The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Dependents:   hello SerialTestv11 SerialTestv12 Sierpinski ... more

mbed 2

This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.

Committer:
AnnaBridge
Date:
Fri Sep 15 14:46:57 2017 +0100
Revision:
151:675da3299148
Parent:
148:fd96258d940d
Child:
160:5571c4ff569f
Release 151 of the mbed library.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Kojto 148:fd96258d940d 1 /* ----------------------------------------------------------------------
Kojto 148:fd96258d940d 2 * Project: CMSIS DSP Library
Kojto 148:fd96258d940d 3 * Title: arm_math.h
Kojto 148:fd96258d940d 4 * Description: Public header file for CMSIS DSP Library
Kojto 148:fd96258d940d 5 *
Kojto 148:fd96258d940d 6 * $Date: 27. January 2017
Kojto 148:fd96258d940d 7 * $Revision: V.1.5.1
Kojto 148:fd96258d940d 8 *
Kojto 148:fd96258d940d 9 * Target Processor: Cortex-M cores
Kojto 148:fd96258d940d 10 * -------------------------------------------------------------------- */
Kojto 148:fd96258d940d 11 /*
Kojto 148:fd96258d940d 12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
Kojto 148:fd96258d940d 13 *
Kojto 148:fd96258d940d 14 * SPDX-License-Identifier: Apache-2.0
Kojto 148:fd96258d940d 15 *
Kojto 148:fd96258d940d 16 * Licensed under the Apache License, Version 2.0 (the License); you may
Kojto 148:fd96258d940d 17 * not use this file except in compliance with the License.
Kojto 148:fd96258d940d 18 * You may obtain a copy of the License at
Kojto 148:fd96258d940d 19 *
Kojto 148:fd96258d940d 20 * www.apache.org/licenses/LICENSE-2.0
Kojto 148:fd96258d940d 21 *
Kojto 148:fd96258d940d 22 * Unless required by applicable law or agreed to in writing, software
Kojto 148:fd96258d940d 23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
Kojto 148:fd96258d940d 24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
Kojto 148:fd96258d940d 25 * See the License for the specific language governing permissions and
Kojto 148:fd96258d940d 26 * limitations under the License.
Kojto 148:fd96258d940d 27 */
Kojto 148:fd96258d940d 28
Kojto 148:fd96258d940d 29 /**
Kojto 148:fd96258d940d 30 \mainpage CMSIS DSP Software Library
Kojto 148:fd96258d940d 31 *
Kojto 148:fd96258d940d 32 * Introduction
Kojto 148:fd96258d940d 33 * ------------
Kojto 148:fd96258d940d 34 *
Kojto 148:fd96258d940d 35 * This user manual describes the CMSIS DSP software library,
Kojto 148:fd96258d940d 36 * a suite of common signal processing functions for use on Cortex-M processor based devices.
Kojto 148:fd96258d940d 37 *
Kojto 148:fd96258d940d 38 * The library is divided into a number of functions each covering a specific category:
Kojto 148:fd96258d940d 39 * - Basic math functions
Kojto 148:fd96258d940d 40 * - Fast math functions
Kojto 148:fd96258d940d 41 * - Complex math functions
Kojto 148:fd96258d940d 42 * - Filters
Kojto 148:fd96258d940d 43 * - Matrix functions
Kojto 148:fd96258d940d 44 * - Transforms
Kojto 148:fd96258d940d 45 * - Motor control functions
Kojto 148:fd96258d940d 46 * - Statistical functions
Kojto 148:fd96258d940d 47 * - Support functions
Kojto 148:fd96258d940d 48 * - Interpolation functions
Kojto 148:fd96258d940d 49 *
Kojto 148:fd96258d940d 50 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
Kojto 148:fd96258d940d 51 * 32-bit integer and 32-bit floating-point values.
Kojto 148:fd96258d940d 52 *
Kojto 148:fd96258d940d 53 * Using the Library
Kojto 148:fd96258d940d 54 * ------------
Kojto 148:fd96258d940d 55 *
Kojto 148:fd96258d940d 56 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
Kojto 148:fd96258d940d 57 * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit)
Kojto 148:fd96258d940d 58 * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit)
Kojto 148:fd96258d940d 59 * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit)
Kojto 148:fd96258d940d 60 * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on)
Kojto 148:fd96258d940d 61 * - arm_cortexM7l_math.lib (Cortex-M7, Little endian)
Kojto 148:fd96258d940d 62 * - arm_cortexM7b_math.lib (Cortex-M7, Big endian)
Kojto 148:fd96258d940d 63 * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit)
Kojto 148:fd96258d940d 64 * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit)
Kojto 148:fd96258d940d 65 * - arm_cortexM4l_math.lib (Cortex-M4, Little endian)
Kojto 148:fd96258d940d 66 * - arm_cortexM4b_math.lib (Cortex-M4, Big endian)
Kojto 148:fd96258d940d 67 * - arm_cortexM3l_math.lib (Cortex-M3, Little endian)
Kojto 148:fd96258d940d 68 * - arm_cortexM3b_math.lib (Cortex-M3, Big endian)
Kojto 148:fd96258d940d 69 * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian)
Kojto 148:fd96258d940d 70 * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian)
Kojto 148:fd96258d940d 71 * - arm_ARMv8MBLl_math.lib (ARMv8M Baseline, Little endian)
Kojto 148:fd96258d940d 72 * - arm_ARMv8MMLl_math.lib (ARMv8M Mainline, Little endian)
Kojto 148:fd96258d940d 73 * - arm_ARMv8MMLlfsp_math.lib (ARMv8M Mainline, Little endian, Single Precision Floating Point Unit)
Kojto 148:fd96258d940d 74 * - arm_ARMv8MMLld_math.lib (ARMv8M Mainline, Little endian, DSP instructions)
Kojto 148:fd96258d940d 75 * - arm_ARMv8MMLldfsp_math.lib (ARMv8M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit)
Kojto 148:fd96258d940d 76 *
Kojto 148:fd96258d940d 77 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
Kojto 148:fd96258d940d 78 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
Kojto 148:fd96258d940d 79 * public header file <code> arm_math.h</code> for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
Kojto 148:fd96258d940d 80 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
Kojto 148:fd96258d940d 81 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
Kojto 148:fd96258d940d 82 * For ARMv8M cores define pre processor MACRO ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML.
Kojto 148:fd96258d940d 83 * Set Pre processor MACRO __DSP_PRESENT if ARMv8M Mainline core supports DSP instructions.
Kojto 148:fd96258d940d 84 *
Kojto 148:fd96258d940d 85 *
Kojto 148:fd96258d940d 86 * Examples
Kojto 148:fd96258d940d 87 * --------
Kojto 148:fd96258d940d 88 *
Kojto 148:fd96258d940d 89 * The library ships with a number of examples which demonstrate how to use the library functions.
Kojto 148:fd96258d940d 90 *
Kojto 148:fd96258d940d 91 * Toolchain Support
Kojto 148:fd96258d940d 92 * ------------
Kojto 148:fd96258d940d 93 *
Kojto 148:fd96258d940d 94 * The library has been developed and tested with MDK-ARM version 5.14.0.0
Kojto 148:fd96258d940d 95 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
Kojto 148:fd96258d940d 96 *
Kojto 148:fd96258d940d 97 * Building the Library
Kojto 148:fd96258d940d 98 * ------------
Kojto 148:fd96258d940d 99 *
Kojto 148:fd96258d940d 100 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
Kojto 148:fd96258d940d 101 * - arm_cortexM_math.uvprojx
Kojto 148:fd96258d940d 102 *
Kojto 148:fd96258d940d 103 *
Kojto 148:fd96258d940d 104 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
Kojto 148:fd96258d940d 105 *
Kojto 148:fd96258d940d 106 * Pre-processor Macros
Kojto 148:fd96258d940d 107 * ------------
Kojto 148:fd96258d940d 108 *
Kojto 148:fd96258d940d 109 * Each library project have differant pre-processor macros.
Kojto 148:fd96258d940d 110 *
Kojto 148:fd96258d940d 111 * - UNALIGNED_SUPPORT_DISABLE:
Kojto 148:fd96258d940d 112 *
Kojto 148:fd96258d940d 113 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
Kojto 148:fd96258d940d 114 *
Kojto 148:fd96258d940d 115 * - ARM_MATH_BIG_ENDIAN:
Kojto 148:fd96258d940d 116 *
Kojto 148:fd96258d940d 117 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
Kojto 148:fd96258d940d 118 *
Kojto 148:fd96258d940d 119 * - ARM_MATH_MATRIX_CHECK:
Kojto 148:fd96258d940d 120 *
Kojto 148:fd96258d940d 121 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
Kojto 148:fd96258d940d 122 *
Kojto 148:fd96258d940d 123 * - ARM_MATH_ROUNDING:
Kojto 148:fd96258d940d 124 *
Kojto 148:fd96258d940d 125 * Define macro ARM_MATH_ROUNDING for rounding on support functions
Kojto 148:fd96258d940d 126 *
Kojto 148:fd96258d940d 127 * - ARM_MATH_CMx:
Kojto 148:fd96258d940d 128 *
Kojto 148:fd96258d940d 129 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
Kojto 148:fd96258d940d 130 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
Kojto 148:fd96258d940d 131 * ARM_MATH_CM7 for building the library on cortex-M7.
Kojto 148:fd96258d940d 132 *
Kojto 148:fd96258d940d 133 * - ARM_MATH_ARMV8MxL:
Kojto 148:fd96258d940d 134 *
Kojto 148:fd96258d940d 135 * Define macro ARM_MATH_ARMV8MBL for building the library on ARMv8M Baseline target, ARM_MATH_ARMV8MBL for building library
Kojto 148:fd96258d940d 136 * on ARMv8M Mainline target.
Kojto 148:fd96258d940d 137 *
Kojto 148:fd96258d940d 138 * - __FPU_PRESENT:
Kojto 148:fd96258d940d 139 *
Kojto 148:fd96258d940d 140 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for floating point libraries.
Kojto 148:fd96258d940d 141 *
Kojto 148:fd96258d940d 142 * - __DSP_PRESENT:
Kojto 148:fd96258d940d 143 *
Kojto 148:fd96258d940d 144 * Initialize macro __DSP_PRESENT = 1 when ARMv8M Mainline core supports DSP instructions.
Kojto 148:fd96258d940d 145 *
Kojto 148:fd96258d940d 146 * <hr>
Kojto 148:fd96258d940d 147 * CMSIS-DSP in ARM::CMSIS Pack
Kojto 148:fd96258d940d 148 * -----------------------------
Kojto 148:fd96258d940d 149 *
Kojto 148:fd96258d940d 150 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
Kojto 148:fd96258d940d 151 * |File/Folder |Content |
Kojto 148:fd96258d940d 152 * |------------------------------|------------------------------------------------------------------------|
Kojto 148:fd96258d940d 153 * |\b CMSIS\\Documentation\\DSP | This documentation |
Kojto 148:fd96258d940d 154 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
Kojto 148:fd96258d940d 155 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
Kojto 148:fd96258d940d 156 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
Kojto 148:fd96258d940d 157 *
Kojto 148:fd96258d940d 158 * <hr>
Kojto 148:fd96258d940d 159 * Revision History of CMSIS-DSP
Kojto 148:fd96258d940d 160 * ------------
Kojto 148:fd96258d940d 161 * Please refer to \ref ChangeLog_pg.
Kojto 148:fd96258d940d 162 *
Kojto 148:fd96258d940d 163 * Copyright Notice
Kojto 148:fd96258d940d 164 * ------------
Kojto 148:fd96258d940d 165 *
Kojto 148:fd96258d940d 166 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
Kojto 148:fd96258d940d 167 */
Kojto 148:fd96258d940d 168
Kojto 148:fd96258d940d 169
Kojto 148:fd96258d940d 170 /**
Kojto 148:fd96258d940d 171 * @defgroup groupMath Basic Math Functions
Kojto 148:fd96258d940d 172 */
Kojto 148:fd96258d940d 173
Kojto 148:fd96258d940d 174 /**
Kojto 148:fd96258d940d 175 * @defgroup groupFastMath Fast Math Functions
Kojto 148:fd96258d940d 176 * This set of functions provides a fast approximation to sine, cosine, and square root.
Kojto 148:fd96258d940d 177 * As compared to most of the other functions in the CMSIS math library, the fast math functions
Kojto 148:fd96258d940d 178 * operate on individual values and not arrays.
Kojto 148:fd96258d940d 179 * There are separate functions for Q15, Q31, and floating-point data.
Kojto 148:fd96258d940d 180 *
Kojto 148:fd96258d940d 181 */
Kojto 148:fd96258d940d 182
Kojto 148:fd96258d940d 183 /**
Kojto 148:fd96258d940d 184 * @defgroup groupCmplxMath Complex Math Functions
Kojto 148:fd96258d940d 185 * This set of functions operates on complex data vectors.
Kojto 148:fd96258d940d 186 * The data in the complex arrays is stored in an interleaved fashion
Kojto 148:fd96258d940d 187 * (real, imag, real, imag, ...).
Kojto 148:fd96258d940d 188 * In the API functions, the number of samples in a complex array refers
Kojto 148:fd96258d940d 189 * to the number of complex values; the array contains twice this number of
Kojto 148:fd96258d940d 190 * real values.
Kojto 148:fd96258d940d 191 */
Kojto 148:fd96258d940d 192
Kojto 148:fd96258d940d 193 /**
Kojto 148:fd96258d940d 194 * @defgroup groupFilters Filtering Functions
Kojto 148:fd96258d940d 195 */
Kojto 148:fd96258d940d 196
Kojto 148:fd96258d940d 197 /**
Kojto 148:fd96258d940d 198 * @defgroup groupMatrix Matrix Functions
Kojto 148:fd96258d940d 199 *
Kojto 148:fd96258d940d 200 * This set of functions provides basic matrix math operations.
Kojto 148:fd96258d940d 201 * The functions operate on matrix data structures. For example,
Kojto 148:fd96258d940d 202 * the type
Kojto 148:fd96258d940d 203 * definition for the floating-point matrix structure is shown
Kojto 148:fd96258d940d 204 * below:
Kojto 148:fd96258d940d 205 * <pre>
Kojto 148:fd96258d940d 206 * typedef struct
Kojto 148:fd96258d940d 207 * {
Kojto 148:fd96258d940d 208 * uint16_t numRows; // number of rows of the matrix.
Kojto 148:fd96258d940d 209 * uint16_t numCols; // number of columns of the matrix.
Kojto 148:fd96258d940d 210 * float32_t *pData; // points to the data of the matrix.
Kojto 148:fd96258d940d 211 * } arm_matrix_instance_f32;
Kojto 148:fd96258d940d 212 * </pre>
Kojto 148:fd96258d940d 213 * There are similar definitions for Q15 and Q31 data types.
Kojto 148:fd96258d940d 214 *
Kojto 148:fd96258d940d 215 * The structure specifies the size of the matrix and then points to
Kojto 148:fd96258d940d 216 * an array of data. The array is of size <code>numRows X numCols</code>
Kojto 148:fd96258d940d 217 * and the values are arranged in row order. That is, the
Kojto 148:fd96258d940d 218 * matrix element (i, j) is stored at:
Kojto 148:fd96258d940d 219 * <pre>
Kojto 148:fd96258d940d 220 * pData[i*numCols + j]
Kojto 148:fd96258d940d 221 * </pre>
Kojto 148:fd96258d940d 222 *
Kojto 148:fd96258d940d 223 * \par Init Functions
Kojto 148:fd96258d940d 224 * There is an associated initialization function for each type of matrix
Kojto 148:fd96258d940d 225 * data structure.
Kojto 148:fd96258d940d 226 * The initialization function sets the values of the internal structure fields.
Kojto 148:fd96258d940d 227 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
Kojto 148:fd96258d940d 228 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
Kojto 148:fd96258d940d 229 *
Kojto 148:fd96258d940d 230 * \par
Kojto 148:fd96258d940d 231 * Use of the initialization function is optional. However, if initialization function is used
Kojto 148:fd96258d940d 232 * then the instance structure cannot be placed into a const data section.
Kojto 148:fd96258d940d 233 * To place the instance structure in a const data
Kojto 148:fd96258d940d 234 * section, manually initialize the data structure. For example:
Kojto 148:fd96258d940d 235 * <pre>
Kojto 148:fd96258d940d 236 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
Kojto 148:fd96258d940d 237 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
Kojto 148:fd96258d940d 238 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
Kojto 148:fd96258d940d 239 * </pre>
Kojto 148:fd96258d940d 240 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
Kojto 148:fd96258d940d 241 * specifies the number of columns, and <code>pData</code> points to the
Kojto 148:fd96258d940d 242 * data array.
Kojto 148:fd96258d940d 243 *
Kojto 148:fd96258d940d 244 * \par Size Checking
Kojto 148:fd96258d940d 245 * By default all of the matrix functions perform size checking on the input and
Kojto 148:fd96258d940d 246 * output matrices. For example, the matrix addition function verifies that the
Kojto 148:fd96258d940d 247 * two input matrices and the output matrix all have the same number of rows and
Kojto 148:fd96258d940d 248 * columns. If the size check fails the functions return:
Kojto 148:fd96258d940d 249 * <pre>
Kojto 148:fd96258d940d 250 * ARM_MATH_SIZE_MISMATCH
Kojto 148:fd96258d940d 251 * </pre>
Kojto 148:fd96258d940d 252 * Otherwise the functions return
Kojto 148:fd96258d940d 253 * <pre>
Kojto 148:fd96258d940d 254 * ARM_MATH_SUCCESS
Kojto 148:fd96258d940d 255 * </pre>
Kojto 148:fd96258d940d 256 * There is some overhead associated with this matrix size checking.
Kojto 148:fd96258d940d 257 * The matrix size checking is enabled via the \#define
Kojto 148:fd96258d940d 258 * <pre>
Kojto 148:fd96258d940d 259 * ARM_MATH_MATRIX_CHECK
Kojto 148:fd96258d940d 260 * </pre>
Kojto 148:fd96258d940d 261 * within the library project settings. By default this macro is defined
Kojto 148:fd96258d940d 262 * and size checking is enabled. By changing the project settings and
Kojto 148:fd96258d940d 263 * undefining this macro size checking is eliminated and the functions
Kojto 148:fd96258d940d 264 * run a bit faster. With size checking disabled the functions always
Kojto 148:fd96258d940d 265 * return <code>ARM_MATH_SUCCESS</code>.
Kojto 148:fd96258d940d 266 */
Kojto 148:fd96258d940d 267
Kojto 148:fd96258d940d 268 /**
Kojto 148:fd96258d940d 269 * @defgroup groupTransforms Transform Functions
Kojto 148:fd96258d940d 270 */
Kojto 148:fd96258d940d 271
Kojto 148:fd96258d940d 272 /**
Kojto 148:fd96258d940d 273 * @defgroup groupController Controller Functions
Kojto 148:fd96258d940d 274 */
Kojto 148:fd96258d940d 275
Kojto 148:fd96258d940d 276 /**
Kojto 148:fd96258d940d 277 * @defgroup groupStats Statistics Functions
Kojto 148:fd96258d940d 278 */
Kojto 148:fd96258d940d 279 /**
Kojto 148:fd96258d940d 280 * @defgroup groupSupport Support Functions
Kojto 148:fd96258d940d 281 */
Kojto 148:fd96258d940d 282
Kojto 148:fd96258d940d 283 /**
Kojto 148:fd96258d940d 284 * @defgroup groupInterpolation Interpolation Functions
Kojto 148:fd96258d940d 285 * These functions perform 1- and 2-dimensional interpolation of data.
Kojto 148:fd96258d940d 286 * Linear interpolation is used for 1-dimensional data and
Kojto 148:fd96258d940d 287 * bilinear interpolation is used for 2-dimensional data.
Kojto 148:fd96258d940d 288 */
Kojto 148:fd96258d940d 289
Kojto 148:fd96258d940d 290 /**
Kojto 148:fd96258d940d 291 * @defgroup groupExamples Examples
Kojto 148:fd96258d940d 292 */
Kojto 148:fd96258d940d 293 #ifndef _ARM_MATH_H
Kojto 148:fd96258d940d 294 #define _ARM_MATH_H
Kojto 148:fd96258d940d 295
Kojto 148:fd96258d940d 296 /* Compiler specific diagnostic adjustment */
Kojto 148:fd96258d940d 297 #if defined ( __CC_ARM )
Kojto 148:fd96258d940d 298
Kojto 148:fd96258d940d 299 #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
Kojto 148:fd96258d940d 300
Kojto 148:fd96258d940d 301 #elif defined ( __GNUC__ )
Kojto 148:fd96258d940d 302 #pragma GCC diagnostic push
Kojto 148:fd96258d940d 303 #pragma GCC diagnostic ignored "-Wsign-conversion"
Kojto 148:fd96258d940d 304 #pragma GCC diagnostic ignored "-Wconversion"
Kojto 148:fd96258d940d 305 #pragma GCC diagnostic ignored "-Wunused-parameter"
Kojto 148:fd96258d940d 306
Kojto 148:fd96258d940d 307 #elif defined ( __ICCARM__ )
Kojto 148:fd96258d940d 308
Kojto 148:fd96258d940d 309 #elif defined ( __TI_ARM__ )
Kojto 148:fd96258d940d 310
Kojto 148:fd96258d940d 311 #elif defined ( __CSMC__ )
Kojto 148:fd96258d940d 312
Kojto 148:fd96258d940d 313 #elif defined ( __TASKING__ )
Kojto 148:fd96258d940d 314
Kojto 148:fd96258d940d 315 #else
Kojto 148:fd96258d940d 316 #error Unknown compiler
Kojto 148:fd96258d940d 317 #endif
Kojto 148:fd96258d940d 318
Kojto 148:fd96258d940d 319
Kojto 148:fd96258d940d 320 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
Kojto 148:fd96258d940d 321
Kojto 148:fd96258d940d 322 #if defined(ARM_MATH_CM7)
Kojto 148:fd96258d940d 323 #include "core_cm7.h"
Kojto 148:fd96258d940d 324 #define ARM_MATH_DSP
Kojto 148:fd96258d940d 325 #elif defined (ARM_MATH_CM4)
Kojto 148:fd96258d940d 326 #include "core_cm4.h"
Kojto 148:fd96258d940d 327 #define ARM_MATH_DSP
Kojto 148:fd96258d940d 328 #elif defined (ARM_MATH_CM3)
Kojto 148:fd96258d940d 329 #include "core_cm3.h"
Kojto 148:fd96258d940d 330 #elif defined (ARM_MATH_CM0)
Kojto 148:fd96258d940d 331 #include "core_cm0.h"
Kojto 148:fd96258d940d 332 #define ARM_MATH_CM0_FAMILY
Kojto 148:fd96258d940d 333 #elif defined (ARM_MATH_CM0PLUS)
Kojto 148:fd96258d940d 334 #include "core_cm0plus.h"
Kojto 148:fd96258d940d 335 #define ARM_MATH_CM0_FAMILY
Kojto 148:fd96258d940d 336 #elif defined (ARM_MATH_ARMV8MBL)
Kojto 148:fd96258d940d 337 #include "core_armv8mbl.h"
Kojto 148:fd96258d940d 338 #define ARM_MATH_CM0_FAMILY
Kojto 148:fd96258d940d 339 #elif defined (ARM_MATH_ARMV8MML)
Kojto 148:fd96258d940d 340 #include "core_armv8mml.h"
Kojto 148:fd96258d940d 341 #if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1))
Kojto 148:fd96258d940d 342 #define ARM_MATH_DSP
Kojto 148:fd96258d940d 343 #endif
Kojto 148:fd96258d940d 344 #else
Kojto 148:fd96258d940d 345 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML"
Kojto 148:fd96258d940d 346 #endif
Kojto 148:fd96258d940d 347
Kojto 148:fd96258d940d 348 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
Kojto 148:fd96258d940d 349 #include "string.h"
Kojto 148:fd96258d940d 350 #include "math.h"
Kojto 148:fd96258d940d 351 #ifdef __cplusplus
Kojto 148:fd96258d940d 352 extern "C"
Kojto 148:fd96258d940d 353 {
Kojto 148:fd96258d940d 354 #endif
Kojto 148:fd96258d940d 355
Kojto 148:fd96258d940d 356
Kojto 148:fd96258d940d 357 /**
Kojto 148:fd96258d940d 358 * @brief Macros required for reciprocal calculation in Normalized LMS
Kojto 148:fd96258d940d 359 */
Kojto 148:fd96258d940d 360
Kojto 148:fd96258d940d 361 #define DELTA_Q31 (0x100)
Kojto 148:fd96258d940d 362 #define DELTA_Q15 0x5
Kojto 148:fd96258d940d 363 #define INDEX_MASK 0x0000003F
Kojto 148:fd96258d940d 364 #ifndef PI
Kojto 148:fd96258d940d 365 #define PI 3.14159265358979f
Kojto 148:fd96258d940d 366 #endif
Kojto 148:fd96258d940d 367
Kojto 148:fd96258d940d 368 /**
Kojto 148:fd96258d940d 369 * @brief Macros required for SINE and COSINE Fast math approximations
Kojto 148:fd96258d940d 370 */
Kojto 148:fd96258d940d 371
Kojto 148:fd96258d940d 372 #define FAST_MATH_TABLE_SIZE 512
Kojto 148:fd96258d940d 373 #define FAST_MATH_Q31_SHIFT (32 - 10)
Kojto 148:fd96258d940d 374 #define FAST_MATH_Q15_SHIFT (16 - 10)
Kojto 148:fd96258d940d 375 #define CONTROLLER_Q31_SHIFT (32 - 9)
Kojto 148:fd96258d940d 376 #define TABLE_SPACING_Q31 0x400000
Kojto 148:fd96258d940d 377 #define TABLE_SPACING_Q15 0x80
Kojto 148:fd96258d940d 378
Kojto 148:fd96258d940d 379 /**
Kojto 148:fd96258d940d 380 * @brief Macros required for SINE and COSINE Controller functions
Kojto 148:fd96258d940d 381 */
Kojto 148:fd96258d940d 382 /* 1.31(q31) Fixed value of 2/360 */
Kojto 148:fd96258d940d 383 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
Kojto 148:fd96258d940d 384 #define INPUT_SPACING 0xB60B61
Kojto 148:fd96258d940d 385
Kojto 148:fd96258d940d 386 /**
Kojto 148:fd96258d940d 387 * @brief Macro for Unaligned Support
Kojto 148:fd96258d940d 388 */
Kojto 148:fd96258d940d 389 #ifndef UNALIGNED_SUPPORT_DISABLE
Kojto 148:fd96258d940d 390 #define ALIGN4
Kojto 148:fd96258d940d 391 #else
Kojto 148:fd96258d940d 392 #if defined (__GNUC__)
Kojto 148:fd96258d940d 393 #define ALIGN4 __attribute__((aligned(4)))
Kojto 148:fd96258d940d 394 #else
Kojto 148:fd96258d940d 395 #define ALIGN4 __align(4)
Kojto 148:fd96258d940d 396 #endif
Kojto 148:fd96258d940d 397 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
Kojto 148:fd96258d940d 398
Kojto 148:fd96258d940d 399 /**
Kojto 148:fd96258d940d 400 * @brief Error status returned by some functions in the library.
