *S points to an instance of the floating-point matrix structure.
- * @param[in] nRows number of rows in the matrix.
- * @param[in] nColumns number of columns in the matrix.
- * @param[in] *pData points to the matrix data array.
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
void arm_mat_init_q31(
arm_matrix_instance_q31 * S,
uint16_t nRows,
uint16_t nColumns,
q31_t * pData);
+
/**
* @brief Q15 matrix initialization.
- * @param[in,out] *S points to an instance of the floating-point matrix structure.
- * @param[in] nRows number of rows in the matrix.
- * @param[in] nColumns number of columns in the matrix.
- * @param[in] *pData points to the matrix data array.
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
void arm_mat_init_q15(
arm_matrix_instance_q15 * S,
uint16_t nRows,
uint16_t nColumns,
q15_t * pData);
+
/**
* @brief Floating-point matrix initialization.
- * @param[in,out] *S points to an instance of the floating-point matrix structure.
- * @param[in] nRows number of rows in the matrix.
- * @param[in] nColumns number of columns in the matrix.
- * @param[in] *pData points to the matrix data array.
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
void arm_mat_init_f32(
arm_matrix_instance_f32 * S,
uint16_t nRows,
@@ -1824,14 +1817,14 @@
*/
typedef struct
{
- q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
-#ifdef ARM_MATH_CM0_FAMILY
+ q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+#if !defined (ARM_MATH_DSP)
q15_t A1;
q15_t A2;
#else
q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
#endif
- q15_t state[3]; /**< The state array of length 3. */
+ q15_t state[3]; /**< The state array of length 3. */
q15_t Kp; /**< The proportional gain. */
q15_t Ki; /**< The integral gain. */
q15_t Kd; /**< The derivative gain. */
@@ -1849,7 +1842,6 @@
q31_t Kp; /**< The proportional gain. */
q31_t Ki; /**< The integral gain. */
q31_t Kd; /**< The derivative gain. */
-
} arm_pid_instance_q31;
/**
@@ -1861,27 +1853,26 @@
float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
float32_t A2; /**< The derived gain, A2 = Kd . */
float32_t state[3]; /**< The state array of length 3. */
- float32_t Kp; /**< The proportional gain. */
- float32_t Ki; /**< The integral gain. */
- float32_t Kd; /**< The derivative gain. */
+ float32_t Kp; /**< The proportional gain. */
+ float32_t Ki; /**< The integral gain. */
+ float32_t Kd; /**< The derivative gain. */
} arm_pid_instance_f32;
/**
* @brief Initialization function for the floating-point PID Control.
- * @param[in,out] *S points to an instance of the PID structure.
+ * @param[in,out] S points to an instance of the PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
- * @return none.
*/
void arm_pid_init_f32(
arm_pid_instance_f32 * S,
int32_t resetStateFlag);
+
/**
* @brief Reset function for the floating-point PID Control.
- * @param[in,out] *S is an instance of the floating-point PID Control structure
- * @return none
+ * @param[in,out] S is an instance of the floating-point PID Control structure
*/
void arm_pid_reset_f32(
arm_pid_instance_f32 * S);
@@ -1889,9 +1880,8 @@
/**
* @brief Initialization function for the Q31 PID Control.
- * @param[in,out] *S points to an instance of the Q15 PID structure.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
- * @return none.
*/
void arm_pid_init_q31(
arm_pid_instance_q31 * S,
@@ -1900,27 +1890,26 @@
/**
* @brief Reset function for the Q31 PID Control.
- * @param[in,out] *S points to an instance of the Q31 PID Control structure
- * @return none
+ * @param[in,out] S points to an instance of the Q31 PID Control structure
*/
void arm_pid_reset_q31(
arm_pid_instance_q31 * S);
+
/**
* @brief Initialization function for the Q15 PID Control.
- * @param[in,out] *S points to an instance of the Q15 PID structure.
- * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
- * @return none.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
*/
void arm_pid_init_q15(
arm_pid_instance_q15 * S,
int32_t resetStateFlag);
+
/**
* @brief Reset function for the Q15 PID Control.
- * @param[in,out] *S points to an instance of the q15 PID Control structure
- * @return none
+ * @param[in,out] S points to an instance of the q15 PID Control structure
*/
void arm_pid_reset_q15(
arm_pid_instance_q15 * S);
@@ -1940,7 +1929,6 @@
/**
* @brief Instance structure for the floating-point bilinear interpolation function.
*/
-
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
@@ -1951,7 +1939,6 @@
/**
* @brief Instance structure for the Q31 bilinear interpolation function.
*/
-
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
@@ -1962,7 +1949,6 @@
/**
* @brief Instance structure for the Q15 bilinear interpolation function.
*/
-
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
@@ -1973,69 +1959,63 @@
/**
* @brief Instance structure for the Q15 bilinear interpolation function.
*/
-
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
uint16_t numCols; /**< number of columns in the data table. */
- q7_t *pData; /**< points to the data table. */
+ q7_t *pData; /**< points to the data table. */
} arm_bilinear_interp_instance_q7;
/**
* @brief Q7 vector multiplication.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_mult_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q15 vector multiplication.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_mult_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q31 vector multiplication.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_mult_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Floating-point vector multiplication.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_mult_f32(
float32_t * pSrcA,
float32_t * pSrcB,
@@ -2043,20 +2023,15 @@
uint32_t blockSize);
-
-
-
-
/**
* @brief Instance structure for the Q15 CFFT/CIFFT function.
*/
-
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
+ q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
@@ -2075,11 +2050,9 @@
q15_t * pSrc);
-
/**
* @brief Instance structure for the Q15 CFFT/CIFFT function.
*/
-
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
@@ -2106,13 +2079,12 @@
/**
* @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
*/
-
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ q31_t *pTwiddle; /**< points to the Twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
@@ -2133,7 +2105,6 @@
/**
* @brief Instance structure for the Q31 CFFT/CIFFT function.
*/
-
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
@@ -2160,7 +2131,6 @@
/**
* @brief Instance structure for the floating-point CFFT/CIFFT function.
*/
-
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
@@ -2170,7 +2140,7 @@
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- float32_t onebyfftLen; /**< value of 1/fftLen. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
} arm_cfft_radix2_instance_f32;
/* Deprecated */
@@ -2188,7 +2158,6 @@
/**
* @brief Instance structure for the floating-point CFFT/CIFFT function.
*/
-
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
@@ -2198,7 +2167,7 @@
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- float32_t onebyfftLen; /**< value of 1/fftLen. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
} arm_cfft_radix4_instance_f32;
/* Deprecated */
@@ -2216,7 +2185,6 @@
/**
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
*/
-
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
@@ -2225,16 +2193,15 @@
uint16_t bitRevLength; /**< bit reversal table length. */
} arm_cfft_instance_q15;
-void arm_cfft_q15(
- const arm_cfft_instance_q15 * S,
+void arm_cfft_q15(
+ const arm_cfft_instance_q15 * S,
q15_t * p1,
uint8_t ifftFlag,
- uint8_t bitReverseFlag);
+ uint8_t bitReverseFlag);
/**
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
*/
-
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
@@ -2243,16 +2210,15 @@
uint16_t bitRevLength; /**< bit reversal table length. */
} arm_cfft_instance_q31;
-void arm_cfft_q31(
- const arm_cfft_instance_q31 * S,
+void arm_cfft_q31(
+ const arm_cfft_instance_q31 * S,
q31_t * p1,
uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
+ uint8_t bitReverseFlag);
+
/**
* @brief Instance structure for the floating-point CFFT/CIFFT function.
*/
-
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
@@ -2270,7 +2236,6 @@
/**
* @brief Instance structure for the Q15 RFFT/RIFFT function.
*/
-
typedef struct
{
uint32_t fftLenReal; /**< length of the real FFT. */
@@ -2296,7 +2261,6 @@
/**
* @brief Instance structure for the Q31 RFFT/RIFFT function.
*/
-
typedef struct
{
uint32_t fftLenReal; /**< length of the real FFT. */
@@ -2322,7 +2286,6 @@
/**
* @brief Instance structure for the floating-point RFFT/RIFFT function.
*/
-
typedef struct
{
uint32_t fftLenReal; /**< length of the real FFT. */
@@ -2350,17 +2313,16 @@
/**
* @brief Instance structure for the floating-point RFFT/RIFFT function.
*/
-
typedef struct
{
arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
- uint16_t fftLenRFFT; /**< length of the real sequence */
- float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
} arm_rfft_fast_instance_f32 ;
arm_status arm_rfft_fast_init_f32 (
- arm_rfft_fast_instance_f32 * S,
- uint16_t fftLen);
+ arm_rfft_fast_instance_f32 * S,
+ uint16_t fftLen);
void arm_rfft_fast_f32(
arm_rfft_fast_instance_f32 * S,
@@ -2370,29 +2332,28 @@
/**
* @brief Instance structure for the floating-point DCT4/IDCT4 function.
*/
-
typedef struct
{
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- float32_t normalize; /**< normalizing factor. */
- float32_t *pTwiddle; /**< points to the twiddle factor table. */
- float32_t *pCosFactor; /**< points to the cosFactor table. */
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ float32_t normalize; /**< normalizing factor. */
+ float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ float32_t *pCosFactor; /**< points to the cosFactor table. */
arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
} arm_dct4_instance_f32;
+
/**
* @brief Initialization function for the floating-point DCT4/IDCT4.
- * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
- * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
- * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
+ * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
* @param[in] N length of the DCT4.
* @param[in] Nby2 half of the length of the DCT4.
* @param[in] normalize normalizing factor.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
- */
-
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
+ */
arm_status arm_dct4_init_f32(
arm_dct4_instance_f32 * S,
arm_rfft_instance_f32 * S_RFFT,
@@ -2401,45 +2362,44 @@
uint16_t Nby2,
float32_t normalize);
+
/**
* @brief Processing function for the floating-point DCT4/IDCT4.
- * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
- * @param[in] *pState points to state buffer.
- * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
void arm_dct4_f32(
const arm_dct4_instance_f32 * S,
float32_t * pState,
float32_t * pInlineBuffer);
+
/**
* @brief Instance structure for the Q31 DCT4/IDCT4 function.
*/
-
typedef struct
{
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- q31_t normalize; /**< normalizing factor. */
- q31_t *pTwiddle; /**< points to the twiddle factor table. */
- q31_t *pCosFactor; /**< points to the cosFactor table. */
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q31_t normalize; /**< normalizing factor. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ q31_t *pCosFactor; /**< points to the cosFactor table. */
arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
} arm_dct4_instance_q31;
+
/**
* @brief Initialization function for the Q31 DCT4/IDCT4.
- * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
- * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
- * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
+ * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
+ * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
* @param[in] N length of the DCT4.
* @param[in] Nby2 half of the length of the DCT4.
* @param[in] normalize normalizing factor.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
- */
-
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
+ */
arm_status arm_dct4_init_q31(
arm_dct4_instance_q31 * S,
arm_rfft_instance_q31 * S_RFFT,
@@ -2448,45 +2408,44 @@
uint16_t Nby2,
q31_t normalize);
+
/**
* @brief Processing function for the Q31 DCT4/IDCT4.
