The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.
Dependents: hello SerialTestv11 SerialTestv12 Sierpinski ... more
mbed 2
This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.
Diff: TARGET_ARCH_GPRS/arm_math.h
- Revision:
- 145:64910690c574
- Parent:
- 110:165afa46840b
--- a/TARGET_ARCH_GPRS/arm_math.h Thu Jun 08 14:53:05 2017 +0100 +++ b/TARGET_ARCH_GPRS/arm_math.h Wed Jun 21 17:31:38 2017 +0100 @@ -1,42 +1,30 @@ /* ---------------------------------------------------------------------- -* Copyright (C) 2010-2015 ARM Limited. All rights reserved. -* -* $Date: 19. March 2015 -* $Revision: V.1.4.5 -* -* Project: CMSIS DSP Library -* Title: arm_math.h -* -* Description: Public header file for CMSIS DSP Library -* -* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 -* -* Redistribution and use in source and binary forms, with or without -* modification, are permitted provided that the following conditions -* are met: -* - Redistributions of source code must retain the above copyright -* notice, this list of conditions and the following disclaimer. -* - Redistributions in binary form must reproduce the above copyright -* notice, this list of conditions and the following disclaimer in -* the documentation and/or other materials provided with the -* distribution. -* - Neither the name of ARM LIMITED nor the names of its contributors -* may be used to endorse or promote products derived from this -* software without specific prior written permission. -* -* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE -* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, -* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, -* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT -* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN -* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -* POSSIBILITY OF SUCH DAMAGE. + * Project: CMSIS DSP Library + * Title: arm_math.h + * Description: Public header file for CMSIS DSP Library + * + * $Date: 27. January 2017 + * $Revision: V.1.5.1 + * + * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ /** \mainpage CMSIS DSP Software Library @@ -66,26 +54,34 @@ * ------------ * * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. - * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) - * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) - * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) - * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) - * - arm_cortexM7l_math.lib (Little endian on Cortex-M7) - * - arm_cortexM7b_math.lib (Big endian on Cortex-M7) - * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) - * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) - * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) - * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) - * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) - * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) - * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) - * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) + * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit) + * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit) + * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit) + * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on) + * - arm_cortexM7l_math.lib (Cortex-M7, Little endian) + * - arm_cortexM7b_math.lib (Cortex-M7, Big endian) + * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit) + * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit) + * - arm_cortexM4l_math.lib (Cortex-M4, Little endian) + * - arm_cortexM4b_math.lib (Cortex-M4, Big endian) + * - arm_cortexM3l_math.lib (Cortex-M3, Little endian) + * - arm_cortexM3b_math.lib (Cortex-M3, Big endian) + * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian) + * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian) + * - arm_ARMv8MBLl_math.lib (ARMv8M Baseline, Little endian) + * - arm_ARMv8MMLl_math.lib (ARMv8M Mainline, Little endian) + * - arm_ARMv8MMLlfsp_math.lib (ARMv8M Mainline, Little endian, Single Precision Floating Point Unit) + * - arm_ARMv8MMLld_math.lib (ARMv8M Mainline, Little endian, DSP instructions) + * - arm_ARMv8MMLldfsp_math.lib (ARMv8M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit) * * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single - * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. + * public header file <code> arm_math.h</code> for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. + * For ARMv8M cores define pre processor MACRO ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML. + * Set Pre processor MACRO __DSP_PRESENT if ARMv8M Mainline core supports DSP instructions. + * * * Examples * -------- @@ -134,14 +130,23 @@ * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and * ARM_MATH_CM7 for building the library on cortex-M7. * + * - ARM_MATH_ARMV8MxL: + * + * Define macro ARM_MATH_ARMV8MBL for building the library on ARMv8M Baseline target, ARM_MATH_ARMV8MBL for building library + * on ARMv8M Mainline target. + * * - __FPU_PRESENT: * - * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries + * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for floating point libraries. + * + * - __DSP_PRESENT: + * + * Initialize macro __DSP_PRESENT = 1 when ARMv8M Mainline core supports DSP instructions. * * <hr> * CMSIS-DSP in ARM::CMSIS Pack * ----------------------------- - * + * * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: * |File/Folder |Content | * |------------------------------|------------------------------------------------------------------------| @@ -149,7 +154,7 @@ * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | - * + * * <hr> * Revision History of CMSIS-DSP * ------------ @@ -288,28 +293,62 @@ #ifndef _ARM_MATH_H #define _ARM_MATH_H +/* Compiler specific diagnostic adjustment */ +#if defined ( __CC_ARM ) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + +#elif defined ( __GNUC__ ) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wsign-conversion" +#pragma GCC diagnostic ignored "-Wconversion" +#pragma GCC diagnostic ignored "-Wunused-parameter" + +#elif defined ( __ICCARM__ ) + +#elif defined ( __TI_ARM__ ) + +#elif defined ( __CSMC__ ) + +#elif defined ( __TASKING__ ) + +#else + #error Unknown compiler +#endif + + #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ #if defined(ARM_MATH_CM7) #include "core_cm7.h" + #define ARM_MATH_DSP #elif defined (ARM_MATH_CM4) #include "core_cm4.h" + #define ARM_MATH_DSP #elif defined (ARM_MATH_CM3) #include "core_cm3.h" #elif defined (ARM_MATH_CM0) #include "core_cm0.h" -#define ARM_MATH_CM0_FAMILY - #elif defined (ARM_MATH_CM0PLUS) -#include "core_cm0plus.h" + #define ARM_MATH_CM0_FAMILY +#elif defined (ARM_MATH_CM0PLUS) + #include "core_cm0plus.h" + #define ARM_MATH_CM0_FAMILY +#elif defined (ARM_MATH_ARMV8MBL) + #include "core_armv8mbl.h" #define ARM_MATH_CM0_FAMILY +#elif defined (ARM_MATH_ARMV8MML) + #include "core_armv8mml.h" + #if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1)) + #define ARM_MATH_DSP + #endif #else - #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" + #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML" #endif #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ #include "string.h" #include "math.h" -#ifdef __cplusplus +#ifdef __cplusplus extern "C" { #endif @@ -319,11 +358,11 @@ * @brief Macros required for reciprocal calculation in Normalized LMS */ -#define DELTA_Q31 (0x100) -#define DELTA_Q15 0x5 -#define INDEX_MASK 0x0000003F +#define DELTA_Q31 (0x100) +#define DELTA_Q15 0x5 +#define INDEX_MASK 0x0000003F #ifndef PI -#define PI 3.14159265358979f + #define PI 3.14159265358979f #endif /** @@ -334,16 +373,15 @@ #define FAST_MATH_Q31_SHIFT (32 - 10) #define FAST_MATH_Q15_SHIFT (16 - 10) #define CONTROLLER_Q31_SHIFT (32 - 9) -#define TABLE_SIZE 256 -#define TABLE_SPACING_Q31 0x400000 -#define TABLE_SPACING_Q15 0x80 +#define TABLE_SPACING_Q31 0x400000 +#define TABLE_SPACING_Q15 0x80 /** * @brief Macros required for SINE and COSINE Controller functions */ /* 1.31(q31) Fixed value of 2/360 */ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ -#define INPUT_SPACING 0xB60B61 +#define INPUT_SPACING 0xB60B61 /** * @brief Macro for Unaligned Support @@ -356,7 +394,7 @@ #else #define ALIGN4 __align(4) #endif -#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ +#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /** * @brief Error status returned by some functions in the library. @@ -406,59 +444,78 @@ /** * @brief definition to read/write two 16 bit values. */ -#if defined __CC_ARM +#if defined ( __CC_ARM ) #define __SIMD32_TYPE int32_t __packed #define CMSIS_UNUSED __attribute__((unused)) -#elif defined __ICCARM__ + #define CMSIS_INLINE __attribute__((always_inline)) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + #define __SIMD32_TYPE int32_t + #define CMSIS_UNUSED __attribute__((unused)) + #define CMSIS_INLINE __attribute__((always_inline)) + +#elif defined ( __GNUC__ ) + #define __SIMD32_TYPE int32_t + #define CMSIS_UNUSED __attribute__((unused)) + #define CMSIS_INLINE __attribute__((always_inline)) + +#elif defined ( __ICCARM__ ) #define __SIMD32_TYPE int32_t __packed #define CMSIS_UNUSED -#elif defined __GNUC__ + #define CMSIS_INLINE + +#elif defined ( __TI_ARM__ ) #define __SIMD32_TYPE int32_t #define CMSIS_UNUSED __attribute__((unused)) -#elif defined __CSMC__ /* Cosmic */ + #define CMSIS_INLINE + +#elif defined ( __CSMC__ ) #define __SIMD32_TYPE int32_t #define CMSIS_UNUSED -#elif defined __TASKING__ + #define CMSIS_INLINE + +#elif defined ( __TASKING__ ) #define __SIMD32_TYPE __unaligned int32_t #define CMSIS_UNUSED + #define CMSIS_INLINE + #else #error Unknown compiler #endif -#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) +#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) - #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) - -#define __SIMD64(addr) (*(int64_t **) & (addr)) - -#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) +#define __SIMD64(addr) (*(int64_t **) & (addr)) + +/* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ +#if !defined (ARM_MATH_DSP) /** * @brief definition to pack two 16 bit values. */ -#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ - (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) -#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ - (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) - -#endif - +#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ + (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) +#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ + (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) + +/* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ +#endif /* !defined (ARM_MATH_DSP) */ /** * @brief definition to pack four 8 bit values. */ #ifndef ARM_MATH_BIG_ENDIAN -#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ - (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ - (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ - (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) +#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) #else -#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ - (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ - (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ - (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) +#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) #endif @@ -466,7 +523,7 @@ /** * @brief Clips Q63 to Q31 values. */ - static __INLINE q31_t clip_q63_to_q31( + CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31( q63_t x) { return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? @@ -476,7 +533,7 @@ /** * @brief Clips Q63 to Q15 values. */ - static __INLINE q15_t clip_q63_to_q15( + CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15( q63_t x) { return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? @@ -486,7 +543,7 @@ /** * @brief Clips Q31 to Q7 values. */ - static __INLINE q7_t clip_q31_to_q7( + CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7( q31_t x) { return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? @@ -496,7 +553,7 @@ /** * @brief Clips Q31 to Q15 values. */ - static __INLINE q15_t clip_q31_to_q15( + CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15( q31_t x) { return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? @@ -507,7 +564,7 @@ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. */ - static __INLINE q63_t mult32x64( + CMSIS_INLINE __STATIC_INLINE q63_t mult32x64( q63_t x, q31_t y) { @@ -515,64 +572,60 @@ (((q63_t) (x >> 32) * y))); } - -//#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) -//#define __CLZ __clz -//#endif - -//note: function can be removed when all toolchain support __CLZ for Cortex-M0 +/* + #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) + #define __CLZ __clz + #endif + */ +/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */ #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) - - static __INLINE uint32_t __CLZ( + CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ( q31_t data); - - static __INLINE uint32_t __CLZ( + CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ( q31_t data) { uint32_t count = 0; uint32_t mask = 0x80000000; - while((data & mask) == 0) + while ((data & mask) == 0) { count += 1u; mask = mask >> 1u; } return (count); - } - #endif /** * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. */ - static __INLINE uint32_t arm_recip_q31( + CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31( q31_t in, q31_t * dst, q31_t * pRecipTable) { - - uint32_t out, tempVal; + q31_t out; + uint32_t tempVal; uint32_t index, i; uint32_t signBits; - if(in > 0) + if (in > 0) { - signBits = __CLZ(in) - 1; + signBits = ((uint32_t) (__CLZ( in) - 1)); } else { - signBits = __CLZ(-in) - 1; + signBits = ((uint32_t) (__CLZ(-in) - 1)); } /* Convert input sample to 1.31 format */ - in = in << signBits; + in = (in << signBits); /* calculation of index for initial approximated Val */ - index = (uint32_t) (in >> 24u); + index = (uint32_t)(in >> 24); index = (index & INDEX_MASK); /* 1.31 with exp 1 */ @@ -582,11 +635,11 @@ /* running approximation for two iterations */ for (i = 0u; i < 2u; i++) { - tempVal = (q31_t) (((q63_t) in * out) >> 31u); - tempVal = 0x7FFFFFFF - tempVal; + tempVal = (uint32_t) (((q63_t) in * out) >> 31); + tempVal = 0x7FFFFFFFu - tempVal; /* 1.31 with exp 1 */ - //out = (q31_t) (((q63_t) out * tempVal) >> 30u); - out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u); + /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ + out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); } /* write output */ @@ -594,36 +647,36 @@ /* return num of signbits of out = 1/in value */ return (signBits + 1u); - } + /** * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. */ - static __INLINE uint32_t arm_recip_q15( + CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15( q15_t in, q15_t * dst, q15_t * pRecipTable) { - - uint32_t out = 0, tempVal = 0; + q15_t out = 0; + uint32_t tempVal = 0; uint32_t index = 0, i = 0; uint32_t signBits = 0; - if(in > 0) + if (in > 0) { - signBits = __CLZ(in) - 17; + signBits = ((uint32_t)(__CLZ( in) - 17)); } else { - signBits = __CLZ(-in) - 17; + signBits = ((uint32_t)(__CLZ(-in) - 17)); } /* Convert input sample to 1.15 format */ - in = in << signBits; + in = (in << signBits); /* calculation of index for initial approximated Val */ - index = in >> 8; + index = (uint32_t)(in >> 8); index = (index & INDEX_MASK); /* 1.15 with exp 1 */ @@ -631,12 +684,13 @@ /* calculation of reciprocal value */ /* running approximation for two iterations */ - for (i = 0; i < 2; i++) + for (i = 0u; i < 2u; i++) { - tempVal = (q15_t) (((q31_t) in * out) >> 15); - tempVal = 0x7FFF - tempVal; + tempVal = (uint32_t) (((q31_t) in * out) >> 15); + tempVal = 0x7FFFu - tempVal; /* 1.15 with exp 1 */ out = (q15_t) (((q31_t) out * tempVal) >> 14); + /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ } /* write output */ @@ -644,7 +698,6 @@ /* return num of signbits of out = 1/in value */ return (signBits + 1); - } @@ -652,8 +705,7 @@ * @brief C custom defined intrinisic function for only M0 processors */ #if defined(ARM_MATH_CM0_FAMILY) - - static __INLINE q31_t __SSAT( + CMSIS_INLINE __STATIC_INLINE q31_t __SSAT( q31_t x, uint32_t y) { @@ -666,11 +718,11 @@ posMax = posMax * 2; } - if(x > 0) + if (x > 0) { posMax = (posMax - 1); - if(x > posMax) + if (x > posMax) { x = posMax; } @@ -679,400 +731,377 @@ { negMin = -posMax; - if(x < negMin) + if (x < negMin) { x = negMin; } } return (x); - - } - #endif /* end of ARM_MATH_CM0_FAMILY */ - /* * @brief C custom defined intrinsic function for M3 and M0 processors */ -#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) +/* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ +#if !defined (ARM_MATH_DSP) /* * @brief C custom defined QADD8 for M3 and M0 processors */ - static __INLINE q31_t __QADD8( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8( + uint32_t x, + uint32_t y) { - - q31_t sum; - q7_t r, s, t, u; - - r = (q7_t) x; - s = (q7_t) y; - - r = __SSAT((q31_t) (r + s), 8); - s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8); - t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8); - u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8); - - sum = - (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) | - (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF); - - return sum; - + q31_t r, s, t, u; + + r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; + s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; + t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; + u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; + + return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); } + /* * @brief C custom defined QSUB8 for M3 and M0 processors */ - static __INLINE q31_t __QSUB8( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s, t, u; - r = (q7_t) x; - s = (q7_t) y; - - r = __SSAT((r - s), 8); - s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8; - t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16; - u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24; - - sum = - (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & - 0x000000FF); - - return sum; + r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; + s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; + t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; + u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; + + return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); } + /* * @brief C custom defined QADD16 for M3 and M0 processors */ - - /* - * @brief C custom defined QADD16 for M3 and M0 processors - */ - static __INLINE q31_t __QADD16( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16( + uint32_t x, + uint32_t y) { - - q31_t sum; - q31_t r, s; - - r = (q15_t) x; - s = (q15_t) y; - - r = __SSAT(r + s, 16); - s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16; - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; - +/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ + q31_t r = 0, s = 0; + + r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SHADD16 for M3 and M0 processors */ - static __INLINE q31_t __SHADD16( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = ((r >> 1) + (s >> 1)); - s = ((q31_t) ((x >> 17) + (y >> 17))) << 16; - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; - + r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined QSUB16 for M3 and M0 processors */ - static __INLINE q31_t __QSUB16( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = __SSAT(r - s, 16); - s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16; - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; + r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SHSUB16 for M3 and M0 processors */ - static __INLINE q31_t __SHSUB16( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16( + uint32_t x, + uint32_t y) { - - q31_t diff; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = ((r >> 1) - (s >> 1)); - s = (((x >> 17) - (y >> 17)) << 16); - - diff = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return diff; + r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined QASX for M3 and M0 processors */ - static __INLINE q31_t __QASX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QASX( + uint32_t x, + uint32_t y) { - - q31_t sum = 0; - - sum = - ((sum + - clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) + - clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16))); - - return sum; + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SHASX for M3 and M0 processors */ - static __INLINE q31_t __SHASX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = ((r >> 1) - (y >> 17)); - s = (((x >> 17) + (s >> 1)) << 16); - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; + r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined QSAX for M3 and M0 processors */ - static __INLINE q31_t __QSAX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX( + uint32_t x, + uint32_t y) { - - q31_t sum = 0; - - sum = - ((sum + - clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) + - clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16))); - - return sum; + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SHSAX for M3 and M0 processors */ - static __INLINE q31_t __SHSAX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = ((r >> 1) + (y >> 17)); - s = (((x >> 17) - (s >> 1)) << 16); - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; + r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SMUSDX for M3 and M0 processors */ - static __INLINE q31_t __SMUSDX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX( + uint32_t x, + uint32_t y) { - - return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) - - ((q15_t) (x >> 16) * (q15_t) y))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); } /* * @brief C custom defined SMUADX for M3 and M0 processors */ - static __INLINE q31_t __SMUADX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX( + uint32_t x, + uint32_t y) { - - return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) + - ((q15_t) (x >> 16) * (q15_t) y))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); } + /* * @brief C custom defined QADD for M3 and M0 processors */ - static __INLINE q31_t __QADD( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE int32_t __QADD( + int32_t x, + int32_t y) { - return clip_q63_to_q31((q63_t) x + y); + return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); } + /* * @brief C custom defined QSUB for M3 and M0 processors */ - static __INLINE q31_t __QSUB( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE int32_t __QSUB( + int32_t x, + int32_t y) { - return clip_q63_to_q31((q63_t) x - y); + return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); } + /* * @brief C custom defined SMLAD for M3 and M0 processors */ - static __INLINE q31_t __SMLAD( - q31_t x, - q31_t y, - q31_t sum) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD( + uint32_t x, + uint32_t y, + uint32_t sum) { - - return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + - ((q15_t) x * (q15_t) y)); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + + ( ((q31_t)sum ) ) )); } + /* * @brief C custom defined SMLADX for M3 and M0 processors */ - static __INLINE q31_t __SMLADX( - q31_t x, - q31_t y, - q31_t sum) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX( + uint32_t x, + uint32_t y, + uint32_t sum) { - - return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) + - ((q15_t) x * (q15_t) (y >> 16))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q31_t)sum ) ) )); } + /* * @brief C custom defined SMLSDX for M3 and M0 processors */ - static __INLINE q31_t __SMLSDX( - q31_t x, - q31_t y, - q31_t sum) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX( + uint32_t x, + uint32_t y, + uint32_t sum) { - - return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) + - ((q15_t) x * (q15_t) (y >> 16))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q31_t)sum ) ) )); } + /* * @brief C custom defined SMLALD for M3 and M0 processors */ - static __INLINE q63_t __SMLALD( - q31_t x, - q31_t y, - q63_t sum) + CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD( + uint32_t x, + uint32_t y, + uint64_t sum) { - - return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + - ((q15_t) x * (q15_t) y)); +/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ + return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + + ( ((q63_t)sum ) ) )); } + /* * @brief C custom defined SMLALDX for M3 and M0 processors */ - static __INLINE q63_t __SMLALDX( - q31_t x, - q31_t y, - q63_t sum) + CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX( + uint32_t x, + uint32_t y, + uint64_t sum) { - - return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + - ((q15_t) x * (q15_t) (y >> 16)); +/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ + return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q63_t)sum ) ) )); } + /* * @brief C custom defined SMUAD for M3 and M0 processors */ - static __INLINE q31_t __SMUAD( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD( + uint32_t x, + uint32_t y) { - - return (((x >> 16) * (y >> 16)) + - (((x << 16) >> 16) * ((y << 16) >> 16))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); } + /* * @brief C custom defined SMUSD for M3 and M0 processors */ - static __INLINE q31_t __SMUSD( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD( + uint32_t x, + uint32_t y) { - - return (-((x >> 16) * (y >> 16)) + - (((x << 16) >> 16) * ((y << 16) >> 16))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); } /* * @brief C custom defined SXTB16 for M3 and M0 processors */ - static __INLINE q31_t __SXTB16( - q31_t x) + CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16( + uint32_t x) + { + return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | + ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); + } + + /* + * @brief C custom defined SMMLA for M3 and M0 processors + */ + CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA( + int32_t x, + int32_t y, + int32_t sum) { - - return ((((x << 24) >> 24) & 0x0000FFFF) | - (((x << 8) >> 8) & 0xFFFF0000)); + return (sum + (int32_t) (((int64_t) x * y) >> 32)); + } + +#if 0 + /* + * @brief C custom defined PKHBT for unavailable DSP extension + */ + CMSIS_INLINE __STATIC_INLINE uint32_t __PKHBT( + uint32_t x, + uint32_t y, + uint32_t leftshift) + { + return ( ((x ) & 0x0000FFFFUL) | + ((y << leftshift) & 0xFFFF0000UL) ); } - -#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ + /* + * @brief C custom defined PKHTB for unavailable DSP extension + */ + CMSIS_INLINE __STATIC_INLINE uint32_t __PKHTB( + uint32_t x, + uint32_t y, + uint32_t rightshift) + { + return ( ((x ) & 0xFFFF0000UL) | + ((y >> rightshift) & 0x0000FFFFUL) ); + } +#endif + +/* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ +#endif /* !defined (ARM_MATH_DSP) */ /** @@ -1118,11 +1147,10 @@ /** * @brief Processing function for the Q7 FIR filter. - * @param[in] *S points to an instance of the Q7 FIR filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q7 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_q7( const arm_fir_instance_q7 * S, @@ -1133,12 +1161,11 @@ /** * @brief Initialization function for the Q7 FIR filter. - * @param[in,out] *S points to an instance of the Q7 FIR structure. - * @param[in] numTaps Number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of samples that are processed. - * @return none + * @param[in,out] S points to an instance of the Q7 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed. */ void arm_fir_init_q7( arm_fir_instance_q7 * S, @@ -1150,11 +1177,10 @@ /** * @brief Processing function for the Q15 FIR filter. - * @param[in] *S points to an instance of the Q15 FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q15 FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_q15( const arm_fir_instance_q15 * S, @@ -1162,13 +1188,13 @@ q15_t * pDst, uint32_t blockSize); + /** * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q15 FIR filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q15 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_fast_q15( const arm_fir_instance_q15 * S, @@ -1176,17 +1202,17 @@ q15_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q15 FIR filter. - * @param[in,out] *S points to an instance of the Q15 FIR filter structure. - * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of samples that are processed at a time. + * @param[in,out] S points to an instance of the Q15 FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if * <code>numTaps</code> is not a supported value. */ - arm_status arm_fir_init_q15( arm_fir_instance_q15 * S, uint16_t numTaps, @@ -1194,13 +1220,13 @@ q15_t * pState, uint32_t blockSize); + /** * @brief Processing function for the Q31 FIR filter. - * @param[in] *S points to an instance of the Q31 FIR filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q31 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_q31( const arm_fir_instance_q31 * S, @@ -1208,13 +1234,13 @@ q31_t * pDst, uint32_t blockSize); + /** * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q31 FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q31 FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_fast_q31( const arm_fir_instance_q31 * S, @@ -1222,14 +1248,14 @@ q31_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q31 FIR filter. - * @param[in,out] *S points to an instance of the Q31 FIR structure. - * @param[in] numTaps Number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of samples that are processed at a time. - * @return none. + * @param[in,out] S points to an instance of the Q31 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. */ void arm_fir_init_q31( arm_fir_instance_q31 * S, @@ -1238,13 +1264,13 @@ q31_t * pState, uint32_t blockSize); + /** * @brief Processing function for the floating-point FIR filter. - * @param[in] *S points to an instance of the floating-point FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the floating-point FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_f32( const arm_fir_instance_f32 * S, @@ -1252,14 +1278,14 @@ float32_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point FIR filter. - * @param[in,out] *S points to an instance of the floating-point FIR filter structure. - * @param[in] numTaps Number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of samples that are processed at a time. - * @return none. + * @param[in,out] S points to an instance of the floating-point FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. */ void arm_fir_init_f32( arm_fir_instance_f32 * S, @@ -1274,14 +1300,12 @@ */ typedef struct { - int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ - q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ - int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ - + int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ } arm_biquad_casd_df1_inst_q15; - /** * @brief Instance structure for the Q31 Biquad cascade filter. */ @@ -1291,7 +1315,6 @@ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ - } arm_biquad_casd_df1_inst_q31; /** @@ -1299,40 +1322,34 @@ */ typedef struct { - uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ - float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ - - + uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_casd_df1_inst_f32; - /** * @brief Processing function for the Q15 Biquad cascade filter. - * @param[in] *S points to an instance of the Q15 Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_df1_q15( const arm_biquad_casd_df1_inst_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q15 Biquad cascade filter. - * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format - * @return none - */ - + * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + */ void arm_biquad_cascade_df1_init_q15( arm_biquad_casd_df1_inst_q15 * S, uint8_t numStages, @@ -1343,13 +1360,11 @@ /** * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q15 Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_df1_fast_q15( const arm_biquad_casd_df1_inst_q15 * S, q15_t * pSrc, @@ -1359,44 +1374,40 @@ /** * @brief Processing function for the Q31 Biquad cascade filter - * @param[in] *S points to an instance of the Q31 Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. + * @param[in] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. - * @return none. - */ - + */ void arm_biquad_cascade_df1_q31( const arm_biquad_casd_df1_inst_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q31 Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. + * @param[in] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. - * @return none. - */ - + */ void arm_biquad_cascade_df1_fast_q31( const arm_biquad_casd_df1_inst_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q31 Biquad cascade filter. - * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format - * @return none - */ - + * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + */ void arm_biquad_cascade_df1_init_q31( arm_biquad_casd_df1_inst_q31 * S, uint8_t numStages, @@ -1404,30 +1415,28 @@ q31_t * pState, int8_t postShift); + /** * @brief Processing function for the floating-point Biquad cascade filter. - * @param[in] *S points to an instance of the floating-point Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. + * @param[in] S points to an instance of the floating-point Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. - * @return none. - */ - + */ void arm_biquad_cascade_df1_f32( const arm_biquad_casd_df1_inst_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point Biquad cascade filter. - * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @return none - */ - + * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ void arm_biquad_cascade_df1_init_f32( arm_biquad_casd_df1_inst_f32 * S, uint8_t numStages, @@ -1438,7 +1447,6 @@ /** * @brief Instance structure for the floating-point matrix structure. */ - typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ @@ -1450,7 +1458,6 @@ /** * @brief Instance structure for the floating-point matrix structure. */ - typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ @@ -1461,109 +1468,103 @@ /** * @brief Instance structure for the Q15 matrix structure. */ - typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ q15_t *pData; /**< points to the data of the matrix. */ - } arm_matrix_instance_q15; /** * @brief Instance structure for the Q31 matrix structure. */ - typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ q31_t *pData; /**< points to the data of the matrix. */ - } arm_matrix_instance_q31; - /** * @brief Floating-point matrix addition. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_add_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); + /** * @brief Q15 matrix addition. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_add_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst); + /** * @brief Q31 matrix addition. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_add_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); + /** * @brief Floating-point, complex, matrix multiplication. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_cmplx_mult_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); + /** * @brief Q15, complex, matrix multiplication. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_cmplx_mult_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pScratch); + /** * @brief Q31, complex, matrix multiplication. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_cmplx_mult_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, @@ -1572,12 +1573,11 @@ /** * @brief Floating-point matrix transpose. - * @param[in] *pSrc points to the input matrix - * @param[out] *pDst points to the output matrix - * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_trans_f32( const arm_matrix_instance_f32 * pSrc, arm_matrix_instance_f32 * pDst); @@ -1585,24 +1585,23 @@ /** * @brief Q15 matrix transpose. - * @param[in] *pSrc points to the input matrix - * @param[out] *pDst points to the output matrix - * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_trans_q15( const arm_matrix_instance_q15 * pSrc, arm_matrix_instance_q15 * pDst); + /** * @brief Q31 matrix transpose. - * @param[in] *pSrc points to the input matrix - * @param[out] *pDst points to the output matrix - * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_trans_q31( const arm_matrix_instance_q31 * pSrc, arm_matrix_instance_q31 * pDst); @@ -1610,73 +1609,72 @@ /** * @brief Floating-point matrix multiplication - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); + /** * @brief Q15 matrix multiplication - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure - * @param[in] *pState points to the array for storing intermediate results + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pState); + /** * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure - * @param[in] *pState points to the array for storing intermediate results + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_fast_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pState); + /** * @brief Q31 matrix multiplication - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); + /** * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_fast_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, @@ -1685,86 +1683,85 @@ /** * @brief Floating-point matrix subtraction - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_sub_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); + /** * @brief Q15 matrix subtraction - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_sub_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst); + /** * @brief Q31 matrix subtraction - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_sub_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); + /** * @brief Floating-point matrix scaling. - * @param[in] *pSrc points to the input matrix - * @param[in] scale scale factor - * @param[out] *pDst points to the output matrix + * @param[in] pSrc points to the input matrix + * @param[in] scale scale factor + * @param[out] pDst points to the output matrix * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_scale_f32( const arm_matrix_instance_f32 * pSrc, float32_t scale, arm_matrix_instance_f32 * pDst); + /** * @brief Q15 matrix scaling. - * @param[in] *pSrc points to input matrix - * @param[in] scaleFract fractional portion of the scale factor - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to output matrix + * @param[in] pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to output matrix * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_scale_q15( const arm_matrix_instance_q15 * pSrc, q15_t scaleFract, int32_t shift, arm_matrix_instance_q15 * pDst); + /** * @brief Q31 matrix scaling. - * @param[in] *pSrc points to input matrix - * @param[in] scaleFract fractional portion of the scale factor - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to output matrix structure + * @param[in] pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_scale_q31( const arm_matrix_instance_q31 * pSrc, q31_t scaleFract, @@ -1774,43 +1771,39 @@ /** * @brief Q31 matrix initialization. - * @param[in,out] *S points to an instance of the floating-point matrix structure. - * @param[in] nRows number of rows in the matrix. - * @param[in] nColumns number of columns in the matrix. - * @param[in] *pData points to the matrix data array. - * @return none - */ - + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ void arm_mat_init_q31( arm_matrix_instance_q31 * S, uint16_t nRows, uint16_t nColumns, q31_t * pData); + /** * @brief Q15 matrix initialization. - * @param[in,out] *S points to an instance of the floating-point matrix structure. - * @param[in] nRows number of rows in the matrix. - * @param[in] nColumns number of columns in the matrix. - * @param[in] *pData points to the matrix data array. - * @return none - */ - + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ void arm_mat_init_q15( arm_matrix_instance_q15 * S, uint16_t nRows, uint16_t nColumns, q15_t * pData); + /** * @brief Floating-point matrix initialization. - * @param[in,out] *S points to an instance of the floating-point matrix structure. - * @param[in] nRows number of rows in the matrix. - * @param[in] nColumns number of columns in the matrix. - * @param[in] *pData points to the matrix data array. - * @return none - */ - + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ void arm_mat_init_f32( arm_matrix_instance_f32 * S, uint16_t nRows, @@ -1824,14 +1817,14 @@ */ typedef struct { - q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ -#ifdef ARM_MATH_CM0_FAMILY + q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ +#if !defined (ARM_MATH_DSP) q15_t A1; q15_t A2; #else q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ #endif - q15_t state[3]; /**< The state array of length 3. */ + q15_t state[3]; /**< The state array of length 3. */ q15_t Kp; /**< The proportional gain. */ q15_t Ki; /**< The integral gain. */ q15_t Kd; /**< The derivative gain. */ @@ -1849,7 +1842,6 @@ q31_t Kp; /**< The proportional gain. */ q31_t Ki; /**< The integral gain. */ q31_t Kd; /**< The derivative gain. */ - } arm_pid_instance_q31; /** @@ -1861,27 +1853,26 @@ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ float32_t A2; /**< The derived gain, A2 = Kd . */ float32_t state[3]; /**< The state array of length 3. */ - float32_t Kp; /**< The proportional gain. */ - float32_t Ki; /**< The integral gain. */ - float32_t Kd; /**< The derivative gain. */ + float32_t Kp; /**< The proportional gain. */ + float32_t Ki; /**< The integral gain. */ + float32_t Kd; /**< The derivative gain. */ } arm_pid_instance_f32; /** * @brief Initialization function for the floating-point PID Control. - * @param[in,out] *S points to an instance of the PID structure. + * @param[in,out] S points to an instance of the PID structure. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. - * @return none. */ void arm_pid_init_f32( arm_pid_instance_f32 * S, int32_t resetStateFlag); + /** * @brief Reset function for the floating-point PID Control. - * @param[in,out] *S is an instance of the floating-point PID Control structure - * @return none + * @param[in,out] S is an instance of the floating-point PID Control structure */ void arm_pid_reset_f32( arm_pid_instance_f32 * S); @@ -1889,9 +1880,8 @@ /** * @brief Initialization function for the Q31 PID Control. - * @param[in,out] *S points to an instance of the Q15 PID structure. + * @param[in,out] S points to an instance of the Q15 PID structure. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. - * @return none. */ void arm_pid_init_q31( arm_pid_instance_q31 * S, @@ -1900,27 +1890,26 @@ /** * @brief Reset function for the Q31 PID Control. - * @param[in,out] *S points to an instance of the Q31 PID Control structure - * @return none + * @param[in,out] S points to an instance of the Q31 PID Control structure */ void arm_pid_reset_q31( arm_pid_instance_q31 * S); + /** * @brief Initialization function for the Q15 PID Control. - * @param[in,out] *S points to an instance of the Q15 PID structure. - * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. - * @return none. + * @param[in,out] S points to an instance of the Q15 PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. */ void arm_pid_init_q15( arm_pid_instance_q15 * S, int32_t resetStateFlag); + /** * @brief Reset function for the Q15 PID Control. - * @param[in,out] *S points to an instance of the q15 PID Control structure - * @return none + * @param[in,out] S points to an instance of the q15 PID Control structure */ void arm_pid_reset_q15( arm_pid_instance_q15 * S); @@ -1940,7 +1929,6 @@ /** * @brief Instance structure for the floating-point bilinear interpolation function. */ - typedef struct { uint16_t numRows; /**< number of rows in the data table. */ @@ -1951,7 +1939,6 @@ /** * @brief Instance structure for the Q31 bilinear interpolation function. */ - typedef struct { uint16_t numRows; /**< number of rows in the data table. */ @@ -1962,7 +1949,6 @@ /** * @brief Instance structure for the Q15 bilinear interpolation function. */ - typedef struct { uint16_t numRows; /**< number of rows in the data table. */ @@ -1973,69 +1959,63 @@ /** * @brief Instance structure for the Q15 bilinear interpolation function. */ - typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ - q7_t *pData; /**< points to the data table. */ + q7_t *pData; /**< points to the data table. */ } arm_bilinear_interp_instance_q7; /** * @brief Q7 vector multiplication. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_mult_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); + /** * @brief Q15 vector multiplication. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_mult_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); + /** * @brief Q31 vector multiplication. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_mult_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); + /** * @brief Floating-point vector multiplication. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_mult_f32( float32_t * pSrcA, float32_t * pSrcB, @@ -2043,20 +2023,15 @@ uint32_t blockSize); - - - - /** * @brief Instance structure for the Q15 CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ + q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ @@ -2075,11 +2050,9 @@ q15_t * pSrc); - /** * @brief Instance structure for the Q15 CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2106,13 +2079,12 @@ /** * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - q31_t *pTwiddle; /**< points to the Twiddle factor table. */ + q31_t *pTwiddle; /**< points to the Twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ @@ -2133,7 +2105,6 @@ /** * @brief Instance structure for the Q31 CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2160,7 +2131,6 @@ /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2170,7 +2140,7 @@ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - float32_t onebyfftLen; /**< value of 1/fftLen. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ } arm_cfft_radix2_instance_f32; /* Deprecated */ @@ -2188,7 +2158,6 @@ /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2198,7 +2167,7 @@ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - float32_t onebyfftLen; /**< value of 1/fftLen. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ } arm_cfft_radix4_instance_f32; /* Deprecated */ @@ -2216,7 +2185,6 @@ /** * @brief Instance structure for the fixed-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2225,16 +2193,15 @@ uint16_t bitRevLength; /**< bit reversal table length. */ } arm_cfft_instance_q15; -void arm_cfft_q15( - const arm_cfft_instance_q15 * S, +void arm_cfft_q15( + const arm_cfft_instance_q15 * S, q15_t * p1, uint8_t ifftFlag, - uint8_t bitReverseFlag); + uint8_t bitReverseFlag); /** * @brief Instance structure for the fixed-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2243,16 +2210,15 @@ uint16_t bitRevLength; /**< bit reversal table length. */ } arm_cfft_instance_q31; -void arm_cfft_q31( - const arm_cfft_instance_q31 * S, +void arm_cfft_q31( + const arm_cfft_instance_q31 * S, q31_t * p1, uint8_t ifftFlag, - uint8_t bitReverseFlag); - + uint8_t bitReverseFlag); + /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2270,7 +2236,6 @@ /** * @brief Instance structure for the Q15 RFFT/RIFFT function. */ - typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ @@ -2296,7 +2261,6 @@ /** * @brief Instance structure for the Q31 RFFT/RIFFT function. */ - typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ @@ -2322,7 +2286,6 @@ /** * @brief Instance structure for the floating-point RFFT/RIFFT function. */ - typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ @@ -2350,17 +2313,16 @@ /** * @brief Instance structure for the floating-point RFFT/RIFFT function. */ - typedef struct { arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ - uint16_t fftLenRFFT; /**< length of the real sequence */ - float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ + uint16_t fftLenRFFT; /**< length of the real sequence */ + float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ } arm_rfft_fast_instance_f32 ; arm_status arm_rfft_fast_init_f32 ( - arm_rfft_fast_instance_f32 * S, - uint16_t fftLen); + arm_rfft_fast_instance_f32 * S, + uint16_t fftLen); void arm_rfft_fast_f32( arm_rfft_fast_instance_f32 * S, @@ -2370,29 +2332,28 @@ /** * @brief Instance structure for the floating-point DCT4/IDCT4 function. */ - typedef struct { - uint16_t N; /**< length of the DCT4. */ - uint16_t Nby2; /**< half of the length of the DCT4. */ - float32_t normalize; /**< normalizing factor. */ - float32_t *pTwiddle; /**< points to the twiddle factor table. */ - float32_t *pCosFactor; /**< points to the cosFactor table. */ + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + float32_t normalize; /**< normalizing factor. */ + float32_t *pTwiddle; /**< points to the twiddle factor table. */ + float32_t *pCosFactor; /**< points to the cosFactor table. */ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ } arm_dct4_instance_f32; + /** * @brief Initialization function for the floating-point DCT4/IDCT4. - * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure. - * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure. - * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure. + * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. + * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. * @param[in] N length of the DCT4. * @param[in] Nby2 half of the length of the DCT4. * @param[in] normalize normalizing factor. - * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. - */ - + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. + */ arm_status arm_dct4_init_f32( arm_dct4_instance_f32 * S, arm_rfft_instance_f32 * S_RFFT, @@ -2401,45 +2362,44 @@ uint16_t Nby2, float32_t normalize); + /** * @brief Processing function for the floating-point DCT4/IDCT4. - * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure. - * @param[in] *pState points to state buffer. - * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ void arm_dct4_f32( const arm_dct4_instance_f32 * S, float32_t * pState, float32_t * pInlineBuffer); + /** * @brief Instance structure for the Q31 DCT4/IDCT4 function. */ - typedef struct { - uint16_t N; /**< length of the DCT4. */ - uint16_t Nby2; /**< half of the length of the DCT4. */ - q31_t normalize; /**< normalizing factor. */ - q31_t *pTwiddle; /**< points to the twiddle factor table. */ - q31_t *pCosFactor; /**< points to the cosFactor table. */ + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q31_t normalize; /**< normalizing factor. */ + q31_t *pTwiddle; /**< points to the twiddle factor table. */ + q31_t *pCosFactor; /**< points to the cosFactor table. */ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ } arm_dct4_instance_q31; + /** * @brief Initialization function for the Q31 DCT4/IDCT4. - * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure. - * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure - * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure + * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure + * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure * @param[in] N length of the DCT4. * @param[in] Nby2 half of the length of the DCT4. * @param[in] normalize normalizing factor. - * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. - */ - + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. + */ arm_status arm_dct4_init_q31( arm_dct4_instance_q31 * S, arm_rfft_instance_q31 * S_RFFT, @@ -2448,45 +2408,44 @@ uint16_t Nby2, q31_t normalize); + /** * @brief Processing function for the Q31 DCT4/IDCT4. - * @param[in] *S points to an instance of the Q31 DCT4 structure. - * @param[in] *pState points to state buffer. - * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 DCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ void arm_dct4_q31( const arm_dct4_instance_q31 * S, q31_t * pState, q31_t * pInlineBuffer); + /** * @brief Instance structure for the Q15 DCT4/IDCT4 function. */ - typedef struct { - uint16_t N; /**< length of the DCT4. */ - uint16_t Nby2; /**< half of the length of the DCT4. */ - q15_t normalize; /**< normalizing factor. */ - q15_t *pTwiddle; /**< points to the twiddle factor table. */ - q15_t *pCosFactor; /**< points to the cosFactor table. */ + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q15_t normalize; /**< normalizing factor. */ + q15_t *pTwiddle; /**< points to the twiddle factor table. */ + q15_t *pCosFactor; /**< points to the cosFactor table. */ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ } arm_dct4_instance_q15; + /** * @brief Initialization function for the Q15 DCT4/IDCT4. - * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure. - * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure. - * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure. + * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. + * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. * @param[in] N length of the DCT4. * @param[in] Nby2 half of the length of the DCT4. * @param[in] normalize normalizing factor. - * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. - */ - + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. + */ arm_status arm_dct4_init_q15( arm_dct4_instance_q15 * S, arm_rfft_instance_q15 * S_RFFT, @@ -2495,164 +2454,153 @@ uint16_t Nby2, q15_t normalize); + /** * @brief Processing function for the Q15 DCT4/IDCT4. - * @param[in] *S points to an instance of the Q15 DCT4 structure. - * @param[in] *pState points to state buffer. - * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 DCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ void arm_dct4_q15( const arm_dct4_instance_q15 * S, q15_t * pState, q15_t * pInlineBuffer); + /** * @brief Floating-point vector addition. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_add_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); + /** * @brief Q7 vector addition. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_add_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); + /** * @brief Q15 vector addition. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_add_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); + /** * @brief Q31 vector addition. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_add_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); + /** * @brief Floating-point vector subtraction. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_sub_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); + /** * @brief Q7 vector subtraction. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_sub_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); + /** * @brief Q15 vector subtraction. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_sub_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); + /** * @brief Q31 vector subtraction. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_sub_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); + /** * @brief Multiplies a floating-point vector by a scalar. - * @param[in] *pSrc points to the input vector - * @param[in] scale scale factor to be applied - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] scale scale factor to be applied + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_scale_f32( float32_t * pSrc, float32_t scale, float32_t * pDst, uint32_t blockSize); + /** * @brief Multiplies a Q7 vector by a scalar. - * @param[in] *pSrc points to the input vector - * @param[in] scaleFract fractional portion of the scale value - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_scale_q7( q7_t * pSrc, q7_t scaleFract, @@ -2660,16 +2608,15 @@ q7_t * pDst, uint32_t blockSize); + /** * @brief Multiplies a Q15 vector by a scalar. - * @param[in] *pSrc points to the input vector - * @param[in] scaleFract fractional portion of the scale value - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_scale_q15( q15_t * pSrc, q15_t scaleFract, @@ -2677,16 +2624,15 @@ q15_t * pDst, uint32_t blockSize); + /** * @brief Multiplies a Q31 vector by a scalar. - * @param[in] *pSrc points to the input vector - * @param[in] scaleFract fractional portion of the scale value - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_scale_q31( q31_t * pSrc, q31_t scaleFract, @@ -2694,379 +2640,361 @@ q31_t * pDst, uint32_t blockSize); + /** * @brief Q7 vector absolute value. - * @param[in] *pSrc points to the input buffer - * @param[out] *pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ void arm_abs_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); + /** * @brief Floating-point vector absolute value. - * @param[in] *pSrc points to the input buffer - * @param[out] *pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ void arm_abs_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Q15 vector absolute value. - * @param[in] *pSrc points to the input buffer - * @param[out] *pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ void arm_abs_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Q31 vector absolute value. - * @param[in] *pSrc points to the input buffer - * @param[out] *pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ void arm_abs_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Dot product of floating-point vectors. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] *result output result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ void arm_dot_prod_f32( float32_t * pSrcA, float32_t * pSrcB, uint32_t blockSize, float32_t * result); + /** * @brief Dot product of Q7 vectors. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] *result output result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ void arm_dot_prod_q7( q7_t * pSrcA, q7_t * pSrcB, uint32_t blockSize, q31_t * result); + /** * @brief Dot product of Q15 vectors. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] *result output result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ void arm_dot_prod_q15( q15_t * pSrcA, q15_t * pSrcB, uint32_t blockSize, q63_t * result); + /** * @brief Dot product of Q31 vectors. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] *result output result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ void arm_dot_prod_q31( q31_t * pSrcA, q31_t * pSrcB, uint32_t blockSize, q63_t * result); + /** * @brief Shifts the elements of a Q7 vector a specified number of bits. - * @param[in] *pSrc points to the input vector - * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_shift_q7( q7_t * pSrc, int8_t shiftBits, q7_t * pDst, uint32_t blockSize); + /** * @brief Shifts the elements of a Q15 vector a specified number of bits. - * @param[in] *pSrc points to the input vector - * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_shift_q15( q15_t * pSrc, int8_t shiftBits, q15_t * pDst, uint32_t blockSize); + /** * @brief Shifts the elements of a Q31 vector a specified number of bits. - * @param[in] *pSrc points to the input vector - * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_shift_q31( q31_t * pSrc, int8_t shiftBits, q31_t * pDst, uint32_t blockSize); + /** * @brief Adds a constant offset to a floating-point vector. - * @param[in] *pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_offset_f32( float32_t * pSrc, float32_t offset, float32_t * pDst, uint32_t blockSize); + /** * @brief Adds a constant offset to a Q7 vector. - * @param[in] *pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_offset_q7( q7_t * pSrc, q7_t offset, q7_t * pDst, uint32_t blockSize); + /** * @brief Adds a constant offset to a Q15 vector. - * @param[in] *pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_offset_q15( q15_t * pSrc, q15_t offset, q15_t * pDst, uint32_t blockSize); + /** * @brief Adds a constant offset to a Q31 vector. - * @param[in] *pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_offset_q31( q31_t * pSrc, q31_t offset, q31_t * pDst, uint32_t blockSize); + /** * @brief Negates the elements of a floating-point vector. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_negate_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Negates the elements of a Q7 vector. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_negate_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); + /** * @brief Negates the elements of a Q15 vector. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_negate_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Negates the elements of a Q31 vector. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_negate_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + + /** * @brief Copies the elements of a floating-point vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_copy_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Copies the elements of a Q7 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_copy_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); + /** * @brief Copies the elements of a Q15 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_copy_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Copies the elements of a Q31 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_copy_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + + /** * @brief Fills a constant value into a floating-point vector. - * @param[in] value input value to be filled - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_fill_f32( float32_t value, float32_t * pDst, uint32_t blockSize); + /** * @brief Fills a constant value into a Q7 vector. - * @param[in] value input value to be filled - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_fill_q7( q7_t value, q7_t * pDst, uint32_t blockSize); + /** * @brief Fills a constant value into a Q15 vector. - * @param[in] value input value to be filled - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_fill_q15( q15_t value, q15_t * pDst, uint32_t blockSize); + /** * @brief Fills a constant value into a Q31 vector. - * @param[in] value input value to be filled - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_fill_q31( q31_t value, q31_t * pDst, uint32_t blockSize); + /** * @brief Convolution of floating-point sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. */ - void arm_conv_f32( float32_t * pSrcA, uint32_t srcALen, @@ -3077,17 +3005,14 @@ /** * @brief Convolution of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). - * @return none. - */ - - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + */ void arm_conv_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3100,14 +3025,12 @@ /** * @brief Convolution of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. */ - void arm_conv_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3115,35 +3038,33 @@ uint32_t srcBLen, q15_t * pDst); - /** - * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @return none. - */ - - void arm_conv_fast_q15( - q15_t * pSrcA, - uint32_t srcALen, - q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst); /** * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_fast_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + + /** + * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + */ void arm_conv_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3154,17 +3075,14 @@ q15_t * pScratch2); - /** * @brief Convolution of Q31 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ void arm_conv_q31( q31_t * pSrcA, uint32_t srcALen, @@ -3172,16 +3090,15 @@ uint32_t srcBLen, q31_t * pDst); + /** * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ void arm_conv_fast_q31( q31_t * pSrcA, uint32_t srcALen, @@ -3192,16 +3109,14 @@ /** * @brief Convolution of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + */ void arm_conv_opt_q7( q7_t * pSrcA, uint32_t srcALen, @@ -3212,17 +3127,14 @@ q15_t * pScratch2); - /** * @brief Convolution of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ void arm_conv_q7( q7_t * pSrcA, uint32_t srcALen, @@ -3233,16 +3145,15 @@ /** * @brief Partial convolution of floating-point sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_f32( float32_t * pSrcA, uint32_t srcALen, @@ -3252,20 +3163,20 @@ uint32_t firstIndex, uint32_t numPoints); - /** + + /** * @brief Partial convolution of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3278,18 +3189,17 @@ q15_t * pScratch2); -/** + /** * @brief Partial convolution of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3299,42 +3209,41 @@ uint32_t firstIndex, uint32_t numPoints); + /** * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_fast_q15( - q15_t * pSrcA, - uint32_t srcALen, - q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - uint32_t firstIndex, - uint32_t numPoints); + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); /** * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3349,16 +3258,15 @@ /** * @brief Partial convolution of Q31 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_q31( q31_t * pSrcA, uint32_t srcALen, @@ -3371,16 +3279,15 @@ /** * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_fast_q31( q31_t * pSrcA, uint32_t srcALen, @@ -3393,18 +3300,17 @@ /** * @brief Partial convolution of Q7 sequences - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_opt_q7( q7_t * pSrcA, uint32_t srcALen, @@ -3419,16 +3325,15 @@ /** * @brief Partial convolution of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_q7( q7_t * pSrcA, uint32_t srcALen, @@ -3439,56 +3344,47 @@ uint32_t numPoints); - /** * @brief Instance structure for the Q15 FIR decimator. */ - typedef struct { - uint8_t M; /**< decimation factor. */ - uint16_t numTaps; /**< number of coefficients in the filter. */ - q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } arm_fir_decimate_instance_q15; /** * @brief Instance structure for the Q31 FIR decimator. */ - typedef struct { uint8_t M; /**< decimation factor. */ uint16_t numTaps; /**< number of coefficients in the filter. */ - q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } arm_fir_decimate_instance_q31; /** * @brief Instance structure for the floating-point FIR decimator. */ - typedef struct { - uint8_t M; /**< decimation factor. */ - uint16_t numTaps; /**< number of coefficients in the filter. */ - float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } arm_fir_decimate_instance_f32; - /** * @brief Processing function for the floating-point FIR decimator. - * @param[in] *S points to an instance of the floating-point FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + * @param[in] S points to an instance of the floating-point FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_decimate_f32( const arm_fir_decimate_instance_f32 * S, float32_t * pSrc, @@ -3498,16 +3394,15 @@ /** * @brief Initialization function for the floating-point FIR decimator. - * @param[in,out] *S points to an instance of the floating-point FIR decimator structure. - * @param[in] numTaps number of coefficients in the filter. - * @param[in] M decimation factor. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the floating-point FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * <code>blockSize</code> is not a multiple of <code>M</code>. */ - arm_status arm_fir_decimate_init_f32( arm_fir_decimate_instance_f32 * S, uint16_t numTaps, @@ -3516,30 +3411,28 @@ float32_t * pState, uint32_t blockSize); + /** * @brief Processing function for the Q15 FIR decimator. - * @param[in] *S points to an instance of the Q15 FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + * @param[in] S points to an instance of the Q15 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_decimate_q15( const arm_fir_decimate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q15 FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + * @param[in] S points to an instance of the Q15 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_decimate_fast_q15( const arm_fir_decimate_instance_q15 * S, q15_t * pSrc, @@ -3547,19 +3440,17 @@ uint32_t blockSize); - /** * @brief Initialization function for the Q15 FIR decimator. - * @param[in,out] *S points to an instance of the Q15 FIR decimator structure. - * @param[in] numTaps number of coefficients in the filter. - * @param[in] M decimation factor. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the Q15 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * <code>blockSize</code> is not a multiple of <code>M</code>. */ - arm_status arm_fir_decimate_init_q15( arm_fir_decimate_instance_q15 * S, uint16_t numTaps, @@ -3568,15 +3459,14 @@ q15_t * pState, uint32_t blockSize); + /** * @brief Processing function for the Q31 FIR decimator. - * @param[in] *S points to an instance of the Q31 FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data + * @param[in] S points to an instance of the Q31 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + */ void arm_fir_decimate_q31( const arm_fir_decimate_instance_q31 * S, q31_t * pSrc, @@ -3585,13 +3475,11 @@ /** * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q31 FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + * @param[in] S points to an instance of the Q31 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_decimate_fast_q31( arm_fir_decimate_instance_q31 * S, q31_t * pSrc, @@ -3601,16 +3489,15 @@ /** * @brief Initialization function for the Q31 FIR decimator. - * @param[in,out] *S points to an instance of the Q31 FIR decimator structure. - * @param[in] numTaps number of coefficients in the filter. - * @param[in] M decimation factor. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the Q31 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * <code>blockSize</code> is not a multiple of <code>M</code>. */ - arm_status arm_fir_decimate_init_q31( arm_fir_decimate_instance_q31 * S, uint16_t numTaps, @@ -3620,11 +3507,9 @@ uint32_t blockSize); - /** * @brief Instance structure for the Q15 FIR interpolator. */ - typedef struct { uint8_t L; /**< upsample factor. */ @@ -3636,37 +3521,33 @@ /** * @brief Instance structure for the Q31 FIR interpolator. */ - typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ - q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ - q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ } arm_fir_interpolate_instance_q31; /** * @brief Instance structure for the floating-point FIR interpolator. */ - typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ - float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ - float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ } arm_fir_interpolate_instance_f32; /** * @brief Processing function for the Q15 FIR interpolator. - * @param[in] *S points to an instance of the Q15 FIR interpolator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_interpolate_q15( const arm_fir_interpolate_instance_q15 * S, q15_t * pSrc, @@ -3676,16 +3557,15 @@ /** * @brief Initialization function for the Q15 FIR interpolator. - * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure. - * @param[in] L upsample factor. - * @param[in] numTaps number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficient buffer. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. */ - arm_status arm_fir_interpolate_init_q15( arm_fir_interpolate_instance_q15 * S, uint8_t L, @@ -3694,33 +3574,32 @@ q15_t * pState, uint32_t blockSize); + /** * @brief Processing function for the Q31 FIR interpolator. - * @param[in] *S points to an instance of the Q15 FIR interpolator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_interpolate_q31( const arm_fir_interpolate_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q31 FIR interpolator. - * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure. - * @param[in] L upsample factor. - * @param[in] numTaps number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficient buffer. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. */ - arm_status arm_fir_interpolate_init_q31( arm_fir_interpolate_instance_q31 * S, uint8_t L, @@ -3732,31 +3611,29 @@ /** * @brief Processing function for the floating-point FIR interpolator. - * @param[in] *S points to an instance of the floating-point FIR interpolator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_interpolate_f32( const arm_fir_interpolate_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point FIR interpolator. - * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure. - * @param[in] L upsample factor. - * @param[in] numTaps number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficient buffer. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. */ - arm_status arm_fir_interpolate_init_f32( arm_fir_interpolate_instance_f32 * S, uint8_t L, @@ -3765,28 +3642,25 @@ float32_t * pState, uint32_t blockSize); + /** * @brief Instance structure for the high precision Q31 Biquad cascade filter. */ - typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ - } arm_biquad_cas_df1_32x64_ins_q31; /** - * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cas_df1_32x64_q31( const arm_biquad_cas_df1_32x64_ins_q31 * S, q31_t * pSrc, @@ -3795,14 +3669,12 @@ /** - * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format - * @return none - */ - + * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format + */ void arm_biquad_cas_df1_32x64_init_q31( arm_biquad_cas_df1_32x64_ins_q31 * S, uint8_t numStages, @@ -3811,11 +3683,9 @@ uint8_t postShift); - /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ - typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ @@ -3823,12 +3693,9 @@ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_cascade_df2T_instance_f32; - - /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ - typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ @@ -3836,12 +3703,9 @@ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_cascade_stereo_df2T_instance_f32; - - /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ - typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ @@ -3852,13 +3716,11 @@ /** * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in] *S points to an instance of the filter data structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_df2T_f32( const arm_biquad_cascade_df2T_instance_f32 * S, float32_t * pSrc, @@ -3868,28 +3730,25 @@ /** * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels - * @param[in] *S points to an instance of the filter data structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_stereo_df2T_f32( const arm_biquad_cascade_stereo_df2T_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in] *S points to an instance of the filter data structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_df2T_f64( const arm_biquad_cascade_df2T_instance_f64 * S, float64_t * pSrc, @@ -3899,13 +3758,11 @@ /** * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in,out] *S points to an instance of the filter data structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @return none - */ - + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ void arm_biquad_cascade_df2T_init_f32( arm_biquad_cascade_df2T_instance_f32 * S, uint8_t numStages, @@ -3915,13 +3772,11 @@ /** * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in,out] *S points to an instance of the filter data structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @return none - */ - + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ void arm_biquad_cascade_stereo_df2T_init_f32( arm_biquad_cascade_stereo_df2T_instance_f32 * S, uint8_t numStages, @@ -3931,13 +3786,11 @@ /** * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in,out] *S points to an instance of the filter data structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @return none - */ - + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ void arm_biquad_cascade_df2T_init_f64( arm_biquad_cascade_df2T_instance_f64 * S, uint8_t numStages, @@ -3945,33 +3798,29 @@ float64_t * pState); - /** * @brief Instance structure for the Q15 FIR lattice filter. */ - typedef struct { - uint16_t numStages; /**< number of filter stages. */ - q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ - q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + uint16_t numStages; /**< number of filter stages. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } arm_fir_lattice_instance_q15; /** * @brief Instance structure for the Q31 FIR lattice filter. */ - typedef struct { - uint16_t numStages; /**< number of filter stages. */ - q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ - q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + uint16_t numStages; /**< number of filter stages. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } arm_fir_lattice_instance_q31; /** * @brief Instance structure for the floating-point FIR lattice filter. */ - typedef struct { uint16_t numStages; /**< number of filter stages. */ @@ -3979,15 +3828,14 @@ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } arm_fir_lattice_instance_f32; + /** * @brief Initialization function for the Q15 FIR lattice filter. - * @param[in] *S points to an instance of the Q15 FIR lattice structure. + * @param[in] S points to an instance of the Q15 FIR lattice structure. * @param[in] numStages number of filter stages. - * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. - * @param[in] *pState points to the state buffer. The array is of length numStages. - * @return none. - */ - + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ void arm_fir_lattice_init_q15( arm_fir_lattice_instance_q15 * S, uint16_t numStages, @@ -3997,11 +3845,10 @@ /** * @brief Processing function for the Q15 FIR lattice filter. - * @param[in] *S points to an instance of the Q15 FIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q15 FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_lattice_q15( const arm_fir_lattice_instance_q15 * S, @@ -4009,15 +3856,14 @@ q15_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q31 FIR lattice filter. - * @param[in] *S points to an instance of the Q31 FIR lattice structure. + * @param[in] S points to an instance of the Q31 FIR lattice structure. * @param[in] numStages number of filter stages. - * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. - * @param[in] *pState points to the state buffer. The array is of length numStages. - * @return none. - */ - + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ void arm_fir_lattice_init_q31( arm_fir_lattice_instance_q31 * S, uint16_t numStages, @@ -4027,58 +3873,55 @@ /** * @brief Processing function for the Q31 FIR lattice filter. - * @param[in] *S points to an instance of the Q31 FIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_fir_lattice_q31( const arm_fir_lattice_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point FIR lattice filter. - * @param[in] *S points to an instance of the floating-point FIR lattice structure. + * @param[in] S points to an instance of the floating-point FIR lattice structure. * @param[in] numStages number of filter stages. - * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. - * @param[in] *pState points to the state buffer. The array is of length numStages. - * @return none. + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. */ - void arm_fir_lattice_init_f32( arm_fir_lattice_instance_f32 * S, uint16_t numStages, float32_t * pCoeffs, float32_t * pState); + /** * @brief Processing function for the floating-point FIR lattice filter. - * @param[in] *S points to an instance of the floating-point FIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_fir_lattice_f32( const arm_fir_lattice_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Instance structure for the Q15 IIR lattice filter. */ typedef struct { - uint16_t numStages; /**< number of stages in the filter. */ - q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ - q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ - q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + uint16_t numStages; /**< number of stages in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } arm_iir_lattice_instance_q15; /** @@ -4086,10 +3929,10 @@ */ typedef struct { - uint16_t numStages; /**< number of stages in the filter. */ - q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ - q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ - q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + uint16_t numStages; /**< number of stages in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } arm_iir_lattice_instance_q31; /** @@ -4097,38 +3940,36 @@ */ typedef struct { - uint16_t numStages; /**< number of stages in the filter. */ - float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ - float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ - float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + uint16_t numStages; /**< number of stages in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } arm_iir_lattice_instance_f32; + /** * @brief Processing function for the floating-point IIR lattice filter. - * @param[in] *S points to an instance of the floating-point IIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_f32( const arm_iir_lattice_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point IIR lattice filter. - * @param[in] *S points to an instance of the floating-point IIR lattice structure. - * @param[in] numStages number of stages in the filter. - * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. - * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. - * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_init_f32( arm_iir_lattice_instance_f32 * S, uint16_t numStages, @@ -4140,13 +3981,11 @@ /** * @brief Processing function for the Q31 IIR lattice filter. - * @param[in] *S points to an instance of the Q31 IIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_q31( const arm_iir_lattice_instance_q31 * S, q31_t * pSrc, @@ -4156,15 +3995,13 @@ /** * @brief Initialization function for the Q31 IIR lattice filter. - * @param[in] *S points to an instance of the Q31 IIR lattice structure. - * @param[in] numStages number of stages in the filter. - * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. - * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. - * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_init_q31( arm_iir_lattice_instance_q31 * S, uint16_t numStages, @@ -4176,13 +4013,11 @@ /** * @brief Processing function for the Q15 IIR lattice filter. - * @param[in] *S points to an instance of the Q15 IIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_q15( const arm_iir_lattice_instance_q15 * S, q15_t * pSrc, @@ -4192,15 +4027,13 @@ /** * @brief Initialization function for the Q15 IIR lattice filter. - * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure. + * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. * @param[in] numStages number of stages in the filter. - * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages. - * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. - * @param[in] *pState points to state buffer. The array is of length numStages+blockSize. - * @param[in] blockSize number of samples to process per call. - * @return none. + * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process per call. */ - void arm_iir_lattice_init_q15( arm_iir_lattice_instance_q15 * S, uint16_t numStages, @@ -4209,10 +4042,10 @@ q15_t * pState, uint32_t blockSize); + /** * @brief Instance structure for the floating-point LMS filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4221,17 +4054,16 @@ float32_t mu; /**< step size that controls filter coefficient updates. */ } arm_lms_instance_f32; + /** * @brief Processing function for floating-point LMS filter. - * @param[in] *S points to an instance of the floating-point LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_f32( const arm_lms_instance_f32 * S, float32_t * pSrc, @@ -4240,17 +4072,16 @@ float32_t * pErr, uint32_t blockSize); + /** * @brief Initialization function for floating-point LMS filter. - * @param[in] *S points to an instance of the floating-point LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to the coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to the coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + */ void arm_lms_init_f32( arm_lms_instance_f32 * S, uint16_t numTaps, @@ -4259,10 +4090,10 @@ float32_t mu, uint32_t blockSize); + /** * @brief Instance structure for the Q15 LMS filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4275,16 +4106,14 @@ /** * @brief Initialization function for the Q15 LMS filter. - * @param[in] *S points to an instance of the Q15 LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to the coefficient buffer. - * @param[in] *pState points to the state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to the coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ void arm_lms_init_q15( arm_lms_instance_q15 * S, uint16_t numTaps, @@ -4294,17 +4123,16 @@ uint32_t blockSize, uint32_t postShift); + /** * @brief Processing function for Q15 LMS filter. - * @param[in] *S points to an instance of the Q15 LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_q15( const arm_lms_instance_q15 * S, q15_t * pSrc, @@ -4317,7 +4145,6 @@ /** * @brief Instance structure for the Q31 LMS filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4325,20 +4152,18 @@ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q31_t mu; /**< step size that controls filter coefficient updates. */ uint32_t postShift; /**< bit shift applied to coefficients. */ - } arm_lms_instance_q31; + /** * @brief Processing function for Q31 LMS filter. - * @param[in] *S points to an instance of the Q15 LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_q31( const arm_lms_instance_q31 * S, q31_t * pSrc, @@ -4347,18 +4172,17 @@ q31_t * pErr, uint32_t blockSize); + /** * @brief Initialization function for Q31 LMS filter. - * @param[in] *S points to an instance of the Q31 LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ void arm_lms_init_q31( arm_lms_instance_q31 * S, uint16_t numTaps, @@ -4368,31 +4192,30 @@ uint32_t blockSize, uint32_t postShift); + /** * @brief Instance structure for the floating-point normalized LMS filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - float32_t mu; /**< step size that control filter coefficient updates. */ - float32_t energy; /**< saves previous frame energy. */ - float32_t x0; /**< saves previous input sample. */ + float32_t mu; /**< step size that control filter coefficient updates. */ + float32_t energy; /**< saves previous frame energy. */ + float32_t x0; /**< saves previous input sample. */ } arm_lms_norm_instance_f32; + /** * @brief Processing function for floating-point normalized LMS filter. - * @param[in] *S points to an instance of the floating-point normalized LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_norm_f32( arm_lms_norm_instance_f32 * S, float32_t * pSrc, @@ -4401,17 +4224,16 @@ float32_t * pErr, uint32_t blockSize); + /** * @brief Initialization function for floating-point normalized LMS filter. - * @param[in] *S points to an instance of the floating-point LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + */ void arm_lms_norm_init_f32( arm_lms_norm_instance_f32 * S, uint16_t numTaps, @@ -4436,17 +4258,16 @@ q31_t x0; /**< saves previous input sample. */ } arm_lms_norm_instance_q31; + /** * @brief Processing function for Q31 normalized LMS filter. - * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_norm_q31( arm_lms_norm_instance_q31 * S, q31_t * pSrc, @@ -4455,18 +4276,17 @@ q31_t * pErr, uint32_t blockSize); + /** * @brief Initialization function for Q31 normalized LMS filter. - * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ void arm_lms_norm_init_q31( arm_lms_norm_instance_q31 * S, uint16_t numTaps, @@ -4476,33 +4296,32 @@ uint32_t blockSize, uint8_t postShift); + /** * @brief Instance structure for the Q15 normalized LMS filter. */ - typedef struct { - uint16_t numTaps; /**< Number of coefficients in the filter. */ + uint16_t numTaps; /**< Number of coefficients in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - q15_t mu; /**< step size that controls filter coefficient updates. */ - uint8_t postShift; /**< bit shift applied to coefficients. */ - q15_t *recipTable; /**< Points to the reciprocal initial value table. */ - q15_t energy; /**< saves previous frame energy. */ - q15_t x0; /**< saves previous input sample. */ + q15_t mu; /**< step size that controls filter coefficient updates. */ + uint8_t postShift; /**< bit shift applied to coefficients. */ + q15_t *recipTable; /**< Points to the reciprocal initial value table. */ + q15_t energy; /**< saves previous frame energy. */ + q15_t x0; /**< saves previous input sample. */ } arm_lms_norm_instance_q15; + /** * @brief Processing function for Q15 normalized LMS filter. - * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_norm_q15( arm_lms_norm_instance_q15 * S, q15_t * pSrc, @@ -4514,16 +4333,14 @@ /** * @brief Initialization function for Q15 normalized LMS filter. - * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ void arm_lms_norm_init_q15( arm_lms_norm_instance_q15 * S, uint16_t numTaps, @@ -4533,16 +4350,15 @@ uint32_t blockSize, uint8_t postShift); + /** * @brief Correlation of floating-point sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ void arm_correlate_f32( float32_t * pSrcA, uint32_t srcALen, @@ -4553,13 +4369,12 @@ /** * @brief Correlation of Q15 sequences - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. */ void arm_correlate_opt_q15( q15_t * pSrcA, @@ -4572,12 +4387,11 @@ /** * @brief Correlation of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_q15( @@ -4587,36 +4401,33 @@ uint32_t srcBLen, q15_t * pDst); + /** * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_fast_q15( - q15_t * pSrcA, - uint32_t srcALen, - q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst); - + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); /** * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + */ void arm_correlate_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -4625,16 +4436,15 @@ q15_t * pDst, q15_t * pScratch); + /** * @brief Correlation of Q31 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ void arm_correlate_q31( q31_t * pSrcA, uint32_t srcALen, @@ -4642,16 +4452,15 @@ uint32_t srcBLen, q31_t * pDst); + /** * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ void arm_correlate_fast_q31( q31_t * pSrcA, uint32_t srcALen, @@ -4660,19 +4469,16 @@ q31_t * pDst); - /** * @brief Correlation of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + */ void arm_correlate_opt_q7( q7_t * pSrcA, uint32_t srcALen, @@ -4685,14 +4491,12 @@ /** * @brief Correlation of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ void arm_correlate_q7( q7_t * pSrcA, uint32_t srcALen, @@ -4717,7 +4521,6 @@ /** * @brief Instance structure for the Q31 sparse FIR filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4731,7 +4534,6 @@ /** * @brief Instance structure for the Q15 sparse FIR filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4745,7 +4547,6 @@ /** * @brief Instance structure for the Q7 sparse FIR filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4756,16 +4557,15 @@ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } arm_fir_sparse_instance_q7; + /** * @brief Processing function for the floating-point sparse FIR filter. - * @param[in] *S points to an instance of the floating-point sparse FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] *pScratchIn points to a temporary buffer of size blockSize. + * @param[in] S points to an instance of the floating-point sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + */ void arm_fir_sparse_f32( arm_fir_sparse_instance_f32 * S, float32_t * pSrc, @@ -4773,18 +4573,17 @@ float32_t * pScratchIn, uint32_t blockSize); + /** * @brief Initialization function for the floating-point sparse FIR filter. - * @param[in,out] *S points to an instance of the floating-point sparse FIR structure. + * @param[in,out] S points to an instance of the floating-point sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] *pCoeffs points to the array of filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] *pTapDelay points to the array of offset times. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. - * @return none - */ - + */ void arm_fir_sparse_init_f32( arm_fir_sparse_instance_f32 * S, uint16_t numTaps, @@ -4794,16 +4593,15 @@ uint16_t maxDelay, uint32_t blockSize); + /** * @brief Processing function for the Q31 sparse FIR filter. - * @param[in] *S points to an instance of the Q31 sparse FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] *pScratchIn points to a temporary buffer of size blockSize. + * @param[in] S points to an instance of the Q31 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + */ void arm_fir_sparse_q31( arm_fir_sparse_instance_q31 * S, q31_t * pSrc, @@ -4811,18 +4609,17 @@ q31_t * pScratchIn, uint32_t blockSize); + /** * @brief Initialization function for the Q31 sparse FIR filter. - * @param[in,out] *S points to an instance of the Q31 sparse FIR structure. + * @param[in,out] S points to an instance of the Q31 sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] *pCoeffs points to the array of filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] *pTapDelay points to the array of offset times. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. - * @return none - */ - + */ void arm_fir_sparse_init_q31( arm_fir_sparse_instance_q31 * S, uint16_t numTaps, @@ -4832,17 +4629,16 @@ uint16_t maxDelay, uint32_t blockSize); + /** * @brief Processing function for the Q15 sparse FIR filter. - * @param[in] *S points to an instance of the Q15 sparse FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] *pScratchIn points to a temporary buffer of size blockSize. - * @param[in] *pScratchOut points to a temporary buffer of size blockSize. + * @param[in] S points to an instance of the Q15 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] pScratchOut points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + */ void arm_fir_sparse_q15( arm_fir_sparse_instance_q15 * S, q15_t * pSrc, @@ -4854,16 +4650,14 @@ /** * @brief Initialization function for the Q15 sparse FIR filter. - * @param[in,out] *S points to an instance of the Q15 sparse FIR structure. + * @param[in,out] S points to an instance of the Q15 sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] *pCoeffs points to the array of filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] *pTapDelay points to the array of offset times. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. - * @return none - */ - + */ void arm_fir_sparse_init_q15( arm_fir_sparse_instance_q15 * S, uint16_t numTaps, @@ -4873,17 +4667,16 @@ uint16_t maxDelay, uint32_t blockSize); + /** * @brief Processing function for the Q7 sparse FIR filter. - * @param[in] *S points to an instance of the Q7 sparse FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] *pScratchIn points to a temporary buffer of size blockSize. - * @param[in] *pScratchOut points to a temporary buffer of size blockSize. + * @param[in] S points to an instance of the Q7 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] pScratchOut points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + */ void arm_fir_sparse_q7( arm_fir_sparse_instance_q7 * S, q7_t * pSrc, @@ -4892,18 +4685,17 @@ q31_t * pScratchOut, uint32_t blockSize); + /** * @brief Initialization function for the Q7 sparse FIR filter. - * @param[in,out] *S points to an instance of the Q7 sparse FIR structure. + * @param[in,out] S points to an instance of the Q7 sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] *pCoeffs points to the array of filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] *pTapDelay points to the array of offset times. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. - * @return none - */ - + */ void arm_fir_sparse_init_q7( arm_fir_sparse_instance_q7 * S, uint16_t numTaps, @@ -4914,27 +4706,24 @@ uint32_t blockSize); - /* + /** * @brief Floating-point sin_cos function. - * @param[in] theta input value in degrees - * @param[out] *pSinVal points to the processed sine output. - * @param[out] *pCosVal points to the processed cos output. - * @return none. - */ - + * @param[in] theta input value in degrees + * @param[out] pSinVal points to the processed sine output. + * @param[out] pCosVal points to the processed cos output. + */ void arm_sin_cos_f32( float32_t theta, float32_t * pSinVal, - float32_t * pCcosVal); - - /* + float32_t * pCosVal); + + + /** * @brief Q31 sin_cos function. * @param[in] theta scaled input value in degrees - * @param[out] *pSinVal points to the processed sine output. - * @param[out] *pCosVal points to the processed cosine output. - * @return none. - */ - + * @param[out] pSinVal points to the processed sine output. + * @param[out] pCosVal points to the processed cosine output. + */ void arm_sin_cos_q31( q31_t theta, q31_t * pSinVal, @@ -4943,12 +4732,10 @@ /** * @brief Floating-point complex conjugate. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_conj_f32( float32_t * pSrc, float32_t * pDst, @@ -4956,66 +4743,58 @@ /** * @brief Q31 complex conjugate. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_conj_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); + /** * @brief Q15 complex conjugate. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_conj_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); - /** * @brief Floating-point complex magnitude squared - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_squared_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); + /** * @brief Q31 complex magnitude squared - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_squared_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); + /** * @brief Q15 complex magnitude squared - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_squared_q15( q15_t * pSrc, q15_t * pDst, @@ -5090,13 +4869,11 @@ /** * @brief Process function for the floating-point PID Control. - * @param[in,out] *S is an instance of the floating-point PID Control structure - * @param[in] in input sample to process + * @param[in,out] S is an instance of the floating-point PID Control structure + * @param[in] in input sample to process * @return out processed output sample. */ - - - static __INLINE float32_t arm_pid_f32( + CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32( arm_pid_instance_f32 * S, float32_t in) { @@ -5118,8 +4895,8 @@ /** * @brief Process function for the Q31 PID Control. - * @param[in,out] *S points to an instance of the Q31 PID Control structure - * @param[in] in input sample to process + * @param[in,out] S points to an instance of the Q31 PID Control structure + * @param[in] in input sample to process * @return out processed output sample. * * <b>Scaling and Overflow Behavior:</b> @@ -5130,8 +4907,7 @@ * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. */ - - static __INLINE q31_t arm_pid_q31( + CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31( arm_pid_instance_q31 * S, q31_t in) { @@ -5160,13 +4936,13 @@ /* return to application */ return (out); - } + /** * @brief Process function for the Q15 PID Control. - * @param[in,out] *S points to an instance of the Q15 PID Control structure - * @param[in] in input sample to process + * @param[in,out] S points to an instance of the Q15 PID Control structure + * @param[in] in input sample to process * @return out processed output sample. * * <b>Scaling and Overflow Behavior:</b> @@ -5178,26 +4954,24 @@ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. * Lastly, the accumulator is saturated to yield a result in 1.15 format. */ - - static __INLINE q15_t arm_pid_q15( + CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15( arm_pid_instance_q15 * S, q15_t in) { q63_t acc; q15_t out; -#ifndef ARM_MATH_CM0_FAMILY +#if defined (ARM_MATH_DSP) __SIMD32_TYPE *vstate; /* Implementation of PID controller */ /* acc = A0 * x[n] */ - acc = (q31_t) __SMUAD(S->A0, in); + acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); /* acc += A1 * x[n-1] + A2 * x[n-2] */ vstate = __SIMD32_CONST(S->state); - acc = __SMLALD(S->A1, (q31_t) *vstate, acc); - + acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); #else /* acc = A0 * x[n] */ acc = ((q31_t) S->A0) * in; @@ -5205,7 +4979,6 @@ /* acc += A1 * x[n-1] + A2 * x[n-2] */ acc += (q31_t) S->A1 * S->state[0]; acc += (q31_t) S->A2 * S->state[1]; - #endif /* acc += y[n-1] */ @@ -5221,7 +4994,6 @@ /* return to application */ return (out); - } /** @@ -5231,12 +5003,11 @@ /** * @brief Floating-point matrix inverse. - * @param[in] *src points to the instance of the input floating-point matrix structure. - * @param[out] *dst points to the instance of the output floating-point matrix structure. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. */ - arm_status arm_mat_inverse_f32( const arm_matrix_instance_f32 * src, arm_matrix_instance_f32 * dst); @@ -5244,12 +5015,11 @@ /** * @brief Floating-point matrix inverse. - * @param[in] *src points to the instance of the input floating-point matrix structure. - * @param[out] *dst points to the instance of the output floating-point matrix structure. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. */ - arm_status arm_mat_inverse_f64( const arm_matrix_instance_f64 * src, arm_matrix_instance_f64 * dst); @@ -5260,7 +5030,6 @@ * @ingroup groupController */ - /** * @defgroup clarke Vector Clarke Transform * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. @@ -5291,14 +5060,12 @@ /** * * @brief Floating-point Clarke transform - * @param[in] Ia input three-phase coordinate <code>a</code> - * @param[in] Ib input three-phase coordinate <code>b</code> - * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta - * @return none. - */ - - static __INLINE void arm_clarke_f32( + * @param[in] Ia input three-phase coordinate <code>a</code> + * @param[in] Ib input three-phase coordinate <code>b</code> + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + */ + CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32( float32_t Ia, float32_t Ib, float32_t * pIalpha, @@ -5308,18 +5075,16 @@ *pIalpha = Ia; /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ - *pIbeta = - ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); - + *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); } + /** * @brief Clarke transform for Q31 version - * @param[in] Ia input three-phase coordinate <code>a</code> - * @param[in] Ib input three-phase coordinate <code>b</code> - * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta - * @return none. + * @param[in] Ia input three-phase coordinate <code>a</code> + * @param[in] Ib input three-phase coordinate <code>b</code> + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta * * <b>Scaling and Overflow Behavior:</b> * \par @@ -5327,8 +5092,7 @@ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition, hence there is no risk of overflow. */ - - static __INLINE void arm_clarke_q31( + CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31( q31_t Ia, q31_t Ib, q31_t * pIalpha, @@ -5355,10 +5119,9 @@ /** * @brief Converts the elements of the Q7 vector to Q31 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_q7_to_q31( q7_t * pSrc, @@ -5367,7 +5130,6 @@ - /** * @ingroup groupController */ @@ -5395,15 +5157,12 @@ /** * @brief Floating-point Inverse Clarke transform - * @param[in] Ialpha input two-phase orthogonal vector axis alpha - * @param[in] Ibeta input two-phase orthogonal vector axis beta - * @param[out] *pIa points to output three-phase coordinate <code>a</code> - * @param[out] *pIb points to output three-phase coordinate <code>b</code> - * @return none. - */ - - - static __INLINE void arm_inv_clarke_f32( + * @param[in] Ialpha input two-phase orthogonal vector axis alpha + * @param[in] Ibeta input two-phase orthogonal vector axis beta + * @param[out] pIa points to output three-phase coordinate <code>a</code> + * @param[out] pIb points to output three-phase coordinate <code>b</code> + */ + CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32( float32_t Ialpha, float32_t Ibeta, float32_t * pIa, @@ -5413,17 +5172,16 @@ *pIa = Ialpha; /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ - *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta; - + *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; } + /** * @brief Inverse Clarke transform for Q31 version - * @param[in] Ialpha input two-phase orthogonal vector axis alpha - * @param[in] Ibeta input two-phase orthogonal vector axis beta - * @param[out] *pIa points to output three-phase coordinate <code>a</code> - * @param[out] *pIb points to output three-phase coordinate <code>b</code> - * @return none. + * @param[in] Ialpha input two-phase orthogonal vector axis alpha + * @param[in] Ibeta input two-phase orthogonal vector axis beta + * @param[out] pIa points to output three-phase coordinate <code>a</code> + * @param[out] pIb points to output three-phase coordinate <code>b</code> * * <b>Scaling and Overflow Behavior:</b> * \par @@ -5431,8 +5189,7 @@ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the subtraction, hence there is no risk of overflow. */ - - static __INLINE void arm_inv_clarke_q31( + CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31( q31_t Ialpha, q31_t Ibeta, q31_t * pIa, @@ -5451,7 +5208,6 @@ /* pIb is calculated by subtracting the products */ *pIb = __QSUB(product2, product1); - } /** @@ -5460,10 +5216,9 @@ /** * @brief Converts the elements of the Q7 vector to Q15 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_q7_to_q15( q7_t * pSrc, @@ -5507,19 +5262,17 @@ /** * @brief Floating-point Park transform - * @param[in] Ialpha input two-phase vector coordinate alpha - * @param[in] Ibeta input two-phase vector coordinate beta - * @param[out] *pId points to output rotor reference frame d - * @param[out] *pIq points to output rotor reference frame q - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none. + * @param[in] Ialpha input two-phase vector coordinate alpha + * @param[in] Ibeta input two-phase vector coordinate beta + * @param[out] pId points to output rotor reference frame d + * @param[out] pIq points to output rotor reference frame q + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta * * The function implements the forward Park transform. * */ - - static __INLINE void arm_park_f32( + CMSIS_INLINE __STATIC_INLINE void arm_park_f32( float32_t Ialpha, float32_t Ibeta, float32_t * pId, @@ -5532,18 +5285,17 @@ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ *pIq = -Ialpha * sinVal + Ibeta * cosVal; - } + /** * @brief Park transform for Q31 version - * @param[in] Ialpha input two-phase vector coordinate alpha - * @param[in] Ibeta input two-phase vector coordinate beta - * @param[out] *pId points to output rotor reference frame d - * @param[out] *pIq points to output rotor reference frame q - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none. + * @param[in] Ialpha input two-phase vector coordinate alpha + * @param[in] Ibeta input two-phase vector coordinate beta + * @param[out] pId points to output rotor reference frame d + * @param[out] pIq points to output rotor reference frame q + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta * * <b>Scaling and Overflow Behavior:</b> * \par @@ -5551,9 +5303,7 @@ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition and subtraction, hence there is no risk of overflow. */ - - - static __INLINE void arm_park_q31( + CMSIS_INLINE __STATIC_INLINE void arm_park_q31( q31_t Ialpha, q31_t Ibeta, q31_t * pId, @@ -5590,10 +5340,9 @@ /** * @brief Converts the elements of the Q7 vector to floating-point vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q7_to_float( q7_t * pSrc, @@ -5629,16 +5378,14 @@ /** * @brief Floating-point Inverse Park transform - * @param[in] Id input coordinate of rotor reference frame d - * @param[in] Iq