Kojto 148:fd96258d940d 401 */
Kojto 148:fd96258d940d 402
Kojto 148:fd96258d940d 403 typedef enum
Kojto 148:fd96258d940d 404 {
Kojto 148:fd96258d940d 405 ARM_MATH_SUCCESS = 0, /**< No error */
Kojto 148:fd96258d940d 406 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
Kojto 148:fd96258d940d 407 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
Kojto 148:fd96258d940d 408 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
Kojto 148:fd96258d940d 409 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
Kojto 148:fd96258d940d 410 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
Kojto 148:fd96258d940d 411 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
Kojto 148:fd96258d940d 412 } arm_status;
Kojto 148:fd96258d940d 413
Kojto 148:fd96258d940d 414 /**
Kojto 148:fd96258d940d 415 * @brief 8-bit fractional data type in 1.7 format.
Kojto 148:fd96258d940d 416 */
Kojto 148:fd96258d940d 417 typedef int8_t q7_t;
Kojto 148:fd96258d940d 418
Kojto 148:fd96258d940d 419 /**
Kojto 148:fd96258d940d 420 * @brief 16-bit fractional data type in 1.15 format.
Kojto 148:fd96258d940d 421 */
Kojto 148:fd96258d940d 422 typedef int16_t q15_t;
Kojto 148:fd96258d940d 423
Kojto 148:fd96258d940d 424 /**
Kojto 148:fd96258d940d 425 * @brief 32-bit fractional data type in 1.31 format.
Kojto 148:fd96258d940d 426 */
Kojto 148:fd96258d940d 427 typedef int32_t q31_t;
Kojto 148:fd96258d940d 428
Kojto 148:fd96258d940d 429 /**
Kojto 148:fd96258d940d 430 * @brief 64-bit fractional data type in 1.63 format.
Kojto 148:fd96258d940d 431 */
Kojto 148:fd96258d940d 432 typedef int64_t q63_t;
Kojto 148:fd96258d940d 433
Kojto 148:fd96258d940d 434 /**
Kojto 148:fd96258d940d 435 * @brief 32-bit floating-point type definition.
Kojto 148:fd96258d940d 436 */
Kojto 148:fd96258d940d 437 typedef float float32_t;
Kojto 148:fd96258d940d 438
Kojto 148:fd96258d940d 439 /**
Kojto 148:fd96258d940d 440 * @brief 64-bit floating-point type definition.
Kojto 148:fd96258d940d 441 */
Kojto 148:fd96258d940d 442 typedef double float64_t;
Kojto 148:fd96258d940d 443
Kojto 148:fd96258d940d 444 /**
Kojto 148:fd96258d940d 445 * @brief definition to read/write two 16 bit values.
Kojto 148:fd96258d940d 446 */
Kojto 148:fd96258d940d 447 #if defined ( __CC_ARM )
Kojto 148:fd96258d940d 448 #define __SIMD32_TYPE int32_t __packed
Kojto 148:fd96258d940d 449 #define CMSIS_UNUSED __attribute__((unused))
Kojto 148:fd96258d940d 450 #define CMSIS_INLINE __attribute__((always_inline))
Kojto 148:fd96258d940d 451
Kojto 148:fd96258d940d 452 #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
Kojto 148:fd96258d940d 453 #define __SIMD32_TYPE int32_t
Kojto 148:fd96258d940d 454 #define CMSIS_UNUSED __attribute__((unused))
Kojto 148:fd96258d940d 455 #define CMSIS_INLINE __attribute__((always_inline))
Kojto 148:fd96258d940d 456
Kojto 148:fd96258d940d 457 #elif defined ( __GNUC__ )
Kojto 148:fd96258d940d 458 #define __SIMD32_TYPE int32_t
Kojto 148:fd96258d940d 459 #define CMSIS_UNUSED __attribute__((unused))
Kojto 148:fd96258d940d 460 #define CMSIS_INLINE __attribute__((always_inline))
Kojto 148:fd96258d940d 461
Kojto 148:fd96258d940d 462 #elif defined ( __ICCARM__ )
Kojto 148:fd96258d940d 463 #define __SIMD32_TYPE int32_t __packed
Kojto 148:fd96258d940d 464 #define CMSIS_UNUSED
Kojto 148:fd96258d940d 465 #define CMSIS_INLINE
Kojto 148:fd96258d940d 466
Kojto 148:fd96258d940d 467 #elif defined ( __TI_ARM__ )
Kojto 148:fd96258d940d 468 #define __SIMD32_TYPE int32_t
Kojto 148:fd96258d940d 469 #define CMSIS_UNUSED __attribute__((unused))
Kojto 148:fd96258d940d 470 #define CMSIS_INLINE
Kojto 148:fd96258d940d 471
Kojto 148:fd96258d940d 472 #elif defined ( __CSMC__ )
Kojto 148:fd96258d940d 473 #define __SIMD32_TYPE int32_t
Kojto 148:fd96258d940d 474 #define CMSIS_UNUSED
Kojto 148:fd96258d940d 475 #define CMSIS_INLINE
Kojto 148:fd96258d940d 476
Kojto 148:fd96258d940d 477 #elif defined ( __TASKING__ )
Kojto 148:fd96258d940d 478 #define __SIMD32_TYPE __unaligned int32_t
Kojto 148:fd96258d940d 479 #define CMSIS_UNUSED
Kojto 148:fd96258d940d 480 #define CMSIS_INLINE
Kojto 148:fd96258d940d 481
Kojto 148:fd96258d940d 482 #else
Kojto 148:fd96258d940d 483 #error Unknown compiler
Kojto 148:fd96258d940d 484 #endif
Kojto 148:fd96258d940d 485
Kojto 148:fd96258d940d 486 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
Kojto 148:fd96258d940d 487 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
Kojto 148:fd96258d940d 488 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
Kojto 148:fd96258d940d 489 #define __SIMD64(addr) (*(int64_t **) & (addr))
Kojto 148:fd96258d940d 490
Kojto 148:fd96258d940d 491 /* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
Kojto 148:fd96258d940d 492 #if !defined (ARM_MATH_DSP)
Kojto 148:fd96258d940d 493 /**
Kojto 148:fd96258d940d 494 * @brief definition to pack two 16 bit values.
Kojto 148:fd96258d940d 495 */
Kojto 148:fd96258d940d 496 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
Kojto 148:fd96258d940d 497 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
Kojto 148:fd96258d940d 498 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
Kojto 148:fd96258d940d 499 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
Kojto 148:fd96258d940d 500
Kojto 148:fd96258d940d 501 /* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
Kojto 148:fd96258d940d 502 #endif /* !defined (ARM_MATH_DSP) */
Kojto 148:fd96258d940d 503
Kojto 148:fd96258d940d 504 /**
Kojto 148:fd96258d940d 505 * @brief definition to pack four 8 bit values.
Kojto 148:fd96258d940d 506 */
Kojto 148:fd96258d940d 507 #ifndef ARM_MATH_BIG_ENDIAN
Kojto 148:fd96258d940d 508
Kojto 148:fd96258d940d 509 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
Kojto 148:fd96258d940d 510 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
Kojto 148:fd96258d940d 511 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
Kojto 148:fd96258d940d 512 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
Kojto 148:fd96258d940d 513 #else
Kojto 148:fd96258d940d 514
Kojto 148:fd96258d940d 515 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
Kojto 148:fd96258d940d 516 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
Kojto 148:fd96258d940d 517 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
Kojto 148:fd96258d940d 518 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
Kojto 148:fd96258d940d 519
Kojto 148:fd96258d940d 520 #endif
Kojto 148:fd96258d940d 521
Kojto 148:fd96258d940d 522
Kojto 148:fd96258d940d 523 /**
Kojto 148:fd96258d940d 524 * @brief Clips Q63 to Q31 values.
Kojto 148:fd96258d940d 525 */
Kojto 148:fd96258d940d 526 CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31(
Kojto 148:fd96258d940d 527 q63_t x)
Kojto 148:fd96258d940d 528 {
Kojto 148:fd96258d940d 529 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
Kojto 148:fd96258d940d 530 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
Kojto 148:fd96258d940d 531 }
Kojto 148:fd96258d940d 532
Kojto 148:fd96258d940d 533 /**
Kojto 148:fd96258d940d 534 * @brief Clips Q63 to Q15 values.
Kojto 148:fd96258d940d 535 */
Kojto 148:fd96258d940d 536 CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15(
Kojto 148:fd96258d940d 537 q63_t x)
Kojto 148:fd96258d940d 538 {
Kojto 148:fd96258d940d 539 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
Kojto 148:fd96258d940d 540 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
Kojto 148:fd96258d940d 541 }
Kojto 148:fd96258d940d 542
Kojto 148:fd96258d940d 543 /**
Kojto 148:fd96258d940d 544 * @brief Clips Q31 to Q7 values.
Kojto 148:fd96258d940d 545 */
Kojto 148:fd96258d940d 546 CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7(
Kojto 148:fd96258d940d 547 q31_t x)
Kojto 148:fd96258d940d 548 {
Kojto 148:fd96258d940d 549 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
Kojto 148:fd96258d940d 550 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
Kojto 148:fd96258d940d 551 }
Kojto 148:fd96258d940d 552
Kojto 148:fd96258d940d 553 /**
Kojto 148:fd96258d940d 554 * @brief Clips Q31 to Q15 values.
Kojto 148:fd96258d940d 555 */
Kojto 148:fd96258d940d 556 CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15(
Kojto 148:fd96258d940d 557 q31_t x)
Kojto 148:fd96258d940d 558 {
Kojto 148:fd96258d940d 559 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
Kojto 148:fd96258d940d 560 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
Kojto 148:fd96258d940d 561 }
Kojto 148:fd96258d940d 562
Kojto 148:fd96258d940d 563 /**
Kojto 148:fd96258d940d 564 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
Kojto 148:fd96258d940d 565 */
Kojto 148:fd96258d940d 566
Kojto 148:fd96258d940d 567 CMSIS_INLINE __STATIC_INLINE q63_t mult32x64(
Kojto 148:fd96258d940d 568 q63_t x,
Kojto 148:fd96258d940d 569 q31_t y)
Kojto 148:fd96258d940d 570 {
Kojto 148:fd96258d940d 571 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
Kojto 148:fd96258d940d 572 (((q63_t) (x >> 32) * y)));
Kojto 148:fd96258d940d 573 }
Kojto 148:fd96258d940d 574
Kojto 148:fd96258d940d 575 /*
Kojto 148:fd96258d940d 576 #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
Kojto 148:fd96258d940d 577 #define __CLZ __clz
Kojto 148:fd96258d940d 578 #endif
Kojto 148:fd96258d940d 579 */
Kojto 148:fd96258d940d 580 /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
Kojto 148:fd96258d940d 581 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
Kojto 148:fd96258d940d 582 CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ(
Kojto 148:fd96258d940d 583 q31_t data);
Kojto 148:fd96258d940d 584
Kojto 148:fd96258d940d 585 CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ(
Kojto 148:fd96258d940d 586 q31_t data)
Kojto 148:fd96258d940d 587 {
Kojto 148:fd96258d940d 588 uint32_t count = 0;
Kojto 148:fd96258d940d 589 uint32_t mask = 0x80000000;
Kojto 148:fd96258d940d 590
Kojto 148:fd96258d940d 591 while ((data & mask) == 0)
Kojto 148:fd96258d940d 592 {
Kojto 148:fd96258d940d 593 count += 1u;
Kojto 148:fd96258d940d 594 mask = mask >> 1u;
Kojto 148:fd96258d940d 595 }
Kojto 148:fd96258d940d 596
Kojto 148:fd96258d940d 597 return (count);
Kojto 148:fd96258d940d 598 }
Kojto 148:fd96258d940d 599 #endif
Kojto 148:fd96258d940d 600
Kojto 148:fd96258d940d 601 /**
Kojto 148:fd96258d940d 602 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
Kojto 148:fd96258d940d 603 */
Kojto 148:fd96258d940d 604
Kojto 148:fd96258d940d 605 CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31(
Kojto 148:fd96258d940d 606 q31_t in,
Kojto 148:fd96258d940d 607 q31_t * dst,
Kojto 148:fd96258d940d 608 q31_t * pRecipTable)
Kojto 148:fd96258d940d 609 {
Kojto 148:fd96258d940d 610 q31_t out;
Kojto 148:fd96258d940d 611 uint32_t tempVal;
Kojto 148:fd96258d940d 612 uint32_t index, i;
Kojto 148:fd96258d940d 613 uint32_t signBits;
Kojto 148:fd96258d940d 614
Kojto 148:fd96258d940d 615 if (in > 0)
Kojto 148:fd96258d940d 616 {
Kojto 148:fd96258d940d 617 signBits = ((uint32_t) (__CLZ( in) - 1));
Kojto 148:fd96258d940d 618 }
Kojto 148:fd96258d940d 619 else
Kojto 148:fd96258d940d 620 {
Kojto 148:fd96258d940d 621 signBits = ((uint32_t) (__CLZ(-in) - 1));
Kojto 148:fd96258d940d 622 }
Kojto 148:fd96258d940d 623
Kojto 148:fd96258d940d 624 /* Convert input sample to 1.31 format */
Kojto 148:fd96258d940d 625 in = (in << signBits);
Kojto 148:fd96258d940d 626
Kojto 148:fd96258d940d 627 /* calculation of index for initial approximated Val */
Kojto 148:fd96258d940d 628 index = (uint32_t)(in >> 24);
Kojto 148:fd96258d940d 629 index = (index & INDEX_MASK);
Kojto 148:fd96258d940d 630
Kojto 148:fd96258d940d 631 /* 1.31 with exp 1 */
Kojto 148:fd96258d940d 632 out = pRecipTable[index];
Kojto 148:fd96258d940d 633
Kojto 148:fd96258d940d 634 /* calculation of reciprocal value */
Kojto 148:fd96258d940d 635 /* running approximation for two iterations */
Kojto 148:fd96258d940d 636 for (i = 0u; i < 2u; i++)
Kojto 148:fd96258d940d 637 {
Kojto 148:fd96258d940d 638 tempVal = (uint32_t) (((q63_t) in * out) >> 31);
Kojto 148:fd96258d940d 639 tempVal = 0x7FFFFFFFu - tempVal;
Kojto 148:fd96258d940d 640 /* 1.31 with exp 1 */
Kojto 148:fd96258d940d 641 /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
Kojto 148:fd96258d940d 642 out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
Kojto 148:fd96258d940d 643 }
Kojto 148:fd96258d940d 644
Kojto 148:fd96258d940d 645 /* write output */
Kojto 148:fd96258d940d 646 *dst = out;
Kojto 148:fd96258d940d 647
Kojto 148:fd96258d940d 648 /* return num of signbits of out = 1/in value */
Kojto 148:fd96258d940d 649 return (signBits + 1u);
Kojto 148:fd96258d940d 650 }
Kojto 148:fd96258d940d 651
Kojto 148:fd96258d940d 652
Kojto 148:fd96258d940d 653 /**
Kojto 148:fd96258d940d 654 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
Kojto 148:fd96258d940d 655 */
Kojto 148:fd96258d940d 656 CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15(
Kojto 148:fd96258d940d 657 q15_t in,
Kojto 148:fd96258d940d 658 q15_t * dst,
Kojto 148:fd96258d940d 659 q15_t * pRecipTable)
Kojto 148:fd96258d940d 660 {
Kojto 148:fd96258d940d 661 q15_t out = 0;
Kojto 148:fd96258d940d 662 uint32_t tempVal = 0;
Kojto 148:fd96258d940d 663 uint32_t index = 0, i = 0;
Kojto 148:fd96258d940d 664 uint32_t signBits = 0;
Kojto 148:fd96258d940d 665
Kojto 148:fd96258d940d 666 if (in > 0)
Kojto 148:fd96258d940d 667 {
Kojto 148:fd96258d940d 668 signBits = ((uint32_t)(__CLZ( in) - 17));
Kojto 148:fd96258d940d 669 }
Kojto 148:fd96258d940d 670 else
Kojto 148:fd96258d940d 671 {
Kojto 148:fd96258d940d 672 signBits = ((uint32_t)(__CLZ(-in) - 17));
Kojto 148:fd96258d940d 673 }
Kojto 148:fd96258d940d 674
Kojto 148:fd96258d940d 675 /* Convert input sample to 1.15 format */
Kojto 148:fd96258d940d 676 in = (in << signBits);
Kojto 148:fd96258d940d 677
Kojto 148:fd96258d940d 678 /* calculation of index for initial approximated Val */
Kojto 148:fd96258d940d 679 index = (uint32_t)(in >> 8);
Kojto 148:fd96258d940d 680 index = (index & INDEX_MASK);
Kojto 148:fd96258d940d 681
Kojto 148:fd96258d940d 682 /* 1.15 with exp 1 */
Kojto 148:fd96258d940d 683 out = pRecipTable[index];
Kojto 148:fd96258d940d 684
Kojto 148:fd96258d940d 685 /* calculation of reciprocal value */
Kojto 148:fd96258d940d 686 /* running approximation for two iterations */
Kojto 148:fd96258d940d 687 for (i = 0u; i < 2u; i++)
Kojto 148:fd96258d940d 688 {
Kojto 148:fd96258d940d 689 tempVal = (uint32_t) (((q31_t) in * out) >> 15);
Kojto 148:fd96258d940d 690 tempVal = 0x7FFFu - tempVal;
Kojto 148:fd96258d940d 691 /* 1.15 with exp 1 */
Kojto 148:fd96258d940d 692 out = (q15_t) (((q31_t) out * tempVal) >> 14);
Kojto 148:fd96258d940d 693 /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
Kojto 148:fd96258d940d 694 }
Kojto 148:fd96258d940d 695
Kojto 148:fd96258d940d 696 /* write output */
Kojto 148:fd96258d940d 697 *dst = out;
Kojto 148:fd96258d940d 698
Kojto 148:fd96258d940d 699 /* return num of signbits of out = 1/in value */
Kojto 148:fd96258d940d 700 return (signBits + 1);
Kojto 148:fd96258d940d 701 }
Kojto 148:fd96258d940d 702
Kojto 148:fd96258d940d 703
Kojto 148:fd96258d940d 704 /*
Kojto 148:fd96258d940d 705 * @brief C custom defined intrinisic function for only M0 processors
Kojto 148:fd96258d940d 706 */
Kojto 148:fd96258d940d 707 #if defined(ARM_MATH_CM0_FAMILY)
Kojto 148:fd96258d940d 708 CMSIS_INLINE __STATIC_INLINE q31_t __SSAT(
Kojto 148:fd96258d940d 709 q31_t x,
Kojto 148:fd96258d940d 710 uint32_t y)
Kojto 148:fd96258d940d 711 {
Kojto 148:fd96258d940d 712 int32_t posMax, negMin;
Kojto 148:fd96258d940d 713 uint32_t i;
Kojto 148:fd96258d940d 714
Kojto 148:fd96258d940d 715 posMax = 1;
Kojto 148:fd96258d940d 716 for (i = 0; i < (y - 1); i++)
Kojto 148:fd96258d940d 717 {
Kojto 148:fd96258d940d 718 posMax = posMax * 2;
Kojto 148:fd96258d940d 719 }
Kojto 148:fd96258d940d 720
Kojto 148:fd96258d940d 721 if (x > 0)
Kojto 148:fd96258d940d 722 {
Kojto 148:fd96258d940d 723 posMax = (posMax - 1);
Kojto 148:fd96258d940d 724
Kojto 148:fd96258d940d 725 if (x > posMax)
Kojto 148:fd96258d940d 726 {
Kojto 148:fd96258d940d 727 x = posMax;
Kojto 148:fd96258d940d 728 }
Kojto 148:fd96258d940d 729 }
Kojto 148:fd96258d940d 730 else
Kojto 148:fd96258d940d 731 {
Kojto 148:fd96258d940d 732 negMin = -posMax;
Kojto 148:fd96258d940d 733
Kojto 148:fd96258d940d 734 if (x < negMin)
Kojto 148:fd96258d940d 735 {
Kojto 148:fd96258d940d 736 x = negMin;
Kojto 148:fd96258d940d 737 }
Kojto 148:fd96258d940d 738 }
Kojto 148:fd96258d940d 739 return (x);
Kojto 148:fd96258d940d 740 }
Kojto 148:fd96258d940d 741 #endif /* end of ARM_MATH_CM0_FAMILY */
Kojto 148:fd96258d940d 742
Kojto 148:fd96258d940d 743
Kojto 148:fd96258d940d 744 /*
Kojto 148:fd96258d940d 745 * @brief C custom defined intrinsic function for M3 and M0 processors
Kojto 148:fd96258d940d 746 */
Kojto 148:fd96258d940d 747 /* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
Kojto 148:fd96258d940d 748 #if !defined (ARM_MATH_DSP)
Kojto 148:fd96258d940d 749
Kojto 148:fd96258d940d 750 /*
Kojto 148:fd96258d940d 751 * @brief C custom defined QADD8 for M3 and M0 processors
Kojto 148:fd96258d940d 752 */
Kojto 148:fd96258d940d 753 CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8(
Kojto 148:fd96258d940d 754 uint32_t x,
Kojto 148:fd96258d940d 755 uint32_t y)
Kojto 148:fd96258d940d 756 {
Kojto 148:fd96258d940d 757 q31_t r, s, t, u;
Kojto 148:fd96258d940d 758
Kojto 148:fd96258d940d 759 r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
Kojto 148:fd96258d940d 760 s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
Kojto 148:fd96258d940d 761 t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
Kojto 148:fd96258d940d 762 u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
Kojto 148:fd96258d940d 763
Kojto 148:fd96258d940d 764 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
Kojto 148:fd96258d940d 765 }
Kojto 148:fd96258d940d 766
Kojto 148:fd96258d940d 767
Kojto 148:fd96258d940d 768 /*
Kojto 148:fd96258d940d 769 * @brief C custom defined QSUB8 for M3 and M0 processors
Kojto 148:fd96258d940d 770 */
Kojto 148:fd96258d940d 771 CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8(
Kojto 148:fd96258d940d 772 uint32_t x,
Kojto 148:fd96258d940d 773 uint32_t y)
Kojto 148:fd96258d940d 774 {
Kojto 148:fd96258d940d 775 q31_t r, s, t, u;
Kojto 148:fd96258d940d 776
Kojto 148:fd96258d940d 777 r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
Kojto 148:fd96258d940d 778 s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
Kojto 148:fd96258d940d 779 t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
Kojto 148:fd96258d940d 780 u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
Kojto 148:fd96258d940d 781
Kojto 148:fd96258d940d 782 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
Kojto 148:fd96258d940d 783 }
Kojto 148:fd96258d940d 784
Kojto 148:fd96258d940d 785
Kojto 148:fd96258d940d 786 /*
Kojto 148:fd96258d940d 787 * @brief C custom defined QADD16 for M3 and M0 processors
Kojto 148:fd96258d940d 788 */
Kojto 148:fd96258d940d 789 CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16(
Kojto 148:fd96258d940d 790 uint32_t x,
Kojto 148:fd96258d940d 791 uint32_t y)
Kojto 148:fd96258d940d 792 {
Kojto 148:fd96258d940d 793 /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
Kojto 148:fd96258d940d 794 q31_t r = 0, s = 0;
Kojto 148:fd96258d940d 795
Kojto 148:fd96258d940d 796 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 797 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 798
Kojto 148:fd96258d940d 799 return ((uint32_t)((s << 16) | (r )));
Kojto 148:fd96258d940d 800 }
Kojto 148:fd96258d940d 801
Kojto 148:fd96258d940d 802
