The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Dependents:   hello SerialTestv11 SerialTestv12 Sierpinski ... more

mbed 2

This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.

Revision:
171:3a7713b1edbc
Parent:
169:a7c7b631e539
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/TARGET_TY51822R3/TOOLCHAIN_IAR/app_util.h	Thu Nov 08 11:45:42 2018 +0000
@@ -0,0 +1,520 @@
+/* 
+ * Copyright (c) 2012 Nordic Semiconductor ASA
+ * All rights reserved.
+ * 
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ * 
+ *   1. Redistributions of source code must retain the above copyright notice, this list 
+ *      of conditions and the following disclaimer.
+ *
+ *   2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA 
+ *      integrated circuit in a product or a software update for such product, must reproduce 
+ *      the above copyright notice, this list of conditions and the following disclaimer in 
+ *      the documentation and/or other materials provided with the distribution.
+ *
+ *   3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be 
+ *      used to endorse or promote products derived from this software without specific prior 
+ *      written permission.
+ *
+ *   4. This software, with or without modification, must only be used with a 
+ *      Nordic Semiconductor ASA integrated circuit.
+ *
+ *   5. Any software provided in binary or object form under this license must not be reverse 
+ *      engineered, decompiled, modified and/or disassembled. 
+ * 
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ * 
+ */
+
+
+/** @file
+ *
+ * @defgroup app_util Utility Functions and Definitions
+ * @{
+ * @ingroup app_common
+ *
+ * @brief Various types and definitions available to all applications.
+ */
+
+#ifndef APP_UTIL_H__
+#define APP_UTIL_H__
+
+#include <stdint.h>
+#include <stdbool.h>
+#include "compiler_abstraction.h"
+#include "nrf.h"
+
+//lint -save -e27 -e10 -e19
+#if defined ( __CC_ARM )
+extern char STACK$$Base;
+extern char STACK$$Length;
+#define STACK_BASE    &STACK$$Base
+#define STACK_TOP    ((void*)((uint32_t)STACK_BASE + (uint32_t)&STACK$$Length))
+#elif defined ( __ICCARM__ )
+extern char CSTACK$$Base;
+extern char CSTACK$$Length;
+#define STACK_BASE    &CSTACK$$Base
+#define STACK_TOP    ((void*)((uint32_t)STACK_BASE + (uint32_t)&CSTACK$$Length))
+#elif defined   ( __GNUC__ )
+extern uint32_t __StackTop;
+extern uint32_t __StackLimit;
+#define STACK_BASE    &__StackLimit
+#define STACK_TOP     &__StackTop
+#endif
+//lint -restore
+
+enum
+{
+    UNIT_0_625_MS = 625,                                /**< Number of microseconds in 0.625 milliseconds. */
+    UNIT_1_25_MS  = 1250,                               /**< Number of microseconds in 1.25 milliseconds. */
+    UNIT_10_MS    = 10000                               /**< Number of microseconds in 10 milliseconds. */
+};
+
+
+/**@brief Implementation specific macro for delayed macro expansion used in string concatenation
+*
+* @param[in]   lhs   Left hand side in concatenation
+* @param[in]   rhs   Right hand side in concatenation
+*/
+#define STRING_CONCATENATE_IMPL(lhs, rhs) lhs ## rhs
+
+
+/**@brief Macro used to concatenate string using delayed macro expansion
+*
+* @note This macro will delay concatenation until the expressions have been resolved
+*
+* @param[in]   lhs   Left hand side in concatenation
+* @param[in]   rhs   Right hand side in concatenation
+*/
+#define STRING_CONCATENATE(lhs, rhs) STRING_CONCATENATE_IMPL(lhs, rhs)
+
+
+// Disable lint-warnings/errors for STATIC_ASSERT
+//lint --emacro(10,STATIC_ASSERT)
+//lint --emacro(18,STATIC_ASSERT)
+//lint --emacro(19,STATIC_ASSERT)
+//lint --emacro(30,STATIC_ASSERT)
+//lint --emacro(37,STATIC_ASSERT)
+//lint --emacro(42,STATIC_ASSERT)
+//lint --emacro(26,STATIC_ASSERT)
+//lint --emacro(102,STATIC_ASSERT)
+//lint --emacro(533,STATIC_ASSERT)
+//lint --emacro(534,STATIC_ASSERT)
+//lint --emacro(132,STATIC_ASSERT)
+//lint --emacro(414,STATIC_ASSERT)
+//lint --emacro(578,STATIC_ASSERT)
+//lint --emacro(628,STATIC_ASSERT)
+//lint --emacro(648,STATIC_ASSERT)
+//lint --emacro(830,STATIC_ASSERT)
+
+
+/**@brief Macro for doing static (i.e. compile time) assertion.