- * @param[in] *S points to an instance of the Q31 DCT4 structure.
- * @param[in] *pState points to state buffer.
- * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q31 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
void arm_dct4_q31(
const arm_dct4_instance_q31 * S,
q31_t * pState,
q31_t * pInlineBuffer);
+
/**
* @brief Instance structure for the Q15 DCT4/IDCT4 function.
*/
-
typedef struct
{
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- q15_t normalize; /**< normalizing factor. */
- q15_t *pTwiddle; /**< points to the twiddle factor table. */
- q15_t *pCosFactor; /**< points to the cosFactor table. */
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q15_t normalize; /**< normalizing factor. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ q15_t *pCosFactor; /**< points to the cosFactor table. */
arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
} arm_dct4_instance_q15;
+
/**
* @brief Initialization function for the Q15 DCT4/IDCT4.
- * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
- * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
- * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
+ * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
* @param[in] N length of the DCT4.
* @param[in] Nby2 half of the length of the DCT4.
* @param[in] normalize normalizing factor.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
- */
-
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
+ */
arm_status arm_dct4_init_q15(
arm_dct4_instance_q15 * S,
arm_rfft_instance_q15 * S_RFFT,
@@ -2495,164 +2454,153 @@
uint16_t Nby2,
q15_t normalize);
+
/**
* @brief Processing function for the Q15 DCT4/IDCT4.
- * @param[in] *S points to an instance of the Q15 DCT4 structure.
- * @param[in] *pState points to state buffer.
- * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
void arm_dct4_q15(
const arm_dct4_instance_q15 * S,
q15_t * pState,
q15_t * pInlineBuffer);
+
/**
* @brief Floating-point vector addition.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_add_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q7 vector addition.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_add_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q15 vector addition.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_add_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q31 vector addition.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_add_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Floating-point vector subtraction.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_sub_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q7 vector subtraction.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_sub_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q15 vector subtraction.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_sub_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q31 vector subtraction.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_sub_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Multiplies a floating-point vector by a scalar.
- * @param[in] *pSrc points to the input vector
- * @param[in] scale scale factor to be applied
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_scale_f32(
float32_t * pSrc,
float32_t scale,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Multiplies a Q7 vector by a scalar.
- * @param[in] *pSrc points to the input vector
- * @param[in] scaleFract fractional portion of the scale value
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_scale_q7(
q7_t * pSrc,
q7_t scaleFract,
@@ -2660,16 +2608,15 @@
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Multiplies a Q15 vector by a scalar.
- * @param[in] *pSrc points to the input vector
- * @param[in] scaleFract fractional portion of the scale value
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_scale_q15(
q15_t * pSrc,
q15_t scaleFract,
@@ -2677,16 +2624,15 @@
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Multiplies a Q31 vector by a scalar.
- * @param[in] *pSrc points to the input vector
- * @param[in] scaleFract fractional portion of the scale value
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_scale_q31(
q31_t * pSrc,
q31_t scaleFract,
@@ -2694,379 +2640,361 @@
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q7 vector absolute value.
- * @param[in] *pSrc points to the input buffer
- * @param[out] *pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_abs_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Floating-point vector absolute value.
- * @param[in] *pSrc points to the input buffer
- * @param[out] *pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_abs_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q15 vector absolute value.
- * @param[in] *pSrc points to the input buffer
- * @param[out] *pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_abs_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Q31 vector absolute value.
- * @param[in] *pSrc points to the input buffer
- * @param[out] *pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
void arm_abs_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Dot product of floating-point vectors.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] *result output result returned here
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
void arm_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t blockSize,
float32_t * result);
+
/**
* @brief Dot product of Q7 vectors.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] *result output result returned here
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
void arm_dot_prod_q7(
q7_t * pSrcA,
q7_t * pSrcB,
uint32_t blockSize,
q31_t * result);
+
/**
* @brief Dot product of Q15 vectors.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] *result output result returned here
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
void arm_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t blockSize,
q63_t * result);
+
/**
* @brief Dot product of Q31 vectors.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] *result output result returned here
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
void arm_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t blockSize,
q63_t * result);
+
/**
* @brief Shifts the elements of a Q7 vector a specified number of bits.
- * @param[in] *pSrc points to the input vector
- * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_shift_q7(
q7_t * pSrc,
int8_t shiftBits,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Shifts the elements of a Q15 vector a specified number of bits.
- * @param[in] *pSrc points to the input vector
- * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_shift_q15(
q15_t * pSrc,
int8_t shiftBits,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Shifts the elements of a Q31 vector a specified number of bits.
- * @param[in] *pSrc points to the input vector
- * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_shift_q31(
q31_t * pSrc,
int8_t shiftBits,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Adds a constant offset to a floating-point vector.
- * @param[in] *pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_offset_f32(
float32_t * pSrc,
float32_t offset,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Adds a constant offset to a Q7 vector.
- * @param[in] *pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_offset_q7(
q7_t * pSrc,
q7_t offset,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Adds a constant offset to a Q15 vector.
- * @param[in] *pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_offset_q15(
q15_t * pSrc,
q15_t offset,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Adds a constant offset to a Q31 vector.
- * @param[in] *pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_offset_q31(
q31_t * pSrc,
q31_t offset,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Negates the elements of a floating-point vector.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_negate_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Negates the elements of a Q7 vector.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_negate_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Negates the elements of a Q15 vector.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_negate_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Negates the elements of a Q31 vector.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
void arm_negate_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
+
+
/**
* @brief Copies the elements of a floating-point vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_copy_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Copies the elements of a Q7 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_copy_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Copies the elements of a Q15 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_copy_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Copies the elements of a Q31 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_copy_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
+
+
/**
* @brief Fills a constant value into a floating-point vector.
- * @param[in] value input value to be filled
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_fill_f32(
float32_t value,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Fills a constant value into a Q7 vector.
- * @param[in] value input value to be filled
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_fill_q7(
q7_t value,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Fills a constant value into a Q15 vector.
- * @param[in] value input value to be filled
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_fill_q15(
q15_t value,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Fills a constant value into a Q31 vector.
- * @param[in] value input value to be filled
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_fill_q31(
q31_t value,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Convolution of floating-point sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- * @return none.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
*/
-
void arm_conv_f32(
float32_t * pSrcA,
uint32_t srcALen,
@@ -3077,17 +3005,14 @@
/**
* @brief Convolution of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
- * @return none.
- */
-
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
void arm_conv_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
@@ -3100,14 +3025,12 @@
/**
* @brief Convolution of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- * @return none.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
*/
-
void arm_conv_q15(
q15_t * pSrcA,
uint32_t srcALen,
@@ -3115,35 +3038,33 @@
uint32_t srcBLen,
q15_t * pDst);
- /**
- * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @return none.
- */
-
- void arm_conv_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
/**
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
void arm_conv_fast_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
@@ -3154,17 +3075,14 @@
q15_t * pScratch2);
-
/**
* @brief Convolution of Q31 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
void arm_conv_q31(
q31_t * pSrcA,
uint32_t srcALen,
@@ -3172,16 +3090,15 @@
uint32_t srcBLen,
q31_t * pDst);
+
/**
* @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
void arm_conv_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
@@ -3192,16 +3109,14 @@
/**
* @brief Convolution of Q7 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
void arm_conv_opt_q7(
q7_t * pSrcA,
uint32_t srcALen,
@@ -3212,17 +3127,14 @@
q15_t * pScratch2);
-
/**
* @brief Convolution of Q7 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
void arm_conv_q7(
q7_t * pSrcA,
uint32_t srcALen,
@@ -3233,16 +3145,15 @@
/**
* @brief Partial convolution of floating-point sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
-
arm_status arm_conv_partial_f32(
float32_t * pSrcA,
uint32_t srcALen,
@@ -3252,20 +3163,20 @@
uint32_t firstIndex,
uint32_t numPoints);
- /**
+
+ /**
* @brief Partial convolution of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
-
arm_status arm_conv_partial_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
@@ -3278,18 +3189,17 @@
q15_t * pScratch2);
-/**
+ /**
* @brief Partial convolution of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
-
arm_status arm_conv_partial_q15(
q15_t * pSrcA,
uint32_t srcALen,
@@ -3299,42 +3209,41 @@
uint32_t firstIndex,
uint32_t numPoints);
+
/**
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
-
arm_status arm_conv_partial_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
/**
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
-
arm_status arm_conv_partial_fast_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
@@ -3349,16 +3258,15 @@
/**
* @brief Partial convolution of Q31 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
-
arm_status arm_conv_partial_q31(
q31_t * pSrcA,
uint32_t srcALen,
@@ -3371,16 +3279,15 @@
/**
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
-
arm_status arm_conv_partial_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
@@ -3393,18 +3300,17 @@
/**
* @brief Partial convolution of Q7 sequences
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
-
arm_status arm_conv_partial_opt_q7(
q7_t * pSrcA,
uint32_t srcALen,
@@ -3419,16 +3325,15 @@
/**
* @brief Partial convolution of Q7 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
-
arm_status arm_conv_partial_q7(
q7_t * pSrcA,
uint32_t srcALen,
@@ -3439,56 +3344,47 @@
uint32_t numPoints);
-
/**
* @brief Instance structure for the Q15 FIR decimator.
*/
-
typedef struct
{
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q15;
/**
* @brief Instance structure for the Q31 FIR decimator.
*/
-
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q31;
/**
* @brief Instance structure for the floating-point FIR decimator.
*/
-
typedef struct
{
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
-
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_f32;
-
/**
* @brief Processing function for the floating-point FIR decimator.
- * @param[in] *S points to an instance of the floating-point FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- * @return none
- */
-
+ * @param[in] S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
void arm_fir_decimate_f32(
const arm_fir_decimate_instance_f32 * S,
float32_t * pSrc,
@@ -3498,16 +3394,15 @@
/**
* @brief Initialization function for the floating-point FIR decimator.
- * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
- * @param[in] numTaps number of coefficients in the filter.
- * @param[in] M decimation factor.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
+ * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
-
arm_status arm_fir_decimate_init_f32(
arm_fir_decimate_instance_f32 * S,
uint16_t numTaps,
@@ -3516,30 +3411,28 @@
float32_t * pState,
uint32_t blockSize);
+
/**
* @brief Processing function for the Q15 FIR decimator.
- * @param[in] *S points to an instance of the Q15 FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- * @return none
- */
-
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
void arm_fir_decimate_q15(
const arm_fir_decimate_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q15 FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- * @return none
- */
-
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
void arm_fir_decimate_fast_q15(
const arm_fir_decimate_instance_q15 * S,
q15_t * pSrc,
@@ -3547,19 +3440,17 @@
uint32_t blockSize);
-
/**
* @brief Initialization function for the Q15 FIR decimator.
- * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
- * @param[in] numTaps number of coefficients in the filter.
- * @param[in] M decimation factor.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
+ * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
-
arm_status arm_fir_decimate_init_q15(
arm_fir_decimate_instance_q15 * S,
uint16_t numTaps,
@@ -3568,15 +3459,14 @@
q15_t * pState,
uint32_t blockSize);
+
/**
* @brief Processing function for the Q31 FIR decimator.