Kojto 148:fd96258d940d 803 /*
Kojto 148:fd96258d940d 804 * @brief C custom defined SHADD16 for M3 and M0 processors
Kojto 148:fd96258d940d 805 */
Kojto 148:fd96258d940d 806 CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16(
Kojto 148:fd96258d940d 807 uint32_t x,
Kojto 148:fd96258d940d 808 uint32_t y)
Kojto 148:fd96258d940d 809 {
Kojto 148:fd96258d940d 810 q31_t r, s;
Kojto 148:fd96258d940d 811
Kojto 148:fd96258d940d 812 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 813 s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 814
Kojto 148:fd96258d940d 815 return ((uint32_t)((s << 16) | (r )));
Kojto 148:fd96258d940d 816 }
Kojto 148:fd96258d940d 817
Kojto 148:fd96258d940d 818
Kojto 148:fd96258d940d 819 /*
Kojto 148:fd96258d940d 820 * @brief C custom defined QSUB16 for M3 and M0 processors
Kojto 148:fd96258d940d 821 */
Kojto 148:fd96258d940d 822 CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16(
Kojto 148:fd96258d940d 823 uint32_t x,
Kojto 148:fd96258d940d 824 uint32_t y)
Kojto 148:fd96258d940d 825 {
Kojto 148:fd96258d940d 826 q31_t r, s;
Kojto 148:fd96258d940d 827
Kojto 148:fd96258d940d 828 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 829 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 830
Kojto 148:fd96258d940d 831 return ((uint32_t)((s << 16) | (r )));
Kojto 148:fd96258d940d 832 }
Kojto 148:fd96258d940d 833
Kojto 148:fd96258d940d 834
Kojto 148:fd96258d940d 835 /*
Kojto 148:fd96258d940d 836 * @brief C custom defined SHSUB16 for M3 and M0 processors
Kojto 148:fd96258d940d 837 */
Kojto 148:fd96258d940d 838 CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16(
Kojto 148:fd96258d940d 839 uint32_t x,
Kojto 148:fd96258d940d 840 uint32_t y)
Kojto 148:fd96258d940d 841 {
Kojto 148:fd96258d940d 842 q31_t r, s;
Kojto 148:fd96258d940d 843
Kojto 148:fd96258d940d 844 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 845 s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 846
Kojto 148:fd96258d940d 847 return ((uint32_t)((s << 16) | (r )));
Kojto 148:fd96258d940d 848 }
Kojto 148:fd96258d940d 849
Kojto 148:fd96258d940d 850
Kojto 148:fd96258d940d 851 /*
Kojto 148:fd96258d940d 852 * @brief C custom defined QASX for M3 and M0 processors
Kojto 148:fd96258d940d 853 */
Kojto 148:fd96258d940d 854 CMSIS_INLINE __STATIC_INLINE uint32_t __QASX(
Kojto 148:fd96258d940d 855 uint32_t x,
Kojto 148:fd96258d940d 856 uint32_t y)
Kojto 148:fd96258d940d 857 {
Kojto 148:fd96258d940d 858 q31_t r, s;
Kojto 148:fd96258d940d 859
Kojto 148:fd96258d940d 860 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 861 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 862
Kojto 148:fd96258d940d 863 return ((uint32_t)((s << 16) | (r )));
Kojto 148:fd96258d940d 864 }
Kojto 148:fd96258d940d 865
Kojto 148:fd96258d940d 866
Kojto 148:fd96258d940d 867 /*
Kojto 148:fd96258d940d 868 * @brief C custom defined SHASX for M3 and M0 processors
Kojto 148:fd96258d940d 869 */
Kojto 148:fd96258d940d 870 CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX(
Kojto 148:fd96258d940d 871 uint32_t x,
Kojto 148:fd96258d940d 872 uint32_t y)
Kojto 148:fd96258d940d 873 {
Kojto 148:fd96258d940d 874 q31_t r, s;
Kojto 148:fd96258d940d 875
Kojto 148:fd96258d940d 876 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 877 s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 878
Kojto 148:fd96258d940d 879 return ((uint32_t)((s << 16) | (r )));
Kojto 148:fd96258d940d 880 }
Kojto 148:fd96258d940d 881
Kojto 148:fd96258d940d 882
Kojto 148:fd96258d940d 883 /*
Kojto 148:fd96258d940d 884 * @brief C custom defined QSAX for M3 and M0 processors
Kojto 148:fd96258d940d 885 */
Kojto 148:fd96258d940d 886 CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX(
Kojto 148:fd96258d940d 887 uint32_t x,
Kojto 148:fd96258d940d 888 uint32_t y)
Kojto 148:fd96258d940d 889 {
Kojto 148:fd96258d940d 890 q31_t r, s;
Kojto 148:fd96258d940d 891
Kojto 148:fd96258d940d 892 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 893 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 894
Kojto 148:fd96258d940d 895 return ((uint32_t)((s << 16) | (r )));
Kojto 148:fd96258d940d 896 }
Kojto 148:fd96258d940d 897
Kojto 148:fd96258d940d 898
Kojto 148:fd96258d940d 899 /*
Kojto 148:fd96258d940d 900 * @brief C custom defined SHSAX for M3 and M0 processors
Kojto 148:fd96258d940d 901 */
Kojto 148:fd96258d940d 902 CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX(
Kojto 148:fd96258d940d 903 uint32_t x,
Kojto 148:fd96258d940d 904 uint32_t y)
Kojto 148:fd96258d940d 905 {
Kojto 148:fd96258d940d 906 q31_t r, s;
Kojto 148:fd96258d940d 907
Kojto 148:fd96258d940d 908 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 909 s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
Kojto 148:fd96258d940d 910
Kojto 148:fd96258d940d 911 return ((uint32_t)((s << 16) | (r )));
Kojto 148:fd96258d940d 912 }
Kojto 148:fd96258d940d 913
Kojto 148:fd96258d940d 914
Kojto 148:fd96258d940d 915 /*
Kojto 148:fd96258d940d 916 * @brief C custom defined SMUSDX for M3 and M0 processors
Kojto 148:fd96258d940d 917 */
Kojto 148:fd96258d940d 918 CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX(
Kojto 148:fd96258d940d 919 uint32_t x,
Kojto 148:fd96258d940d 920 uint32_t y)
Kojto 148:fd96258d940d 921 {
Kojto 148:fd96258d940d 922 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
Kojto 148:fd96258d940d 923 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
Kojto 148:fd96258d940d 924 }
Kojto 148:fd96258d940d 925
Kojto 148:fd96258d940d 926 /*
Kojto 148:fd96258d940d 927 * @brief C custom defined SMUADX for M3 and M0 processors
Kojto 148:fd96258d940d 928 */
Kojto 148:fd96258d940d 929 CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX(
Kojto 148:fd96258d940d 930 uint32_t x,
Kojto 148:fd96258d940d 931 uint32_t y)
Kojto 148:fd96258d940d 932 {
Kojto 148:fd96258d940d 933 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
Kojto 148:fd96258d940d 934 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
Kojto 148:fd96258d940d 935 }
Kojto 148:fd96258d940d 936
Kojto 148:fd96258d940d 937
Kojto 148:fd96258d940d 938 /*
Kojto 148:fd96258d940d 939 * @brief C custom defined QADD for M3 and M0 processors
Kojto 148:fd96258d940d 940 */
Kojto 148:fd96258d940d 941 CMSIS_INLINE __STATIC_INLINE int32_t __QADD(
Kojto 148:fd96258d940d 942 int32_t x,
Kojto 148:fd96258d940d 943 int32_t y)
Kojto 148:fd96258d940d 944 {
Kojto 148:fd96258d940d 945 return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
Kojto 148:fd96258d940d 946 }
Kojto 148:fd96258d940d 947
Kojto 148:fd96258d940d 948
Kojto 148:fd96258d940d 949 /*
Kojto 148:fd96258d940d 950 * @brief C custom defined QSUB for M3 and M0 processors
Kojto 148:fd96258d940d 951 */
Kojto 148:fd96258d940d 952 CMSIS_INLINE __STATIC_INLINE int32_t __QSUB(
Kojto 148:fd96258d940d 953 int32_t x,
Kojto 148:fd96258d940d 954 int32_t y)
Kojto 148:fd96258d940d 955 {
Kojto 148:fd96258d940d 956 return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
Kojto 148:fd96258d940d 957 }
Kojto 148:fd96258d940d 958
Kojto 148:fd96258d940d 959
Kojto 148:fd96258d940d 960 /*
Kojto 148:fd96258d940d 961 * @brief C custom defined SMLAD for M3 and M0 processors
Kojto 148:fd96258d940d 962 */
Kojto 148:fd96258d940d 963 CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD(
Kojto 148:fd96258d940d 964 uint32_t x,
Kojto 148:fd96258d940d 965 uint32_t y,
Kojto 148:fd96258d940d 966 uint32_t sum)
Kojto 148:fd96258d940d 967 {
Kojto 148:fd96258d940d 968 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
Kojto 148:fd96258d940d 969 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
Kojto 148:fd96258d940d 970 ( ((q31_t)sum ) ) ));
Kojto 148:fd96258d940d 971 }
Kojto 148:fd96258d940d 972
Kojto 148:fd96258d940d 973
Kojto 148:fd96258d940d 974 /*
Kojto 148:fd96258d940d 975 * @brief C custom defined SMLADX for M3 and M0 processors
Kojto 148:fd96258d940d 976 */
Kojto 148:fd96258d940d 977 CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX(
Kojto 148:fd96258d940d 978 uint32_t x,
Kojto 148:fd96258d940d 979 uint32_t y,
Kojto 148:fd96258d940d 980 uint32_t sum)
Kojto 148:fd96258d940d 981 {
Kojto 148:fd96258d940d 982 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
Kojto 148:fd96258d940d 983 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
Kojto 148:fd96258d940d 984 ( ((q31_t)sum ) ) ));
Kojto 148:fd96258d940d 985 }
Kojto 148:fd96258d940d 986
Kojto 148:fd96258d940d 987
Kojto 148:fd96258d940d 988 /*
Kojto 148:fd96258d940d 989 * @brief C custom defined SMLSDX for M3 and M0 processors
Kojto 148:fd96258d940d 990 */
Kojto 148:fd96258d940d 991 CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX(
Kojto 148:fd96258d940d 992 uint32_t x,
Kojto 148:fd96258d940d 993 uint32_t y,
Kojto 148:fd96258d940d 994 uint32_t sum)
Kojto 148:fd96258d940d 995 {
Kojto 148:fd96258d940d 996 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
Kojto 148:fd96258d940d 997 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
Kojto 148:fd96258d940d 998 ( ((q31_t)sum ) ) ));
Kojto 148:fd96258d940d 999 }
Kojto 148:fd96258d940d 1000
Kojto 148:fd96258d940d 1001
Kojto 148:fd96258d940d 1002 /*
Kojto 148:fd96258d940d 1003 * @brief C custom defined SMLALD for M3 and M0 processors
Kojto 148:fd96258d940d 1004 */
Kojto 148:fd96258d940d 1005 CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD(
Kojto 148:fd96258d940d 1006 uint32_t x,
Kojto 148:fd96258d940d 1007 uint32_t y,
Kojto 148:fd96258d940d 1008 uint64_t sum)
Kojto 148:fd96258d940d 1009 {
Kojto 148:fd96258d940d 1010 /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
Kojto 148:fd96258d940d 1011 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
Kojto 148:fd96258d940d 1012 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
Kojto 148:fd96258d940d 1013 ( ((q63_t)sum ) ) ));
Kojto 148:fd96258d940d 1014 }
Kojto 148:fd96258d940d 1015
Kojto 148:fd96258d940d 1016
Kojto 148:fd96258d940d 1017 /*
Kojto 148:fd96258d940d 1018 * @brief C custom defined SMLALDX for M3 and M0 processors
Kojto 148:fd96258d940d 1019 */
Kojto 148:fd96258d940d 1020 CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX(
Kojto 148:fd96258d940d 1021 uint32_t x,
Kojto 148:fd96258d940d 1022 uint32_t y,
Kojto 148:fd96258d940d 1023 uint64_t sum)
Kojto 148:fd96258d940d 1024 {
Kojto 148:fd96258d940d 1025 /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
Kojto 148:fd96258d940d 1026 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
Kojto 148:fd96258d940d 1027 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
Kojto 148:fd96258d940d 1028 ( ((q63_t)sum ) ) ));
Kojto 148:fd96258d940d 1029 }
Kojto 148:fd96258d940d 1030
Kojto 148:fd96258d940d 1031
Kojto 148:fd96258d940d 1032 /*
Kojto 148:fd96258d940d 1033 * @brief C custom defined SMUAD for M3 and M0 processors
Kojto 148:fd96258d940d 1034 */
Kojto 148:fd96258d940d 1035 CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD(
Kojto 148:fd96258d940d 1036 uint32_t x,
Kojto 148:fd96258d940d 1037 uint32_t y)
Kojto 148:fd96258d940d 1038 {
Kojto 148:fd96258d940d 1039 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
Kojto 148:fd96258d940d 1040 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
Kojto 148:fd96258d940d 1041 }
Kojto 148:fd96258d940d 1042
Kojto 148:fd96258d940d 1043
Kojto 148:fd96258d940d 1044 /*
Kojto 148:fd96258d940d 1045 * @brief C custom defined SMUSD for M3 and M0 processors
Kojto 148:fd96258d940d 1046 */
Kojto 148:fd96258d940d 1047 CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD(
Kojto 148:fd96258d940d 1048 uint32_t x,
Kojto 148:fd96258d940d 1049 uint32_t y)
Kojto 148:fd96258d940d 1050 {
Kojto 148:fd96258d940d 1051 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
Kojto 148:fd96258d940d 1052 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
Kojto 148:fd96258d940d 1053 }
Kojto 148:fd96258d940d 1054
Kojto 148:fd96258d940d 1055
Kojto 148:fd96258d940d 1056 /*
Kojto 148:fd96258d940d 1057 * @brief C custom defined SXTB16 for M3 and M0 processors
Kojto 148:fd96258d940d 1058 */
Kojto 148:fd96258d940d 1059 CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16(
Kojto 148:fd96258d940d 1060 uint32_t x)
Kojto 148:fd96258d940d 1061 {
Kojto 148:fd96258d940d 1062 return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
Kojto 148:fd96258d940d 1063 ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
Kojto 148:fd96258d940d 1064 }
Kojto 148:fd96258d940d 1065
Kojto 148:fd96258d940d 1066 /*
Kojto 148:fd96258d940d 1067 * @brief C custom defined SMMLA for M3 and M0 processors
Kojto 148:fd96258d940d 1068 */
Kojto 148:fd96258d940d 1069 CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA(
Kojto 148:fd96258d940d 1070 int32_t x,
Kojto 148:fd96258d940d 1071 int32_t y,
Kojto 148:fd96258d940d 1072 int32_t sum)
Kojto 148:fd96258d940d 1073 {
Kojto 148:fd96258d940d 1074 return (sum + (int32_t) (((int64_t) x * y) >> 32));
Kojto 148:fd96258d940d 1075 }
Kojto 148:fd96258d940d 1076
Kojto 148:fd96258d940d 1077 #if 0
Kojto 148:fd96258d940d 1078 /*
Kojto 148:fd96258d940d 1079 * @brief C custom defined PKHBT for unavailable DSP extension
Kojto 148:fd96258d940d 1080 */
Kojto 148:fd96258d940d 1081 CMSIS_INLINE __STATIC_INLINE uint32_t __PKHBT(
Kojto 148:fd96258d940d 1082 uint32_t x,
Kojto 148:fd96258d940d 1083 uint32_t y,
Kojto 148:fd96258d940d 1084 uint32_t leftshift)
Kojto 148:fd96258d940d 1085 {
Kojto 148:fd96258d940d 1086 return ( ((x ) & 0x0000FFFFUL) |
Kojto 148:fd96258d940d 1087 ((y << leftshift) & 0xFFFF0000UL) );
Kojto 148:fd96258d940d 1088 }
Kojto 148:fd96258d940d 1089
Kojto 148:fd96258d940d 1090 /*
Kojto 148:fd96258d940d 1091 * @brief C custom defined PKHTB for unavailable DSP extension
Kojto 148:fd96258d940d 1092 */
Kojto 148:fd96258d940d 1093 CMSIS_INLINE __STATIC_INLINE uint32_t __PKHTB(
Kojto 148:fd96258d940d 1094 uint32_t x,
Kojto 148:fd96258d940d 1095 uint32_t y,
Kojto 148:fd96258d940d 1096 uint32_t rightshift)
Kojto 148:fd96258d940d 1097 {
Kojto 148:fd96258d940d 1098 return ( ((x ) & 0xFFFF0000UL) |
Kojto 148:fd96258d940d 1099 ((y >> rightshift) & 0x0000FFFFUL) );
Kojto 148:fd96258d940d 1100 }
Kojto 148:fd96258d940d 1101 #endif
Kojto 148:fd96258d940d 1102
Kojto 148:fd96258d940d 1103 /* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
Kojto 148:fd96258d940d 1104 #endif /* !defined (ARM_MATH_DSP) */
Kojto 148:fd96258d940d 1105
Kojto 148:fd96258d940d 1106
Kojto 148:fd96258d940d 1107 /**
Kojto 148:fd96258d940d 1108 * @brief Instance structure for the Q7 FIR filter.
Kojto 148:fd96258d940d 1109 */
Kojto 148:fd96258d940d 1110 typedef struct
Kojto 148:fd96258d940d 1111 {
Kojto 148:fd96258d940d 1112 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 148:fd96258d940d 1113 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 1114 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 148:fd96258d940d 1115 } arm_fir_instance_q7;
Kojto 148:fd96258d940d 1116
Kojto 148:fd96258d940d 1117 /**
Kojto 148:fd96258d940d 1118 * @brief Instance structure for the Q15 FIR filter.
Kojto 148:fd96258d940d 1119 */
Kojto 148:fd96258d940d 1120 typedef struct
Kojto 148:fd96258d940d 1121 {
Kojto 148:fd96258d940d 1122 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 148:fd96258d940d 1123 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 1124 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 148:fd96258d940d 1125 } arm_fir_instance_q15;
Kojto 148:fd96258d940d 1126
Kojto 148:fd96258d940d 1127 /**
Kojto 148:fd96258d940d 1128 * @brief Instance structure for the Q31 FIR filter.
Kojto 148:fd96258d940d 1129 */
Kojto 148:fd96258d940d 1130 typedef struct
Kojto 148:fd96258d940d 1131 {
Kojto 148:fd96258d940d 1132 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 148:fd96258d940d 1133 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 1134 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 148:fd96258d940d 1135 } arm_fir_instance_q31;
Kojto 148:fd96258d940d 1136
Kojto 148:fd96258d940d 1137 /**
Kojto 148:fd96258d940d 1138 * @brief Instance structure for the floating-point FIR filter.
Kojto 148:fd96258d940d 1139 */
Kojto 148:fd96258d940d 1140 typedef struct
Kojto 148:fd96258d940d 1141 {
Kojto 148:fd96258d940d 1142 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 148:fd96258d940d 1143 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 1144 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 148:fd96258d940d 1145 } arm_fir_instance_f32;
Kojto 148:fd96258d940d 1146
Kojto 148:fd96258d940d 1147
Kojto 148:fd96258d940d 1148 /**
Kojto 148:fd96258d940d 1149 * @brief Processing function for the Q7 FIR filter.
Kojto 148:fd96258d940d 1150 * @param[in] S points to an instance of the Q7 FIR filter structure.
Kojto 148:fd96258d940d 1151 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1152 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1153 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1154 */
Kojto 148:fd96258d940d 1155 void arm_fir_q7(
Kojto 148:fd96258d940d 1156 const arm_fir_instance_q7 * S,
Kojto 148:fd96258d940d 1157 q7_t * pSrc,
Kojto 148:fd96258d940d 1158 q7_t * pDst,
Kojto 148:fd96258d940d 1159 uint32_t blockSize);
Kojto 148:fd96258d940d 1160
Kojto 148:fd96258d940d 1161
Kojto 148:fd96258d940d 1162 /**
Kojto 148:fd96258d940d 1163 * @brief Initialization function for the Q7 FIR filter.
Kojto 148:fd96258d940d 1164 * @param[in,out] S points to an instance of the Q7 FIR structure.
Kojto 148:fd96258d940d 1165 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 148:fd96258d940d 1166 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 1167 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 1168 * @param[in] blockSize number of samples that are processed.
Kojto 148:fd96258d940d 1169 */
Kojto 148:fd96258d940d 1170 void arm_fir_init_q7(
Kojto 148:fd96258d940d 1171 arm_fir_instance_q7 * S,
Kojto 148:fd96258d940d 1172 uint16_t numTaps,
Kojto 148:fd96258d940d 1173 q7_t * pCoeffs,
Kojto 148:fd96258d940d 1174 q7_t * pState,
Kojto 148:fd96258d940d 1175 uint32_t blockSize);
Kojto 148:fd96258d940d 1176
Kojto 148:fd96258d940d 1177
Kojto 148:fd96258d940d 1178 /**
Kojto 148:fd96258d940d 1179 * @brief Processing function for the Q15 FIR filter.
Kojto 148:fd96258d940d 1180 * @param[in] S points to an instance of the Q15 FIR structure.
Kojto 148:fd96258d940d 1181 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1182 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1183 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1184 */
Kojto 148:fd96258d940d 1185 void arm_fir_q15(
Kojto 148:fd96258d940d 1186 const arm_fir_instance_q15 * S,
Kojto 148:fd96258d940d 1187 q15_t * pSrc,
Kojto 148:fd96258d940d 1188 q15_t * pDst,
Kojto 148:fd96258d940d 1189 uint32_t blockSize);
Kojto 148:fd96258d940d 1190
Kojto 148:fd96258d940d 1191
Kojto 148:fd96258d940d 1192 /**
Kojto 148:fd96258d940d 1193 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
Kojto 148:fd96258d940d 1194 * @param[in] S points to an instance of the Q15 FIR filter structure.
Kojto 148:fd96258d940d 1195 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1196 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1197 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1198 */
Kojto 148:fd96258d940d 1199 void arm_fir_fast_q15(
Kojto 148:fd96258d940d 1200 const arm_fir_instance_q15 * S,
Kojto 148:fd96258d940d 1201 q15_t * pSrc,
Kojto 148:fd96258d940d 1202 q15_t * pDst,
Kojto 148:fd96258d940d 1203 uint32_t blockSize);
Kojto 148:fd96258d940d 1204
Kojto 148:fd96258d940d 1205
Kojto 148:fd96258d940d 1206 /**
Kojto 148:fd96258d940d 1207 * @brief Initialization function for the Q15 FIR filter.
