The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.
Dependents: hello SerialTestv11 SerialTestv12 Sierpinski ... more
mbed 2
This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.
Diff: TARGET_TY51822R3/TOOLCHAIN_IAR/app_util.h
- Revision:
- 171:3a7713b1edbc
- Parent:
- 169:a7c7b631e539
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/TARGET_TY51822R3/TOOLCHAIN_IAR/app_util.h Thu Nov 08 11:45:42 2018 +0000 @@ -0,0 +1,520 @@ +/* + * Copyright (c) 2012 Nordic Semiconductor ASA + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this list + * of conditions and the following disclaimer. + * + * 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA + * integrated circuit in a product or a software update for such product, must reproduce + * the above copyright notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the distribution. + * + * 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific prior + * written permission. + * + * 4. This software, with or without modification, must only be used with a + * Nordic Semiconductor ASA integrated circuit. + * + * 5. Any software provided in binary or object form under this license must not be reverse + * engineered, decompiled, modified and/or disassembled. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ + + +/** @file + * + * @defgroup app_util Utility Functions and Definitions + * @{ + * @ingroup app_common + * + * @brief Various types and definitions available to all applications. + */ + +#ifndef APP_UTIL_H__ +#define APP_UTIL_H__ + +#include <stdint.h> +#include <stdbool.h> +#include "compiler_abstraction.h" +#include "nrf.h" + +//lint -save -e27 -e10 -e19 +#if defined ( __CC_ARM ) +extern char STACK$$Base; +extern char STACK$$Length; +#define STACK_BASE &STACK$$Base +#define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&STACK$$Length)) +#elif defined ( __ICCARM__ ) +extern char CSTACK$$Base; +extern char CSTACK$$Length; +#define STACK_BASE &CSTACK$$Base +#define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&CSTACK$$Length)) +#elif defined ( __GNUC__ ) +extern uint32_t __StackTop; +extern uint32_t __StackLimit; +#define STACK_BASE &__StackLimit +#define STACK_TOP &__StackTop +#endif +//lint -restore + +enum +{ + UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */ + UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */ + UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */ +}; + + +/**@brief Implementation specific macro for delayed macro expansion used in string concatenation +* +* @param[in] lhs Left hand side in concatenation +* @param[in] rhs Right hand side in concatenation +*/ +#define STRING_CONCATENATE_IMPL(lhs, rhs) lhs ## rhs + + +/**@brief Macro used to concatenate string using delayed macro expansion +* +* @note This macro will delay concatenation until the expressions have been resolved +* +* @param[in] lhs Left hand side in concatenation +* @param[in] rhs Right hand side in concatenation +*/ +#define STRING_CONCATENATE(lhs, rhs) STRING_CONCATENATE_IMPL(lhs, rhs) + + +// Disable lint-warnings/errors for STATIC_ASSERT +//lint --emacro(10,STATIC_ASSERT) +//lint --emacro(18,STATIC_ASSERT) +//lint --emacro(19,STATIC_ASSERT) +//lint --emacro(30,STATIC_ASSERT) +//lint --emacro(37,STATIC_ASSERT) +//lint --emacro(42,STATIC_ASSERT) +//lint --emacro(26,STATIC_ASSERT) +//lint --emacro(102,STATIC_ASSERT) +//lint --emacro(533,STATIC_ASSERT) +//lint --emacro(534,STATIC_ASSERT) +//lint --emacro(132,STATIC_ASSERT) +//lint --emacro(414,STATIC_ASSERT) +//lint --emacro(578,STATIC_ASSERT) +//lint --emacro(628,STATIC_ASSERT) +//lint --emacro(648,STATIC_ASSERT) +//lint --emacro(830,STATIC_ASSERT) + + +/**@brief Macro for doing static (i.e. compile time) assertion. +* +* @note If the EXPR isn't resolvable, then the error message won't be shown. +* +* @note The output of STATIC_ASSERT will be different across different compilers. +* +* @param[in] EXPR Constant expression to be verified. +*/ +#if defined ( __COUNTER__ ) + +#define STATIC_ASSERT(EXPR) \ + ;enum { STRING_CONCATENATE(static_assert_, __COUNTER__) = 1/(!!(EXPR)) } + +#else + +#define STATIC_ASSERT(EXPR) \ + ;enum { STRING_CONCATENATE(assert_line_, __LINE__) = 1/(!!(EXPR)) } + +#endif + + +/**@brief Implementation details for NUM_VAR_ARGS */ +#define NUM_VA_ARGS_IMPL( \ + _0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \ + _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \ + _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \ + _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \ + _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, \ + _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, \ + _61, _62, N, ...) N + + +/**@brief Macro to get the number of arguments in a call variadic macro call + * + * param[in] ... List of arguments + * + * @retval Number of variadic arguments in the argument list + */ +#define NUM_VA_ARGS(...) NUM_VA_ARGS_IMPL(__VA_ARGS__, 63, 62, 61, \ + 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ + 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \ + 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \ + 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \ + 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \ + 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) + + +/**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */ +typedef uint8_t uint16_le_t[2]; + +/**@brief Type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */ +typedef uint8_t uint32_le_t[4]; + +/**@brief Byte array type. */ +typedef struct +{ + uint16_t size; /**< Number of array entries. */ + uint8_t * p_data; /**< Pointer to array entries. */ +} uint8_array_t; + + +/**@brief Macro for performing rounded integer division (as opposed to truncating the result). + * + * @param[in] A Numerator. + * @param[in] B Denominator. + * + * @return Rounded (integer) result of dividing A by B. + */ +#define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B)) + + +/**@brief Macro for checking if an integer is a power of two. + * + * @param[in] A Number to be tested. + * + * @return true if value is power of two. + * @return false if value not power of two. + */ +#define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) ) + + +/**@brief Macro for converting milliseconds to ticks. + * + * @param[in] TIME Number of milliseconds to convert. + * @param[in] RESOLUTION Unit to be converted to in [us/ticks]. + */ +#define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION)) + + +/**@brief Macro for performing integer division, making sure the result is rounded up. + * + * @details One typical use for this is to compute the number of objects with size B is needed to + * hold A number of bytes. + * + * @param[in] A Numerator. + * @param[in] B Denominator. + * + * @return Integer result of dividing A by B, rounded up. + */ +#define CEIL_DIV(A, B) \ + (((A) + (B) - 1) / (B)) + + +/**@brief Macro for creating a buffer aligned to 4 bytes. + * + * @param[in] NAME Name of the buffor. + * @param[in] MIN_SIZE Size of this buffor (it will be rounded up to multiples of 4 bytes). + */ +#define WORD_ALIGNED_MEM_BUFF(NAME, MIN_SIZE) static uint32_t NAME[CEIL_DIV(MIN_SIZE, sizeof(uint32_t))] + + +/**@brief Macro for calculating the number of words that are needed to hold a number of bytes. + * + * @details Adds 3 and divides by 4. + * + * @param[in] n_bytes The number of bytes. + * + * @return The number of words that @p n_bytes take up (rounded up). + */ +#define BYTES_TO_WORDS(n_bytes) (((n_bytes) + 3) >> 2) + + +/**@brief The number of bytes in a word. + */ +#define BYTES_PER_WORD (4) + + +/**@brief Macro for increasing a number to the nearest (larger) multiple of another number. + * + * @param[in] alignment The number to align to. + * @param[in] number The number to align (increase). + * + * @return The aligned (increased) @p number. + */ +#define ALIGN_NUM(alignment, number) ((number - 1) + alignment - ((number - 1) % alignment)) + + +/**@brief Function for changing the value unit. + * + * @param[in] value Value to be rescaled. + * @param[in] old_unit_reversal Reversal of the incoming unit. + * @param[in] new_unit_reversal Reversal of the desired unit. + * + * @return Number of bytes written. + */ +static __INLINE uint64_t value_rescale(uint32_t value, uint32_t old_unit_reversal, uint16_t new_unit_reversal) +{ + return (uint64_t)ROUNDED_DIV((uint64_t)value * new_unit_reversal, old_unit_reversal); +} + +/**@brief Function for encoding a uint16 value. + * + * @param[in] value Value to be encoded. + * @param[out] p_encoded_data Buffer where the encoded data is to be written. + * + * @return Number of bytes written. + */ +static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data) +{ + p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0); + p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8); + return sizeof(uint16_t); +} + +/**@brief Function for encoding a three-byte value. + * + * @param[in] value Value to be encoded. + * @param[out] p_encoded_data Buffer where the encoded data is to be written. + * + * @return Number of bytes written. + */ +static __INLINE uint8_t uint24_encode(uint32_t value, uint8_t * p_encoded_data) +{ + p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0); + p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8); + p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16); + return 3; +} + +/**@brief Function for encoding a uint32 value. + * + * @param[in] value Value to be encoded. + * @param[out] p_encoded_data Buffer where the encoded data is to be written. + * + * @return Number of bytes written. + */ +static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data) +{ + p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0); + p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8); + p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16); + p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24); + return sizeof(uint32_t); +} + +/**@brief Function for encoding a uint48 value. + * + * @param[in] value Value to be encoded. + * @param[out] p_encoded_data Buffer where the encoded data is to be written. + * + * @return Number of bytes written. + */ +static __INLINE uint8_t uint48_encode(uint64_t value, uint8_t * p_encoded_data) +{ + p_encoded_data[0] = (uint8_t) ((value & 0x0000000000FF) >> 0); + p_encoded_data[1] = (uint8_t) ((value & 0x00000000FF00) >> 8); + p_encoded_data[2] = (uint8_t) ((value & 0x000000FF0000) >> 16); + p_encoded_data[3] = (uint8_t) ((value & 0x0000FF000000) >> 24); + p_encoded_data[4] = (uint8_t) ((value & 0x00FF00000000) >> 32); + p_encoded_data[5] = (uint8_t) ((value & 0xFF0000000000) >> 40); + return 6; +} + +/**@brief Function for decoding a uint16 value. + * + * @param[in] p_encoded_data Buffer where the encoded data is stored. + * + * @return Decoded value. + */ +static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data) +{ + return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) | + (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 )); +} + +/**@brief Function for decoding a uint16 value in big-endian format. + * + * @param[in] p_encoded_data Buffer where the encoded data is stored. + * + * @return Decoded value. + */ +static __INLINE uint16_t uint16_big_decode(const uint8_t * p_encoded_data) +{ + return ( (((uint16_t)((uint8_t *)p_encoded_data)[0]) << 8 ) | + (((uint16_t)((uint8_t *)p_encoded_data)[1])) ); +} + +/**@brief Function for decoding a three-byte value. + * + * @param[in] p_encoded_data Buffer where the encoded data is stored. + * + * @return Decoded value (uint32_t). + */ +static __INLINE uint32_t uint24_decode(const uint8_t * p_encoded_data) +{ + return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) | + (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) | + (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16)); +} + +/**@brief Function for decoding a uint32 value. + * + * @param[in] p_encoded_data Buffer where the encoded data is stored. + * + * @return Decoded value. + */ +static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data) +{ + return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) | + (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) | + (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) | + (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 )); +} + +/**@brief Function for decoding a uint32 value in big-endian format. + * + * @param[in] p_encoded_data Buffer where the encoded data is stored. + * + * @return Decoded value. + */ +static __INLINE uint32_t uint32_big_decode(const uint8_t * p_encoded_data) +{ + return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 24) | + (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 16) | + (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 8) | + (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 0) ); +} + +/**@brief Function for encoding a uint32 value in big-endian format. + * + * @param[in] value Value to be encoded. + * @param[out] p_encoded_data Buffer where the encoded data will be written. + * + * @return Number of bytes written. + */ +static __INLINE uint8_t uint32_big_encode(uint32_t value, uint8_t * p_encoded_data) +{ +#ifdef NRF51 + p_encoded_data[0] = (uint8_t) ((value & 0xFF000000) >> 24); + p_encoded_data[1] = (uint8_t) ((value & 0x00FF0000) >> 16); + p_encoded_data[2] = (uint8_t) ((value & 0x0000FF00) >> 8); + p_encoded_data[3] = (uint8_t) ((value & 0x000000FF) >> 0); +#elif NRF52 + *(uint32_t *)p_encoded_data = __REV(value); +#endif + return sizeof(uint32_t); +} + +/**@brief Function for decoding a uint48 value. + * + * @param[in] p_encoded_data Buffer where the encoded data is stored. + * + * @return Decoded value. (uint64_t) + */ +static __INLINE uint64_t uint48_decode(const uint8_t * p_encoded_data) +{ + return ( (((uint64_t)((uint8_t *)p_encoded_data)[0]) << 0) | + (((uint64_t)((uint8_t *)p_encoded_data)[1]) << 8) | + (((uint64_t)((uint8_t *)p_encoded_data)[2]) << 16) | + (((uint64_t)((uint8_t *)p_encoded_data)[3]) << 24) | + (((uint64_t)((uint8_t *)p_encoded_data)[4]) << 32) | + (((uint64_t)((uint8_t *)p_encoded_data)[5]) << 40 )); +} + +/** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts. + * + * @details The calculation is based on a linearized version of the battery's discharge + * curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and + * is considered to be the lower boundary. + * + * The discharge curve for CR2032 is non-linear. In this model it is split into + * 4 linear sections: + * - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV) + * - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV) + * - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV) + * - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV) + * + * These numbers are by no means accurate. Temperature and + * load in the actual application is not accounted for! + * + * @param[in] mvolts The voltage in mV + * + * @return Battery level in percent. +*/ +static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts) +{ + uint8_t battery_level; + + if (mvolts >= 3000) + { + battery_level = 100; + } + else if (mvolts > 2900) + { + battery_level = 100 - ((3000 - mvolts) * 58) / 100; + } + else if (mvolts > 2740) + { + battery_level = 42 - ((2900 - mvolts) * 24) / 160; + } + else if (mvolts > 2440) + { + battery_level = 18 - ((2740 - mvolts) * 12) / 300; + } + else if (mvolts > 2100) + { + battery_level = 6 - ((2440 - mvolts) * 6) / 340; + } + else + { + battery_level = 0; + } + + return battery_level; +} + +/**@brief Function for checking if a pointer value is aligned to a 4 byte boundary. + * + * @param[in] p Pointer value to be checked. + * + * @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise. + */ +static __INLINE bool is_word_aligned(void const* p) +{ + return (((uintptr_t)p & 0x03) == 0); +} + +/** + * @brief Function for checking if provided address is located in stack space. + * + * @param[in] ptr Pointer to be checked. + * + * @return true if address is in stack space, false otherwise. + */ +static __INLINE bool is_address_from_stack(void * ptr) +{ + if (((uint32_t)ptr >= (uint32_t)STACK_BASE) && + ((uint32_t)ptr < (uint32_t)STACK_TOP) ) + { + return true; + } + else + { + return false; + } +} + +#endif // APP_UTIL_H__ + +/** @} */