- * @param[in] *S points to an instance of the Q31 FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
- * @return none
- */
-
+ */
void arm_fir_decimate_q31(
const arm_fir_decimate_instance_q31 * S,
q31_t * pSrc,
@@ -3585,13 +3475,11 @@
/**
* @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q31 FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- * @return none
- */
-
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
void arm_fir_decimate_fast_q31(
arm_fir_decimate_instance_q31 * S,
q31_t * pSrc,
@@ -3601,16 +3489,15 @@
/**
* @brief Initialization function for the Q31 FIR decimator.
- * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
- * @param[in] numTaps number of coefficients in the filter.
- * @param[in] M decimation factor.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
+ * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
-
arm_status arm_fir_decimate_init_q31(
arm_fir_decimate_instance_q31 * S,
uint16_t numTaps,
@@ -3620,11 +3507,9 @@
uint32_t blockSize);
-
/**
* @brief Instance structure for the Q15 FIR interpolator.
*/
-
typedef struct
{
uint8_t L; /**< upsample factor. */
@@ -3636,37 +3521,33 @@
/**
* @brief Instance structure for the Q31 FIR interpolator.
*/
-
typedef struct
{
uint8_t L; /**< upsample factor. */
uint16_t phaseLength; /**< length of each polyphase filter component. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
} arm_fir_interpolate_instance_q31;
/**
* @brief Instance structure for the floating-point FIR interpolator.
*/
-
typedef struct
{
uint8_t L; /**< upsample factor. */
uint16_t phaseLength; /**< length of each polyphase filter component. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
} arm_fir_interpolate_instance_f32;
/**
* @brief Processing function for the Q15 FIR interpolator.
- * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
void arm_fir_interpolate_q15(
const arm_fir_interpolate_instance_q15 * S,
q15_t * pSrc,
@@ -3676,16 +3557,15 @@
/**
* @brief Initialization function for the Q15 FIR interpolator.
- * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] L upsample factor.
- * @param[in] numTaps number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficient buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
+ * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
*/
-
arm_status arm_fir_interpolate_init_q15(
arm_fir_interpolate_instance_q15 * S,
uint8_t L,
@@ -3694,33 +3574,32 @@
q15_t * pState,
uint32_t blockSize);
+
/**
* @brief Processing function for the Q31 FIR interpolator.
- * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
void arm_fir_interpolate_q31(
const arm_fir_interpolate_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the Q31 FIR interpolator.
- * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
- * @param[in] L upsample factor.
- * @param[in] numTaps number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficient buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
+ * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
*/
-
arm_status arm_fir_interpolate_init_q31(
arm_fir_interpolate_instance_q31 * S,
uint8_t L,
@@ -3732,31 +3611,29 @@
/**
* @brief Processing function for the floating-point FIR interpolator.
- * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
void arm_fir_interpolate_f32(
const arm_fir_interpolate_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the floating-point FIR interpolator.
- * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
- * @param[in] L upsample factor.
- * @param[in] numTaps number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficient buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
+ * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
*/
-
arm_status arm_fir_interpolate_init_f32(
arm_fir_interpolate_instance_f32 * S,
uint8_t L,
@@ -3765,28 +3642,25 @@
float32_t * pState,
uint32_t blockSize);
+
/**
* @brief Instance structure for the high precision Q31 Biquad cascade filter.
*/
-
typedef struct
{
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
-
} arm_biquad_cas_df1_32x64_ins_q31;
/**
- * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
void arm_biquad_cas_df1_32x64_q31(
const arm_biquad_cas_df1_32x64_ins_q31 * S,
q31_t * pSrc,
@@ -3795,14 +3669,12 @@
/**
- * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
+ */
void arm_biquad_cas_df1_32x64_init_q31(
arm_biquad_cas_df1_32x64_ins_q31 * S,
uint8_t numStages,
@@ -3811,11 +3683,9 @@
uint8_t postShift);
-
/**
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
*/
-
typedef struct
{
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
@@ -3823,12 +3693,9 @@
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_cascade_df2T_instance_f32;
-
-
/**
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
*/
-
typedef struct
{
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
@@ -3836,12 +3703,9 @@
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_cascade_stereo_df2T_instance_f32;
-
-
/**
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
*/
-
typedef struct
{
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
@@ -3852,13 +3716,11 @@
/**
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in] *S points to an instance of the filter data structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
void arm_biquad_cascade_df2T_f32(
const arm_biquad_cascade_df2T_instance_f32 * S,
float32_t * pSrc,
@@ -3868,28 +3730,25 @@
/**
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
- * @param[in] *S points to an instance of the filter data structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
void arm_biquad_cascade_stereo_df2T_f32(
const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in] *S points to an instance of the filter data structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
void arm_biquad_cascade_df2T_f64(
const arm_biquad_cascade_df2T_instance_f64 * S,
float64_t * pSrc,
@@ -3899,13 +3758,11 @@
/**
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in,out] *S points to an instance of the filter data structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
void arm_biquad_cascade_df2T_init_f32(
arm_biquad_cascade_df2T_instance_f32 * S,
uint8_t numStages,
@@ -3915,13 +3772,11 @@
/**
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in,out] *S points to an instance of the filter data structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
void arm_biquad_cascade_stereo_df2T_init_f32(
arm_biquad_cascade_stereo_df2T_instance_f32 * S,
uint8_t numStages,
@@ -3931,13 +3786,11 @@
/**
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in,out] *S points to an instance of the filter data structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @return none
- */
-
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
void arm_biquad_cascade_df2T_init_f64(
arm_biquad_cascade_df2T_instance_f64 * S,
uint8_t numStages,
@@ -3945,33 +3798,29 @@
float64_t * pState);
-
/**
* @brief Instance structure for the Q15 FIR lattice filter.
*/
-
typedef struct
{
- uint16_t numStages; /**< number of filter stages. */
- q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ uint16_t numStages; /**< number of filter stages. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
} arm_fir_lattice_instance_q15;
/**
* @brief Instance structure for the Q31 FIR lattice filter.
*/
-
typedef struct
{
- uint16_t numStages; /**< number of filter stages. */
- q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ uint16_t numStages; /**< number of filter stages. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
} arm_fir_lattice_instance_q31;
/**
* @brief Instance structure for the floating-point FIR lattice filter.
*/
-
typedef struct
{
uint16_t numStages; /**< number of filter stages. */
@@ -3979,15 +3828,14 @@
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
} arm_fir_lattice_instance_f32;
+
/**
* @brief Initialization function for the Q15 FIR lattice filter.
- * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
* @param[in] numStages number of filter stages.
- * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
- * @param[in] *pState points to the state buffer. The array is of length numStages.
- * @return none.
- */
-
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
void arm_fir_lattice_init_q15(
arm_fir_lattice_instance_q15 * S,
uint16_t numStages,
@@ -3997,11 +3845,10 @@
/**
* @brief Processing function for the Q15 FIR lattice filter.
- * @param[in] *S points to an instance of the Q15 FIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
*/
void arm_fir_lattice_q15(
const arm_fir_lattice_instance_q15 * S,
@@ -4009,15 +3856,14 @@
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the Q31 FIR lattice filter.
- * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
* @param[in] numStages number of filter stages.
- * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
- * @param[in] *pState points to the state buffer. The array is of length numStages.
- * @return none.
- */
-
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
void arm_fir_lattice_init_q31(
arm_fir_lattice_instance_q31 * S,
uint16_t numStages,
@@ -4027,58 +3873,55 @@
/**
* @brief Processing function for the Q31 FIR lattice filter.
- * @param[in] *S points to an instance of the Q31 FIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
void arm_fir_lattice_q31(
const arm_fir_lattice_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the floating-point FIR lattice filter.
- * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
* @param[in] numStages number of filter stages.
- * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
- * @param[in] *pState points to the state buffer. The array is of length numStages.
- * @return none.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
*/
-
void arm_fir_lattice_init_f32(
arm_fir_lattice_instance_f32 * S,
uint16_t numStages,
float32_t * pCoeffs,
float32_t * pState);
+
/**
* @brief Processing function for the floating-point FIR lattice filter.
- * @param[in] *S points to an instance of the floating-point FIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
void arm_fir_lattice_f32(
const arm_fir_lattice_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Instance structure for the Q15 IIR lattice filter.
*/
typedef struct
{
- uint16_t numStages; /**< number of stages in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ uint16_t numStages; /**< number of stages in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
} arm_iir_lattice_instance_q15;
/**
@@ -4086,10 +3929,10 @@
*/
typedef struct
{
- uint16_t numStages; /**< number of stages in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ uint16_t numStages; /**< number of stages in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
} arm_iir_lattice_instance_q31;
/**
@@ -4097,38 +3940,36 @@
*/
typedef struct
{
- uint16_t numStages; /**< number of stages in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ uint16_t numStages; /**< number of stages in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
} arm_iir_lattice_instance_f32;
+
/**
* @brief Processing function for the floating-point IIR lattice filter.
- * @param[in] *S points to an instance of the floating-point IIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_iir_lattice_f32(
const arm_iir_lattice_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
+
/**
* @brief Initialization function for the floating-point IIR lattice filter.
- * @param[in] *S points to an instance of the floating-point IIR lattice structure.
- * @param[in] numStages number of stages in the filter.
- * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
- * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
- * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_iir_lattice_init_f32(
arm_iir_lattice_instance_f32 * S,
uint16_t numStages,
@@ -4140,13 +3981,11 @@
/**
* @brief Processing function for the Q31 IIR lattice filter.
- * @param[in] *S points to an instance of the Q31 IIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_iir_lattice_q31(
const arm_iir_lattice_instance_q31 * S,
q31_t * pSrc,
@@ -4156,15 +3995,13 @@
/**
* @brief Initialization function for the Q31 IIR lattice filter.
- * @param[in] *S points to an instance of the Q31 IIR lattice structure.
- * @param[in] numStages number of stages in the filter.
- * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
- * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
- * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_iir_lattice_init_q31(
arm_iir_lattice_instance_q31 * S,
uint16_t numStages,
@@ -4176,13 +4013,11 @@
/**
* @brief Processing function for the Q15 IIR lattice filter.
- * @param[in] *S points to an instance of the Q15 IIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_iir_lattice_q15(
const arm_iir_lattice_instance_q15 * S,
q15_t * pSrc,
@@ -4192,15 +4027,13 @@
/**
* @brief Initialization function for the Q15 IIR lattice filter.
- * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
* @param[in] numStages number of stages in the filter.
- * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
- * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
- * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
+ * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
*/
-
void arm_iir_lattice_init_q15(
arm_iir_lattice_instance_q15 * S,
uint16_t numStages,
@@ -4209,10 +4042,10 @@
q15_t * pState,
uint32_t blockSize);
+
/**
* @brief Instance structure for the floating-point LMS filter.
*/
-
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
@@ -4221,17 +4054,16 @@
float32_t mu; /**< step size that controls filter coefficient updates. */
} arm_lms_instance_f32;
+
/**
* @brief Processing function for floating-point LMS filter.