input coordinate of rotor reference frame q - * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none. - */ - - static __INLINE void arm_inv_park_f32( + * @param[in] Id input coordinate of rotor reference frame d + * @param[in] Iq input coordinate of rotor reference frame q + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + */ + CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32( float32_t Id, float32_t Iq, float32_t * pIalpha, @@ -5651,19 +5398,17 @@ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ *pIbeta = Id * sinVal + Iq * cosVal; - } /** - * @brief Inverse Park transform for Q31 version - * @param[in] Id input coordinate of rotor reference frame d - * @param[in] Iq input coordinate of rotor reference frame q - * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none. + * @brief Inverse Park transform for Q31 version + * @param[in] Id input coordinate of rotor reference frame d + * @param[in] Iq input coordinate of rotor reference frame q + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta * * <b>Scaling and Overflow Behavior:</b> * \par @@ -5671,9 +5416,7 @@ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition, hence there is no risk of overflow. */ - - - static __INLINE void arm_inv_park_q31( + CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31( q31_t Id, q31_t Iq, q31_t * pIalpha, @@ -5702,7 +5445,6 @@ /* Calculate pIbeta by using the two intermediate products 3 and 4 */ *pIbeta = __QADD(product4, product3); - } /** @@ -5712,10 +5454,9 @@ /** * @brief Converts the elements of the Q31 vector to floating-point vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q31_to_float( q31_t * pSrc, @@ -5765,17 +5506,15 @@ /** * @brief Process function for the floating-point Linear Interpolation Function. - * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure - * @param[in] x input sample to process + * @param[in,out] S is an instance of the floating-point Linear Interpolation structure + * @param[in] x input sample to process * @return y processed output sample. * */ - - static __INLINE float32_t arm_linear_interp_f32( + CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32( arm_linear_interp_instance_f32 * S, float32_t x) { - float32_t y; float32_t x0, x1; /* Nearest input values */ float32_t y0, y1; /* Nearest output values */ @@ -5786,12 +5525,12 @@ /* Calculation of index */ i = (int32_t) ((x - S->x1) / xSpacing); - if(i < 0) + if (i < 0) { /* Iniatilize output for below specified range as least output value of table */ y = pYData[0]; } - else if((uint32_t)i >= S->nValues) + else if ((uint32_t)i >= S->nValues) { /* Iniatilize output for above specified range as last output value of table */ y = pYData[S->nValues - 1]; @@ -5799,7 +5538,7 @@ else { /* Calculation of nearest input values */ - x0 = S->x1 + i * xSpacing; + x0 = S->x1 + i * xSpacing; x1 = S->x1 + (i + 1) * xSpacing; /* Read of nearest output values */ @@ -5815,12 +5554,13 @@ return (y); } + /** * * @brief Process function for the Q31 Linear Interpolation Function. - * @param[in] *pYData pointer to Q31 Linear Interpolation table - * @param[in] x input sample to process - * @param[in] nValues number of table values + * @param[in] pYData pointer to Q31 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values * @return y processed output sample. * * \par @@ -5828,9 +5568,7 @@ * This function can support maximum of table size 2^12. * */ - - - static __INLINE q31_t arm_linear_interp_q31( + CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31( q31_t * pYData, q31_t x, uint32_t nValues) @@ -5843,26 +5581,25 @@ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - index = ((x & 0xFFF00000) >> 20); - - if(index >= (int32_t)(nValues - 1)) + index = ((x & (q31_t)0xFFF00000) >> 20); + + if (index >= (int32_t)(nValues - 1)) { return (pYData[nValues - 1]); } - else if(index < 0) + else if (index < 0) { return (pYData[0]); } else { - /* 20 bits for the fractional part */ /* shift left by 11 to keep fract in 1.31 format */ fract = (x & 0x000FFFFF) << 11; /* Read two nearest output values from the index in 1.31(q31) format */ y0 = pYData[index]; - y1 = pYData[index + 1u]; + y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract) and y is in 2.30 format */ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); @@ -5872,17 +5609,16 @@ /* Convert y to 1.31 format */ return (y << 1u); - } - } + /** * * @brief Process function for the Q15 Linear Interpolation Function. - * @param[in] *pYData pointer to Q15 Linear Interpolation table - * @param[in] x input sample to process - * @param[in] nValues number of table values + * @param[in] pYData pointer to Q15 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values * @return y processed output sample. * * \par @@ -5890,9 +5626,7 @@ * This function can support maximum of table size 2^12. * */ - - - static __INLINE q15_t arm_linear_interp_q15( + CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15( q15_t * pYData, q31_t x, uint32_t nValues) @@ -5905,13 +5639,13 @@ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - index = ((x & 0xFFF00000) >> 20u); - - if(index >= (int32_t)(nValues - 1)) + index = ((x & (int32_t)0xFFF00000) >> 20); + + if (index >= (int32_t)(nValues - 1)) { return (pYData[nValues - 1]); } - else if(index < 0) + else if (index < 0) { return (pYData[0]); } @@ -5923,7 +5657,7 @@ /* Read two nearest output values from the index */ y0 = pYData[index]; - y1 = pYData[index + 1u]; + y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract) and y is in 13.35 format */ y = ((q63_t) y0 * (0xFFFFF - fract)); @@ -5932,27 +5666,24 @@ y += ((q63_t) y1 * (fract)); /* convert y to 1.15 format */ - return (y >> 20); + return (q15_t) (y >> 20); } - - } + /** * * @brief Process function for the Q7 Linear Interpolation Function. - * @param[in] *pYData pointer to Q7 Linear Interpolation table - * @param[in] x input sample to process - * @param[in] nValues number of table values + * @param[in] pYData pointer to Q7 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values * @return y processed output sample. * * \par * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. * This function can support maximum of table size 2^12. */ - - - static __INLINE q7_t arm_linear_interp_q7( + CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7( q7_t * pYData, q31_t x, uint32_t nValues) @@ -5971,21 +5702,19 @@ } index = (x >> 20) & 0xfff; - - if(index >= (nValues - 1)) + if (index >= (nValues - 1)) { return (pYData[nValues - 1]); } else { - /* 20 bits for the fractional part */ /* fract is in 12.20 format */ fract = (x & 0x000FFFFF); /* Read two nearest output values from the index and are in 1.7(q7) format */ y0 = pYData[index]; - y1 = pYData[index + 1u]; + y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ y = ((y0 * (0xFFFFF - fract))); @@ -5994,66 +5723,64 @@ y += (y1 * fract); /* convert y to 1.7(q7) format */ - return (y >> 20u); - - } - + return (q7_t) (y >> 20); + } } + /** * @} end of LinearInterpolate group */ /** * @brief Fast approximation to the trigonometric sine function for floating-point data. - * @param[in] x input value in radians. + * @param[in] x input value in radians. * @return sin(x). */ - float32_t arm_sin_f32( float32_t x); + /** * @brief Fast approximation to the trigonometric sine function for Q31 data. - * @param[in] x Scaled input value in radians. + * @param[in] x Scaled input value in radians. * @return sin(x). */ - q31_t arm_sin_q31( q31_t x); + /** * @brief Fast approximation to the trigonometric sine function for Q15 data. - * @param[in] x Scaled input value in radians. + * @param[in] x Scaled input value in radians. * @return sin(x). */ - q15_t arm_sin_q15( q15_t x); + /** * @brief Fast approximation to the trigonometric cosine function for floating-point data. - * @param[in] x input value in radians. + * @param[in] x input value in radians. * @return cos(x). */ - float32_t arm_cos_f32( float32_t x); + /** * @brief Fast approximation to the trigonometric cosine function for Q31 data. - * @param[in] x Scaled input value in radians. + * @param[in] x Scaled input value in radians. * @return cos(x). */ - q31_t arm_cos_q31( q31_t x); + /** * @brief Fast approximation to the trigonometric cosine function for Q15 data. - * @param[in] x Scaled input value in radians. + * @param[in] x Scaled input value in radians. * @return cos(x). */ - q15_t arm_cos_q15( q15_t x); @@ -6091,22 +5818,26 @@ /** * @brief Floating-point square root function. - * @param[in] in input value. - * @param[out] *pOut square root of input value. + * @param[in] in input value. + * @param[out] pOut square root of input value. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if * <code>in</code> is negative value and returns zero output for negative values. */ - - static __INLINE arm_status arm_sqrt_f32( + CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32( float32_t in, float32_t * pOut) { - if(in >= 0.0f) + if (in >= 0.0f) { -// #if __FPU_USED -#if (__FPU_USED == 1) && defined ( __CC_ARM ) +#if (__FPU_USED == 1) && defined ( __CC_ARM ) *pOut = __sqrtf(in); +#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) + *pOut = __builtin_sqrtf(in); +#elif (__FPU_USED == 1) && defined(__GNUC__) + *pOut = __builtin_sqrtf(in); +#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) + __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); #else *pOut = sqrtf(in); #endif @@ -6118,14 +5849,13 @@ *pOut = 0.0f; return (ARM_MATH_ARGUMENT_ERROR); } - } /** * @brief Q31 square root function. - * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. - * @param[out] *pOut square root of input value. + * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. + * @param[out] pOut square root of input value. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if * <code>in</code> is negative value and returns zero output for negative values. */ @@ -6133,10 +5863,11 @@ q31_t in, q31_t * pOut); + /** * @brief Q15 square root function. - * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. - * @param[out] *pOut square root of input value. + * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. + * @param[out] pOut square root of input value. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if * <code>in</code> is negative value and returns zero output for negative values. */ @@ -6149,15 +5880,10 @@ */ - - - - /** * @brief floating-point Circular write function. */ - - static __INLINE void arm_circularWrite_f32( + CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32( int32_t * circBuffer, int32_t L, uint16_t * writeOffset, @@ -6176,7 +5902,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the input sample to the circular buffer */ circBuffer[wOffset] = *src; @@ -6186,7 +5912,7 @@ /* Circularly update wOffset. Watch out for positive and negative value */ wOffset += bufferInc; - if(wOffset >= L) + if (wOffset >= L) wOffset -= L; /* Decrement the loop counter */ @@ -6194,7 +5920,7 @@ } /* Update the index pointer */ - *writeOffset = wOffset; + *writeOffset = (uint16_t)wOffset; } @@ -6202,7 +5928,7 @@ /** * @brief floating-point Circular Read function. */ - static __INLINE void arm_circularRead_f32( + CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32( int32_t * circBuffer, int32_t L, int32_t * readOffset, @@ -6224,7 +5950,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the sample from the circular buffer to the destination buffer */ *dst = circBuffer[rOffset]; @@ -6232,7 +5958,7 @@ /* Update the input pointer */ dst += dstInc; - if(dst == (int32_t *) dst_end) + if (dst == (int32_t *) dst_end) { dst = dst_base; } @@ -6240,7 +5966,7 @@ /* Circularly update rOffset. Watch out for positive and negative value */ rOffset += bufferInc; - if(rOffset >= L) + if (rOffset >= L) { rOffset -= L; } @@ -6253,11 +5979,11 @@ *readOffset = rOffset; } + /** * @brief Q15 Circular write function. */ - - static __INLINE void arm_circularWrite_q15( + CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15( q15_t * circBuffer, int32_t L, uint16_t * writeOffset, @@ -6276,7 +6002,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the input sample to the circular buffer */ circBuffer[wOffset] = *src; @@ -6286,7 +6012,7 @@ /* Circularly update wOffset. Watch out for positive and negative value */ wOffset += bufferInc; - if(wOffset >= L) + if (wOffset >= L) wOffset -= L; /* Decrement the loop counter */ @@ -6294,15 +6020,14 @@ } /* Update the index pointer */ - *writeOffset = wOffset; + *writeOffset = (uint16_t)wOffset; } - /** * @brief Q15 Circular Read function. */ - static __INLINE void arm_circularRead_q15( + CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15( q15_t * circBuffer, int32_t L, int32_t * readOffset, @@ -6325,7 +6050,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the sample from the circular buffer to the destination buffer */ *dst = circBuffer[rOffset]; @@ -6333,7 +6058,7 @@ /* Update the input pointer */ dst += dstInc; - if(dst == (q15_t *) dst_end) + if (dst == (q15_t *) dst_end) { dst = dst_base; } @@ -6341,7 +6066,7 @@ /* Circularly update wOffset. Watch out for positive and negative value */ rOffset += bufferInc; - if(rOffset >= L) + if (rOffset >= L) { rOffset -= L; } @@ -6358,8 +6083,7 @@ /** * @brief Q7 Circular write function. */ - - static __INLINE void arm_circularWrite_q7( + CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7( q7_t * circBuffer, int32_t L, uint16_t * writeOffset, @@ -6378,7 +6102,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the input sample to the circular buffer */ circBuffer[wOffset] = *src; @@ -6388,7 +6112,7 @@ /* Circularly update wOffset. Watch out for positive and negative value */ wOffset += bufferInc; - if(wOffset >= L) + if (wOffset >= L) wOffset -= L; /* Decrement the loop counter */ @@ -6396,15 +6120,14 @@ } /* Update the index pointer */ - *writeOffset = wOffset; + *writeOffset = (uint16_t)wOffset; } - /** * @brief Q7 Circular Read function. */ - static __INLINE void arm_circularRead_q7( + CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7( q7_t * circBuffer, int32_t L, int32_t * readOffset, @@ -6427,7 +6150,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the sample from the circular buffer to the destination buffer */ *dst = circBuffer[rOffset]; @@ -6435,7 +6158,7 @@ /* Update the input pointer */ dst += dstInc; - if(dst == (q7_t *) dst_end) + if (dst == (q7_t *) dst_end) { dst = dst_base; } @@ -6443,7 +6166,7 @@ /* Circularly update rOffset. Watch out for positive and negative value */ rOffset += bufferInc; - if(rOffset >= L) + if (rOffset >= L) { rOffset -= L; } @@ -6459,271 +6182,252 @@ /** * @brief Sum of the squares of the elements of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_power_q31( q31_t * pSrc, uint32_t blockSize, q63_t * pResult); + /** * @brief Sum of the squares of the elements of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_power_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Sum of the squares of the elements of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_power_q15( q15_t * pSrc, uint32_t blockSize, q63_t * pResult); + /** * @brief Sum of the squares of the elements of a Q7 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_power_q7( q7_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Mean value of a Q7 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_mean_q7( q7_t * pSrc, uint32_t blockSize, q7_t * pResult); + /** * @brief Mean value of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. */ void arm_mean_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); + /** * @brief Mean value of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. */ void arm_mean_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Mean value of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. */ void arm_mean_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Variance of the elements of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_var_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Variance of the elements of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_var_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Variance of the elements of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_var_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); + /** * @brief Root Mean Square of the elements of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_rms_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Root Mean Square of the elements of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_rms_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Root Mean Square of the elements of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_rms_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); + /** * @brief Standard deviation of the elements of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_std_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Standard deviation of the elements of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_std_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Standard deviation of the elements of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_std_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); + /** * @brief Floating-point complex magnitude - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); + /** * @brief Q31 complex magnitude - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); + /** * @brief Q15 complex magnitude - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); + /** * @brief Q15 complex dot product - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] numSamples number of complex samples in each vector - * @param[out] *realResult real part of the result returned here - * @param[out] *imagResult imaginary part of the result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ void arm_cmplx_dot_prod_q15( q15_t * pSrcA, q15_t * pSrcB, @@ -6731,16 +6435,15 @@ q31_t * realResult, q31_t * imagResult); + /** * @brief Q31 complex dot product - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] numSamples number of complex samples in each vector - * @param[out] *realResult real part of the result returned here - * @param[out] *imagResult imaginary part of the result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ void arm_cmplx_dot_prod_q31( q31_t * pSrcA, q31_t * pSrcB, @@ -6748,16 +6451,15 @@ q63_t * realResult, q63_t * imagResult); + /** * @brief Floating-point complex dot product - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] numSamples number of complex samples in each vector - * @param[out] *realResult real part of the result returned here - * @param[out] *imagResult imaginary part of the result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ void arm_cmplx_dot_prod_f32( float32_t * pSrcA, float32_t * pSrcB, @@ -6765,88 +6467,83 @@ float32_t * realResult, float32_t * imagResult); + /** * @brief Q15 complex-by-real multiplication - * @param[in] *pSrcCmplx points to the complex input vector - * @param[in] *pSrcReal points to the real input vector - * @param[out] *pCmplxDst points to the complex output vector - * @param[in] numSamples number of samples in each vector - * @return none. - */ - + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ void arm_cmplx_mult_real_q15( q15_t * pSrcCmplx, q15_t * pSrcReal, q15_t * pCmplxDst, uint32_t numSamples); + /** * @brief Q31 complex-by-real multiplication - * @param[in] *pSrcCmplx points to the complex input vector - * @param[in] *pSrcReal points to the real input vector - * @param[out] *pCmplxDst points to the complex output vector - * @param[in] numSamples number of samples in each vector - * @return none. - */ - + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ void arm_cmplx_mult_real_q31( q31_t * pSrcCmplx, q31_t * pSrcReal, q31_t * pCmplxDst, uint32_t numSamples); + /** * @brief Floating-point complex-by-real multiplication - * @param[in] *pSrcCmplx points to the complex input vector - * @param[in] *pSrcReal points to the real input vector - * @param[out] *pCmplxDst points to the complex output vector - * @param[in] numSamples number of samples in each vector - * @return none. - */ - + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ void arm_cmplx_mult_real_f32( float32_t * pSrcCmplx, float32_t * pSrcReal, float32_t * pCmplxDst, uint32_t numSamples); + /** * @brief Minimum value of a Q7 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *result is output pointer - * @param[in] index is the array index of the minimum value in the input buffer. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] result is output pointer + * @param[in] index is the array index of the minimum value in the input buffer. + */ void arm_min_q7( q7_t * pSrc, uint32_t blockSize, q7_t * result, uint32_t * index); + /** * @brief Minimum value of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output pointer - * @param[in] *pIndex is the array index of the minimum value in the input buffer. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[in] pIndex is the array index of the minimum value in the input buffer. + */ void arm_min_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult, uint32_t * pIndex); + /** * @brief Minimum value of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output pointer - * @param[out] *pIndex is the array index of the minimum value in the input buffer. - * @return none. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. */ void arm_min_q31( q31_t * pSrc, @@ -6854,156 +6551,148 @@ q31_t * pResult, uint32_t * pIndex); + /** * @brief Minimum value of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output pointer - * @param[out] *pIndex is the array index of the minimum value in the input buffer. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ void arm_min_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult, uint32_t * pIndex); + /** * @brief Maximum value of a Q7 vector. - * @param[in] *pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] *pResult maximum value returned here - * @param[out] *pIndex index of maximum value returned here - * @return none. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here */ - void arm_max_q7( q7_t * pSrc, uint32_t blockSize, q7_t * pResult, uint32_t * pIndex); + /** * @brief Maximum value of a Q15 vector. - * @param[in] *pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] *pResult maximum value returned here - * @param[out] *pIndex index of maximum value returned here - * @return none. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here */ - void arm_max_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult, uint32_t * pIndex); + /** * @brief Maximum value of a Q31 vector. - * @param[in] *pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] *pResult maximum value returned here - * @param[out] *pIndex index of maximum value returned here - * @return none. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here */ - void arm_max_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult, uint32_t * pIndex); + /** * @brief Maximum value of a floating-point vector. - * @param[in] *pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] *pResult maximum value returned here - * @param[out] *pIndex index of maximum value returned here - * @return none. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here */ - void arm_max_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult, uint32_t * pIndex); + /** * @brief Q15 complex-by-complex multiplication - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_mult_cmplx_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t numSamples); + /** * @brief Q31 complex-by-complex multiplication - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_mult_cmplx_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t numSamples); + /** * @brief Floating-point complex-by-complex multiplication - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_mult_cmplx_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t numSamples); + /** * @brief Converts the elements of the floating-point vector to Q31 vector. - * @param[in] *pSrc points to the floating-point input vector - * @param[out] *pDst points to the Q31 output vector - * @param[in] blockSize length of the input vector - * @return none. + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q31 output vector + * @param[in] blockSize length of the input vector */ void arm_float_to_q31( float32_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Converts the elements of the floating-point vector to Q15 vector. - * @param[in] *pSrc points to the floating-point input vector - * @param[out] *pDst points to the Q15 output vector - * @param[in] blockSize length of the input vector - * @return none + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q15 output vector + * @param[in] blockSize length of the input vector */ void arm_float_to_q15( float32_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Converts the elements of the floating-point vector to Q7 vector. - * @param[in] *pSrc points to the floating-point input vector - * @param[out] *pDst points to the Q7 output vector - * @param[in] blockSize length of the input vector - * @return none + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q7 output vector + * @param[in] blockSize length of the input vector */ void arm_float_to_q7( float32_t * pSrc, @@ -7013,34 +6702,33 @@ /** * @brief Converts the elements of the Q31 vector to Q15 vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q31_to_q15( q31_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Converts the elements of the Q31 vector to Q7 vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q31_to_q7( q31_t * pSrc, q7_t * pDst, uint32_t blockSize); + /** * @brief Converts the elements of the Q15 vector to floating-point vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q15_to_float( q15_t * pSrc, @@ -7050,10 +6738,9 @@ /** * @brief Converts the elements of the Q15 vector to Q31 vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q15_to_q31( q15_t * pSrc, @@ -7063,10 +6750,9 @@ /** * @brief Converts the elements of the Q15 vector to Q7 vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q15_to_q7( q15_t * pSrc, @@ -7135,17 +6821,16 @@ * @{ */ + /** * * @brief Floating-point bilinear interpolation. - * @param[in,out] *S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate. - * @param[in] Y interpolation coordinate. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. * @return out interpolated value. */ - - - static __INLINE float32_t arm_bilinear_interp_f32( + CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32( const arm_bilinear_interp_instance_f32 * S, float32_t X, float32_t Y) @@ -7162,8 +6847,7 @@ /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ - if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 - || yIndex > (S->numCols - 1)) + if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) { return (0); } @@ -7201,19 +6885,18 @@ /* return to application */ return (out); - } + /** * * @brief Q31 bilinear interpolation. - * @param[in,out] *S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate in 12.20 format. - * @param[in] Y interpolation coordinate in 12.20 format. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ - - static __INLINE q31_t arm_bilinear_interp_q31( + CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31( arm_bilinear_interp_instance_q31 * S, q31_t X, q31_t Y) @@ -7226,20 +6909,19 @@ q31_t *pYData = S->pData; /* pointer to output table values */ uint32_t nCols = S->numCols; /* num of rows */ + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - rI = ((X & 0xFFF00000) >> 20u); - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - cI = ((Y & 0xFFF00000) >> 20u); + cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ - if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } @@ -7249,19 +6931,19 @@ xfract = (X & 0x000FFFFF) << 11u; /* Read two nearest output values from the index */ - x1 = pYData[(rI) + nCols * (cI)]; - x2 = pYData[(rI) + nCols * (cI) + 1u]; + x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; + x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; /* 20 bits for the fractional part */ /* shift left yfract by 11 to keep 1.31 format */ yfract = (Y & 0x000FFFFF) << 11u; /* Read two nearest output values from the index */ - y1 = pYData[(rI) + nCols * (cI + 1)]; - y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; + y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ - out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); + out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ @@ -7277,19 +6959,18 @@ acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); /* Convert acc to 1.31(q31) format */ - return (acc << 2u); - + return ((q31_t)(acc << 2)); } + /** * @brief Q15 bilinear interpolation. - * @param[in,out] *S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate in 12.20 format. - * @param[in] Y interpolation coordinate in 12.20 format. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ - - static __INLINE q15_t arm_bilinear_interp_q15( + CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15( arm_bilinear_interp_instance_q15 * S, q31_t X, q31_t Y) @@ -7305,16 +6986,16 @@ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - rI = ((X & 0xFFF00000) >> 20); + rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - cI = ((Y & 0xFFF00000) >> 20); + cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ - if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } @@ -7324,17 +7005,16 @@ xfract = (X & 0x000FFFFF); /* Read two nearest output values from the index */ - x1 = pYData[(rI) + nCols * (cI)]; - x2 = pYData[(rI) + nCols * (cI) + 1u]; - + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; /* 20 bits for the fractional part */ /* yfract should be in 12.20 format */ yfract = (Y & 0x000FFFFF); /* Read two nearest output values from the index */ - y1 = pYData[(rI) + nCols * (cI + 1)]; - y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ @@ -7357,19 +7037,18 @@ /* acc is in 13.51 format and down shift acc by 36 times */ /* Convert out to 1.15 format */ - return (acc >> 36); - + return ((q15_t)(acc >> 36)); } + /** * @brief Q7 bilinear interpolation. - * @param[in,out] *S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate in 12.20 format. - * @param[in] Y interpolation coordinate in 12.20 format. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ - - static __INLINE q7_t arm_bilinear_interp_q7( + CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7( arm_bilinear_interp_instance_q7 * S, q31_t X, q31_t Y) @@ -7385,36 +7064,35 @@ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - rI = ((X & 0xFFF00000) >> 20); + rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - cI = ((Y & 0xFFF00000) >> 20); + cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ - if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } /* 20 bits for the fractional part */ /* xfract should be in 12.20 format */ - xfract = (X & 0x000FFFFF); + xfract = (X & (q31_t)0x000FFFFF); /* Read two nearest output values from the index */ - x1 = pYData[(rI) + nCols * (cI)]; - x2 = pYData[(rI) + nCols * (cI) + 1u]; - + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; /* 20 bits for the fractional part */ /* yfract should be in 12.20 format */ - yfract = (Y & 0x000FFFFF); + yfract = (Y & (q31_t)0x000FFFFF); /* Read two nearest output values from the index */ - y1 = pYData[(rI) + nCols * (cI + 1)]; - y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ out = ((x1 * (0xFFFFF - xfract))); @@ -7433,120 +7111,143 @@ acc += (((q63_t) out * (xfract))); /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ - return (acc >> 40); - + return ((q7_t)(acc >> 40)); } /** * @} end of BilinearInterpolate group */ - - -//SMMLAR + + +/* SMMLAR */ #define multAcc_32x32_keep32_R(a, x, y) \ a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) -//SMMLSR +/* SMMLSR */ #define multSub_32x32_keep32_R(a, x, y) \ a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) -//SMMULR +/* SMMULR */ #define mult_32x32_keep32_R(a, x, y) \ a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) -//SMMLA +/* SMMLA */ #define multAcc_32x32_keep32(a, x, y) \ a += (q31_t) (((q63_t) x * y) >> 32) -//SMMLS +/* SMMLS */ #define multSub_32x32_keep32(a, x, y) \ a -= (q31_t) (((q63_t) x * y) >> 32) -//SMMUL +/* SMMUL */ #define mult_32x32_keep32(a, x, y) \ a = (q31_t) (((q63_t) x * y ) >> 32) -#if defined ( __CC_ARM ) //Keil - -//Enter low optimization region - place directly above function definition - #ifdef ARM_MATH_CM4 - #define LOW_OPTIMIZATION_ENTER \ - _Pragma ("push") \ - _Pragma ("O1") - #else - #define LOW_OPTIMIZATION_ENTER - #endif - -//Exit low optimization region - place directly after end of function definition - #ifdef ARM_MATH_CM4 - #define LOW_OPTIMIZATION_EXIT \ - _Pragma ("pop") - #else - #define LOW_OPTIMIZATION_EXIT - #endif - -//Enter low optimization region - place directly above function definition +#if defined ( __CC_ARM ) + /* Enter low optimization region - place directly above function definition */ + #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("push") \ + _Pragma ("O1") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) + #define LOW_OPTIMIZATION_EXIT \ + _Pragma ("pop") + #else + #define LOW_OPTIMIZATION_EXIT + #endif + + /* Enter low optimization region - place directly above function definition */ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER -//Exit low optimization region - place directly after end of function definition + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __GNUC__ ) + #define LOW_OPTIMIZATION_ENTER \ + __attribute__(( optimize("-O1") )) + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER #define IAR_ONLY_LOW_OPTIMIZATION_EXIT -#elif defined(__ICCARM__) //IAR - -//Enter low optimization region - place directly above function definition - #ifdef ARM_MATH_CM4 - #define LOW_OPTIMIZATION_ENTER \ - _Pragma ("optimize=low") - #else - #define LOW_OPTIMIZATION_ENTER - #endif - -//Exit low optimization region - place directly after end of function definition +#elif defined ( __ICCARM__ ) + /* Enter low optimization region - place directly above function definition */ + #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ #define LOW_OPTIMIZATION_EXIT -//Enter low optimization region - place directly above function definition - #ifdef ARM_MATH_CM4 - #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ - _Pragma ("optimize=low") - #else - #define IAR_ONLY_LOW_OPTIMIZATION_ENTER - #endif - -//Exit low optimization region - place directly after end of function definition + /* Enter low optimization region - place directly above function definition */ + #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT -#elif defined(__GNUC__) - - #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) - +#elif defined ( __TI_ARM__ ) + #define LOW_OPTIMIZATION_ENTER #define LOW_OPTIMIZATION_EXIT - #define IAR_ONLY_LOW_OPTIMIZATION_ENTER - #define IAR_ONLY_LOW_OPTIMIZATION_EXIT -#elif defined(__CSMC__) // Cosmic - -#define LOW_OPTIMIZATION_ENTER -#define LOW_OPTIMIZATION_EXIT -#define IAR_ONLY_LOW_OPTIMIZATION_ENTER -#define IAR_ONLY_LOW_OPTIMIZATION_EXIT - -#elif defined(__TASKING__) // TASKING - -#define LOW_OPTIMIZATION_ENTER -#define LOW_OPTIMIZATION_EXIT -#define IAR_ONLY_LOW_OPTIMIZATION_ENTER -#define IAR_ONLY_LOW_OPTIMIZATION_EXIT +#elif defined ( __CSMC__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __TASKING__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT #endif -#ifdef __cplusplus +#ifdef __cplusplus } #endif +/* Compiler specific diagnostic adjustment */ +#if defined ( __CC_ARM ) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + +#elif defined ( __GNUC__ ) +#pragma GCC diagnostic pop + +#elif defined ( __ICCARM__ ) + +#elif defined ( __TI_ARM__ ) + +#elif defined ( __CSMC__ ) + +#elif defined ( __TASKING__ ) + +#else + #error Unknown compiler +#endif #endif /* _ARM_MATH_H */