Kojto 148:fd96258d940d 1208 * @param[in,out] S points to an instance of the Q15 FIR filter structure.
Kojto 148:fd96258d940d 1209 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
Kojto 148:fd96258d940d 1210 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 1211 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 1212 * @param[in] blockSize number of samples that are processed at a time.
Kojto 148:fd96258d940d 1213 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
Kojto 148:fd96258d940d 1214 * <code>numTaps</code> is not a supported value.
Kojto 148:fd96258d940d 1215 */
Kojto 148:fd96258d940d 1216 arm_status arm_fir_init_q15(
Kojto 148:fd96258d940d 1217 arm_fir_instance_q15 * S,
Kojto 148:fd96258d940d 1218 uint16_t numTaps,
Kojto 148:fd96258d940d 1219 q15_t * pCoeffs,
Kojto 148:fd96258d940d 1220 q15_t * pState,
Kojto 148:fd96258d940d 1221 uint32_t blockSize);
Kojto 148:fd96258d940d 1222
Kojto 148:fd96258d940d 1223
Kojto 148:fd96258d940d 1224 /**
Kojto 148:fd96258d940d 1225 * @brief Processing function for the Q31 FIR filter.
Kojto 148:fd96258d940d 1226 * @param[in] S points to an instance of the Q31 FIR filter structure.
Kojto 148:fd96258d940d 1227 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1228 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1229 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1230 */
Kojto 148:fd96258d940d 1231 void arm_fir_q31(
Kojto 148:fd96258d940d 1232 const arm_fir_instance_q31 * S,
Kojto 148:fd96258d940d 1233 q31_t * pSrc,
Kojto 148:fd96258d940d 1234 q31_t * pDst,
Kojto 148:fd96258d940d 1235 uint32_t blockSize);
Kojto 148:fd96258d940d 1236
Kojto 148:fd96258d940d 1237
Kojto 148:fd96258d940d 1238 /**
Kojto 148:fd96258d940d 1239 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
Kojto 148:fd96258d940d 1240 * @param[in] S points to an instance of the Q31 FIR structure.
Kojto 148:fd96258d940d 1241 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1242 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1243 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1244 */
Kojto 148:fd96258d940d 1245 void arm_fir_fast_q31(
Kojto 148:fd96258d940d 1246 const arm_fir_instance_q31 * S,
Kojto 148:fd96258d940d 1247 q31_t * pSrc,
Kojto 148:fd96258d940d 1248 q31_t * pDst,
Kojto 148:fd96258d940d 1249 uint32_t blockSize);
Kojto 148:fd96258d940d 1250
Kojto 148:fd96258d940d 1251
Kojto 148:fd96258d940d 1252 /**
Kojto 148:fd96258d940d 1253 * @brief Initialization function for the Q31 FIR filter.
Kojto 148:fd96258d940d 1254 * @param[in,out] S points to an instance of the Q31 FIR structure.
Kojto 148:fd96258d940d 1255 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 148:fd96258d940d 1256 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 1257 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 1258 * @param[in] blockSize number of samples that are processed at a time.
Kojto 148:fd96258d940d 1259 */
Kojto 148:fd96258d940d 1260 void arm_fir_init_q31(
Kojto 148:fd96258d940d 1261 arm_fir_instance_q31 * S,
Kojto 148:fd96258d940d 1262 uint16_t numTaps,
Kojto 148:fd96258d940d 1263 q31_t * pCoeffs,
Kojto 148:fd96258d940d 1264 q31_t * pState,
Kojto 148:fd96258d940d 1265 uint32_t blockSize);
Kojto 148:fd96258d940d 1266
Kojto 148:fd96258d940d 1267
Kojto 148:fd96258d940d 1268 /**
Kojto 148:fd96258d940d 1269 * @brief Processing function for the floating-point FIR filter.
Kojto 148:fd96258d940d 1270 * @param[in] S points to an instance of the floating-point FIR structure.
Kojto 148:fd96258d940d 1271 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1272 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1273 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1274 */
Kojto 148:fd96258d940d 1275 void arm_fir_f32(
Kojto 148:fd96258d940d 1276 const arm_fir_instance_f32 * S,
Kojto 148:fd96258d940d 1277 float32_t * pSrc,
Kojto 148:fd96258d940d 1278 float32_t * pDst,
Kojto 148:fd96258d940d 1279 uint32_t blockSize);
Kojto 148:fd96258d940d 1280
Kojto 148:fd96258d940d 1281
Kojto 148:fd96258d940d 1282 /**
Kojto 148:fd96258d940d 1283 * @brief Initialization function for the floating-point FIR filter.
Kojto 148:fd96258d940d 1284 * @param[in,out] S points to an instance of the floating-point FIR filter structure.
Kojto 148:fd96258d940d 1285 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 148:fd96258d940d 1286 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 1287 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 1288 * @param[in] blockSize number of samples that are processed at a time.
Kojto 148:fd96258d940d 1289 */
Kojto 148:fd96258d940d 1290 void arm_fir_init_f32(
Kojto 148:fd96258d940d 1291 arm_fir_instance_f32 * S,
Kojto 148:fd96258d940d 1292 uint16_t numTaps,
Kojto 148:fd96258d940d 1293 float32_t * pCoeffs,
Kojto 148:fd96258d940d 1294 float32_t * pState,
Kojto 148:fd96258d940d 1295 uint32_t blockSize);
Kojto 148:fd96258d940d 1296
Kojto 148:fd96258d940d 1297
Kojto 148:fd96258d940d 1298 /**
Kojto 148:fd96258d940d 1299 * @brief Instance structure for the Q15 Biquad cascade filter.
Kojto 148:fd96258d940d 1300 */
Kojto 148:fd96258d940d 1301 typedef struct
Kojto 148:fd96258d940d 1302 {
Kojto 148:fd96258d940d 1303 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 148:fd96258d940d 1304 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 148:fd96258d940d 1305 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 148:fd96258d940d 1306 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
Kojto 148:fd96258d940d 1307 } arm_biquad_casd_df1_inst_q15;
Kojto 148:fd96258d940d 1308
Kojto 148:fd96258d940d 1309 /**
Kojto 148:fd96258d940d 1310 * @brief Instance structure for the Q31 Biquad cascade filter.
Kojto 148:fd96258d940d 1311 */
Kojto 148:fd96258d940d 1312 typedef struct
Kojto 148:fd96258d940d 1313 {
Kojto 148:fd96258d940d 1314 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 148:fd96258d940d 1315 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 148:fd96258d940d 1316 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 148:fd96258d940d 1317 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
Kojto 148:fd96258d940d 1318 } arm_biquad_casd_df1_inst_q31;
Kojto 148:fd96258d940d 1319
Kojto 148:fd96258d940d 1320 /**
Kojto 148:fd96258d940d 1321 * @brief Instance structure for the floating-point Biquad cascade filter.
Kojto 148:fd96258d940d 1322 */
Kojto 148:fd96258d940d 1323 typedef struct
Kojto 148:fd96258d940d 1324 {
Kojto 148:fd96258d940d 1325 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 148:fd96258d940d 1326 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 148:fd96258d940d 1327 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 148:fd96258d940d 1328 } arm_biquad_casd_df1_inst_f32;
Kojto 148:fd96258d940d 1329
Kojto 148:fd96258d940d 1330
Kojto 148:fd96258d940d 1331 /**
Kojto 148:fd96258d940d 1332 * @brief Processing function for the Q15 Biquad cascade filter.
Kojto 148:fd96258d940d 1333 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
Kojto 148:fd96258d940d 1334 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1335 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1336 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1337 */
Kojto 148:fd96258d940d 1338 void arm_biquad_cascade_df1_q15(
Kojto 148:fd96258d940d 1339 const arm_biquad_casd_df1_inst_q15 * S,
Kojto 148:fd96258d940d 1340 q15_t * pSrc,
Kojto 148:fd96258d940d 1341 q15_t * pDst,
Kojto 148:fd96258d940d 1342 uint32_t blockSize);
Kojto 148:fd96258d940d 1343
Kojto 148:fd96258d940d 1344
Kojto 148:fd96258d940d 1345 /**
Kojto 148:fd96258d940d 1346 * @brief Initialization function for the Q15 Biquad cascade filter.
Kojto 148:fd96258d940d 1347 * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
Kojto 148:fd96258d940d 1348 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 148:fd96258d940d 1349 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 1350 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 1351 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
Kojto 148:fd96258d940d 1352 */
Kojto 148:fd96258d940d 1353 void arm_biquad_cascade_df1_init_q15(
Kojto 148:fd96258d940d 1354 arm_biquad_casd_df1_inst_q15 * S,
Kojto 148:fd96258d940d 1355 uint8_t numStages,
Kojto 148:fd96258d940d 1356 q15_t * pCoeffs,
Kojto 148:fd96258d940d 1357 q15_t * pState,
Kojto 148:fd96258d940d 1358 int8_t postShift);
Kojto 148:fd96258d940d 1359
Kojto 148:fd96258d940d 1360
Kojto 148:fd96258d940d 1361 /**
Kojto 148:fd96258d940d 1362 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
Kojto 148:fd96258d940d 1363 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
Kojto 148:fd96258d940d 1364 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1365 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1366 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1367 */
Kojto 148:fd96258d940d 1368 void arm_biquad_cascade_df1_fast_q15(
Kojto 148:fd96258d940d 1369 const arm_biquad_casd_df1_inst_q15 * S,
Kojto 148:fd96258d940d 1370 q15_t * pSrc,
Kojto 148:fd96258d940d 1371 q15_t * pDst,
Kojto 148:fd96258d940d 1372 uint32_t blockSize);
Kojto 148:fd96258d940d 1373
Kojto 148:fd96258d940d 1374
Kojto 148:fd96258d940d 1375 /**
Kojto 148:fd96258d940d 1376 * @brief Processing function for the Q31 Biquad cascade filter
Kojto 148:fd96258d940d 1377 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
Kojto 148:fd96258d940d 1378 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1379 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1380 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1381 */
Kojto 148:fd96258d940d 1382 void arm_biquad_cascade_df1_q31(
Kojto 148:fd96258d940d 1383 const arm_biquad_casd_df1_inst_q31 * S,
Kojto 148:fd96258d940d 1384 q31_t * pSrc,
Kojto 148:fd96258d940d 1385 q31_t * pDst,
Kojto 148:fd96258d940d 1386 uint32_t blockSize);
Kojto 148:fd96258d940d 1387
Kojto 148:fd96258d940d 1388
Kojto 148:fd96258d940d 1389 /**
Kojto 148:fd96258d940d 1390 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
Kojto 148:fd96258d940d 1391 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
Kojto 148:fd96258d940d 1392 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1393 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1394 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1395 */
Kojto 148:fd96258d940d 1396 void arm_biquad_cascade_df1_fast_q31(
Kojto 148:fd96258d940d 1397 const arm_biquad_casd_df1_inst_q31 * S,
Kojto 148:fd96258d940d 1398 q31_t * pSrc,
Kojto 148:fd96258d940d 1399 q31_t * pDst,
Kojto 148:fd96258d940d 1400 uint32_t blockSize);
Kojto 148:fd96258d940d 1401
Kojto 148:fd96258d940d 1402
Kojto 148:fd96258d940d 1403 /**
Kojto 148:fd96258d940d 1404 * @brief Initialization function for the Q31 Biquad cascade filter.
Kojto 148:fd96258d940d 1405 * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
Kojto 148:fd96258d940d 1406 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 148:fd96258d940d 1407 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 1408 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 1409 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
Kojto 148:fd96258d940d 1410 */
Kojto 148:fd96258d940d 1411 void arm_biquad_cascade_df1_init_q31(
Kojto 148:fd96258d940d 1412 arm_biquad_casd_df1_inst_q31 * S,
Kojto 148:fd96258d940d 1413 uint8_t numStages,
Kojto 148:fd96258d940d 1414 q31_t * pCoeffs,
Kojto 148:fd96258d940d 1415 q31_t * pState,
Kojto 148:fd96258d940d 1416 int8_t postShift);
Kojto 148:fd96258d940d 1417
Kojto 148:fd96258d940d 1418
Kojto 148:fd96258d940d 1419 /**
Kojto 148:fd96258d940d 1420 * @brief Processing function for the floating-point Biquad cascade filter.
Kojto 148:fd96258d940d 1421 * @param[in] S points to an instance of the floating-point Biquad cascade structure.
Kojto 148:fd96258d940d 1422 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 1423 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 1424 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 1425 */
Kojto 148:fd96258d940d 1426 void arm_biquad_cascade_df1_f32(
Kojto 148:fd96258d940d 1427 const arm_biquad_casd_df1_inst_f32 * S,
Kojto 148:fd96258d940d 1428 float32_t * pSrc,
Kojto 148:fd96258d940d 1429 float32_t * pDst,
Kojto 148:fd96258d940d 1430 uint32_t blockSize);
Kojto 148:fd96258d940d 1431
Kojto 148:fd96258d940d 1432
Kojto 148:fd96258d940d 1433 /**
Kojto 148:fd96258d940d 1434 * @brief Initialization function for the floating-point Biquad cascade filter.
Kojto 148:fd96258d940d 1435 * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
Kojto 148:fd96258d940d 1436 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 148:fd96258d940d 1437 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 1438 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 1439 */
Kojto 148:fd96258d940d 1440 void arm_biquad_cascade_df1_init_f32(
Kojto 148:fd96258d940d 1441 arm_biquad_casd_df1_inst_f32 * S,
Kojto 148:fd96258d940d 1442 uint8_t numStages,
Kojto 148:fd96258d940d 1443 float32_t * pCoeffs,
Kojto 148:fd96258d940d 1444 float32_t * pState);
Kojto 148:fd96258d940d 1445
Kojto 148:fd96258d940d 1446
Kojto 148:fd96258d940d 1447 /**
Kojto 148:fd96258d940d 1448 * @brief Instance structure for the floating-point matrix structure.
Kojto 148:fd96258d940d 1449 */
Kojto 148:fd96258d940d 1450 typedef struct
Kojto 148:fd96258d940d 1451 {
Kojto 148:fd96258d940d 1452 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 148:fd96258d940d 1453 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 148:fd96258d940d 1454 float32_t *pData; /**< points to the data of the matrix. */
Kojto 148:fd96258d940d 1455 } arm_matrix_instance_f32;
Kojto 148:fd96258d940d 1456
Kojto 148:fd96258d940d 1457
Kojto 148:fd96258d940d 1458 /**
Kojto 148:fd96258d940d 1459 * @brief Instance structure for the floating-point matrix structure.
Kojto 148:fd96258d940d 1460 */
Kojto 148:fd96258d940d 1461 typedef struct
Kojto 148:fd96258d940d 1462 {
Kojto 148:fd96258d940d 1463 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 148:fd96258d940d 1464 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 148:fd96258d940d 1465 float64_t *pData; /**< points to the data of the matrix. */
Kojto 148:fd96258d940d 1466 } arm_matrix_instance_f64;
Kojto 148:fd96258d940d 1467
Kojto 148:fd96258d940d 1468 /**
Kojto 148:fd96258d940d 1469 * @brief Instance structure for the Q15 matrix structure.
Kojto 148:fd96258d940d 1470 */
Kojto 148:fd96258d940d 1471 typedef struct
Kojto 148:fd96258d940d 1472 {
Kojto 148:fd96258d940d 1473 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 148:fd96258d940d 1474 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 148:fd96258d940d 1475 q15_t *pData; /**< points to the data of the matrix. */
Kojto 148:fd96258d940d 1476 } arm_matrix_instance_q15;
Kojto 148:fd96258d940d 1477
Kojto 148:fd96258d940d 1478 /**
Kojto 148:fd96258d940d 1479 * @brief Instance structure for the Q31 matrix structure.
Kojto 148:fd96258d940d 1480 */
Kojto 148:fd96258d940d 1481 typedef struct
Kojto 148:fd96258d940d 1482 {
Kojto 148:fd96258d940d 1483 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 148:fd96258d940d 1484 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 148:fd96258d940d 1485 q31_t *pData; /**< points to the data of the matrix. */
Kojto 148:fd96258d940d 1486 } arm_matrix_instance_q31;
Kojto 148:fd96258d940d 1487
Kojto 148:fd96258d940d 1488
Kojto 148:fd96258d940d 1489 /**
Kojto 148:fd96258d940d 1490 * @brief Floating-point matrix addition.
Kojto 148:fd96258d940d 1491 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1492 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1493 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1494 * @return The function returns either
Kojto 148:fd96258d940d 1495 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1496 */
Kojto 148:fd96258d940d 1497 arm_status arm_mat_add_f32(
Kojto 148:fd96258d940d 1498 const arm_matrix_instance_f32 * pSrcA,
Kojto 148:fd96258d940d 1499 const arm_matrix_instance_f32 * pSrcB,
Kojto 148:fd96258d940d 1500 arm_matrix_instance_f32 * pDst);
Kojto 148:fd96258d940d 1501
Kojto 148:fd96258d940d 1502
Kojto 148:fd96258d940d 1503 /**
Kojto 148:fd96258d940d 1504 * @brief Q15 matrix addition.
Kojto 148:fd96258d940d 1505 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1506 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1507 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1508 * @return The function returns either
Kojto 148:fd96258d940d 1509 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1510 */
Kojto 148:fd96258d940d 1511 arm_status arm_mat_add_q15(
Kojto 148:fd96258d940d 1512 const arm_matrix_instance_q15 * pSrcA,
Kojto 148:fd96258d940d 1513 const arm_matrix_instance_q15 * pSrcB,
Kojto 148:fd96258d940d 1514 arm_matrix_instance_q15 * pDst);
Kojto 148:fd96258d940d 1515
Kojto 148:fd96258d940d 1516
Kojto 148:fd96258d940d 1517 /**
Kojto 148:fd96258d940d 1518 * @brief Q31 matrix addition.
Kojto 148:fd96258d940d 1519 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1520 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1521 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1522 * @return The function returns either
Kojto 148:fd96258d940d 1523 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1524 */
Kojto 148:fd96258d940d 1525 arm_status arm_mat_add_q31(
Kojto 148:fd96258d940d 1526 const arm_matrix_instance_q31 * pSrcA,
Kojto 148:fd96258d940d 1527 const arm_matrix_instance_q31 * pSrcB,
Kojto 148:fd96258d940d 1528 arm_matrix_instance_q31 * pDst);
Kojto 148:fd96258d940d 1529
Kojto 148:fd96258d940d 1530
Kojto 148:fd96258d940d 1531 /**
Kojto 148:fd96258d940d 1532 * @brief Floating-point, complex, matrix multiplication.
Kojto 148:fd96258d940d 1533 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1534 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1535 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1536 * @return The function returns either
Kojto 148:fd96258d940d 1537 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1538 */
Kojto 148:fd96258d940d 1539 arm_status arm_mat_cmplx_mult_f32(
Kojto 148:fd96258d940d 1540 const arm_matrix_instance_f32 * pSrcA,
Kojto 148:fd96258d940d 1541 const arm_matrix_instance_f32 * pSrcB,
Kojto 148:fd96258d940d 1542 arm_matrix_instance_f32 * pDst);
Kojto 148:fd96258d940d 1543
Kojto 148:fd96258d940d 1544
Kojto 148:fd96258d940d 1545 /**
Kojto 148:fd96258d940d 1546 * @brief Q15, complex, matrix multiplication.
Kojto 148:fd96258d940d 1547 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1548 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1549 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1550 * @return The function returns either
Kojto 148:fd96258d940d 1551 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1552 */
Kojto 148:fd96258d940d 1553 arm_status arm_mat_cmplx_mult_q15(
Kojto 148:fd96258d940d 1554 const arm_matrix_instance_q15 * pSrcA,
Kojto 148:fd96258d940d 1555 const arm_matrix_instance_q15 * pSrcB,
Kojto 148:fd96258d940d 1556 arm_matrix_instance_q15 * pDst,
Kojto 148:fd96258d940d 1557 q15_t * pScratch);
Kojto 148:fd96258d940d 1558
Kojto 148:fd96258d940d 1559
Kojto 148:fd96258d940d 1560 /**
Kojto 148:fd96258d940d 1561 * @brief Q31, complex, matrix multiplication.
Kojto 148:fd96258d940d 1562 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1563 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1564 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1565 * @return The function returns either
Kojto 148:fd96258d940d 1566 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1567 */
Kojto 148:fd96258d940d 1568 arm_status arm_mat_cmplx_mult_q31(
Kojto 148:fd96258d940d 1569 const arm_matrix_instance_q31 * pSrcA,
Kojto 148:fd96258d940d 1570 const arm_matrix_instance_q31 * pSrcB,
Kojto 148:fd96258d940d 1571 arm_matrix_instance_q31 * pDst);
Kojto 148:fd96258d940d 1572
Kojto 148:fd96258d940d 1573
Kojto 148:fd96258d940d 1574 /**
Kojto 148:fd96258d940d 1575 * @brief Floating-point matrix transpose.
Kojto 148:fd96258d940d 1576 * @param[in] pSrc points to the input matrix
Kojto 148:fd96258d940d 1577 * @param[out] pDst points to the output matrix
Kojto 148:fd96258d940d 1578 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 148:fd96258d940d 1579 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1580 */
Kojto 148:fd96258d940d 1581 arm_status arm_mat_trans_f32(
Kojto 148:fd96258d940d 1582 const arm_matrix_instance_f32 * pSrc,
Kojto 148:fd96258d940d 1583 arm_matrix_instance_f32 * pDst);
Kojto 148:fd96258d940d 1584
Kojto 148:fd96258d940d 1585
Kojto 148:fd96258d940d 1586 /**
Kojto 148:fd96258d940d 1587 * @brief Q15 matrix transpose.
Kojto 148:fd96258d940d 1588 * @param[in] pSrc points to the input matrix
Kojto 148:fd96258d940d 1589 * @param[out] pDst points to the output matrix
Kojto 148:fd96258d940d 1590 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 148:fd96258d940d 1591 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1592 */
Kojto 148:fd96258d940d 1593 arm_status arm_mat_trans_q15(
Kojto 148:fd96258d940d 1594 const arm_matrix_instance_q15 * pSrc,
Kojto 148:fd96258d940d 1595 arm_matrix_instance_q15 * pDst);
Kojto 148:fd96258d940d 1596
Kojto 148:fd96258d940d 1597
Kojto 148:fd96258d940d 1598 /**
Kojto 148:fd96258d940d 1599 * @brief Q31 matrix transpose.