- * @param[in] *S points to an instance of the floating-point LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_lms_f32(
const arm_lms_instance_f32 * S,
float32_t * pSrc,
@@ -4240,17 +4072,16 @@
float32_t * pErr,
uint32_t blockSize);
+
/**
* @brief Initialization function for floating-point LMS filter.
- * @param[in] *S points to an instance of the floating-point LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to the coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_lms_init_f32(
arm_lms_instance_f32 * S,
uint16_t numTaps,
@@ -4259,10 +4090,10 @@
float32_t mu,
uint32_t blockSize);
+
/**
* @brief Instance structure for the Q15 LMS filter.
*/
-
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
@@ -4275,16 +4106,14 @@
/**
* @brief Initialization function for the Q15 LMS filter.
- * @param[in] *S points to an instance of the Q15 LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to the coefficient buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
void arm_lms_init_q15(
arm_lms_instance_q15 * S,
uint16_t numTaps,
@@ -4294,17 +4123,16 @@
uint32_t blockSize,
uint32_t postShift);
+
/**
* @brief Processing function for Q15 LMS filter.
- * @param[in] *S points to an instance of the Q15 LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_lms_q15(
const arm_lms_instance_q15 * S,
q15_t * pSrc,
@@ -4317,7 +4145,6 @@
/**
* @brief Instance structure for the Q31 LMS filter.
*/
-
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
@@ -4325,20 +4152,18 @@
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
q31_t mu; /**< step size that controls filter coefficient updates. */
uint32_t postShift; /**< bit shift applied to coefficients. */
-
} arm_lms_instance_q31;
+
/**
* @brief Processing function for Q31 LMS filter.
- * @param[in] *S points to an instance of the Q15 LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_lms_q31(
const arm_lms_instance_q31 * S,
q31_t * pSrc,
@@ -4347,18 +4172,17 @@
q31_t * pErr,
uint32_t blockSize);
+
/**
* @brief Initialization function for Q31 LMS filter.
- * @param[in] *S points to an instance of the Q31 LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
void arm_lms_init_q31(
arm_lms_instance_q31 * S,
uint16_t numTaps,
@@ -4368,31 +4192,30 @@
uint32_t blockSize,
uint32_t postShift);
+
/**
* @brief Instance structure for the floating-point normalized LMS filter.
*/
-
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- float32_t mu; /**< step size that control filter coefficient updates. */
- float32_t energy; /**< saves previous frame energy. */
- float32_t x0; /**< saves previous input sample. */
+ float32_t mu; /**< step size that control filter coefficient updates. */
+ float32_t energy; /**< saves previous frame energy. */
+ float32_t x0; /**< saves previous input sample. */
} arm_lms_norm_instance_f32;
+
/**
* @brief Processing function for floating-point normalized LMS filter.
- * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_lms_norm_f32(
arm_lms_norm_instance_f32 * S,
float32_t * pSrc,
@@ -4401,17 +4224,16 @@
float32_t * pErr,
uint32_t blockSize);
+
/**
* @brief Initialization function for floating-point normalized LMS filter.
- * @param[in] *S points to an instance of the floating-point LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_lms_norm_init_f32(
arm_lms_norm_instance_f32 * S,
uint16_t numTaps,
@@ -4436,17 +4258,16 @@
q31_t x0; /**< saves previous input sample. */
} arm_lms_norm_instance_q31;
+
/**
* @brief Processing function for Q31 normalized LMS filter.
- * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_lms_norm_q31(
arm_lms_norm_instance_q31 * S,
q31_t * pSrc,
@@ -4455,18 +4276,17 @@
q31_t * pErr,
uint32_t blockSize);
+
/**
* @brief Initialization function for Q31 normalized LMS filter.
- * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
void arm_lms_norm_init_q31(
arm_lms_norm_instance_q31 * S,
uint16_t numTaps,
@@ -4476,33 +4296,32 @@
uint32_t blockSize,
uint8_t postShift);
+
/**
* @brief Instance structure for the Q15 normalized LMS filter.
*/
-
typedef struct
{
- uint16_t numTaps; /**< Number of coefficients in the filter. */
+ uint16_t numTaps; /**< Number of coefficients in the filter. */
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q15_t mu; /**< step size that controls filter coefficient updates. */
- uint8_t postShift; /**< bit shift applied to coefficients. */
- q15_t *recipTable; /**< Points to the reciprocal initial value table. */
- q15_t energy; /**< saves previous frame energy. */
- q15_t x0; /**< saves previous input sample. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q15_t *recipTable; /**< Points to the reciprocal initial value table. */
+ q15_t energy; /**< saves previous frame energy. */
+ q15_t x0; /**< saves previous input sample. */
} arm_lms_norm_instance_q15;
+
/**
* @brief Processing function for Q15 normalized LMS filter.
- * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
void arm_lms_norm_q15(
arm_lms_norm_instance_q15 * S,
q15_t * pSrc,
@@ -4514,16 +4333,14 @@
/**
* @brief Initialization function for Q15 normalized LMS filter.
- * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- * @return none.
- */
-
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
void arm_lms_norm_init_q15(
arm_lms_norm_instance_q15 * S,
uint16_t numTaps,
@@ -4533,16 +4350,15 @@
uint32_t blockSize,
uint8_t postShift);
+
/**
* @brief Correlation of floating-point sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
void arm_correlate_f32(
float32_t * pSrcA,
uint32_t srcALen,
@@ -4553,13 +4369,12 @@
/**
* @brief Correlation of Q15 sequences
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @return none.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
*/
void arm_correlate_opt_q15(
q15_t * pSrcA,
@@ -4572,12 +4387,11 @@
/**
* @brief Correlation of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
*/
void arm_correlate_q15(
@@ -4587,36 +4401,33 @@
uint32_t srcBLen,
q15_t * pDst);
+
/**
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
*/
void arm_correlate_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
-
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
/**
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ */
void arm_correlate_fast_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
@@ -4625,16 +4436,15 @@
q15_t * pDst,
q15_t * pScratch);
+
/**
* @brief Correlation of Q31 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
void arm_correlate_q31(
q31_t * pSrcA,
uint32_t srcALen,
@@ -4642,16 +4452,15 @@
uint32_t srcBLen,
q31_t * pDst);
+
/**
* @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
void arm_correlate_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
@@ -4660,19 +4469,16 @@
q31_t * pDst);
-
/**
* @brief Correlation of Q7 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
void arm_correlate_opt_q7(
q7_t * pSrcA,
uint32_t srcALen,
@@ -4685,14 +4491,12 @@
/**
* @brief Correlation of Q7 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
void arm_correlate_q7(
q7_t * pSrcA,
uint32_t srcALen,
@@ -4717,7 +4521,6 @@
/**
* @brief Instance structure for the Q31 sparse FIR filter.
*/
-
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
@@ -4731,7 +4534,6 @@
/**
* @brief Instance structure for the Q15 sparse FIR filter.
*/
-
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
@@ -4745,7 +4547,6 @@
/**
* @brief Instance structure for the Q7 sparse FIR filter.
*/
-
typedef struct
{
uint16_t numTaps; /**< number of coefficients in the filter. */
@@ -4756,16 +4557,15 @@
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
} arm_fir_sparse_instance_q7;
+
/**
* @brief Processing function for the floating-point sparse FIR filter.
- * @param[in] *S points to an instance of the floating-point sparse FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
* @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
-
+ */
void arm_fir_sparse_f32(
arm_fir_sparse_instance_f32 * S,
float32_t * pSrc,
@@ -4773,18 +4573,17 @@
float32_t * pScratchIn,
uint32_t blockSize);
+
/**
* @brief Initialization function for the floating-point sparse FIR filter.
- * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
* @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] *pCoeffs points to the array of filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
* @param[in] maxDelay maximum offset time supported.
* @param[in] blockSize number of samples that will be processed per block.
- * @return none
- */
-
+ */
void arm_fir_sparse_init_f32(
arm_fir_sparse_instance_f32 * S,
uint16_t numTaps,
@@ -4794,16 +4593,15 @@
uint16_t maxDelay,
uint32_t blockSize);
+
/**
* @brief Processing function for the Q31 sparse FIR filter.
- * @param[in] *S points to an instance of the Q31 sparse FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
* @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
-
+ */
void arm_fir_sparse_q31(
arm_fir_sparse_instance_q31 * S,
q31_t * pSrc,
@@ -4811,18 +4609,17 @@
q31_t * pScratchIn,
uint32_t blockSize);
+
/**
* @brief Initialization function for the Q31 sparse FIR filter.
- * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
* @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] *pCoeffs points to the array of filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
* @param[in] maxDelay maximum offset time supported.
* @param[in] blockSize number of samples that will be processed per block.
- * @return none
- */
-
+ */
void arm_fir_sparse_init_q31(
arm_fir_sparse_instance_q31 * S,
uint16_t numTaps,
@@ -4832,17 +4629,16 @@
uint16_t maxDelay,
uint32_t blockSize);
+
/**
* @brief Processing function for the Q15 sparse FIR filter.
- * @param[in] *S points to an instance of the Q15 sparse FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
* @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
-
+ */
void arm_fir_sparse_q15(
arm_fir_sparse_instance_q15 * S,
q15_t * pSrc,
@@ -4854,16 +4650,14 @@
/**
* @brief Initialization function for the Q15 sparse FIR filter.
- * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
* @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] *pCoeffs points to the array of filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
* @param[in] maxDelay maximum offset time supported.
* @param[in] blockSize number of samples that will be processed per block.
- * @return none
- */
-
+ */
void arm_fir_sparse_init_q15(
arm_fir_sparse_instance_q15 * S,
uint16_t numTaps,
@@ -4873,17 +4667,16 @@
uint16_t maxDelay,
uint32_t blockSize);
+
/**
* @brief Processing function for the Q7 sparse FIR filter.
- * @param[in] *S points to an instance of the Q7 sparse FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
* @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
-
+ */
void arm_fir_sparse_q7(
arm_fir_sparse_instance_q7 * S,
q7_t * pSrc,
@@ -4892,18 +4685,17 @@
q31_t * pScratchOut,
uint32_t blockSize);
+
/**
* @brief Initialization function for the Q7 sparse FIR filter.
- * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
* @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] *pCoeffs points to the array of filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
* @param[in] maxDelay maximum offset time supported.
* @param[in] blockSize number of samples that will be processed per block.
- * @return none
- */
-
+ */
void arm_fir_sparse_init_q7(
arm_fir_sparse_instance_q7 * S,
uint16_t numTaps,
@@ -4914,27 +4706,24 @@
uint32_t blockSize);
- /*
+ /**
* @brief Floating-point sin_cos function.
- * @param[in] theta input value in degrees
- * @param[out] *pSinVal points to the processed sine output.
- * @param[out] *pCosVal points to the processed cos output.
- * @return none.
- */
-
+ * @param[in] theta input value in degrees
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cos output.
+ */
void arm_sin_cos_f32(
float32_t theta,
float32_t * pSinVal,
- float32_t * pCcosVal);
-
- /*
+ float32_t * pCosVal);
+
+
+ /**
* @brief Q31 sin_cos function.