+*
+* @note If the EXPR isn't resolvable, then the error message won't be shown.
+*
+* @note The output of STATIC_ASSERT will be different across different compilers.
+*
+* @param[in] EXPR Constant expression to be verified.
+*/
+#if defined ( __COUNTER__ )
+
+#define STATIC_ASSERT(EXPR) \
+    ;enum { STRING_CONCATENATE(static_assert_, __COUNTER__) = 1/(!!(EXPR)) }
+
+#else
+
+#define STATIC_ASSERT(EXPR) \
+    ;enum { STRING_CONCATENATE(assert_line_, __LINE__) = 1/(!!(EXPR)) }
+
+#endif
+
+
+/**@brief Implementation details for NUM_VAR_ARGS */
+#define NUM_VA_ARGS_IMPL(                              \
+    _0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10,       \
+    _11, _12, _13, _14, _15, _16, _17, _18, _19, _20,  \
+    _21, _22, _23, _24, _25, _26, _27, _28, _29, _30,  \
+    _31, _32, _33, _34, _35, _36, _37, _38, _39, _40,  \
+    _41, _42, _43, _44, _45, _46, _47, _48, _49, _50,  \
+    _51, _52, _53, _54, _55, _56, _57, _58, _59, _60,  \
+    _61, _62, N, ...) N
+
+
+/**@brief Macro to get the number of arguments in a call variadic macro call
+ *
+ * param[in]    ...     List of arguments
+ *
+ * @retval  Number of variadic arguments in the argument list
+ */
+#define NUM_VA_ARGS(...) NUM_VA_ARGS_IMPL(__VA_ARGS__, 63, 62, 61,  \
+    60, 59, 58, 57, 56, 55, 54, 53, 52, 51,                         \
+    50, 49, 48, 47, 46, 45, 44, 43, 42, 41,                         \
+    40, 39, 38, 37, 36, 35, 34, 33, 32, 31,                         \
+    30, 29, 28, 27, 26, 25, 24, 23, 22, 21,                         \
+    20, 19, 18, 17, 16, 15, 14, 13, 12, 11,                         \
+    10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
+
+
+/**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */
+typedef uint8_t uint16_le_t[2];
+
+/**@brief Type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */
+typedef uint8_t uint32_le_t[4];
+
+/**@brief Byte array type. */
+typedef struct
+{
+    uint16_t  size;                 /**< Number of array entries. */
+    uint8_t * p_data;               /**< Pointer to array entries. */
+} uint8_array_t;
+
+
+/**@brief Macro for performing rounded integer division (as opposed to truncating the result).
+ *
+ * @param[in]   A   Numerator.
+ * @param[in]   B   Denominator.
+ *
+ * @return      Rounded (integer) result of dividing A by B.
+ */
+#define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B))
+
+
+/**@brief Macro for checking if an integer is a power of two.
+ *
+ * @param[in]   A   Number to be tested.
+ *
+ * @return      true if value is power of two.
+ * @return      false if value not power of two.
+ */
+#define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) )
+
+
+/**@brief Macro for converting milliseconds to ticks.
+ *
+ * @param[in] TIME          Number of milliseconds to convert.
+ * @param[in] RESOLUTION    Unit to be converted to in [us/ticks].
+ */
+#define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION))
+
+
+/**@brief Macro for performing integer division, making sure the result is rounded up.
+ *
+ * @details One typical use for this is to compute the number of objects with size B is needed to
+ *          hold A number of bytes.
+ *
+ * @param[in]   A   Numerator.
+ * @param[in]   B   Denominator.
+ *
+ * @return      Integer result of dividing A by B, rounded up.
+ */
+#define CEIL_DIV(A, B)      \
+    (((A) + (B) - 1) / (B))
+
+
+/**@brief Macro for creating a buffer aligned to 4 bytes.
+ *
+ * @param[in]   NAME        Name of the buffor.
+ * @param[in]   MIN_SIZE    Size of this buffor (it will be rounded up to multiples of 4 bytes).
+ */
+#define WORD_ALIGNED_MEM_BUFF(NAME, MIN_SIZE) static uint32_t NAME[CEIL_DIV(MIN_SIZE, sizeof(uint32_t))]
+
+
+/**@brief Macro for calculating the number of words that are needed to hold a number of bytes.
+ *
+ * @details Adds 3 and divides by 4.
+ *
+ * @param[in]  n_bytes  The number of bytes.
+ *
+ * @return The number of words that @p n_bytes take up (rounded up).
+ */
+#define BYTES_TO_WORDS(n_bytes) (((n_bytes) + 3) >> 2)
+
+
+/**@brief The number of bytes in a word.