Kojto 148:fd96258d940d 1600 * @param[in] pSrc points to the input matrix
Kojto 148:fd96258d940d 1601 * @param[out] pDst points to the output matrix
Kojto 148:fd96258d940d 1602 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 148:fd96258d940d 1603 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1604 */
Kojto 148:fd96258d940d 1605 arm_status arm_mat_trans_q31(
Kojto 148:fd96258d940d 1606 const arm_matrix_instance_q31 * pSrc,
Kojto 148:fd96258d940d 1607 arm_matrix_instance_q31 * pDst);
Kojto 148:fd96258d940d 1608
Kojto 148:fd96258d940d 1609
Kojto 148:fd96258d940d 1610 /**
Kojto 148:fd96258d940d 1611 * @brief Floating-point matrix multiplication
Kojto 148:fd96258d940d 1612 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1613 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1614 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1615 * @return The function returns either
Kojto 148:fd96258d940d 1616 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1617 */
Kojto 148:fd96258d940d 1618 arm_status arm_mat_mult_f32(
Kojto 148:fd96258d940d 1619 const arm_matrix_instance_f32 * pSrcA,
Kojto 148:fd96258d940d 1620 const arm_matrix_instance_f32 * pSrcB,
Kojto 148:fd96258d940d 1621 arm_matrix_instance_f32 * pDst);
Kojto 148:fd96258d940d 1622
Kojto 148:fd96258d940d 1623
Kojto 148:fd96258d940d 1624 /**
Kojto 148:fd96258d940d 1625 * @brief Q15 matrix multiplication
Kojto 148:fd96258d940d 1626 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1627 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1628 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1629 * @param[in] pState points to the array for storing intermediate results
Kojto 148:fd96258d940d 1630 * @return The function returns either
Kojto 148:fd96258d940d 1631 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1632 */
Kojto 148:fd96258d940d 1633 arm_status arm_mat_mult_q15(
Kojto 148:fd96258d940d 1634 const arm_matrix_instance_q15 * pSrcA,
Kojto 148:fd96258d940d 1635 const arm_matrix_instance_q15 * pSrcB,
Kojto 148:fd96258d940d 1636 arm_matrix_instance_q15 * pDst,
Kojto 148:fd96258d940d 1637 q15_t * pState);
Kojto 148:fd96258d940d 1638
Kojto 148:fd96258d940d 1639
Kojto 148:fd96258d940d 1640 /**
Kojto 148:fd96258d940d 1641 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
Kojto 148:fd96258d940d 1642 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1643 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1644 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1645 * @param[in] pState points to the array for storing intermediate results
Kojto 148:fd96258d940d 1646 * @return The function returns either
Kojto 148:fd96258d940d 1647 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1648 */
Kojto 148:fd96258d940d 1649 arm_status arm_mat_mult_fast_q15(
Kojto 148:fd96258d940d 1650 const arm_matrix_instance_q15 * pSrcA,
Kojto 148:fd96258d940d 1651 const arm_matrix_instance_q15 * pSrcB,
Kojto 148:fd96258d940d 1652 arm_matrix_instance_q15 * pDst,
Kojto 148:fd96258d940d 1653 q15_t * pState);
Kojto 148:fd96258d940d 1654
Kojto 148:fd96258d940d 1655
Kojto 148:fd96258d940d 1656 /**
Kojto 148:fd96258d940d 1657 * @brief Q31 matrix multiplication
Kojto 148:fd96258d940d 1658 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1659 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1660 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1661 * @return The function returns either
Kojto 148:fd96258d940d 1662 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1663 */
Kojto 148:fd96258d940d 1664 arm_status arm_mat_mult_q31(
Kojto 148:fd96258d940d 1665 const arm_matrix_instance_q31 * pSrcA,
Kojto 148:fd96258d940d 1666 const arm_matrix_instance_q31 * pSrcB,
Kojto 148:fd96258d940d 1667 arm_matrix_instance_q31 * pDst);
Kojto 148:fd96258d940d 1668
Kojto 148:fd96258d940d 1669
Kojto 148:fd96258d940d 1670 /**
Kojto 148:fd96258d940d 1671 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
Kojto 148:fd96258d940d 1672 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1673 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1674 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1675 * @return The function returns either
Kojto 148:fd96258d940d 1676 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1677 */
Kojto 148:fd96258d940d 1678 arm_status arm_mat_mult_fast_q31(
Kojto 148:fd96258d940d 1679 const arm_matrix_instance_q31 * pSrcA,
Kojto 148:fd96258d940d 1680 const arm_matrix_instance_q31 * pSrcB,
Kojto 148:fd96258d940d 1681 arm_matrix_instance_q31 * pDst);
Kojto 148:fd96258d940d 1682
Kojto 148:fd96258d940d 1683
Kojto 148:fd96258d940d 1684 /**
Kojto 148:fd96258d940d 1685 * @brief Floating-point matrix subtraction
Kojto 148:fd96258d940d 1686 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1687 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1688 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1689 * @return The function returns either
Kojto 148:fd96258d940d 1690 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1691 */
Kojto 148:fd96258d940d 1692 arm_status arm_mat_sub_f32(
Kojto 148:fd96258d940d 1693 const arm_matrix_instance_f32 * pSrcA,
Kojto 148:fd96258d940d 1694 const arm_matrix_instance_f32 * pSrcB,
Kojto 148:fd96258d940d 1695 arm_matrix_instance_f32 * pDst);
Kojto 148:fd96258d940d 1696
Kojto 148:fd96258d940d 1697
Kojto 148:fd96258d940d 1698 /**
Kojto 148:fd96258d940d 1699 * @brief Q15 matrix subtraction
Kojto 148:fd96258d940d 1700 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1701 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1702 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1703 * @return The function returns either
Kojto 148:fd96258d940d 1704 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1705 */
Kojto 148:fd96258d940d 1706 arm_status arm_mat_sub_q15(
Kojto 148:fd96258d940d 1707 const arm_matrix_instance_q15 * pSrcA,
Kojto 148:fd96258d940d 1708 const arm_matrix_instance_q15 * pSrcB,
Kojto 148:fd96258d940d 1709 arm_matrix_instance_q15 * pDst);
Kojto 148:fd96258d940d 1710
Kojto 148:fd96258d940d 1711
Kojto 148:fd96258d940d 1712 /**
Kojto 148:fd96258d940d 1713 * @brief Q31 matrix subtraction
Kojto 148:fd96258d940d 1714 * @param[in] pSrcA points to the first input matrix structure
Kojto 148:fd96258d940d 1715 * @param[in] pSrcB points to the second input matrix structure
Kojto 148:fd96258d940d 1716 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1717 * @return The function returns either
Kojto 148:fd96258d940d 1718 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1719 */
Kojto 148:fd96258d940d 1720 arm_status arm_mat_sub_q31(
Kojto 148:fd96258d940d 1721 const arm_matrix_instance_q31 * pSrcA,
Kojto 148:fd96258d940d 1722 const arm_matrix_instance_q31 * pSrcB,
Kojto 148:fd96258d940d 1723 arm_matrix_instance_q31 * pDst);
Kojto 148:fd96258d940d 1724
Kojto 148:fd96258d940d 1725
Kojto 148:fd96258d940d 1726 /**
Kojto 148:fd96258d940d 1727 * @brief Floating-point matrix scaling.
Kojto 148:fd96258d940d 1728 * @param[in] pSrc points to the input matrix
Kojto 148:fd96258d940d 1729 * @param[in] scale scale factor
Kojto 148:fd96258d940d 1730 * @param[out] pDst points to the output matrix
Kojto 148:fd96258d940d 1731 * @return The function returns either
Kojto 148:fd96258d940d 1732 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1733 */
Kojto 148:fd96258d940d 1734 arm_status arm_mat_scale_f32(
Kojto 148:fd96258d940d 1735 const arm_matrix_instance_f32 * pSrc,
Kojto 148:fd96258d940d 1736 float32_t scale,
Kojto 148:fd96258d940d 1737 arm_matrix_instance_f32 * pDst);
Kojto 148:fd96258d940d 1738
Kojto 148:fd96258d940d 1739
Kojto 148:fd96258d940d 1740 /**
Kojto 148:fd96258d940d 1741 * @brief Q15 matrix scaling.
Kojto 148:fd96258d940d 1742 * @param[in] pSrc points to input matrix
Kojto 148:fd96258d940d 1743 * @param[in] scaleFract fractional portion of the scale factor
Kojto 148:fd96258d940d 1744 * @param[in] shift number of bits to shift the result by
Kojto 148:fd96258d940d 1745 * @param[out] pDst points to output matrix
Kojto 148:fd96258d940d 1746 * @return The function returns either
Kojto 148:fd96258d940d 1747 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1748 */
Kojto 148:fd96258d940d 1749 arm_status arm_mat_scale_q15(
Kojto 148:fd96258d940d 1750 const arm_matrix_instance_q15 * pSrc,
Kojto 148:fd96258d940d 1751 q15_t scaleFract,
Kojto 148:fd96258d940d 1752 int32_t shift,
Kojto 148:fd96258d940d 1753 arm_matrix_instance_q15 * pDst);
Kojto 148:fd96258d940d 1754
Kojto 148:fd96258d940d 1755
Kojto 148:fd96258d940d 1756 /**
Kojto 148:fd96258d940d 1757 * @brief Q31 matrix scaling.
Kojto 148:fd96258d940d 1758 * @param[in] pSrc points to input matrix
Kojto 148:fd96258d940d 1759 * @param[in] scaleFract fractional portion of the scale factor
Kojto 148:fd96258d940d 1760 * @param[in] shift number of bits to shift the result by
Kojto 148:fd96258d940d 1761 * @param[out] pDst points to output matrix structure
Kojto 148:fd96258d940d 1762 * @return The function returns either
Kojto 148:fd96258d940d 1763 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 148:fd96258d940d 1764 */
Kojto 148:fd96258d940d 1765 arm_status arm_mat_scale_q31(
Kojto 148:fd96258d940d 1766 const arm_matrix_instance_q31 * pSrc,
Kojto 148:fd96258d940d 1767 q31_t scaleFract,
Kojto 148:fd96258d940d 1768 int32_t shift,
Kojto 148:fd96258d940d 1769 arm_matrix_instance_q31 * pDst);
Kojto 148:fd96258d940d 1770
Kojto 148:fd96258d940d 1771
Kojto 148:fd96258d940d 1772 /**
Kojto 148:fd96258d940d 1773 * @brief Q31 matrix initialization.
Kojto 148:fd96258d940d 1774 * @param[in,out] S points to an instance of the floating-point matrix structure.
Kojto 148:fd96258d940d 1775 * @param[in] nRows number of rows in the matrix.
Kojto 148:fd96258d940d 1776 * @param[in] nColumns number of columns in the matrix.
Kojto 148:fd96258d940d 1777 * @param[in] pData points to the matrix data array.
Kojto 148:fd96258d940d 1778 */
Kojto 148:fd96258d940d 1779 void arm_mat_init_q31(
Kojto 148:fd96258d940d 1780 arm_matrix_instance_q31 * S,
Kojto 148:fd96258d940d 1781 uint16_t nRows,
Kojto 148:fd96258d940d 1782 uint16_t nColumns,
Kojto 148:fd96258d940d 1783 q31_t * pData);
Kojto 148:fd96258d940d 1784
Kojto 148:fd96258d940d 1785
Kojto 148:fd96258d940d 1786 /**
Kojto 148:fd96258d940d 1787 * @brief Q15 matrix initialization.
Kojto 148:fd96258d940d 1788 * @param[in,out] S points to an instance of the floating-point matrix structure.
Kojto 148:fd96258d940d 1789 * @param[in] nRows number of rows in the matrix.
Kojto 148:fd96258d940d 1790 * @param[in] nColumns number of columns in the matrix.
Kojto 148:fd96258d940d 1791 * @param[in] pData points to the matrix data array.
Kojto 148:fd96258d940d 1792 */
Kojto 148:fd96258d940d 1793 void arm_mat_init_q15(
Kojto 148:fd96258d940d 1794 arm_matrix_instance_q15 * S,
Kojto 148:fd96258d940d 1795 uint16_t nRows,
Kojto 148:fd96258d940d 1796 uint16_t nColumns,
Kojto 148:fd96258d940d 1797 q15_t * pData);
Kojto 148:fd96258d940d 1798
Kojto 148:fd96258d940d 1799
Kojto 148:fd96258d940d 1800 /**
Kojto 148:fd96258d940d 1801 * @brief Floating-point matrix initialization.
Kojto 148:fd96258d940d 1802 * @param[in,out] S points to an instance of the floating-point matrix structure.
Kojto 148:fd96258d940d 1803 * @param[in] nRows number of rows in the matrix.
Kojto 148:fd96258d940d 1804 * @param[in] nColumns number of columns in the matrix.
Kojto 148:fd96258d940d 1805 * @param[in] pData points to the matrix data array.
Kojto 148:fd96258d940d 1806 */
Kojto 148:fd96258d940d 1807 void arm_mat_init_f32(
Kojto 148:fd96258d940d 1808 arm_matrix_instance_f32 * S,
Kojto 148:fd96258d940d 1809 uint16_t nRows,
Kojto 148:fd96258d940d 1810 uint16_t nColumns,
Kojto 148:fd96258d940d 1811 float32_t * pData);
Kojto 148:fd96258d940d 1812
Kojto 148:fd96258d940d 1813
Kojto 148:fd96258d940d 1814
Kojto 148:fd96258d940d 1815 /**
Kojto 148:fd96258d940d 1816 * @brief Instance structure for the Q15 PID Control.
Kojto 148:fd96258d940d 1817 */
Kojto 148:fd96258d940d 1818 typedef struct
Kojto 148:fd96258d940d 1819 {
Kojto 148:fd96258d940d 1820 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 148:fd96258d940d 1821 #if !defined (ARM_MATH_DSP)
Kojto 148:fd96258d940d 1822 q15_t A1;
Kojto 148:fd96258d940d 1823 q15_t A2;
Kojto 148:fd96258d940d 1824 #else
Kojto 148:fd96258d940d 1825 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
Kojto 148:fd96258d940d 1826 #endif
Kojto 148:fd96258d940d 1827 q15_t state[3]; /**< The state array of length 3. */
Kojto 148:fd96258d940d 1828 q15_t Kp; /**< The proportional gain. */
Kojto 148:fd96258d940d 1829 q15_t Ki; /**< The integral gain. */
Kojto 148:fd96258d940d 1830 q15_t Kd; /**< The derivative gain. */
Kojto 148:fd96258d940d 1831 } arm_pid_instance_q15;
Kojto 148:fd96258d940d 1832
Kojto 148:fd96258d940d 1833 /**
Kojto 148:fd96258d940d 1834 * @brief Instance structure for the Q31 PID Control.
Kojto 148:fd96258d940d 1835 */
Kojto 148:fd96258d940d 1836 typedef struct
Kojto 148:fd96258d940d 1837 {
Kojto 148:fd96258d940d 1838 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 148:fd96258d940d 1839 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
Kojto 148:fd96258d940d 1840 q31_t A2; /**< The derived gain, A2 = Kd . */
Kojto 148:fd96258d940d 1841 q31_t state[3]; /**< The state array of length 3. */
Kojto 148:fd96258d940d 1842 q31_t Kp; /**< The proportional gain. */
Kojto 148:fd96258d940d 1843 q31_t Ki; /**< The integral gain. */
Kojto 148:fd96258d940d 1844 q31_t Kd; /**< The derivative gain. */
Kojto 148:fd96258d940d 1845 } arm_pid_instance_q31;
Kojto 148:fd96258d940d 1846
Kojto 148:fd96258d940d 1847 /**
Kojto 148:fd96258d940d 1848 * @brief Instance structure for the floating-point PID Control.
Kojto 148:fd96258d940d 1849 */
Kojto 148:fd96258d940d 1850 typedef struct
Kojto 148:fd96258d940d 1851 {
Kojto 148:fd96258d940d 1852 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 148:fd96258d940d 1853 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
Kojto 148:fd96258d940d 1854 float32_t A2; /**< The derived gain, A2 = Kd . */
Kojto 148:fd96258d940d 1855 float32_t state[3]; /**< The state array of length 3. */
Kojto 148:fd96258d940d 1856 float32_t Kp; /**< The proportional gain. */
Kojto 148:fd96258d940d 1857 float32_t Ki; /**< The integral gain. */
Kojto 148:fd96258d940d 1858 float32_t Kd; /**< The derivative gain. */
Kojto 148:fd96258d940d 1859 } arm_pid_instance_f32;
Kojto 148:fd96258d940d 1860
Kojto 148:fd96258d940d 1861
Kojto 148:fd96258d940d 1862
Kojto 148:fd96258d940d 1863 /**
Kojto 148:fd96258d940d 1864 * @brief Initialization function for the floating-point PID Control.
Kojto 148:fd96258d940d 1865 * @param[in,out] S points to an instance of the PID structure.
Kojto 148:fd96258d940d 1866 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 148:fd96258d940d 1867 */
Kojto 148:fd96258d940d 1868 void arm_pid_init_f32(
Kojto 148:fd96258d940d 1869 arm_pid_instance_f32 * S,
Kojto 148:fd96258d940d 1870 int32_t resetStateFlag);
Kojto 148:fd96258d940d 1871
Kojto 148:fd96258d940d 1872
Kojto 148:fd96258d940d 1873 /**
Kojto 148:fd96258d940d 1874 * @brief Reset function for the floating-point PID Control.
Kojto 148:fd96258d940d 1875 * @param[in,out] S is an instance of the floating-point PID Control structure
Kojto 148:fd96258d940d 1876 */
Kojto 148:fd96258d940d 1877 void arm_pid_reset_f32(
Kojto 148:fd96258d940d 1878 arm_pid_instance_f32 * S);
Kojto 148:fd96258d940d 1879
Kojto 148:fd96258d940d 1880
Kojto 148:fd96258d940d 1881 /**
Kojto 148:fd96258d940d 1882 * @brief Initialization function for the Q31 PID Control.
Kojto 148:fd96258d940d 1883 * @param[in,out] S points to an instance of the Q15 PID structure.
Kojto 148:fd96258d940d 1884 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 148:fd96258d940d 1885 */
Kojto 148:fd96258d940d 1886 void arm_pid_init_q31(
Kojto 148:fd96258d940d 1887 arm_pid_instance_q31 * S,
Kojto 148:fd96258d940d 1888 int32_t resetStateFlag);
Kojto 148:fd96258d940d 1889
Kojto 148:fd96258d940d 1890
Kojto 148:fd96258d940d 1891 /**
Kojto 148:fd96258d940d 1892 * @brief Reset function for the Q31 PID Control.
Kojto 148:fd96258d940d 1893 * @param[in,out] S points to an instance of the Q31 PID Control structure
Kojto 148:fd96258d940d 1894 */
Kojto 148:fd96258d940d 1895
Kojto 148:fd96258d940d 1896 void arm_pid_reset_q31(
Kojto 148:fd96258d940d 1897 arm_pid_instance_q31 * S);
Kojto 148:fd96258d940d 1898
Kojto 148:fd96258d940d 1899
Kojto 148:fd96258d940d 1900 /**
Kojto 148:fd96258d940d 1901 * @brief Initialization function for the Q15 PID Control.
Kojto 148:fd96258d940d 1902 * @param[in,out] S points to an instance of the Q15 PID structure.
Kojto 148:fd96258d940d 1903 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 148:fd96258d940d 1904 */
Kojto 148:fd96258d940d 1905 void arm_pid_init_q15(
Kojto 148:fd96258d940d 1906 arm_pid_instance_q15 * S,
Kojto 148:fd96258d940d 1907 int32_t resetStateFlag);
Kojto 148:fd96258d940d 1908
Kojto 148:fd96258d940d 1909
Kojto 148:fd96258d940d 1910 /**
Kojto 148:fd96258d940d 1911 * @brief Reset function for the Q15 PID Control.
Kojto 148:fd96258d940d 1912 * @param[in,out] S points to an instance of the q15 PID Control structure
Kojto 148:fd96258d940d 1913 */
Kojto 148:fd96258d940d 1914 void arm_pid_reset_q15(
Kojto 148:fd96258d940d 1915 arm_pid_instance_q15 * S);
Kojto 148:fd96258d940d 1916
Kojto 148:fd96258d940d 1917
Kojto 148:fd96258d940d 1918 /**
Kojto 148:fd96258d940d 1919 * @brief Instance structure for the floating-point Linear Interpolate function.
Kojto 148:fd96258d940d 1920 */
Kojto 148:fd96258d940d 1921 typedef struct
Kojto 148:fd96258d940d 1922 {
Kojto 148:fd96258d940d 1923 uint32_t nValues; /**< nValues */
Kojto 148:fd96258d940d 1924 float32_t x1; /**< x1 */
Kojto 148:fd96258d940d 1925 float32_t xSpacing; /**< xSpacing */
Kojto 148:fd96258d940d 1926 float32_t *pYData; /**< pointer to the table of Y values */
Kojto 148:fd96258d940d 1927 } arm_linear_interp_instance_f32;
Kojto 148:fd96258d940d 1928
Kojto 148:fd96258d940d 1929 /**
Kojto 148:fd96258d940d 1930 * @brief Instance structure for the floating-point bilinear interpolation function.
Kojto 148:fd96258d940d 1931 */
Kojto 148:fd96258d940d 1932 typedef struct
Kojto 148:fd96258d940d 1933 {
Kojto 148:fd96258d940d 1934 uint16_t numRows; /**< number of rows in the data table. */
Kojto 148:fd96258d940d 1935 uint16_t numCols; /**< number of columns in the data table. */
Kojto 148:fd96258d940d 1936 float32_t *pData; /**< points to the data table. */
Kojto 148:fd96258d940d 1937 } arm_bilinear_interp_instance_f32;
Kojto 148:fd96258d940d 1938
Kojto 148:fd96258d940d 1939 /**
Kojto 148:fd96258d940d 1940 * @brief Instance structure for the Q31 bilinear interpolation function.
Kojto 148:fd96258d940d 1941 */
Kojto 148:fd96258d940d 1942 typedef struct
Kojto 148:fd96258d940d 1943 {
Kojto 148:fd96258d940d 1944 uint16_t numRows; /**< number of rows in the data table. */
Kojto 148:fd96258d940d 1945 uint16_t numCols; /**< number of columns in the data table. */
Kojto 148:fd96258d940d 1946 q31_t *pData; /**< points to the data table. */
Kojto 148:fd96258d940d 1947 } arm_bilinear_interp_instance_q31;
Kojto 148:fd96258d940d 1948
Kojto 148:fd96258d940d 1949 /**
Kojto 148:fd96258d940d 1950 * @brief Instance structure for the Q15 bilinear interpolation function.
Kojto 148:fd96258d940d 1951 */
Kojto 148:fd96258d940d 1952 typedef struct
Kojto 148:fd96258d940d 1953 {
Kojto 148:fd96258d940d 1954 uint16_t numRows; /**< number of rows in the data table. */
Kojto 148:fd96258d940d 1955 uint16_t numCols; /**< number of columns in the data table. */
Kojto 148:fd96258d940d 1956 q15_t *pData; /**< points to the data table. */
Kojto 148:fd96258d940d 1957 } arm_bilinear_interp_instance_q15;
Kojto 148:fd96258d940d 1958
Kojto 148:fd96258d940d 1959 /**
Kojto 148:fd96258d940d 1960 * @brief Instance structure for the Q15 bilinear interpolation function.
Kojto 148:fd96258d940d 1961 */
Kojto 148:fd96258d940d 1962 typedef struct
Kojto 148:fd96258d940d 1963 {
Kojto 148:fd96258d940d 1964 uint16_t numRows; /**< number of rows in the data table. */
Kojto 148:fd96258d940d 1965 uint16_t numCols; /**< number of columns in the data table. */
Kojto 148:fd96258d940d 1966 q7_t *pData; /**< points to the data table. */
Kojto 148:fd96258d940d 1967 } arm_bilinear_interp_instance_q7;
Kojto 148:fd96258d940d 1968
Kojto 148:fd96258d940d 1969
Kojto 148:fd96258d940d 1970 /**
Kojto 148:fd96258d940d 1971 * @brief Q7 vector multiplication.
Kojto 148:fd96258d940d 1972 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 1973 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 1974 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 1975 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 1976 */
Kojto 148:fd96258d940d 1977 void arm_mult_q7(
Kojto 148:fd96258d940d 1978 q7_t * pSrcA,
Kojto 148:fd96258d940d 1979 q7_t * pSrcB,
Kojto 148:fd96258d940d 1980 q7_t * pDst,
Kojto 148:fd96258d940d 1981 uint32_t blockSize);
Kojto 148:fd96258d940d 1982
Kojto 148:fd96258d940d 1983
Kojto 148:fd96258d940d 1984 /**
Kojto 148:fd96258d940d 1985 * @brief Q15 vector multiplication.
Kojto 148:fd96258d940d 1986 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 1987 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 1988 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 1989 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 1990 */
Kojto 148:fd96258d940d 1991 void arm_mult_q15(
Kojto 148:fd96258d940d 1992 q15_t * pSrcA,
Kojto 148:fd96258d940d 1993 q15_t * pSrcB,
Kojto 148:fd96258d940d 1994 q15_t * pDst,
Kojto 148:fd96258d940d 1995 uint32_t blockSize);
Kojto 148:fd96258d940d 1996
Kojto 148:fd96258d940d 1997
Kojto 148:fd96258d940d 1998 /**
Kojto 148:fd96258d940d 1999 * @brief Q31 vector multiplication.
Kojto 148:fd96258d940d 2000 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2001 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2002 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2003 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2004 */
Kojto 148:fd96258d940d 2005 void arm_mult_q31(
Kojto 148:fd96258d940d 2006 q31_t * pSrcA,
Kojto 148:fd96258d940d 2007 q31_t * pSrcB,
Kojto 148:fd96258d940d 2008 q31_t * pDst,
Kojto 148:fd96258d940d 2009 uint32_t blockSize);
Kojto 148:fd96258d940d 2010
Kojto 148:fd96258d940d 2011
Kojto 148:fd96258d940d 2012 /**
Kojto 148:fd96258d940d 2013 * @brief Floating-point vector multiplication.