* @param[in] theta scaled input value in degrees
- * @param[out] *pSinVal points to the processed sine output.
- * @param[out] *pCosVal points to the processed cosine output.
- * @return none.
- */
-
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cosine output.
+ */
void arm_sin_cos_q31(
q31_t theta,
q31_t * pSinVal,
@@ -4943,12 +4732,10 @@
/**
* @brief Floating-point complex conjugate.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
void arm_cmplx_conj_f32(
float32_t * pSrc,
float32_t * pDst,
@@ -4956,66 +4743,58 @@
/**
* @brief Q31 complex conjugate.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
void arm_cmplx_conj_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples);
+
/**
* @brief Q15 complex conjugate.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
void arm_cmplx_conj_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples);
-
/**
* @brief Floating-point complex magnitude squared
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
void arm_cmplx_mag_squared_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples);
+
/**
* @brief Q31 complex magnitude squared
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
void arm_cmplx_mag_squared_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples);
+
/**
* @brief Q15 complex magnitude squared
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
void arm_cmplx_mag_squared_q15(
q15_t * pSrc,
q15_t * pDst,
@@ -5090,13 +4869,11 @@
/**
* @brief Process function for the floating-point PID Control.
- * @param[in,out] *S is an instance of the floating-point PID Control structure
- * @param[in] in input sample to process
+ * @param[in,out] S is an instance of the floating-point PID Control structure
+ * @param[in] in input sample to process
* @return out processed output sample.
*/
-
-
- static __INLINE float32_t arm_pid_f32(
+ CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32(
arm_pid_instance_f32 * S,
float32_t in)
{
@@ -5118,8 +4895,8 @@
/**
* @brief Process function for the Q31 PID Control.
- * @param[in,out] *S points to an instance of the Q31 PID Control structure
- * @param[in] in input sample to process
+ * @param[in,out] S points to an instance of the Q31 PID Control structure
+ * @param[in] in input sample to process
* @return out processed output sample.
*
* <b>Scaling and Overflow Behavior:</b>
@@ -5130,8 +4907,7 @@
* In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
* After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
*/
-
- static __INLINE q31_t arm_pid_q31(
+ CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31(
arm_pid_instance_q31 * S,
q31_t in)
{
@@ -5160,13 +4936,13 @@
/* return to application */
return (out);
-
}
+
/**
* @brief Process function for the Q15 PID Control.
- * @param[in,out] *S points to an instance of the Q15 PID Control structure
- * @param[in] in input sample to process
+ * @param[in,out] S points to an instance of the Q15 PID Control structure
+ * @param[in] in input sample to process
* @return out processed output sample.
*
* <b>Scaling and Overflow Behavior:</b>
@@ -5178,26 +4954,24 @@
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
* Lastly, the accumulator is saturated to yield a result in 1.15 format.
*/
-
- static __INLINE q15_t arm_pid_q15(
+ CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15(
arm_pid_instance_q15 * S,
q15_t in)
{
q63_t acc;
q15_t out;
-#ifndef ARM_MATH_CM0_FAMILY
+#if defined (ARM_MATH_DSP)
__SIMD32_TYPE *vstate;
/* Implementation of PID controller */
/* acc = A0 * x[n] */
- acc = (q31_t) __SMUAD(S->A0, in);
+ acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
/* acc += A1 * x[n-1] + A2 * x[n-2] */
vstate = __SIMD32_CONST(S->state);
- acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
-
+ acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
#else
/* acc = A0 * x[n] */
acc = ((q31_t) S->A0) * in;
@@ -5205,7 +4979,6 @@
/* acc += A1 * x[n-1] + A2 * x[n-2] */
acc += (q31_t) S->A1 * S->state[0];
acc += (q31_t) S->A2 * S->state[1];
-
#endif
/* acc += y[n-1] */
@@ -5221,7 +4994,6 @@
/* return to application */
return (out);
-
}
/**
@@ -5231,12 +5003,11 @@
/**
* @brief Floating-point matrix inverse.
- * @param[in] *src points to the instance of the input floating-point matrix structure.
- * @param[out] *dst points to the instance of the output floating-point matrix structure.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
*/
-
arm_status arm_mat_inverse_f32(
const arm_matrix_instance_f32 * src,
arm_matrix_instance_f32 * dst);
@@ -5244,12 +5015,11 @@
/**
* @brief Floating-point matrix inverse.
- * @param[in] *src points to the instance of the input floating-point matrix structure.
- * @param[out] *dst points to the instance of the output floating-point matrix structure.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
*/
-
arm_status arm_mat_inverse_f64(
const arm_matrix_instance_f64 * src,
arm_matrix_instance_f64 * dst);
@@ -5260,7 +5030,6 @@
* @ingroup groupController
*/
-
/**
* @defgroup clarke Vector Clarke Transform
* Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
@@ -5291,14 +5060,12 @@
/**
*
* @brief Floating-point Clarke transform
- * @param[in] Ia input three-phase coordinate <code>a</code>
- * @param[in] Ib input three-phase coordinate <code>b</code>
- * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
- * @return none.
- */
-
- static __INLINE void arm_clarke_f32(
+ * @param[in] Ia input three-phase coordinate <code>a</code>
+ * @param[in] Ib input three-phase coordinate <code>b</code>
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32(
float32_t Ia,
float32_t Ib,
float32_t * pIalpha,
@@ -5308,18 +5075,16 @@
*pIalpha = Ia;
/* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
- *pIbeta =
- ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
-
+ *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
}
+
/**
* @brief Clarke transform for Q31 version
- * @param[in] Ia input three-phase coordinate <code>a</code>
- * @param[in] Ib input three-phase coordinate <code>b</code>
- * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
- * @return none.
+ * @param[in] Ia input three-phase coordinate <code>a</code>
+ * @param[in] Ib input three-phase coordinate <code>b</code>
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
*
* <b>Scaling and Overflow Behavior:</b>
* \par
@@ -5327,8 +5092,7 @@
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
* There is saturation on the addition, hence there is no risk of overflow.
*/
-
- static __INLINE void arm_clarke_q31(
+ CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31(
q31_t Ia,
q31_t Ib,
q31_t * pIalpha,
@@ -5355,10 +5119,9 @@
/**
* @brief Converts the elements of the Q7 vector to Q31 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_q7_to_q31(
q7_t * pSrc,
@@ -5367,7 +5130,6 @@
-
/**
* @ingroup groupController
*/
@@ -5395,15 +5157,12 @@
/**
* @brief Floating-point Inverse Clarke transform
- * @param[in] Ialpha input two-phase orthogonal vector axis alpha
- * @param[in] Ibeta input two-phase orthogonal vector axis beta
- * @param[out] *pIa points to output three-phase coordinate <code>a</code>
- * @param[out] *pIb points to output three-phase coordinate <code>b</code>
- * @return none.
- */
-
-
- static __INLINE void arm_inv_clarke_f32(
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] pIa points to output three-phase coordinate <code>a</code>
+ * @param[out] pIb points to output three-phase coordinate <code>b</code>
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32(
float32_t Ialpha,
float32_t Ibeta,
float32_t * pIa,
@@ -5413,17 +5172,16 @@
*pIa = Ialpha;
/* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
- *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
-
+ *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
}
+
/**
* @brief Inverse Clarke transform for Q31 version
- * @param[in] Ialpha input two-phase orthogonal vector axis alpha
- * @param[in] Ibeta input two-phase orthogonal vector axis beta
- * @param[out] *pIa points to output three-phase coordinate <code>a</code>
- * @param[out] *pIb points to output three-phase coordinate <code>b</code>
- * @return none.
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] pIa points to output three-phase coordinate <code>a</code>
+ * @param[out] pIb points to output three-phase coordinate <code>b</code>
*
* <b>Scaling and Overflow Behavior:</b>
* \par
@@ -5431,8 +5189,7 @@
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
* There is saturation on the subtraction, hence there is no risk of overflow.
*/
-
- static __INLINE void arm_inv_clarke_q31(
+ CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31(
q31_t Ialpha,
q31_t Ibeta,
q31_t * pIa,
@@ -5451,7 +5208,6 @@
/* pIb is calculated by subtracting the products */
*pIb = __QSUB(product2, product1);
-
}
/**
@@ -5460,10 +5216,9 @@
/**
* @brief Converts the elements of the Q7 vector to Q15 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
*/
void arm_q7_to_q15(
q7_t * pSrc,
@@ -5507,19 +5262,17 @@
/**
* @brief Floating-point Park transform
- * @param[in] Ialpha input two-phase vector coordinate alpha
- * @param[in] Ibeta input two-phase vector coordinate beta
- * @param[out] *pId points to output rotor reference frame d
- * @param[out] *pIq points to output rotor reference frame q
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- * @return none.
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] pId points to output rotor reference frame d
+ * @param[out] pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
*
* The function implements the forward Park transform.
*
*/
-
- static __INLINE void arm_park_f32(
+ CMSIS_INLINE __STATIC_INLINE void arm_park_f32(
float32_t Ialpha,
float32_t Ibeta,
float32_t * pId,
@@ -5532,18 +5285,17 @@
/* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
*pIq = -Ialpha * sinVal + Ibeta * cosVal;
-
}
+
/**
* @brief Park transform for Q31 version
- * @param[in] Ialpha input two-phase vector coordinate alpha
- * @param[in] Ibeta input two-phase vector coordinate beta
- * @param[out] *pId points to output rotor reference frame d
- * @param[out] *pIq points to output rotor reference frame q
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- * @return none.
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] pId points to output rotor reference frame d
+ * @param[out] pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
*
* <b>Scaling and Overflow Behavior:</b>
* \par
@@ -5551,9 +5303,7 @@
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
* There is saturation on the addition and subtraction, hence there is no risk of overflow.
*/
-
-
- static __INLINE void arm_park_q31(
+ CMSIS_INLINE __STATIC_INLINE void arm_park_q31(
q31_t Ialpha,
q31_t Ibeta,
q31_t * pId,
@@ -5590,10 +5340,9 @@
/**
* @brief Converts the elements of the Q7 vector to floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
*/
void arm_q7_to_float(
q7_t * pSrc,
@@ -5629,16 +5378,14 @@
/**
* @brief Floating-point Inverse Park transform
- * @param[in] Id input coordinate of rotor reference frame d
- * @param[in] Iq input coordinate of rotor reference frame q
- * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- * @return none.
- */
-
- static __INLINE void arm_inv_park_f32(
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ */
+ CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32(
float32_t Id,
float32_t Iq,
float32_t * pIalpha,
@@ -5651,19 +5398,17 @@
/* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
*pIbeta = Id * sinVal + Iq * cosVal;
-
}
/**
- * @brief Inverse Park transform for Q31 version
- * @param[in] Id input coordinate of rotor reference frame d
- * @param[in] Iq input coordinate of rotor reference frame q
- * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- * @return none.
+ * @brief Inverse Park transform for Q31 version
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
*
* <b>Scaling and Overflow Behavior:</b>
* \par
@@ -5671,9 +5416,7 @@
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
* There is saturation on the addition, hence there is no risk of overflow.