+ */
+#define BYTES_PER_WORD (4)
+
+
+/**@brief Macro for increasing a number to the nearest (larger) multiple of another number.
+ *
+ * @param[in]  alignment  The number to align to.
+ * @param[in]  number     The number to align (increase).
+ *
+ * @return The aligned (increased) @p number.
+ */
+#define ALIGN_NUM(alignment, number) ((number - 1) + alignment - ((number - 1) % alignment))
+
+
+/**@brief Function for changing the value unit.
+ *
+ * @param[in]   value               Value to be rescaled.
+ * @param[in]   old_unit_reversal   Reversal of the incoming unit.
+ * @param[in]   new_unit_reversal   Reversal of the desired unit.
+ *
+ * @return      Number of bytes written.
+ */
+static __INLINE uint64_t value_rescale(uint32_t value, uint32_t old_unit_reversal, uint16_t new_unit_reversal)
+{
+    return (uint64_t)ROUNDED_DIV((uint64_t)value * new_unit_reversal, old_unit_reversal);
+}
+
+/**@brief Function for encoding a uint16 value.
+ *
+ * @param[in]   value            Value to be encoded.
+ * @param[out]  p_encoded_data   Buffer where the encoded data is to be written.
+ *
+ * @return      Number of bytes written.
+ */
+static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data)
+{
+    p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0);
+    p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8);
+    return sizeof(uint16_t);
+}
+
+/**@brief Function for encoding a three-byte value.
+ *
+ * @param[in]   value            Value to be encoded.
+ * @param[out]  p_encoded_data   Buffer where the encoded data is to be written.
+ *
+ * @return      Number of bytes written.
+ */
+static __INLINE uint8_t uint24_encode(uint32_t value, uint8_t * p_encoded_data)
+{
+    p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
+    p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
+    p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
+    return 3;
+}
+
+/**@brief Function for encoding a uint32 value.
+ *
+ * @param[in]   value            Value to be encoded.
+ * @param[out]  p_encoded_data   Buffer where the encoded data is to be written.
+ *
+ * @return      Number of bytes written.
+ */
+static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data)
+{
+    p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
+    p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
+    p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
+    p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24);
+    return sizeof(uint32_t);
+}
+
+/**@brief Function for encoding a uint48 value.
+ *
+ * @param[in]   value            Value to be encoded.
+ * @param[out]  p_encoded_data   Buffer where the encoded data is to be written.
+ *
+ * @return      Number of bytes written.
+ */
+static __INLINE uint8_t uint48_encode(uint64_t value, uint8_t * p_encoded_data)
+{
+    p_encoded_data[0] = (uint8_t) ((value & 0x0000000000FF) >> 0);
+    p_encoded_data[1] = (uint8_t) ((value & 0x00000000FF00) >> 8);
+    p_encoded_data[2] = (uint8_t) ((value & 0x000000FF0000) >> 16);
+    p_encoded_data[3] = (uint8_t) ((value & 0x0000FF000000) >> 24);
+    p_encoded_data[4] = (uint8_t) ((value & 0x00FF00000000) >> 32);
+    p_encoded_data[5] = (uint8_t) ((value & 0xFF0000000000) >> 40);
+    return 6;
+}
+
+/**@brief Function for decoding a uint16 value.
+ *
+ * @param[in]   p_encoded_data   Buffer where the encoded data is stored.
+ *
+ * @return      Decoded value.
+ */
+static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data)
+{
+        return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) |
+                 (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 ));
+}
+
+/**@brief Function for decoding a uint16 value in big-endian format.
+ *
+ * @param[in]   p_encoded_data   Buffer where the encoded data is stored.
+ *
+ * @return      Decoded value.
+ */
+static __INLINE uint16_t uint16_big_decode(const uint8_t * p_encoded_data)
+{
+        return ( (((uint16_t)((uint8_t *)p_encoded_data)[0]) << 8 ) |
+                 (((uint16_t)((uint8_t *)p_encoded_data)[1])) );
+}
+
+/**@brief Function for decoding a three-byte value.
+ *
+ * @param[in]   p_encoded_data   Buffer where the encoded data is stored.
+ *
+ * @return      Decoded value (uint32_t).
+ */
+static __INLINE uint32_t uint24_decode(const uint8_t * p_encoded_data)
+{
+    return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0)  |
+             (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8)  |
+             (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16));
+}
+
+/**@brief Function for decoding a uint32 value.
+ *
+ * @param[in]   p_encoded_data   Buffer where the encoded data is stored.
+ *
+ * @return      Decoded value.