Kojto 148:fd96258d940d 2014 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2015 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2016 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2017 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2018 */
Kojto 148:fd96258d940d 2019 void arm_mult_f32(
Kojto 148:fd96258d940d 2020 float32_t * pSrcA,
Kojto 148:fd96258d940d 2021 float32_t * pSrcB,
Kojto 148:fd96258d940d 2022 float32_t * pDst,
Kojto 148:fd96258d940d 2023 uint32_t blockSize);
Kojto 148:fd96258d940d 2024
Kojto 148:fd96258d940d 2025
Kojto 148:fd96258d940d 2026 /**
Kojto 148:fd96258d940d 2027 * @brief Instance structure for the Q15 CFFT/CIFFT function.
Kojto 148:fd96258d940d 2028 */
Kojto 148:fd96258d940d 2029 typedef struct
Kojto 148:fd96258d940d 2030 {
Kojto 148:fd96258d940d 2031 uint16_t fftLen; /**< length of the FFT. */
Kojto 148:fd96258d940d 2032 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 148:fd96258d940d 2033 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 148:fd96258d940d 2034 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
Kojto 148:fd96258d940d 2035 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 148:fd96258d940d 2036 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 148:fd96258d940d 2037 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 148:fd96258d940d 2038 } arm_cfft_radix2_instance_q15;
Kojto 148:fd96258d940d 2039
Kojto 148:fd96258d940d 2040 /* Deprecated */
Kojto 148:fd96258d940d 2041 arm_status arm_cfft_radix2_init_q15(
Kojto 148:fd96258d940d 2042 arm_cfft_radix2_instance_q15 * S,
Kojto 148:fd96258d940d 2043 uint16_t fftLen,
Kojto 148:fd96258d940d 2044 uint8_t ifftFlag,
Kojto 148:fd96258d940d 2045 uint8_t bitReverseFlag);
Kojto 148:fd96258d940d 2046
Kojto 148:fd96258d940d 2047 /* Deprecated */
Kojto 148:fd96258d940d 2048 void arm_cfft_radix2_q15(
Kojto 148:fd96258d940d 2049 const arm_cfft_radix2_instance_q15 * S,
Kojto 148:fd96258d940d 2050 q15_t * pSrc);
Kojto 148:fd96258d940d 2051
Kojto 148:fd96258d940d 2052
Kojto 148:fd96258d940d 2053 /**
Kojto 148:fd96258d940d 2054 * @brief Instance structure for the Q15 CFFT/CIFFT function.
Kojto 148:fd96258d940d 2055 */
Kojto 148:fd96258d940d 2056 typedef struct
Kojto 148:fd96258d940d 2057 {
Kojto 148:fd96258d940d 2058 uint16_t fftLen; /**< length of the FFT. */
Kojto 148:fd96258d940d 2059 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 148:fd96258d940d 2060 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 148:fd96258d940d 2061 q15_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 148:fd96258d940d 2062 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 148:fd96258d940d 2063 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 148:fd96258d940d 2064 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 148:fd96258d940d 2065 } arm_cfft_radix4_instance_q15;
Kojto 148:fd96258d940d 2066
Kojto 148:fd96258d940d 2067 /* Deprecated */
Kojto 148:fd96258d940d 2068 arm_status arm_cfft_radix4_init_q15(
Kojto 148:fd96258d940d 2069 arm_cfft_radix4_instance_q15 * S,
Kojto 148:fd96258d940d 2070 uint16_t fftLen,
Kojto 148:fd96258d940d 2071 uint8_t ifftFlag,
Kojto 148:fd96258d940d 2072 uint8_t bitReverseFlag);
Kojto 148:fd96258d940d 2073
Kojto 148:fd96258d940d 2074 /* Deprecated */
Kojto 148:fd96258d940d 2075 void arm_cfft_radix4_q15(
Kojto 148:fd96258d940d 2076 const arm_cfft_radix4_instance_q15 * S,
Kojto 148:fd96258d940d 2077 q15_t * pSrc);
Kojto 148:fd96258d940d 2078
Kojto 148:fd96258d940d 2079 /**
Kojto 148:fd96258d940d 2080 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
Kojto 148:fd96258d940d 2081 */
Kojto 148:fd96258d940d 2082 typedef struct
Kojto 148:fd96258d940d 2083 {
Kojto 148:fd96258d940d 2084 uint16_t fftLen; /**< length of the FFT. */
Kojto 148:fd96258d940d 2085 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 148:fd96258d940d 2086 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 148:fd96258d940d 2087 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 148:fd96258d940d 2088 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 148:fd96258d940d 2089 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 148:fd96258d940d 2090 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 148:fd96258d940d 2091 } arm_cfft_radix2_instance_q31;
Kojto 148:fd96258d940d 2092
Kojto 148:fd96258d940d 2093 /* Deprecated */
Kojto 148:fd96258d940d 2094 arm_status arm_cfft_radix2_init_q31(
Kojto 148:fd96258d940d 2095 arm_cfft_radix2_instance_q31 * S,
Kojto 148:fd96258d940d 2096 uint16_t fftLen,
Kojto 148:fd96258d940d 2097 uint8_t ifftFlag,
Kojto 148:fd96258d940d 2098 uint8_t bitReverseFlag);
Kojto 148:fd96258d940d 2099
Kojto 148:fd96258d940d 2100 /* Deprecated */
Kojto 148:fd96258d940d 2101 void arm_cfft_radix2_q31(
Kojto 148:fd96258d940d 2102 const arm_cfft_radix2_instance_q31 * S,
Kojto 148:fd96258d940d 2103 q31_t * pSrc);
Kojto 148:fd96258d940d 2104
Kojto 148:fd96258d940d 2105 /**
Kojto 148:fd96258d940d 2106 * @brief Instance structure for the Q31 CFFT/CIFFT function.
Kojto 148:fd96258d940d 2107 */
Kojto 148:fd96258d940d 2108 typedef struct
Kojto 148:fd96258d940d 2109 {
Kojto 148:fd96258d940d 2110 uint16_t fftLen; /**< length of the FFT. */
Kojto 148:fd96258d940d 2111 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 148:fd96258d940d 2112 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 148:fd96258d940d 2113 q31_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 148:fd96258d940d 2114 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 148:fd96258d940d 2115 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 148:fd96258d940d 2116 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 148:fd96258d940d 2117 } arm_cfft_radix4_instance_q31;
Kojto 148:fd96258d940d 2118
Kojto 148:fd96258d940d 2119 /* Deprecated */
Kojto 148:fd96258d940d 2120 void arm_cfft_radix4_q31(
Kojto 148:fd96258d940d 2121 const arm_cfft_radix4_instance_q31 * S,
Kojto 148:fd96258d940d 2122 q31_t * pSrc);
Kojto 148:fd96258d940d 2123
Kojto 148:fd96258d940d 2124 /* Deprecated */
Kojto 148:fd96258d940d 2125 arm_status arm_cfft_radix4_init_q31(
Kojto 148:fd96258d940d 2126 arm_cfft_radix4_instance_q31 * S,
Kojto 148:fd96258d940d 2127 uint16_t fftLen,
Kojto 148:fd96258d940d 2128 uint8_t ifftFlag,
Kojto 148:fd96258d940d 2129 uint8_t bitReverseFlag);
Kojto 148:fd96258d940d 2130
Kojto 148:fd96258d940d 2131 /**
Kojto 148:fd96258d940d 2132 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 148:fd96258d940d 2133 */
Kojto 148:fd96258d940d 2134 typedef struct
Kojto 148:fd96258d940d 2135 {
Kojto 148:fd96258d940d 2136 uint16_t fftLen; /**< length of the FFT. */
Kojto 148:fd96258d940d 2137 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 148:fd96258d940d 2138 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 148:fd96258d940d 2139 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 148:fd96258d940d 2140 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 148:fd96258d940d 2141 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 148:fd96258d940d 2142 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 148:fd96258d940d 2143 float32_t onebyfftLen; /**< value of 1/fftLen. */
Kojto 148:fd96258d940d 2144 } arm_cfft_radix2_instance_f32;
Kojto 148:fd96258d940d 2145
Kojto 148:fd96258d940d 2146 /* Deprecated */
Kojto 148:fd96258d940d 2147 arm_status arm_cfft_radix2_init_f32(
Kojto 148:fd96258d940d 2148 arm_cfft_radix2_instance_f32 * S,
Kojto 148:fd96258d940d 2149 uint16_t fftLen,
Kojto 148:fd96258d940d 2150 uint8_t ifftFlag,
Kojto 148:fd96258d940d 2151 uint8_t bitReverseFlag);
Kojto 148:fd96258d940d 2152
Kojto 148:fd96258d940d 2153 /* Deprecated */
Kojto 148:fd96258d940d 2154 void arm_cfft_radix2_f32(
Kojto 148:fd96258d940d 2155 const arm_cfft_radix2_instance_f32 * S,
Kojto 148:fd96258d940d 2156 float32_t * pSrc);
Kojto 148:fd96258d940d 2157
Kojto 148:fd96258d940d 2158 /**
Kojto 148:fd96258d940d 2159 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 148:fd96258d940d 2160 */
Kojto 148:fd96258d940d 2161 typedef struct
Kojto 148:fd96258d940d 2162 {
Kojto 148:fd96258d940d 2163 uint16_t fftLen; /**< length of the FFT. */
Kojto 148:fd96258d940d 2164 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 148:fd96258d940d 2165 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 148:fd96258d940d 2166 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 148:fd96258d940d 2167 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 148:fd96258d940d 2168 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 148:fd96258d940d 2169 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 148:fd96258d940d 2170 float32_t onebyfftLen; /**< value of 1/fftLen. */
Kojto 148:fd96258d940d 2171 } arm_cfft_radix4_instance_f32;
Kojto 148:fd96258d940d 2172
Kojto 148:fd96258d940d 2173 /* Deprecated */
Kojto 148:fd96258d940d 2174 arm_status arm_cfft_radix4_init_f32(
Kojto 148:fd96258d940d 2175 arm_cfft_radix4_instance_f32 * S,
Kojto 148:fd96258d940d 2176 uint16_t fftLen,
Kojto 148:fd96258d940d 2177 uint8_t ifftFlag,
Kojto 148:fd96258d940d 2178 uint8_t bitReverseFlag);
Kojto 148:fd96258d940d 2179
Kojto 148:fd96258d940d 2180 /* Deprecated */
Kojto 148:fd96258d940d 2181 void arm_cfft_radix4_f32(
Kojto 148:fd96258d940d 2182 const arm_cfft_radix4_instance_f32 * S,
Kojto 148:fd96258d940d 2183 float32_t * pSrc);
Kojto 148:fd96258d940d 2184
Kojto 148:fd96258d940d 2185 /**
Kojto 148:fd96258d940d 2186 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
Kojto 148:fd96258d940d 2187 */
Kojto 148:fd96258d940d 2188 typedef struct
Kojto 148:fd96258d940d 2189 {
Kojto 148:fd96258d940d 2190 uint16_t fftLen; /**< length of the FFT. */
Kojto 148:fd96258d940d 2191 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 148:fd96258d940d 2192 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 148:fd96258d940d 2193 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 148:fd96258d940d 2194 } arm_cfft_instance_q15;
Kojto 148:fd96258d940d 2195
Kojto 148:fd96258d940d 2196 void arm_cfft_q15(
Kojto 148:fd96258d940d 2197 const arm_cfft_instance_q15 * S,
Kojto 148:fd96258d940d 2198 q15_t * p1,
Kojto 148:fd96258d940d 2199 uint8_t ifftFlag,
Kojto 148:fd96258d940d 2200 uint8_t bitReverseFlag);
Kojto 148:fd96258d940d 2201
Kojto 148:fd96258d940d 2202 /**
Kojto 148:fd96258d940d 2203 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
Kojto 148:fd96258d940d 2204 */
Kojto 148:fd96258d940d 2205 typedef struct
Kojto 148:fd96258d940d 2206 {
Kojto 148:fd96258d940d 2207 uint16_t fftLen; /**< length of the FFT. */
Kojto 148:fd96258d940d 2208 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 148:fd96258d940d 2209 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 148:fd96258d940d 2210 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 148:fd96258d940d 2211 } arm_cfft_instance_q31;
Kojto 148:fd96258d940d 2212
Kojto 148:fd96258d940d 2213 void arm_cfft_q31(
Kojto 148:fd96258d940d 2214 const arm_cfft_instance_q31 * S,
Kojto 148:fd96258d940d 2215 q31_t * p1,
Kojto 148:fd96258d940d 2216 uint8_t ifftFlag,
Kojto 148:fd96258d940d 2217 uint8_t bitReverseFlag);
Kojto 148:fd96258d940d 2218
Kojto 148:fd96258d940d 2219 /**
Kojto 148:fd96258d940d 2220 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 148:fd96258d940d 2221 */
Kojto 148:fd96258d940d 2222 typedef struct
Kojto 148:fd96258d940d 2223 {
Kojto 148:fd96258d940d 2224 uint16_t fftLen; /**< length of the FFT. */
Kojto 148:fd96258d940d 2225 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 148:fd96258d940d 2226 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 148:fd96258d940d 2227 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 148:fd96258d940d 2228 } arm_cfft_instance_f32;
Kojto 148:fd96258d940d 2229
Kojto 148:fd96258d940d 2230 void arm_cfft_f32(
Kojto 148:fd96258d940d 2231 const arm_cfft_instance_f32 * S,
Kojto 148:fd96258d940d 2232 float32_t * p1,
Kojto 148:fd96258d940d 2233 uint8_t ifftFlag,
Kojto 148:fd96258d940d 2234 uint8_t bitReverseFlag);
Kojto 148:fd96258d940d 2235
Kojto 148:fd96258d940d 2236 /**
Kojto 148:fd96258d940d 2237 * @brief Instance structure for the Q15 RFFT/RIFFT function.
Kojto 148:fd96258d940d 2238 */
Kojto 148:fd96258d940d 2239 typedef struct
Kojto 148:fd96258d940d 2240 {
Kojto 148:fd96258d940d 2241 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 148:fd96258d940d 2242 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 148:fd96258d940d 2243 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 148:fd96258d940d 2244 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 148:fd96258d940d 2245 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 148:fd96258d940d 2246 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 148:fd96258d940d 2247 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
Kojto 148:fd96258d940d 2248 } arm_rfft_instance_q15;
Kojto 148:fd96258d940d 2249
Kojto 148:fd96258d940d 2250 arm_status arm_rfft_init_q15(
Kojto 148:fd96258d940d 2251 arm_rfft_instance_q15 * S,
Kojto 148:fd96258d940d 2252 uint32_t fftLenReal,
Kojto 148:fd96258d940d 2253 uint32_t ifftFlagR,
Kojto 148:fd96258d940d 2254 uint32_t bitReverseFlag);
Kojto 148:fd96258d940d 2255
Kojto 148:fd96258d940d 2256 void arm_rfft_q15(
Kojto 148:fd96258d940d 2257 const arm_rfft_instance_q15 * S,
Kojto 148:fd96258d940d 2258 q15_t * pSrc,
Kojto 148:fd96258d940d 2259 q15_t * pDst);
Kojto 148:fd96258d940d 2260
Kojto 148:fd96258d940d 2261 /**
Kojto 148:fd96258d940d 2262 * @brief Instance structure for the Q31 RFFT/RIFFT function.
Kojto 148:fd96258d940d 2263 */
Kojto 148:fd96258d940d 2264 typedef struct
Kojto 148:fd96258d940d 2265 {
Kojto 148:fd96258d940d 2266 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 148:fd96258d940d 2267 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 148:fd96258d940d 2268 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 148:fd96258d940d 2269 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 148:fd96258d940d 2270 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 148:fd96258d940d 2271 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 148:fd96258d940d 2272 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
Kojto 148:fd96258d940d 2273 } arm_rfft_instance_q31;
Kojto 148:fd96258d940d 2274
Kojto 148:fd96258d940d 2275 arm_status arm_rfft_init_q31(
Kojto 148:fd96258d940d 2276 arm_rfft_instance_q31 * S,
Kojto 148:fd96258d940d 2277 uint32_t fftLenReal,
Kojto 148:fd96258d940d 2278 uint32_t ifftFlagR,
Kojto 148:fd96258d940d 2279 uint32_t bitReverseFlag);
Kojto 148:fd96258d940d 2280
Kojto 148:fd96258d940d 2281 void arm_rfft_q31(
Kojto 148:fd96258d940d 2282 const arm_rfft_instance_q31 * S,
Kojto 148:fd96258d940d 2283 q31_t * pSrc,
Kojto 148:fd96258d940d 2284 q31_t * pDst);
Kojto 148:fd96258d940d 2285
Kojto 148:fd96258d940d 2286 /**
Kojto 148:fd96258d940d 2287 * @brief Instance structure for the floating-point RFFT/RIFFT function.
Kojto 148:fd96258d940d 2288 */
Kojto 148:fd96258d940d 2289 typedef struct
Kojto 148:fd96258d940d 2290 {
Kojto 148:fd96258d940d 2291 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 148:fd96258d940d 2292 uint16_t fftLenBy2; /**< length of the complex FFT. */
Kojto 148:fd96258d940d 2293 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 148:fd96258d940d 2294 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 148:fd96258d940d 2295 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 148:fd96258d940d 2296 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 148:fd96258d940d 2297 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 148:fd96258d940d 2298 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
Kojto 148:fd96258d940d 2299 } arm_rfft_instance_f32;
Kojto 148:fd96258d940d 2300
Kojto 148:fd96258d940d 2301 arm_status arm_rfft_init_f32(
Kojto 148:fd96258d940d 2302 arm_rfft_instance_f32 * S,
Kojto 148:fd96258d940d 2303 arm_cfft_radix4_instance_f32 * S_CFFT,
Kojto 148:fd96258d940d 2304 uint32_t fftLenReal,
Kojto 148:fd96258d940d 2305 uint32_t ifftFlagR,
Kojto 148:fd96258d940d 2306 uint32_t bitReverseFlag);
Kojto 148:fd96258d940d 2307
Kojto 148:fd96258d940d 2308 void arm_rfft_f32(
Kojto 148:fd96258d940d 2309 const arm_rfft_instance_f32 * S,
Kojto 148:fd96258d940d 2310 float32_t * pSrc,
Kojto 148:fd96258d940d 2311 float32_t * pDst);
Kojto 148:fd96258d940d 2312
Kojto 148:fd96258d940d 2313 /**
Kojto 148:fd96258d940d 2314 * @brief Instance structure for the floating-point RFFT/RIFFT function.
Kojto 148:fd96258d940d 2315 */
Kojto 148:fd96258d940d 2316 typedef struct
Kojto 148:fd96258d940d 2317 {
Kojto 148:fd96258d940d 2318 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
Kojto 148:fd96258d940d 2319 uint16_t fftLenRFFT; /**< length of the real sequence */
Kojto 148:fd96258d940d 2320 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
Kojto 148:fd96258d940d 2321 } arm_rfft_fast_instance_f32 ;
Kojto 148:fd96258d940d 2322
Kojto 148:fd96258d940d 2323 arm_status arm_rfft_fast_init_f32 (
Kojto 148:fd96258d940d 2324 arm_rfft_fast_instance_f32 * S,
Kojto 148:fd96258d940d 2325 uint16_t fftLen);
Kojto 148:fd96258d940d 2326
Kojto 148:fd96258d940d 2327 void arm_rfft_fast_f32(
Kojto 148:fd96258d940d 2328 arm_rfft_fast_instance_f32 * S,
Kojto 148:fd96258d940d 2329 float32_t * p, float32_t * pOut,
Kojto 148:fd96258d940d 2330 uint8_t ifftFlag);
Kojto 148:fd96258d940d 2331
Kojto 148:fd96258d940d 2332 /**
Kojto 148:fd96258d940d 2333 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
Kojto 148:fd96258d940d 2334 */
Kojto 148:fd96258d940d 2335 typedef struct
Kojto 148:fd96258d940d 2336 {
Kojto 148:fd96258d940d 2337 uint16_t N; /**< length of the DCT4. */
Kojto 148:fd96258d940d 2338 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 148:fd96258d940d 2339 float32_t normalize; /**< normalizing factor. */
Kojto 148:fd96258d940d 2340 float32_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 148:fd96258d940d 2341 float32_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 148:fd96258d940d 2342 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
Kojto 148:fd96258d940d 2343 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
Kojto 148:fd96258d940d 2344 } arm_dct4_instance_f32;
Kojto 148:fd96258d940d 2345
Kojto 148:fd96258d940d 2346
Kojto 148:fd96258d940d 2347 /**
Kojto 148:fd96258d940d 2348 * @brief Initialization function for the floating-point DCT4/IDCT4.
Kojto 148:fd96258d940d 2349 * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
Kojto 148:fd96258d940d 2350 * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
Kojto 148:fd96258d940d 2351 * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
Kojto 148:fd96258d940d 2352 * @param[in] N length of the DCT4.
Kojto 148:fd96258d940d 2353 * @param[in] Nby2 half of the length of the DCT4.
Kojto 148:fd96258d940d 2354 * @param[in] normalize normalizing factor.
Kojto 148:fd96258d940d 2355 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
Kojto 148:fd96258d940d 2356 */
Kojto 148:fd96258d940d 2357 arm_status arm_dct4_init_f32(
Kojto 148:fd96258d940d 2358 arm_dct4_instance_f32 * S,
Kojto 148:fd96258d940d 2359 arm_rfft_instance_f32 * S_RFFT,
Kojto 148:fd96258d940d 2360 arm_cfft_radix4_instance_f32 * S_CFFT,
Kojto 148:fd96258d940d 2361 uint16_t N,
Kojto 148:fd96258d940d 2362 uint16_t Nby2,
Kojto 148:fd96258d940d 2363 float32_t normalize);
Kojto 148:fd96258d940d 2364
Kojto 148:fd96258d940d 2365
Kojto 148:fd96258d940d 2366 /**
Kojto 148:fd96258d940d 2367 * @brief Processing function for the floating-point DCT4/IDCT4.
Kojto 148:fd96258d940d 2368 * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
Kojto 148:fd96258d940d 2369 * @param[in] pState points to state buffer.
Kojto 148:fd96258d940d 2370 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
Kojto 148:fd96258d940d 2371 */
Kojto 148:fd96258d940d 2372 void arm_dct4_f32(
Kojto 148:fd96258d940d 2373 const arm_dct4_instance_f32 * S,
Kojto 148:fd96258d940d 2374 float32_t * pState,
Kojto 148:fd96258d940d 2375 float32_t * pInlineBuffer);
Kojto 148:fd96258d940d 2376
Kojto 148:fd96258d940d 2377
Kojto 148:fd96258d940d 2378 /**
Kojto 148:fd96258d940d 2379 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
Kojto 148:fd96258d940d 2380 */
Kojto 148:fd96258d940d 2381 typedef struct
Kojto 148:fd96258d940d 2382 {
Kojto 148:fd96258d940d 2383 uint16_t N; /**< length of the DCT4. */
Kojto 148:fd96258d940d 2384 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 148:fd96258d940d 2385 q31_t normalize; /**< normalizing factor. */
Kojto 148:fd96258d940d 2386 q31_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 148:fd96258d940d 2387 q31_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 148:fd96258d940d 2388 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
Kojto 148:fd96258d940d 2389 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
Kojto 148:fd96258d940d 2390 } arm_dct4_instance_q31;
Kojto 148:fd96258d940d 2391
Kojto 148:fd96258d940d 2392
Kojto 148:fd96258d940d 2393 /**
Kojto 148:fd96258d940d 2394 * @brief Initialization function for the Q31 DCT4/IDCT4.
Kojto 148:fd96258d940d 2395 * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
Kojto 148:fd96258d940d 2396 * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
Kojto 148:fd96258d940d 2397 * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
Kojto 148:fd96258d940d 2398 * @param[in] N length of the DCT4.
Kojto 148:fd96258d940d 2399 * @param[in] Nby2 half of the length of the DCT4.
Kojto 148:fd96258d940d 2400 * @param[in] normalize normalizing factor.
Kojto 148:fd96258d940d 2401 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
Kojto 148:fd96258d940d 2402 */
Kojto 148:fd96258d940d 2403 arm_status arm_dct4_init_q31(
Kojto 148:fd96258d940d 2404 arm_dct4_instance_q31 * S,
Kojto 148:fd96258d940d 2405 arm_rfft_instance_q31 * S_RFFT,
Kojto 148:fd96258d940d 2406 arm_cfft_radix4_instance_q31 * S_CFFT,
Kojto 148:fd96258d940d 2407 uint16_t N,
Kojto 148:fd96258d940d 2408 uint16_t Nby2,
Kojto 148:fd96258d940d 2409 q31_t normalize);
Kojto 148:fd96258d940d 2410
Kojto 148:fd96258d940d 2411
Kojto 148:fd96258d940d 2412 /**
Kojto 148:fd96258d940d 2413 * @brief Processing function for the Q31 DCT4/IDCT4.