*/
-
-
- static __INLINE void arm_inv_park_q31(
+ CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31(
q31_t Id,
q31_t Iq,
q31_t * pIalpha,
@@ -5702,7 +5445,6 @@
/* Calculate pIbeta by using the two intermediate products 3 and 4 */
*pIbeta = __QADD(product4, product3);
-
}
/**
@@ -5712,10 +5454,9 @@
/**
* @brief Converts the elements of the Q31 vector to floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
*/
void arm_q31_to_float(
q31_t * pSrc,
@@ -5765,17 +5506,15 @@
/**
* @brief Process function for the floating-point Linear Interpolation Function.
- * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
- * @param[in] x input sample to process
+ * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
* @return y processed output sample.
*
*/
-
- static __INLINE float32_t arm_linear_interp_f32(
+ CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32(
arm_linear_interp_instance_f32 * S,
float32_t x)
{
-
float32_t y;
float32_t x0, x1; /* Nearest input values */
float32_t y0, y1; /* Nearest output values */
@@ -5786,12 +5525,12 @@
/* Calculation of index */
i = (int32_t) ((x - S->x1) / xSpacing);
- if(i < 0)
+ if (i < 0)
{
/* Iniatilize output for below specified range as least output value of table */
y = pYData[0];
}
- else if((uint32_t)i >= S->nValues)
+ else if ((uint32_t)i >= S->nValues)
{
/* Iniatilize output for above specified range as last output value of table */
y = pYData[S->nValues - 1];
@@ -5799,7 +5538,7 @@
else
{
/* Calculation of nearest input values */
- x0 = S->x1 + i * xSpacing;
+ x0 = S->x1 + i * xSpacing;
x1 = S->x1 + (i + 1) * xSpacing;
/* Read of nearest output values */
@@ -5815,12 +5554,13 @@
return (y);
}
+
/**
*
* @brief Process function for the Q31 Linear Interpolation Function.
- * @param[in] *pYData pointer to Q31 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
+ * @param[in] pYData pointer to Q31 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
* @return y processed output sample.
*
* \par
@@ -5828,9 +5568,7 @@
* This function can support maximum of table size 2^12.
*
*/
-
-
- static __INLINE q31_t arm_linear_interp_q31(
+ CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31(
q31_t * pYData,
q31_t x,
uint32_t nValues)
@@ -5843,26 +5581,25 @@
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
- index = ((x & 0xFFF00000) >> 20);
-
- if(index >= (int32_t)(nValues - 1))
+ index = ((x & (q31_t)0xFFF00000) >> 20);
+
+ if (index >= (int32_t)(nValues - 1))
{
return (pYData[nValues - 1]);
}
- else if(index < 0)
+ else if (index < 0)
{
return (pYData[0]);
}
else
{
-
/* 20 bits for the fractional part */
/* shift left by 11 to keep fract in 1.31 format */
fract = (x & 0x000FFFFF) << 11;
/* Read two nearest output values from the index in 1.31(q31) format */
y0 = pYData[index];
- y1 = pYData[index + 1u];
+ y1 = pYData[index + 1];
/* Calculation of y0 * (1-fract) and y is in 2.30 format */
y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
@@ -5872,17 +5609,16 @@
/* Convert y to 1.31 format */
return (y << 1u);
-
}
-
}
+
/**
*
* @brief Process function for the Q15 Linear Interpolation Function.
- * @param[in] *pYData pointer to Q15 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
+ * @param[in] pYData pointer to Q15 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
* @return y processed output sample.
*
* \par
@@ -5890,9 +5626,7 @@
* This function can support maximum of table size 2^12.
*
*/
-
-
- static __INLINE q15_t arm_linear_interp_q15(
+ CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15(
q15_t * pYData,
q31_t x,
uint32_t nValues)
@@ -5905,13 +5639,13 @@
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
- index = ((x & 0xFFF00000) >> 20u);
-
- if(index >= (int32_t)(nValues - 1))
+ index = ((x & (int32_t)0xFFF00000) >> 20);
+
+ if (index >= (int32_t)(nValues - 1))
{
return (pYData[nValues - 1]);
}
- else if(index < 0)
+ else if (index < 0)
{
return (pYData[0]);
}
@@ -5923,7 +5657,7 @@
/* Read two nearest output values from the index */
y0 = pYData[index];
- y1 = pYData[index + 1u];
+ y1 = pYData[index + 1];
/* Calculation of y0 * (1-fract) and y is in 13.35 format */
y = ((q63_t) y0 * (0xFFFFF - fract));
@@ -5932,27 +5666,24 @@
y += ((q63_t) y1 * (fract));
/* convert y to 1.15 format */
- return (y >> 20);
+ return (q15_t) (y >> 20);
}
-
-
}
+
/**
*
* @brief Process function for the Q7 Linear Interpolation Function.
- * @param[in] *pYData pointer to Q7 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
+ * @param[in] pYData pointer to Q7 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
* @return y processed output sample.
*
* \par
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
* This function can support maximum of table size 2^12.
*/
-
-
- static __INLINE q7_t arm_linear_interp_q7(
+ CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7(
q7_t * pYData,
q31_t x,
uint32_t nValues)
@@ -5971,21 +5702,19 @@
}
index = (x >> 20) & 0xfff;
-
- if(index >= (nValues - 1))
+ if (index >= (nValues - 1))
{
return (pYData[nValues - 1]);
}
else
{
-
/* 20 bits for the fractional part */
/* fract is in 12.20 format */
fract = (x & 0x000FFFFF);
/* Read two nearest output values from the index and are in 1.7(q7) format */
y0 = pYData[index];
- y1 = pYData[index + 1u];
+ y1 = pYData[index + 1];
/* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
y = ((y0 * (0xFFFFF - fract)));
@@ -5994,66 +5723,64 @@
y += (y1 * fract);
/* convert y to 1.7(q7) format */
- return (y >> 20u);
-
- }
-
+ return (q7_t) (y >> 20);
+ }
}
+
/**
* @} end of LinearInterpolate group
*/
/**
* @brief Fast approximation to the trigonometric sine function for floating-point data.
- * @param[in] x input value in radians.
+ * @param[in] x input value in radians.
* @return sin(x).
*/
-
float32_t arm_sin_f32(
float32_t x);
+
/**
* @brief Fast approximation to the trigonometric sine function for Q31 data.
- * @param[in] x Scaled input value in radians.
+ * @param[in] x Scaled input value in radians.
* @return sin(x).
*/
-
q31_t arm_sin_q31(
q31_t x);
+
/**
* @brief Fast approximation to the trigonometric sine function for Q15 data.
- * @param[in] x Scaled input value in radians.
+ * @param[in] x Scaled input value in radians.
* @return sin(x).
*/
-
q15_t arm_sin_q15(
q15_t x);
+
/**
* @brief Fast approximation to the trigonometric cosine function for floating-point data.
- * @param[in] x input value in radians.
+ * @param[in] x input value in radians.
* @return cos(x).
*/
-
float32_t arm_cos_f32(
float32_t x);
+
/**
* @brief Fast approximation to the trigonometric cosine function for Q31 data.
- * @param[in] x Scaled input value in radians.
+ * @param[in] x Scaled input value in radians.
* @return cos(x).
*/
-
q31_t arm_cos_q31(
q31_t x);
+
/**
* @brief Fast approximation to the trigonometric cosine function for Q15 data.
- * @param[in] x Scaled input value in radians.
+ * @param[in] x Scaled input value in radians.
* @return cos(x).
*/
-
q15_t arm_cos_q15(
q15_t x);
@@ -6091,22 +5818,26 @@
/**
* @brief Floating-point square root function.
- * @param[in] in input value.
- * @param[out] *pOut square root of input value.
+ * @param[in] in input value.
+ * @param[out] pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
-
- static __INLINE arm_status arm_sqrt_f32(
+ CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32(
float32_t in,
float32_t * pOut)
{
- if(in >= 0.0f)
+ if (in >= 0.0f)
{
-// #if __FPU_USED
-#if (__FPU_USED == 1) && defined ( __CC_ARM )
+#if (__FPU_USED == 1) && defined ( __CC_ARM )
*pOut = __sqrtf(in);
+#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
+ *pOut = __builtin_sqrtf(in);
+#elif (__FPU_USED == 1) && defined(__GNUC__)
+ *pOut = __builtin_sqrtf(in);
+#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
+ __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
#else
*pOut = sqrtf(in);
#endif
@@ -6118,14 +5849,13 @@
*pOut = 0.0f;
return (ARM_MATH_ARGUMENT_ERROR);
}
-
}
/**
* @brief Q31 square root function.
- * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
- * @param[out] *pOut square root of input value.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
+ * @param[out] pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
@@ -6133,10 +5863,11 @@
q31_t in,
q31_t * pOut);
+
/**
* @brief Q15 square root function.
- * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
- * @param[out] *pOut square root of input value.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
+ * @param[out] pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
@@ -6149,15 +5880,10 @@
*/
-
-
-
-
/**
* @brief floating-point Circular write function.
*/
-
- static __INLINE void arm_circularWrite_f32(
+ CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32(
int32_t * circBuffer,
int32_t L,
uint16_t * writeOffset,
@@ -6176,7 +5902,7 @@
/* Loop over the blockSize */
i = blockSize;
- while(i > 0u)
+ while (i > 0u)
{
/* copy the input sample to the circular buffer */
circBuffer[wOffset] = *src;
@@ -6186,7 +5912,7 @@
/* Circularly update wOffset. Watch out for positive and negative value */
wOffset += bufferInc;
- if(wOffset >= L)
+ if (wOffset >= L)
wOffset -= L;
/* Decrement the loop counter */
@@ -6194,7 +5920,7 @@
}
/* Update the index pointer */
- *writeOffset = wOffset;
+ *writeOffset = (uint16_t)wOffset;
}
@@ -6202,7 +5928,7 @@
/**
* @brief floating-point Circular Read function.
*/
- static __INLINE void arm_circularRead_f32(
+ CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32(
int32_t * circBuffer,
int32_t L,
int32_t * readOffset,
@@ -6224,7 +5950,7 @@
/* Loop over the blockSize */
i = blockSize;
- while(i > 0u)
+ while (i > 0u)
{
/* copy the sample from the circular buffer to the destination buffer */
*dst = circBuffer[rOffset];
@@ -6232,7 +5958,7 @@
/* Update the input pointer */
dst += dstInc;
- if(dst == (int32_t *) dst_end)
+ if (dst == (int32_t *) dst_end)
{
dst = dst_base;
}
@@ -6240,7 +5966,7 @@
/* Circularly update rOffset. Watch out for positive and negative value */
rOffset += bufferInc;
- if(rOffset >= L)
+ if (rOffset >= L)
{
rOffset -= L;
}
@@ -6253,11 +5979,11 @@
*readOffset = rOffset;
}
+
/**
* @brief Q15 Circular write function.