+ */
+static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data)
+{
+    return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0)  |
+             (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8)  |
+             (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) |
+             (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 ));
+}
+
+/**@brief Function for decoding a uint32 value in big-endian format.
+ *
+ * @param[in]   p_encoded_data   Buffer where the encoded data is stored.
+ *
+ * @return      Decoded value.
+ */
+static __INLINE uint32_t uint32_big_decode(const uint8_t * p_encoded_data)
+{
+    return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 24) |
+             (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 16) |
+             (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 8)  |
+             (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 0) );
+}
+
+/**@brief Function for encoding a uint32 value in big-endian format.
+ *
+ * @param[in]   value            Value to be encoded.
+ * @param[out]  p_encoded_data   Buffer where the encoded data will be written.
+ *
+ * @return      Number of bytes written.
+ */
+static __INLINE uint8_t uint32_big_encode(uint32_t value, uint8_t * p_encoded_data)
+{
+#ifdef NRF51
+    p_encoded_data[0] = (uint8_t) ((value & 0xFF000000) >> 24);
+    p_encoded_data[1] = (uint8_t) ((value & 0x00FF0000) >> 16);
+    p_encoded_data[2] = (uint8_t) ((value & 0x0000FF00) >> 8);
+    p_encoded_data[3] = (uint8_t) ((value & 0x000000FF) >> 0);
+#elif NRF52
+    *(uint32_t *)p_encoded_data = __REV(value);
+#endif
+    return sizeof(uint32_t);
+}
+
+/**@brief Function for decoding a uint48 value.
+ *
+ * @param[in]   p_encoded_data   Buffer where the encoded data is stored.
+ *
+ * @return      Decoded value. (uint64_t)
+ */
+static __INLINE uint64_t uint48_decode(const uint8_t * p_encoded_data)
+{
+    return ( (((uint64_t)((uint8_t *)p_encoded_data)[0]) << 0)  |
+             (((uint64_t)((uint8_t *)p_encoded_data)[1]) << 8)  |
+             (((uint64_t)((uint8_t *)p_encoded_data)[2]) << 16) |
+             (((uint64_t)((uint8_t *)p_encoded_data)[3]) << 24) |
+             (((uint64_t)((uint8_t *)p_encoded_data)[4]) << 32) |
+             (((uint64_t)((uint8_t *)p_encoded_data)[5]) << 40 ));
+}
+
+/** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts.
+ *
+ *  @details The calculation is based on a linearized version of the battery's discharge
+ *           curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and
+ *           is considered to be the lower boundary.
+ *
+ *           The discharge curve for CR2032 is non-linear. In this model it is split into
+ *           4 linear sections:
+ *           - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV)
+ *           - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV)
+ *           - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV)
+ *           - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV)
+ *
+ *           These numbers are by no means accurate. Temperature and
+ *           load in the actual application is not accounted for!
+ *
+ *  @param[in] mvolts The voltage in mV
+ *
+ *  @return    Battery level in percent.
+*/
+static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts)
+{
+    uint8_t battery_level;
+
+    if (mvolts >= 3000)
+    {
+        battery_level = 100;
+    }
+    else if (mvolts > 2900)
+    {
+        battery_level = 100 - ((3000 - mvolts) * 58) / 100;
+    }
+    else if (mvolts > 2740)
+    {
+        battery_level = 42 - ((2900 - mvolts) * 24) / 160;
+    }
+    else if (mvolts > 2440)
+    {
+        battery_level = 18 - ((2740 - mvolts) * 12) / 300;
+    }
+    else if (mvolts > 2100)
+    {
+        battery_level = 6 - ((2440 - mvolts) * 6) / 340;
+    }
+    else
+    {
+        battery_level = 0;
+    }
+
+    return battery_level;
+}
+
+/**@brief Function for checking if a pointer value is aligned to a 4 byte boundary.
+ *
+ * @param[in]   p   Pointer value to be checked.
+ *
+ * @return      TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise.
+ */
+static __INLINE bool is_word_aligned(void const* p)
+{
+    return (((uintptr_t)p & 0x03) == 0);
+}
+
+/**
+ * @brief Function for checking if provided address is located in stack space.
+ *
+ * @param[in]   ptr Pointer to be checked.
+ *
+ * @return      true if address is in stack space, false otherwise.
+ */
+static __INLINE bool is_address_from_stack(void * ptr)
+{
+    if (((uint32_t)ptr >= (uint32_t)STACK_BASE) &&
+        ((uint32_t)ptr <  (uint32_t)STACK_TOP) )
+    {
+        return true;
+    }
+    else
+    {
+        return false;
+    }
+}
+
+#endif // APP_UTIL_H__
+
+/** @} */