Kojto 148:fd96258d940d 2414 * @param[in] S points to an instance of the Q31 DCT4 structure.
Kojto 148:fd96258d940d 2415 * @param[in] pState points to state buffer.
Kojto 148:fd96258d940d 2416 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
Kojto 148:fd96258d940d 2417 */
Kojto 148:fd96258d940d 2418 void arm_dct4_q31(
Kojto 148:fd96258d940d 2419 const arm_dct4_instance_q31 * S,
Kojto 148:fd96258d940d 2420 q31_t * pState,
Kojto 148:fd96258d940d 2421 q31_t * pInlineBuffer);
Kojto 148:fd96258d940d 2422
Kojto 148:fd96258d940d 2423
Kojto 148:fd96258d940d 2424 /**
Kojto 148:fd96258d940d 2425 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
Kojto 148:fd96258d940d 2426 */
Kojto 148:fd96258d940d 2427 typedef struct
Kojto 148:fd96258d940d 2428 {
Kojto 148:fd96258d940d 2429 uint16_t N; /**< length of the DCT4. */
Kojto 148:fd96258d940d 2430 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 148:fd96258d940d 2431 q15_t normalize; /**< normalizing factor. */
Kojto 148:fd96258d940d 2432 q15_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 148:fd96258d940d 2433 q15_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 148:fd96258d940d 2434 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
Kojto 148:fd96258d940d 2435 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
Kojto 148:fd96258d940d 2436 } arm_dct4_instance_q15;
Kojto 148:fd96258d940d 2437
Kojto 148:fd96258d940d 2438
Kojto 148:fd96258d940d 2439 /**
Kojto 148:fd96258d940d 2440 * @brief Initialization function for the Q15 DCT4/IDCT4.
Kojto 148:fd96258d940d 2441 * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
Kojto 148:fd96258d940d 2442 * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
Kojto 148:fd96258d940d 2443 * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
Kojto 148:fd96258d940d 2444 * @param[in] N length of the DCT4.
Kojto 148:fd96258d940d 2445 * @param[in] Nby2 half of the length of the DCT4.
Kojto 148:fd96258d940d 2446 * @param[in] normalize normalizing factor.
Kojto 148:fd96258d940d 2447 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
Kojto 148:fd96258d940d 2448 */
Kojto 148:fd96258d940d 2449 arm_status arm_dct4_init_q15(
Kojto 148:fd96258d940d 2450 arm_dct4_instance_q15 * S,
Kojto 148:fd96258d940d 2451 arm_rfft_instance_q15 * S_RFFT,
Kojto 148:fd96258d940d 2452 arm_cfft_radix4_instance_q15 * S_CFFT,
Kojto 148:fd96258d940d 2453 uint16_t N,
Kojto 148:fd96258d940d 2454 uint16_t Nby2,
Kojto 148:fd96258d940d 2455 q15_t normalize);
Kojto 148:fd96258d940d 2456
Kojto 148:fd96258d940d 2457
Kojto 148:fd96258d940d 2458 /**
Kojto 148:fd96258d940d 2459 * @brief Processing function for the Q15 DCT4/IDCT4.
Kojto 148:fd96258d940d 2460 * @param[in] S points to an instance of the Q15 DCT4 structure.
Kojto 148:fd96258d940d 2461 * @param[in] pState points to state buffer.
Kojto 148:fd96258d940d 2462 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
Kojto 148:fd96258d940d 2463 */
Kojto 148:fd96258d940d 2464 void arm_dct4_q15(
Kojto 148:fd96258d940d 2465 const arm_dct4_instance_q15 * S,
Kojto 148:fd96258d940d 2466 q15_t * pState,
Kojto 148:fd96258d940d 2467 q15_t * pInlineBuffer);
Kojto 148:fd96258d940d 2468
Kojto 148:fd96258d940d 2469
Kojto 148:fd96258d940d 2470 /**
Kojto 148:fd96258d940d 2471 * @brief Floating-point vector addition.
Kojto 148:fd96258d940d 2472 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2473 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2474 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2475 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2476 */
Kojto 148:fd96258d940d 2477 void arm_add_f32(
Kojto 148:fd96258d940d 2478 float32_t * pSrcA,
Kojto 148:fd96258d940d 2479 float32_t * pSrcB,
Kojto 148:fd96258d940d 2480 float32_t * pDst,
Kojto 148:fd96258d940d 2481 uint32_t blockSize);
Kojto 148:fd96258d940d 2482
Kojto 148:fd96258d940d 2483
Kojto 148:fd96258d940d 2484 /**
Kojto 148:fd96258d940d 2485 * @brief Q7 vector addition.
Kojto 148:fd96258d940d 2486 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2487 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2488 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2489 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2490 */
Kojto 148:fd96258d940d 2491 void arm_add_q7(
Kojto 148:fd96258d940d 2492 q7_t * pSrcA,
Kojto 148:fd96258d940d 2493 q7_t * pSrcB,
Kojto 148:fd96258d940d 2494 q7_t * pDst,
Kojto 148:fd96258d940d 2495 uint32_t blockSize);
Kojto 148:fd96258d940d 2496
Kojto 148:fd96258d940d 2497
Kojto 148:fd96258d940d 2498 /**
Kojto 148:fd96258d940d 2499 * @brief Q15 vector addition.
Kojto 148:fd96258d940d 2500 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2501 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2502 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2503 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2504 */
Kojto 148:fd96258d940d 2505 void arm_add_q15(
Kojto 148:fd96258d940d 2506 q15_t * pSrcA,
Kojto 148:fd96258d940d 2507 q15_t * pSrcB,
Kojto 148:fd96258d940d 2508 q15_t * pDst,
Kojto 148:fd96258d940d 2509 uint32_t blockSize);
Kojto 148:fd96258d940d 2510
Kojto 148:fd96258d940d 2511
Kojto 148:fd96258d940d 2512 /**
Kojto 148:fd96258d940d 2513 * @brief Q31 vector addition.
Kojto 148:fd96258d940d 2514 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2515 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2516 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2517 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2518 */
Kojto 148:fd96258d940d 2519 void arm_add_q31(
Kojto 148:fd96258d940d 2520 q31_t * pSrcA,
Kojto 148:fd96258d940d 2521 q31_t * pSrcB,
Kojto 148:fd96258d940d 2522 q31_t * pDst,
Kojto 148:fd96258d940d 2523 uint32_t blockSize);
Kojto 148:fd96258d940d 2524
Kojto 148:fd96258d940d 2525
Kojto 148:fd96258d940d 2526 /**
Kojto 148:fd96258d940d 2527 * @brief Floating-point vector subtraction.
Kojto 148:fd96258d940d 2528 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2529 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2530 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2531 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2532 */
Kojto 148:fd96258d940d 2533 void arm_sub_f32(
Kojto 148:fd96258d940d 2534 float32_t * pSrcA,
Kojto 148:fd96258d940d 2535 float32_t * pSrcB,
Kojto 148:fd96258d940d 2536 float32_t * pDst,
Kojto 148:fd96258d940d 2537 uint32_t blockSize);
Kojto 148:fd96258d940d 2538
Kojto 148:fd96258d940d 2539
Kojto 148:fd96258d940d 2540 /**
Kojto 148:fd96258d940d 2541 * @brief Q7 vector subtraction.
Kojto 148:fd96258d940d 2542 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2543 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2544 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2545 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2546 */
Kojto 148:fd96258d940d 2547 void arm_sub_q7(
Kojto 148:fd96258d940d 2548 q7_t * pSrcA,
Kojto 148:fd96258d940d 2549 q7_t * pSrcB,
Kojto 148:fd96258d940d 2550 q7_t * pDst,
Kojto 148:fd96258d940d 2551 uint32_t blockSize);
Kojto 148:fd96258d940d 2552
Kojto 148:fd96258d940d 2553
Kojto 148:fd96258d940d 2554 /**
Kojto 148:fd96258d940d 2555 * @brief Q15 vector subtraction.
Kojto 148:fd96258d940d 2556 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2557 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2558 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2559 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2560 */
Kojto 148:fd96258d940d 2561 void arm_sub_q15(
Kojto 148:fd96258d940d 2562 q15_t * pSrcA,
Kojto 148:fd96258d940d 2563 q15_t * pSrcB,
Kojto 148:fd96258d940d 2564 q15_t * pDst,
Kojto 148:fd96258d940d 2565 uint32_t blockSize);
Kojto 148:fd96258d940d 2566
Kojto 148:fd96258d940d 2567
Kojto 148:fd96258d940d 2568 /**
Kojto 148:fd96258d940d 2569 * @brief Q31 vector subtraction.
Kojto 148:fd96258d940d 2570 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2571 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2572 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2573 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2574 */
Kojto 148:fd96258d940d 2575 void arm_sub_q31(
Kojto 148:fd96258d940d 2576 q31_t * pSrcA,
Kojto 148:fd96258d940d 2577 q31_t * pSrcB,
Kojto 148:fd96258d940d 2578 q31_t * pDst,
Kojto 148:fd96258d940d 2579 uint32_t blockSize);
Kojto 148:fd96258d940d 2580
Kojto 148:fd96258d940d 2581
Kojto 148:fd96258d940d 2582 /**
Kojto 148:fd96258d940d 2583 * @brief Multiplies a floating-point vector by a scalar.
Kojto 148:fd96258d940d 2584 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2585 * @param[in] scale scale factor to be applied
Kojto 148:fd96258d940d 2586 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2587 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2588 */
Kojto 148:fd96258d940d 2589 void arm_scale_f32(
Kojto 148:fd96258d940d 2590 float32_t * pSrc,
Kojto 148:fd96258d940d 2591 float32_t scale,
Kojto 148:fd96258d940d 2592 float32_t * pDst,
Kojto 148:fd96258d940d 2593 uint32_t blockSize);
Kojto 148:fd96258d940d 2594
Kojto 148:fd96258d940d 2595
Kojto 148:fd96258d940d 2596 /**
Kojto 148:fd96258d940d 2597 * @brief Multiplies a Q7 vector by a scalar.
Kojto 148:fd96258d940d 2598 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2599 * @param[in] scaleFract fractional portion of the scale value
Kojto 148:fd96258d940d 2600 * @param[in] shift number of bits to shift the result by
Kojto 148:fd96258d940d 2601 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2602 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2603 */
Kojto 148:fd96258d940d 2604 void arm_scale_q7(
Kojto 148:fd96258d940d 2605 q7_t * pSrc,
Kojto 148:fd96258d940d 2606 q7_t scaleFract,
Kojto 148:fd96258d940d 2607 int8_t shift,
Kojto 148:fd96258d940d 2608 q7_t * pDst,
Kojto 148:fd96258d940d 2609 uint32_t blockSize);
Kojto 148:fd96258d940d 2610
Kojto 148:fd96258d940d 2611
Kojto 148:fd96258d940d 2612 /**
Kojto 148:fd96258d940d 2613 * @brief Multiplies a Q15 vector by a scalar.
Kojto 148:fd96258d940d 2614 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2615 * @param[in] scaleFract fractional portion of the scale value
Kojto 148:fd96258d940d 2616 * @param[in] shift number of bits to shift the result by
Kojto 148:fd96258d940d 2617 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2618 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2619 */
Kojto 148:fd96258d940d 2620 void arm_scale_q15(
Kojto 148:fd96258d940d 2621 q15_t * pSrc,
Kojto 148:fd96258d940d 2622 q15_t scaleFract,
Kojto 148:fd96258d940d 2623 int8_t shift,
Kojto 148:fd96258d940d 2624 q15_t * pDst,
Kojto 148:fd96258d940d 2625 uint32_t blockSize);
Kojto 148:fd96258d940d 2626
Kojto 148:fd96258d940d 2627
Kojto 148:fd96258d940d 2628 /**
Kojto 148:fd96258d940d 2629 * @brief Multiplies a Q31 vector by a scalar.
Kojto 148:fd96258d940d 2630 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2631 * @param[in] scaleFract fractional portion of the scale value
Kojto 148:fd96258d940d 2632 * @param[in] shift number of bits to shift the result by
Kojto 148:fd96258d940d 2633 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2634 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2635 */
Kojto 148:fd96258d940d 2636 void arm_scale_q31(
Kojto 148:fd96258d940d 2637 q31_t * pSrc,
Kojto 148:fd96258d940d 2638 q31_t scaleFract,
Kojto 148:fd96258d940d 2639 int8_t shift,
Kojto 148:fd96258d940d 2640 q31_t * pDst,
Kojto 148:fd96258d940d 2641 uint32_t blockSize);
Kojto 148:fd96258d940d 2642
Kojto 148:fd96258d940d 2643
Kojto 148:fd96258d940d 2644 /**
Kojto 148:fd96258d940d 2645 * @brief Q7 vector absolute value.
Kojto 148:fd96258d940d 2646 * @param[in] pSrc points to the input buffer
Kojto 148:fd96258d940d 2647 * @param[out] pDst points to the output buffer
Kojto 148:fd96258d940d 2648 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2649 */
Kojto 148:fd96258d940d 2650 void arm_abs_q7(
Kojto 148:fd96258d940d 2651 q7_t * pSrc,
Kojto 148:fd96258d940d 2652 q7_t * pDst,
Kojto 148:fd96258d940d 2653 uint32_t blockSize);
Kojto 148:fd96258d940d 2654
Kojto 148:fd96258d940d 2655
Kojto 148:fd96258d940d 2656 /**
Kojto 148:fd96258d940d 2657 * @brief Floating-point vector absolute value.
Kojto 148:fd96258d940d 2658 * @param[in] pSrc points to the input buffer
Kojto 148:fd96258d940d 2659 * @param[out] pDst points to the output buffer
Kojto 148:fd96258d940d 2660 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2661 */
Kojto 148:fd96258d940d 2662 void arm_abs_f32(
Kojto 148:fd96258d940d 2663 float32_t * pSrc,
Kojto 148:fd96258d940d 2664 float32_t * pDst,
Kojto 148:fd96258d940d 2665 uint32_t blockSize);
Kojto 148:fd96258d940d 2666
Kojto 148:fd96258d940d 2667
Kojto 148:fd96258d940d 2668 /**
Kojto 148:fd96258d940d 2669 * @brief Q15 vector absolute value.
Kojto 148:fd96258d940d 2670 * @param[in] pSrc points to the input buffer
Kojto 148:fd96258d940d 2671 * @param[out] pDst points to the output buffer
Kojto 148:fd96258d940d 2672 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2673 */
Kojto 148:fd96258d940d 2674 void arm_abs_q15(
Kojto 148:fd96258d940d 2675 q15_t * pSrc,
Kojto 148:fd96258d940d 2676 q15_t * pDst,
Kojto 148:fd96258d940d 2677 uint32_t blockSize);
Kojto 148:fd96258d940d 2678
Kojto 148:fd96258d940d 2679
Kojto 148:fd96258d940d 2680 /**
Kojto 148:fd96258d940d 2681 * @brief Q31 vector absolute value.
Kojto 148:fd96258d940d 2682 * @param[in] pSrc points to the input buffer
Kojto 148:fd96258d940d 2683 * @param[out] pDst points to the output buffer
Kojto 148:fd96258d940d 2684 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2685 */
Kojto 148:fd96258d940d 2686 void arm_abs_q31(
Kojto 148:fd96258d940d 2687 q31_t * pSrc,
Kojto 148:fd96258d940d 2688 q31_t * pDst,
Kojto 148:fd96258d940d 2689 uint32_t blockSize);
Kojto 148:fd96258d940d 2690
Kojto 148:fd96258d940d 2691
Kojto 148:fd96258d940d 2692 /**
Kojto 148:fd96258d940d 2693 * @brief Dot product of floating-point vectors.
Kojto 148:fd96258d940d 2694 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2695 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2696 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2697 * @param[out] result output result returned here
Kojto 148:fd96258d940d 2698 */
Kojto 148:fd96258d940d 2699 void arm_dot_prod_f32(
Kojto 148:fd96258d940d 2700 float32_t * pSrcA,
Kojto 148:fd96258d940d 2701 float32_t * pSrcB,
Kojto 148:fd96258d940d 2702 uint32_t blockSize,
Kojto 148:fd96258d940d 2703 float32_t * result);
Kojto 148:fd96258d940d 2704
Kojto 148:fd96258d940d 2705
Kojto 148:fd96258d940d 2706 /**
Kojto 148:fd96258d940d 2707 * @brief Dot product of Q7 vectors.
Kojto 148:fd96258d940d 2708 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2709 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2710 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2711 * @param[out] result output result returned here
Kojto 148:fd96258d940d 2712 */
Kojto 148:fd96258d940d 2713 void arm_dot_prod_q7(
Kojto 148:fd96258d940d 2714 q7_t * pSrcA,
Kojto 148:fd96258d940d 2715 q7_t * pSrcB,
Kojto 148:fd96258d940d 2716 uint32_t blockSize,
Kojto 148:fd96258d940d 2717 q31_t * result);
Kojto 148:fd96258d940d 2718
Kojto 148:fd96258d940d 2719
Kojto 148:fd96258d940d 2720 /**
Kojto 148:fd96258d940d 2721 * @brief Dot product of Q15 vectors.
Kojto 148:fd96258d940d 2722 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2723 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2724 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2725 * @param[out] result output result returned here
Kojto 148:fd96258d940d 2726 */
Kojto 148:fd96258d940d 2727 void arm_dot_prod_q15(
Kojto 148:fd96258d940d 2728 q15_t * pSrcA,
Kojto 148:fd96258d940d 2729 q15_t * pSrcB,
Kojto 148:fd96258d940d 2730 uint32_t blockSize,
Kojto 148:fd96258d940d 2731 q63_t * result);
Kojto 148:fd96258d940d 2732
Kojto 148:fd96258d940d 2733
Kojto 148:fd96258d940d 2734 /**
Kojto 148:fd96258d940d 2735 * @brief Dot product of Q31 vectors.
Kojto 148:fd96258d940d 2736 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 2737 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 2738 * @param[in] blockSize number of samples in each vector
Kojto 148:fd96258d940d 2739 * @param[out] result output result returned here
Kojto 148:fd96258d940d 2740 */
Kojto 148:fd96258d940d 2741 void arm_dot_prod_q31(
Kojto 148:fd96258d940d 2742 q31_t * pSrcA,
Kojto 148:fd96258d940d 2743 q31_t * pSrcB,
Kojto 148:fd96258d940d 2744 uint32_t blockSize,
Kojto 148:fd96258d940d 2745 q63_t * result);
Kojto 148:fd96258d940d 2746
Kojto 148:fd96258d940d 2747
Kojto 148:fd96258d940d 2748 /**
Kojto 148:fd96258d940d 2749 * @brief Shifts the elements of a Q7 vector a specified number of bits.
Kojto 148:fd96258d940d 2750 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2751 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 148:fd96258d940d 2752 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2753 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2754 */
Kojto 148:fd96258d940d 2755 void arm_shift_q7(
Kojto 148:fd96258d940d 2756 q7_t * pSrc,
Kojto 148:fd96258d940d 2757 int8_t shiftBits,
Kojto 148:fd96258d940d 2758 q7_t * pDst,
Kojto 148:fd96258d940d 2759 uint32_t blockSize);
Kojto 148:fd96258d940d 2760
Kojto 148:fd96258d940d 2761
Kojto 148:fd96258d940d 2762 /**
Kojto 148:fd96258d940d 2763 * @brief Shifts the elements of a Q15 vector a specified number of bits.
Kojto 148:fd96258d940d 2764 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2765 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 148:fd96258d940d 2766 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2767 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2768 */
Kojto 148:fd96258d940d 2769 void arm_shift_q15(
Kojto 148:fd96258d940d 2770 q15_t * pSrc,
Kojto 148:fd96258d940d 2771 int8_t shiftBits,
Kojto 148:fd96258d940d 2772 q15_t * pDst,
Kojto 148:fd96258d940d 2773 uint32_t blockSize);
Kojto 148:fd96258d940d 2774
Kojto 148:fd96258d940d 2775
Kojto 148:fd96258d940d 2776 /**
Kojto 148:fd96258d940d 2777 * @brief Shifts the elements of a Q31 vector a specified number of bits.
Kojto 148:fd96258d940d 2778 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2779 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 148:fd96258d940d 2780 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2781 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2782 */
Kojto 148:fd96258d940d 2783 void arm_shift_q31(
Kojto 148:fd96258d940d 2784 q31_t * pSrc,
Kojto 148:fd96258d940d 2785 int8_t shiftBits,
Kojto 148:fd96258d940d 2786 q31_t * pDst,
Kojto 148:fd96258d940d 2787 uint32_t blockSize);
Kojto 148:fd96258d940d 2788
Kojto 148:fd96258d940d 2789
Kojto 148:fd96258d940d 2790 /**
Kojto 148:fd96258d940d 2791 * @brief Adds a constant offset to a floating-point vector.
Kojto 148:fd96258d940d 2792 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2793 * @param[in] offset is the offset to be added
Kojto 148:fd96258d940d 2794 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2795 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2796 */
Kojto 148:fd96258d940d 2797 void arm_offset_f32(
Kojto 148:fd96258d940d 2798 float32_t * pSrc,
Kojto 148:fd96258d940d 2799 float32_t offset,
Kojto 148:fd96258d940d 2800 float32_t * pDst,
Kojto 148:fd96258d940d 2801 uint32_t blockSize);
Kojto 148:fd96258d940d 2802
Kojto 148:fd96258d940d 2803
Kojto 148:fd96258d940d 2804 /**
Kojto 148:fd96258d940d 2805 * @brief Adds a constant offset to a Q7 vector.
Kojto 148:fd96258d940d 2806 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2807 * @param[in] offset is the offset to be added
Kojto 148:fd96258d940d 2808 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2809 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2810 */
Kojto 148:fd96258d940d 2811 void arm_offset_q7(
Kojto 148:fd96258d940d 2812 q7_t * pSrc,
Kojto 148:fd96258d940d 2813 q7_t offset,
Kojto 148:fd96258d940d 2814 q7_t * pDst,
Kojto 148:fd96258d940d 2815 uint32_t blockSize);
Kojto 148:fd96258d940d 2816
Kojto 148:fd96258d940d 2817
Kojto 148:fd96258d940d 2818 /**
Kojto 148:fd96258d940d 2819 * @brief Adds a constant offset to a Q15 vector.
Kojto 148:fd96258d940d 2820 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2821 * @param[in] offset is the offset to be added
Kojto 148:fd96258d940d 2822 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2823 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2824 */
Kojto 148:fd96258d940d 2825 void arm_offset_q15(
Kojto 148:fd96258d940d 2826 q15_t * pSrc,
Kojto 148:fd96258d940d 2827 q15_t offset,
Kojto 148:fd96258d940d 2828 q15_t * pDst,
Kojto 148:fd96258d940d 2829 uint32_t blockSize);
Kojto 148:fd96258d940d 2830
Kojto 148:fd96258d940d 2831
Kojto 148:fd96258d940d 2832 /**
Kojto 148:fd96258d940d 2833 * @brief Adds a constant offset to a Q31 vector.
Kojto 148:fd96258d940d 2834 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2835 * @param[in] offset is the offset to be added
Kojto 148:fd96258d940d 2836 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2837 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2838 */
Kojto 148:fd96258d940d 2839 void arm_offset_q31(
Kojto 148:fd96258d940d 2840 q31_t * pSrc,
Kojto 148:fd96258d940d 2841 q31_t offset,
Kojto 148:fd96258d940d 2842 q31_t * pDst,
Kojto 148:fd96258d940d 2843 uint32_t blockSize);
Kojto 148:fd96258d940d 2844
Kojto 148:fd96258d940d 2845
Kojto 148:fd96258d940d 2846 /**
Kojto 148:fd96258d940d 2847 * @brief Negates the elements of a floating-point vector.
Kojto 148:fd96258d940d 2848 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2849 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2850 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2851 */
Kojto 148:fd96258d940d 2852 void arm_negate_f32(
Kojto 148:fd96258d940d 2853 float32_t * pSrc,
Kojto 148:fd96258d940d 2854 float32_t * pDst,
Kojto 148:fd96258d940d 2855 uint32_t blockSize);
Kojto 148:fd96258d940d 2856
Kojto 148:fd96258d940d 2857
Kojto 148:fd96258d940d 2858 /**
Kojto 148:fd96258d940d 2859 * @brief Negates the elements of a Q7 vector.