*/
-
- static __INLINE void arm_circularWrite_q15(
+ CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15(
q15_t * circBuffer,
int32_t L,
uint16_t * writeOffset,
@@ -6276,7 +6002,7 @@
/* Loop over the blockSize */
i = blockSize;
- while(i > 0u)
+ while (i > 0u)
{
/* copy the input sample to the circular buffer */
circBuffer[wOffset] = *src;
@@ -6286,7 +6012,7 @@
/* Circularly update wOffset. Watch out for positive and negative value */
wOffset += bufferInc;
- if(wOffset >= L)
+ if (wOffset >= L)
wOffset -= L;
/* Decrement the loop counter */
@@ -6294,15 +6020,14 @@
}
/* Update the index pointer */
- *writeOffset = wOffset;
+ *writeOffset = (uint16_t)wOffset;
}
-
/**
* @brief Q15 Circular Read function.
*/
- static __INLINE void arm_circularRead_q15(
+ CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15(
q15_t * circBuffer,
int32_t L,
int32_t * readOffset,
@@ -6325,7 +6050,7 @@
/* Loop over the blockSize */
i = blockSize;
- while(i > 0u)
+ while (i > 0u)
{
/* copy the sample from the circular buffer to the destination buffer */
*dst = circBuffer[rOffset];
@@ -6333,7 +6058,7 @@
/* Update the input pointer */
dst += dstInc;
- if(dst == (q15_t *) dst_end)
+ if (dst == (q15_t *) dst_end)
{
dst = dst_base;
}
@@ -6341,7 +6066,7 @@
/* Circularly update wOffset. Watch out for positive and negative value */
rOffset += bufferInc;
- if(rOffset >= L)
+ if (rOffset >= L)
{
rOffset -= L;
}
@@ -6358,8 +6083,7 @@
/**
* @brief Q7 Circular write function.
*/
-
- static __INLINE void arm_circularWrite_q7(
+ CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7(
q7_t * circBuffer,
int32_t L,
uint16_t * writeOffset,
@@ -6378,7 +6102,7 @@
/* Loop over the blockSize */
i = blockSize;
- while(i > 0u)
+ while (i > 0u)
{
/* copy the input sample to the circular buffer */
circBuffer[wOffset] = *src;
@@ -6388,7 +6112,7 @@
/* Circularly update wOffset. Watch out for positive and negative value */
wOffset += bufferInc;
- if(wOffset >= L)
+ if (wOffset >= L)
wOffset -= L;
/* Decrement the loop counter */
@@ -6396,15 +6120,14 @@
}
/* Update the index pointer */
- *writeOffset = wOffset;
+ *writeOffset = (uint16_t)wOffset;
}
-
/**
* @brief Q7 Circular Read function.
*/
- static __INLINE void arm_circularRead_q7(
+ CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7(
q7_t * circBuffer,
int32_t L,
int32_t * readOffset,
@@ -6427,7 +6150,7 @@
/* Loop over the blockSize */
i = blockSize;
- while(i > 0u)
+ while (i > 0u)
{
/* copy the sample from the circular buffer to the destination buffer */
*dst = circBuffer[rOffset];
@@ -6435,7 +6158,7 @@
/* Update the input pointer */
dst += dstInc;
- if(dst == (q7_t *) dst_end)
+ if (dst == (q7_t *) dst_end)
{
dst = dst_base;
}
@@ -6443,7 +6166,7 @@
/* Circularly update rOffset. Watch out for positive and negative value */
rOffset += bufferInc;
- if(rOffset >= L)
+ if (rOffset >= L)
{
rOffset -= L;
}
@@ -6459,271 +6182,252 @@
/**
* @brief Sum of the squares of the elements of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_power_q31(
q31_t * pSrc,
uint32_t blockSize,
q63_t * pResult);
+
/**
* @brief Sum of the squares of the elements of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_power_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
+
/**
* @brief Sum of the squares of the elements of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_power_q15(
q15_t * pSrc,
uint32_t blockSize,
q63_t * pResult);
+
/**
* @brief Sum of the squares of the elements of a Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_power_q7(
q7_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
+
/**
* @brief Mean value of a Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_mean_q7(
q7_t * pSrc,
uint32_t blockSize,
q7_t * pResult);
+
/**
* @brief Mean value of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
*/
void arm_mean_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult);
+
/**
* @brief Mean value of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
*/
void arm_mean_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
+
/**
* @brief Mean value of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
*/
void arm_mean_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
+
/**
* @brief Variance of the elements of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_var_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
+
/**
* @brief Variance of the elements of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_var_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
+
/**
* @brief Variance of the elements of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_var_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult);
+
/**
* @brief Root Mean Square of the elements of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_rms_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
+
/**
* @brief Root Mean Square of the elements of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_rms_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
+
/**
* @brief Root Mean Square of the elements of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_rms_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult);
+
/**
* @brief Standard deviation of the elements of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_std_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult);
+
/**
* @brief Standard deviation of the elements of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_std_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
+
/**
* @brief Standard deviation of the elements of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
void arm_std_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult);
+
/**
* @brief Floating-point complex magnitude
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
void arm_cmplx_mag_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples);
+
/**
* @brief Q31 complex magnitude
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
void arm_cmplx_mag_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples);
+
/**
* @brief Q15 complex magnitude
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
-
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
void arm_cmplx_mag_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples);
+
/**
* @brief Q15 complex dot product
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] numSamples number of complex samples in each vector
- * @param[out] *realResult real part of the result returned here
- * @param[out] *imagResult imaginary part of the result returned here
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
void arm_cmplx_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
@@ -6731,16 +6435,15 @@
q31_t * realResult,
q31_t * imagResult);
+
/**
* @brief Q31 complex dot product
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] numSamples number of complex samples in each vector
- * @param[out] *realResult real part of the result returned here
- * @param[out] *imagResult imaginary part of the result returned here
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
void arm_cmplx_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
@@ -6748,16 +6451,15 @@
q63_t * realResult,
q63_t * imagResult);
+
/**
* @brief Floating-point complex dot product
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] numSamples number of complex samples in each vector
- * @param[out] *realResult real part of the result returned here
- * @param[out] *imagResult imaginary part of the result returned here
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
void arm_cmplx_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
@@ -6765,88 +6467,83 @@
float32_t * realResult,
float32_t * imagResult);
+
/**
* @brief Q15 complex-by-real multiplication
- * @param[in] *pSrcCmplx points to the complex input vector
- * @param[in] *pSrcReal points to the real input vector
- * @param[out] *pCmplxDst points to the complex output vector
- * @param[in] numSamples number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
void arm_cmplx_mult_real_q15(
q15_t * pSrcCmplx,
q15_t * pSrcReal,
q15_t * pCmplxDst,
uint32_t numSamples);
+
/**
* @brief Q31 complex-by-real multiplication
- * @param[in] *pSrcCmplx points to the complex input vector
- * @param[in] *pSrcReal points to the real input vector
- * @param[out] *pCmplxDst points to the complex output vector
- * @param[in] numSamples number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
void arm_cmplx_mult_real_q31(
q31_t * pSrcCmplx,
q31_t * pSrcReal,
q31_t * pCmplxDst,
uint32_t numSamples);
+
/**
* @brief Floating-point complex-by-real multiplication
- * @param[in] *pSrcCmplx points to the complex input vector
- * @param[in] *pSrcReal points to the real input vector
- * @param[out] *pCmplxDst points to the complex output vector
- * @param[in] numSamples number of samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
void arm_cmplx_mult_real_f32(
float32_t * pSrcCmplx,
float32_t * pSrcReal,
float32_t * pCmplxDst,
uint32_t numSamples);
+
/**
* @brief Minimum value of a Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *result is output pointer
- * @param[in] index is the array index of the minimum value in the input buffer.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ */
void arm_min_q7(
q7_t * pSrc,
uint32_t blockSize,
q7_t * result,
uint32_t * index);
+
/**
* @brief Minimum value of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output pointer
- * @param[in] *pIndex is the array index of the minimum value in the input buffer.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[in] pIndex is the array index of the minimum value in the input buffer.
+ */
void arm_min_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult,
uint32_t * pIndex);
+
/**
* @brief Minimum value of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output pointer
- * @param[out] *pIndex is the array index of the minimum value in the input buffer.
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
*/
void arm_min_q31(
q31_t * pSrc,
@@ -6854,156 +6551,148 @@
q31_t * pResult,
uint32_t * pIndex);
+
/**
* @brief Minimum value of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output pointer
- * @param[out] *pIndex is the array index of the minimum value in the input buffer.
- * @return none.
- */
-
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
void arm_min_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult,
uint32_t * pIndex);
+
/**
* @brief Maximum value of a Q7 vector.
- * @param[in] *pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] *pResult maximum value returned here
- * @param[out] *pIndex index of maximum value returned here
- * @return none.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
*/
-
void arm_max_q7(
q7_t * pSrc,
uint32_t blockSize,
q7_t * pResult,
uint32_t * pIndex);
+
/**
* @brief Maximum value of a Q15 vector.
- * @param[in] *pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] *pResult maximum value returned here
- * @param[out] *pIndex index of maximum value returned here
- * @return none.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
*/
-
void arm_max_q15(
q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult,
uint32_t * pIndex);
+
/**
* @brief Maximum value of a Q31 vector.
- * @param[in] *pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] *pResult maximum value returned here
- * @param[out] *pIndex index of maximum value returned here
- * @return none.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
*/
-
void arm_max_q31(
q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult,
uint32_t * pIndex);
+
/**
* @brief Maximum value of a floating-point vector.
- * @param[in] *pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] *pResult maximum value returned here
- * @param[out] *pIndex index of maximum value returned here
- * @return none.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
*/
-
void arm_max_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult,
uint32_t * pIndex);
+
/**
* @brief Q15 complex-by-complex multiplication
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
void arm_cmplx_mult_cmplx_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t numSamples);
+
/**
* @brief Q31 complex-by-complex multiplication
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
void arm_cmplx_mult_cmplx_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t numSamples);
+
/**
* @brief Floating-point complex-by-complex multiplication
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
-
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
void arm_cmplx_mult_cmplx_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t numSamples);
+
/**
* @brief Converts the elements of the floating-point vector to Q31 vector.
- * @param[in] *pSrc points to the floating-point input vector
- * @param[out] *pDst points to the Q31 output vector
- * @param[in] blockSize length of the input vector
- * @return none.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q31 output vector
+ * @param[in] blockSize length of the input vector
*/
void arm_float_to_q31(
float32_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
+
/**
* @brief Converts the elements of the floating-point vector to Q15 vector.
- * @param[in] *pSrc points to the floating-point input vector
- * @param[out] *pDst points to the Q15 output vector
- * @param[in] blockSize length of the input vector
- * @return none
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
*/
void arm_float_to_q15(
float32_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Converts the elements of the floating-point vector to Q7 vector.
- * @param[in] *pSrc points to the floating-point input vector
- * @param[out] *pDst points to the Q7 output vector
- * @param[in] blockSize length of the input vector
- * @return none
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q7 output vector
+ * @param[in] blockSize length of the input vector
*/
void arm_float_to_q7(
float32_t * pSrc,
@@ -7013,34 +6702,33 @@
/**
* @brief Converts the elements of the Q31 vector to Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
*/
void arm_q31_to_q15(
q31_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
+
/**
* @brief Converts the elements of the Q31 vector to Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
*/
void arm_q31_to_q7(
q31_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
+
/**
* @brief Converts the elements of the Q15 vector to floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
*/
void arm_q15_to_float(
q15_t * pSrc,
@@ -7050,10 +6738,9 @@
/**
* @brief Converts the elements of the Q15 vector to Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
*/
void arm_q15_to_q31(
q15_t * pSrc,
@@ -7063,10 +6750,9 @@
/**
* @brief Converts the elements of the Q15 vector to Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
*/
void arm_q15_to_q7(
q15_t * pSrc,
@@ -7135,17 +6821,16 @@
* @{
*/
+
/**
*
* @brief Floating-point bilinear interpolation.
- * @param[in,out] *S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate.
- * @param[in] Y interpolation coordinate.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate.
+ * @param[in] Y interpolation coordinate.
* @return out interpolated value.
*/
-
-
- static __INLINE float32_t arm_bilinear_interp_f32(
+ CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32(
const arm_bilinear_interp_instance_f32 * S,
float32_t X,
float32_t Y)
@@ -7162,8 +6847,7 @@
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
- if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
- || yIndex > (S->numCols - 1))
+ if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
{
return (0);
}
@@ -7201,19 +6885,18 @@
/* return to application */
return (out);
-
}
+
/**
*
* @brief Q31 bilinear interpolation.
- * @param[in,out] *S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
* @return out interpolated value.
*/
-
- static __INLINE q31_t arm_bilinear_interp_q31(
+ CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31(
arm_bilinear_interp_instance_q31 * S,
q31_t X,
q31_t Y)
@@ -7226,20 +6909,19 @@
q31_t *pYData = S->pData; /* pointer to output table values */
uint32_t nCols = S->numCols; /* num of rows */
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ rI = ((X & (q31_t)0xFFF00000) >> 20);
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
- rI = ((X & 0xFFF00000) >> 20u);
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & 0xFFF00000) >> 20u);
+ cI = ((Y & (q31_t)0xFFF00000) >> 20);
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
+ if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
{
return (0);
}
@@ -7249,19 +6931,19 @@
xfract = (X & 0x000FFFFF) << 11u;
/* Read two nearest output values from the index */
- x1 = pYData[(rI) + nCols * (cI)];
- x2 = pYData[(rI) + nCols * (cI) + 1u];
+ x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
+ x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
/* 20 bits for the fractional part */
/* shift left yfract by 11 to keep 1.31 format */
yfract = (Y & 0x000FFFFF) << 11u;
/* Read two nearest output values from the index */
- y1 = pYData[(rI) + nCols * (cI + 1)];
- y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
+ y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
+ y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
- out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
+ out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
/* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
@@ -7277,19 +6959,18 @@
acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
/* Convert acc to 1.31(q31) format */
- return (acc << 2u);
-
+ return ((q31_t)(acc << 2));
}
+
/**
* @brief Q15 bilinear interpolation.
- * @param[in,out] *S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
* @return out interpolated value.
*/
-
- static __INLINE q15_t arm_bilinear_interp_q15(
+ CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15(
arm_bilinear_interp_instance_q15 * S,
q31_t X,
q31_t Y)
@@ -7305,16 +6986,16 @@
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
- rI = ((X & 0xFFF00000) >> 20);
+ rI = ((X & (q31_t)0xFFF00000) >> 20);
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
- cI = ((Y & 0xFFF00000) >> 20);
+ cI = ((Y & (q31_t)0xFFF00000) >> 20);
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
+ if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
{
return (0);
}
@@ -7324,17 +7005,16 @@
xfract = (X & 0x000FFFFF);
/* Read two nearest output values from the index */
- x1 = pYData[(rI) + nCols * (cI)];
- x2 = pYData[(rI) + nCols * (cI) + 1u];
-
+ x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
+ x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
/* 20 bits for the fractional part */
/* yfract should be in 12.20 format */
yfract = (Y & 0x000FFFFF);
/* Read two nearest output values from the index */
- y1 = pYData[(rI) + nCols * (cI + 1)];
- y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
+ y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
+ y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
@@ -7357,19 +7037,18 @@
/* acc is in 13.51 format and down shift acc by 36 times */
/* Convert out to 1.15 format */
- return (acc >> 36);
-
+ return ((q15_t)(acc >> 36));
}
+
/**
* @brief Q7 bilinear interpolation.
- * @param[in,out] *S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
* @return out interpolated value.
*/
-
- static __INLINE q7_t arm_bilinear_interp_q7(
+ CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7(
arm_bilinear_interp_instance_q7 * S,
q31_t X,
q31_t Y)
@@ -7385,36 +7064,35 @@
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
- rI = ((X & 0xFFF00000) >> 20);
+ rI = ((X & (q31_t)0xFFF00000) >> 20);
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
- cI = ((Y & 0xFFF00000) >> 20);
+ cI = ((Y & (q31_t)0xFFF00000) >> 20);
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
+ if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
{
return (0);
}
/* 20 bits for the fractional part */
/* xfract should be in 12.20 format */
- xfract = (X & 0x000FFFFF);
+ xfract = (X & (q31_t)0x000FFFFF);
/* Read two nearest output values from the index */
- x1 = pYData[(rI) + nCols * (cI)];
- x2 = pYData[(rI) + nCols * (cI) + 1u];
-
+ x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
+ x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
/* 20 bits for the fractional part */
/* yfract should be in 12.20 format */
- yfract = (Y & 0x000FFFFF);
+ yfract = (Y & (q31_t)0x000FFFFF);
/* Read two nearest output values from the index */
- y1 = pYData[(rI) + nCols * (cI + 1)];
- y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
+ y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
+ y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
out = ((x1 * (0xFFFFF - xfract)));
@@ -7433,120 +7111,143 @@
acc += (((q63_t) out * (xfract)));
/* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
- return (acc >> 40);
-
+ return ((q7_t)(acc >> 40));
}
/**
* @} end of BilinearInterpolate group
*/
-
-
-//SMMLAR
+
+
+/* SMMLAR */
#define multAcc_32x32_keep32_R(a, x, y) \
a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
-//SMMLSR
+/* SMMLSR */
#define multSub_32x32_keep32_R(a, x, y) \
a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
-//SMMULR
+/* SMMULR */
#define mult_32x32_keep32_R(a, x, y) \
a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
-//SMMLA
+/* SMMLA */
#define multAcc_32x32_keep32(a, x, y) \
a += (q31_t) (((q63_t) x * y) >> 32)
-//SMMLS
+/* SMMLS */
#define multSub_32x32_keep32(a, x, y) \
a -= (q31_t) (((q63_t) x * y) >> 32)
-//SMMUL
+/* SMMUL */
#define mult_32x32_keep32(a, x, y) \
a = (q31_t) (((q63_t) x * y ) >> 32)
-#if defined ( __CC_ARM ) //Keil
-
-//Enter low optimization region - place directly above function definition
- #ifdef ARM_MATH_CM4
- #define LOW_OPTIMIZATION_ENTER \
- _Pragma ("push") \
- _Pragma ("O1")
- #else
- #define LOW_OPTIMIZATION_ENTER
- #endif
-
-//Exit low optimization region - place directly after end of function definition
- #ifdef ARM_MATH_CM4
- #define LOW_OPTIMIZATION_EXIT \
- _Pragma ("pop")
- #else
- #define LOW_OPTIMIZATION_EXIT
- #endif
-
-//Enter low optimization region - place directly above function definition
+#if defined ( __CC_ARM )
+ /* Enter low optimization region - place directly above function definition */
+ #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
+ #define LOW_OPTIMIZATION_ENTER \
+ _Pragma ("push") \
+ _Pragma ("O1")
+ #else
+ #define LOW_OPTIMIZATION_ENTER
+ #endif
+
+ /* Exit low optimization region - place directly after end of function definition */
+ #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
+ #define LOW_OPTIMIZATION_EXIT \
+ _Pragma ("pop")
+ #else
+ #define LOW_OPTIMIZATION_EXIT
+ #endif
+
+ /* Enter low optimization region - place directly above function definition */
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
-//Exit low optimization region - place directly after end of function definition
+ /* Exit low optimization region - place directly after end of function definition */
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+ #define LOW_OPTIMIZATION_ENTER
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined ( __GNUC__ )
+ #define LOW_OPTIMIZATION_ENTER \
+ __attribute__(( optimize("-O1") ))
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-#elif defined(__ICCARM__) //IAR
-
-//Enter low optimization region - place directly above function definition
- #ifdef ARM_MATH_CM4
- #define LOW_OPTIMIZATION_ENTER \
- _Pragma ("optimize=low")
- #else
- #define LOW_OPTIMIZATION_ENTER
- #endif
-
-//Exit low optimization region - place directly after end of function definition
+#elif defined ( __ICCARM__ )
+ /* Enter low optimization region - place directly above function definition */
+ #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
+ #define LOW_OPTIMIZATION_ENTER \
+ _Pragma ("optimize=low")
+ #else
+ #define LOW_OPTIMIZATION_ENTER
+ #endif
+
+ /* Exit low optimization region - place directly after end of function definition */
#define LOW_OPTIMIZATION_EXIT
-//Enter low optimization region - place directly above function definition
- #ifdef ARM_MATH_CM4
- #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
- _Pragma ("optimize=low")
- #else
- #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
- #endif
-
-//Exit low optimization region - place directly after end of function definition
+ /* Enter low optimization region - place directly above function definition */
+ #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
+ _Pragma ("optimize=low")
+ #else
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #endif
+
+ /* Exit low optimization region - place directly after end of function definition */
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-#elif defined(__GNUC__)
-
- #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
-
+#elif defined ( __TI_ARM__ )
+ #define LOW_OPTIMIZATION_ENTER
#define LOW_OPTIMIZATION_EXIT
-
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
-
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-#elif defined(__CSMC__) // Cosmic
-
-#define LOW_OPTIMIZATION_ENTER
-#define LOW_OPTIMIZATION_EXIT
-#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
-#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-
-#elif defined(__TASKING__) // TASKING
-
-#define LOW_OPTIMIZATION_ENTER
-#define LOW_OPTIMIZATION_EXIT
-#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
-#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+#elif defined ( __CSMC__ )
+ #define LOW_OPTIMIZATION_ENTER
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined ( __TASKING__ )
+ #define LOW_OPTIMIZATION_ENTER
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#endif
-#ifdef __cplusplus
+#ifdef __cplusplus
}
#endif
+/* Compiler specific diagnostic adjustment */
+#if defined ( __CC_ARM )
+
+#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+
+#elif defined ( __GNUC__ )
+#pragma GCC diagnostic pop
+
+#elif defined ( __ICCARM__ )
+
+#elif defined ( __TI_ARM__ )
+
+#elif defined ( __CSMC__ )
+
+#elif defined ( __TASKING__ )
+
+#else
+ #error Unknown compiler
+#endif
#endif /* _ARM_MATH_H */