Kojto 148:fd96258d940d 2860 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2861 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2862 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2863 */
Kojto 148:fd96258d940d 2864 void arm_negate_q7(
Kojto 148:fd96258d940d 2865 q7_t * pSrc,
Kojto 148:fd96258d940d 2866 q7_t * pDst,
Kojto 148:fd96258d940d 2867 uint32_t blockSize);
Kojto 148:fd96258d940d 2868
Kojto 148:fd96258d940d 2869
Kojto 148:fd96258d940d 2870 /**
Kojto 148:fd96258d940d 2871 * @brief Negates the elements of a Q15 vector.
Kojto 148:fd96258d940d 2872 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2873 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2874 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2875 */
Kojto 148:fd96258d940d 2876 void arm_negate_q15(
Kojto 148:fd96258d940d 2877 q15_t * pSrc,
Kojto 148:fd96258d940d 2878 q15_t * pDst,
Kojto 148:fd96258d940d 2879 uint32_t blockSize);
Kojto 148:fd96258d940d 2880
Kojto 148:fd96258d940d 2881
Kojto 148:fd96258d940d 2882 /**
Kojto 148:fd96258d940d 2883 * @brief Negates the elements of a Q31 vector.
Kojto 148:fd96258d940d 2884 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 2885 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 2886 * @param[in] blockSize number of samples in the vector
Kojto 148:fd96258d940d 2887 */
Kojto 148:fd96258d940d 2888 void arm_negate_q31(
Kojto 148:fd96258d940d 2889 q31_t * pSrc,
Kojto 148:fd96258d940d 2890 q31_t * pDst,
Kojto 148:fd96258d940d 2891 uint32_t blockSize);
Kojto 148:fd96258d940d 2892
Kojto 148:fd96258d940d 2893
Kojto 148:fd96258d940d 2894 /**
Kojto 148:fd96258d940d 2895 * @brief Copies the elements of a floating-point vector.
Kojto 148:fd96258d940d 2896 * @param[in] pSrc input pointer
Kojto 148:fd96258d940d 2897 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 2898 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 2899 */
Kojto 148:fd96258d940d 2900 void arm_copy_f32(
Kojto 148:fd96258d940d 2901 float32_t * pSrc,
Kojto 148:fd96258d940d 2902 float32_t * pDst,
Kojto 148:fd96258d940d 2903 uint32_t blockSize);
Kojto 148:fd96258d940d 2904
Kojto 148:fd96258d940d 2905
Kojto 148:fd96258d940d 2906 /**
Kojto 148:fd96258d940d 2907 * @brief Copies the elements of a Q7 vector.
Kojto 148:fd96258d940d 2908 * @param[in] pSrc input pointer
Kojto 148:fd96258d940d 2909 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 2910 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 2911 */
Kojto 148:fd96258d940d 2912 void arm_copy_q7(
Kojto 148:fd96258d940d 2913 q7_t * pSrc,
Kojto 148:fd96258d940d 2914 q7_t * pDst,
Kojto 148:fd96258d940d 2915 uint32_t blockSize);
Kojto 148:fd96258d940d 2916
Kojto 148:fd96258d940d 2917
Kojto 148:fd96258d940d 2918 /**
Kojto 148:fd96258d940d 2919 * @brief Copies the elements of a Q15 vector.
Kojto 148:fd96258d940d 2920 * @param[in] pSrc input pointer
Kojto 148:fd96258d940d 2921 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 2922 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 2923 */
Kojto 148:fd96258d940d 2924 void arm_copy_q15(
Kojto 148:fd96258d940d 2925 q15_t * pSrc,
Kojto 148:fd96258d940d 2926 q15_t * pDst,
Kojto 148:fd96258d940d 2927 uint32_t blockSize);
Kojto 148:fd96258d940d 2928
Kojto 148:fd96258d940d 2929
Kojto 148:fd96258d940d 2930 /**
Kojto 148:fd96258d940d 2931 * @brief Copies the elements of a Q31 vector.
Kojto 148:fd96258d940d 2932 * @param[in] pSrc input pointer
Kojto 148:fd96258d940d 2933 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 2934 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 2935 */
Kojto 148:fd96258d940d 2936 void arm_copy_q31(
Kojto 148:fd96258d940d 2937 q31_t * pSrc,
Kojto 148:fd96258d940d 2938 q31_t * pDst,
Kojto 148:fd96258d940d 2939 uint32_t blockSize);
Kojto 148:fd96258d940d 2940
Kojto 148:fd96258d940d 2941
Kojto 148:fd96258d940d 2942 /**
Kojto 148:fd96258d940d 2943 * @brief Fills a constant value into a floating-point vector.
Kojto 148:fd96258d940d 2944 * @param[in] value input value to be filled
Kojto 148:fd96258d940d 2945 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 2946 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 2947 */
Kojto 148:fd96258d940d 2948 void arm_fill_f32(
Kojto 148:fd96258d940d 2949 float32_t value,
Kojto 148:fd96258d940d 2950 float32_t * pDst,
Kojto 148:fd96258d940d 2951 uint32_t blockSize);
Kojto 148:fd96258d940d 2952
Kojto 148:fd96258d940d 2953
Kojto 148:fd96258d940d 2954 /**
Kojto 148:fd96258d940d 2955 * @brief Fills a constant value into a Q7 vector.
Kojto 148:fd96258d940d 2956 * @param[in] value input value to be filled
Kojto 148:fd96258d940d 2957 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 2958 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 2959 */
Kojto 148:fd96258d940d 2960 void arm_fill_q7(
Kojto 148:fd96258d940d 2961 q7_t value,
Kojto 148:fd96258d940d 2962 q7_t * pDst,
Kojto 148:fd96258d940d 2963 uint32_t blockSize);
Kojto 148:fd96258d940d 2964
Kojto 148:fd96258d940d 2965
Kojto 148:fd96258d940d 2966 /**
Kojto 148:fd96258d940d 2967 * @brief Fills a constant value into a Q15 vector.
Kojto 148:fd96258d940d 2968 * @param[in] value input value to be filled
Kojto 148:fd96258d940d 2969 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 2970 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 2971 */
Kojto 148:fd96258d940d 2972 void arm_fill_q15(
Kojto 148:fd96258d940d 2973 q15_t value,
Kojto 148:fd96258d940d 2974 q15_t * pDst,
Kojto 148:fd96258d940d 2975 uint32_t blockSize);
Kojto 148:fd96258d940d 2976
Kojto 148:fd96258d940d 2977
Kojto 148:fd96258d940d 2978 /**
Kojto 148:fd96258d940d 2979 * @brief Fills a constant value into a Q31 vector.
Kojto 148:fd96258d940d 2980 * @param[in] value input value to be filled
Kojto 148:fd96258d940d 2981 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 2982 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 2983 */
Kojto 148:fd96258d940d 2984 void arm_fill_q31(
Kojto 148:fd96258d940d 2985 q31_t value,
Kojto 148:fd96258d940d 2986 q31_t * pDst,
Kojto 148:fd96258d940d 2987 uint32_t blockSize);
Kojto 148:fd96258d940d 2988
Kojto 148:fd96258d940d 2989
Kojto 148:fd96258d940d 2990 /**
Kojto 148:fd96258d940d 2991 * @brief Convolution of floating-point sequences.
Kojto 148:fd96258d940d 2992 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 2993 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 2994 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 2995 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 2996 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
Kojto 148:fd96258d940d 2997 */
Kojto 148:fd96258d940d 2998 void arm_conv_f32(
Kojto 148:fd96258d940d 2999 float32_t * pSrcA,
Kojto 148:fd96258d940d 3000 uint32_t srcALen,
Kojto 148:fd96258d940d 3001 float32_t * pSrcB,
Kojto 148:fd96258d940d 3002 uint32_t srcBLen,
Kojto 148:fd96258d940d 3003 float32_t * pDst);
Kojto 148:fd96258d940d 3004
Kojto 148:fd96258d940d 3005
Kojto 148:fd96258d940d 3006 /**
Kojto 148:fd96258d940d 3007 * @brief Convolution of Q15 sequences.
Kojto 148:fd96258d940d 3008 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3009 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3010 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3011 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3012 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 148:fd96258d940d 3013 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 148:fd96258d940d 3014 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 148:fd96258d940d 3015 */
Kojto 148:fd96258d940d 3016 void arm_conv_opt_q15(
Kojto 148:fd96258d940d 3017 q15_t * pSrcA,
Kojto 148:fd96258d940d 3018 uint32_t srcALen,
Kojto 148:fd96258d940d 3019 q15_t * pSrcB,
Kojto 148:fd96258d940d 3020 uint32_t srcBLen,
Kojto 148:fd96258d940d 3021 q15_t * pDst,
Kojto 148:fd96258d940d 3022 q15_t * pScratch1,
Kojto 148:fd96258d940d 3023 q15_t * pScratch2);
Kojto 148:fd96258d940d 3024
Kojto 148:fd96258d940d 3025
Kojto 148:fd96258d940d 3026 /**
Kojto 148:fd96258d940d 3027 * @brief Convolution of Q15 sequences.
Kojto 148:fd96258d940d 3028 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3029 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3030 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3031 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3032 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
Kojto 148:fd96258d940d 3033 */
Kojto 148:fd96258d940d 3034 void arm_conv_q15(
Kojto 148:fd96258d940d 3035 q15_t * pSrcA,
Kojto 148:fd96258d940d 3036 uint32_t srcALen,
Kojto 148:fd96258d940d 3037 q15_t * pSrcB,
Kojto 148:fd96258d940d 3038 uint32_t srcBLen,
Kojto 148:fd96258d940d 3039 q15_t * pDst);
Kojto 148:fd96258d940d 3040
Kojto 148:fd96258d940d 3041
Kojto 148:fd96258d940d 3042 /**
Kojto 148:fd96258d940d 3043 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 148:fd96258d940d 3044 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3045 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3046 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3047 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3048 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 148:fd96258d940d 3049 */
Kojto 148:fd96258d940d 3050 void arm_conv_fast_q15(
Kojto 148:fd96258d940d 3051 q15_t * pSrcA,
Kojto 148:fd96258d940d 3052 uint32_t srcALen,
Kojto 148:fd96258d940d 3053 q15_t * pSrcB,
Kojto 148:fd96258d940d 3054 uint32_t srcBLen,
Kojto 148:fd96258d940d 3055 q15_t * pDst);
Kojto 148:fd96258d940d 3056
Kojto 148:fd96258d940d 3057
Kojto 148:fd96258d940d 3058 /**
Kojto 148:fd96258d940d 3059 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 148:fd96258d940d 3060 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3061 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3062 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3063 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3064 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 148:fd96258d940d 3065 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 148:fd96258d940d 3066 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 148:fd96258d940d 3067 */
Kojto 148:fd96258d940d 3068 void arm_conv_fast_opt_q15(
Kojto 148:fd96258d940d 3069 q15_t * pSrcA,
Kojto 148:fd96258d940d 3070 uint32_t srcALen,
Kojto 148:fd96258d940d 3071 q15_t * pSrcB,
Kojto 148:fd96258d940d 3072 uint32_t srcBLen,
Kojto 148:fd96258d940d 3073 q15_t * pDst,
Kojto 148:fd96258d940d 3074 q15_t * pScratch1,
Kojto 148:fd96258d940d 3075 q15_t * pScratch2);
Kojto 148:fd96258d940d 3076
Kojto 148:fd96258d940d 3077
Kojto 148:fd96258d940d 3078 /**
Kojto 148:fd96258d940d 3079 * @brief Convolution of Q31 sequences.
Kojto 148:fd96258d940d 3080 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3081 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3082 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3083 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3084 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 148:fd96258d940d 3085 */
Kojto 148:fd96258d940d 3086 void arm_conv_q31(
Kojto 148:fd96258d940d 3087 q31_t * pSrcA,
Kojto 148:fd96258d940d 3088 uint32_t srcALen,
Kojto 148:fd96258d940d 3089 q31_t * pSrcB,
Kojto 148:fd96258d940d 3090 uint32_t srcBLen,
Kojto 148:fd96258d940d 3091 q31_t * pDst);
Kojto 148:fd96258d940d 3092
Kojto 148:fd96258d940d 3093
Kojto 148:fd96258d940d 3094 /**
Kojto 148:fd96258d940d 3095 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 148:fd96258d940d 3096 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3097 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3098 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3099 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3100 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 148:fd96258d940d 3101 */
Kojto 148:fd96258d940d 3102 void arm_conv_fast_q31(
Kojto 148:fd96258d940d 3103 q31_t * pSrcA,
Kojto 148:fd96258d940d 3104 uint32_t srcALen,
Kojto 148:fd96258d940d 3105 q31_t * pSrcB,
Kojto 148:fd96258d940d 3106 uint32_t srcBLen,
Kojto 148:fd96258d940d 3107 q31_t * pDst);
Kojto 148:fd96258d940d 3108
Kojto 148:fd96258d940d 3109
Kojto 148:fd96258d940d 3110 /**
Kojto 148:fd96258d940d 3111 * @brief Convolution of Q7 sequences.
Kojto 148:fd96258d940d 3112 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3113 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3114 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3115 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3116 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 148:fd96258d940d 3117 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 148:fd96258d940d 3118 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 148:fd96258d940d 3119 */
Kojto 148:fd96258d940d 3120 void arm_conv_opt_q7(
Kojto 148:fd96258d940d 3121 q7_t * pSrcA,
Kojto 148:fd96258d940d 3122 uint32_t srcALen,
Kojto 148:fd96258d940d 3123 q7_t * pSrcB,
Kojto 148:fd96258d940d 3124 uint32_t srcBLen,
Kojto 148:fd96258d940d 3125 q7_t * pDst,
Kojto 148:fd96258d940d 3126 q15_t * pScratch1,
Kojto 148:fd96258d940d 3127 q15_t * pScratch2);
Kojto 148:fd96258d940d 3128
Kojto 148:fd96258d940d 3129
Kojto 148:fd96258d940d 3130 /**
Kojto 148:fd96258d940d 3131 * @brief Convolution of Q7 sequences.
Kojto 148:fd96258d940d 3132 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3133 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3134 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3135 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3136 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 148:fd96258d940d 3137 */
Kojto 148:fd96258d940d 3138 void arm_conv_q7(
Kojto 148:fd96258d940d 3139 q7_t * pSrcA,
Kojto 148:fd96258d940d 3140 uint32_t srcALen,
Kojto 148:fd96258d940d 3141 q7_t * pSrcB,
Kojto 148:fd96258d940d 3142 uint32_t srcBLen,
Kojto 148:fd96258d940d 3143 q7_t * pDst);
Kojto 148:fd96258d940d 3144
Kojto 148:fd96258d940d 3145
Kojto 148:fd96258d940d 3146 /**
Kojto 148:fd96258d940d 3147 * @brief Partial convolution of floating-point sequences.
Kojto 148:fd96258d940d 3148 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3149 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3150 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3151 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3152 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3153 * @param[in] firstIndex is the first output sample to start with.
Kojto 148:fd96258d940d 3154 * @param[in] numPoints is the number of output points to be computed.
Kojto 148:fd96258d940d 3155 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 148:fd96258d940d 3156 */
Kojto 148:fd96258d940d 3157 arm_status arm_conv_partial_f32(
Kojto 148:fd96258d940d 3158 float32_t * pSrcA,
Kojto 148:fd96258d940d 3159 uint32_t srcALen,
Kojto 148:fd96258d940d 3160 float32_t * pSrcB,
Kojto 148:fd96258d940d 3161 uint32_t srcBLen,
Kojto 148:fd96258d940d 3162 float32_t * pDst,
Kojto 148:fd96258d940d 3163 uint32_t firstIndex,
Kojto 148:fd96258d940d 3164 uint32_t numPoints);
Kojto 148:fd96258d940d 3165
Kojto 148:fd96258d940d 3166
Kojto 148:fd96258d940d 3167 /**
Kojto 148:fd96258d940d 3168 * @brief Partial convolution of Q15 sequences.
Kojto 148:fd96258d940d 3169 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3170 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3171 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3172 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3173 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3174 * @param[in] firstIndex is the first output sample to start with.
Kojto 148:fd96258d940d 3175 * @param[in] numPoints is the number of output points to be computed.
Kojto 148:fd96258d940d 3176 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 148:fd96258d940d 3177 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 148:fd96258d940d 3178 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 148:fd96258d940d 3179 */
Kojto 148:fd96258d940d 3180 arm_status arm_conv_partial_opt_q15(
Kojto 148:fd96258d940d 3181 q15_t * pSrcA,
Kojto 148:fd96258d940d 3182 uint32_t srcALen,
Kojto 148:fd96258d940d 3183 q15_t * pSrcB,
Kojto 148:fd96258d940d 3184 uint32_t srcBLen,
Kojto 148:fd96258d940d 3185 q15_t * pDst,
Kojto 148:fd96258d940d 3186 uint32_t firstIndex,
Kojto 148:fd96258d940d 3187 uint32_t numPoints,
Kojto 148:fd96258d940d 3188 q15_t * pScratch1,
Kojto 148:fd96258d940d 3189 q15_t * pScratch2);
Kojto 148:fd96258d940d 3190
Kojto 148:fd96258d940d 3191
Kojto 148:fd96258d940d 3192 /**
Kojto 148:fd96258d940d 3193 * @brief Partial convolution of Q15 sequences.
Kojto 148:fd96258d940d 3194 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3195 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3196 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3197 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3198 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3199 * @param[in] firstIndex is the first output sample to start with.
Kojto 148:fd96258d940d 3200 * @param[in] numPoints is the number of output points to be computed.
Kojto 148:fd96258d940d 3201 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 148:fd96258d940d 3202 */
Kojto 148:fd96258d940d 3203 arm_status arm_conv_partial_q15(
Kojto 148:fd96258d940d 3204 q15_t * pSrcA,
Kojto 148:fd96258d940d 3205 uint32_t srcALen,
Kojto 148:fd96258d940d 3206 q15_t * pSrcB,
Kojto 148:fd96258d940d 3207 uint32_t srcBLen,
Kojto 148:fd96258d940d 3208 q15_t * pDst,
Kojto 148:fd96258d940d 3209 uint32_t firstIndex,
Kojto 148:fd96258d940d 3210 uint32_t numPoints);
Kojto 148:fd96258d940d 3211
Kojto 148:fd96258d940d 3212
Kojto 148:fd96258d940d 3213 /**
Kojto 148:fd96258d940d 3214 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 148:fd96258d940d 3215 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3216 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3217 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3218 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3219 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3220 * @param[in] firstIndex is the first output sample to start with.
Kojto 148:fd96258d940d 3221 * @param[in] numPoints is the number of output points to be computed.
Kojto 148:fd96258d940d 3222 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 148:fd96258d940d 3223 */
Kojto 148:fd96258d940d 3224 arm_status arm_conv_partial_fast_q15(
Kojto 148:fd96258d940d 3225 q15_t * pSrcA,
Kojto 148:fd96258d940d 3226 uint32_t srcALen,
Kojto 148:fd96258d940d 3227 q15_t * pSrcB,
Kojto 148:fd96258d940d 3228 uint32_t srcBLen,
Kojto 148:fd96258d940d 3229 q15_t * pDst,
Kojto 148:fd96258d940d 3230 uint32_t firstIndex,
Kojto 148:fd96258d940d 3231 uint32_t numPoints);
Kojto 148:fd96258d940d 3232
Kojto 148:fd96258d940d 3233
Kojto 148:fd96258d940d 3234 /**
Kojto 148:fd96258d940d 3235 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 148:fd96258d940d 3236 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3237 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3238 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3239 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3240 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3241 * @param[in] firstIndex is the first output sample to start with.
Kojto 148:fd96258d940d 3242 * @param[in] numPoints is the number of output points to be computed.
Kojto 148:fd96258d940d 3243 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 148:fd96258d940d 3244 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 148:fd96258d940d 3245 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 148:fd96258d940d 3246 */
Kojto 148:fd96258d940d 3247 arm_status arm_conv_partial_fast_opt_q15(
Kojto 148:fd96258d940d 3248 q15_t * pSrcA,
Kojto 148:fd96258d940d 3249 uint32_t srcALen,
Kojto 148:fd96258d940d 3250 q15_t * pSrcB,
Kojto 148:fd96258d940d 3251 uint32_t srcBLen,
Kojto 148:fd96258d940d 3252 q15_t * pDst,
Kojto 148:fd96258d940d 3253 uint32_t firstIndex,
Kojto 148:fd96258d940d 3254 uint32_t numPoints,
Kojto 148:fd96258d940d 3255 q15_t * pScratch1,
Kojto 148:fd96258d940d 3256 q15_t * pScratch2);
Kojto 148:fd96258d940d 3257
Kojto 148:fd96258d940d 3258
Kojto 148:fd96258d940d 3259 /**
Kojto 148:fd96258d940d 3260 * @brief Partial convolution of Q31 sequences.
Kojto 148:fd96258d940d 3261 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3262 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3263 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3264 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3265 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3266 * @param[in] firstIndex is the first output sample to start with.
Kojto 148:fd96258d940d 3267 * @param[in] numPoints is the number of output points to be computed.
Kojto 148:fd96258d940d 3268 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 148:fd96258d940d 3269 */
Kojto 148:fd96258d940d 3270 arm_status arm_conv_partial_q31(
Kojto 148:fd96258d940d 3271 q31_t * pSrcA,
Kojto 148:fd96258d940d 3272 uint32_t srcALen,
Kojto 148:fd96258d940d 3273 q31_t * pSrcB,
Kojto 148:fd96258d940d 3274 uint32_t srcBLen,
Kojto 148:fd96258d940d 3275 q31_t * pDst,
Kojto 148:fd96258d940d 3276 uint32_t firstIndex,
Kojto 148:fd96258d940d 3277 uint32_t numPoints);
Kojto 148:fd96258d940d 3278
Kojto 148:fd96258d940d 3279
Kojto 148:fd96258d940d 3280 /**
Kojto 148:fd96258d940d 3281 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 148:fd96258d940d 3282 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3283 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3284 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3285 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3286 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3287 * @param[in] firstIndex is the first output sample to start with.
Kojto 148:fd96258d940d 3288 * @param[in] numPoints is the number of output points to be computed.
Kojto 148:fd96258d940d 3289 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 148:fd96258d940d 3290 */
Kojto 148:fd96258d940d 3291 arm_status arm_conv_partial_fast_q31(
Kojto 148:fd96258d940d 3292 q31_t * pSrcA,
Kojto 148:fd96258d940d 3293 uint32_t srcALen,
Kojto 148:fd96258d940d 3294 q31_t * pSrcB,
Kojto 148:fd96258d940d 3295 uint32_t srcBLen,
Kojto 148:fd96258d940d 3296 q31_t * pDst,
Kojto 148:fd96258d940d 3297 uint32_t firstIndex,
Kojto 148:fd96258d940d 3298 uint32_t numPoints);
Kojto 148:fd96258d940d 3299
Kojto 148:fd96258d940d 3300
Kojto 148:fd96258d940d 3301 /**
Kojto 148:fd96258d940d 3302 * @brief Partial convolution of Q7 sequences
Kojto 148:fd96258d940d 3303 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3304 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3305 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3306 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3307 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3308 * @param[in] firstIndex is the first output sample to start with.
Kojto 148:fd96258d940d 3309 * @param[in] numPoints is the number of output points to be computed.
Kojto 148:fd96258d940d 3310 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 148:fd96258d940d 3311 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 148:fd96258d940d 3312 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 148:fd96258d940d 3313 */
Kojto 148:fd96258d940d 3314 arm_status arm_conv_partial_opt_q7(
Kojto 148:fd96258d940d 3315 q7_t * pSrcA,
Kojto 148:fd96258d940d 3316 uint32_t srcALen,
Kojto 148:fd96258d940d 3317 q7_t * pSrcB,
Kojto 148:fd96258d940d 3318 uint32_t srcBLen,
Kojto 148:fd96258d940d 3319 q7_t * pDst,
Kojto 148:fd96258d940d 3320 uint32_t firstIndex,
Kojto 148:fd96258d940d 3321 uint32_t numPoints,
Kojto 148:fd96258d940d 3322 q15_t * pScratch1,
Kojto 148:fd96258d940d 3323 q15_t * pScratch2);
Kojto 148:fd96258d940d 3324
Kojto 148:fd96258d940d 3325
Kojto 148:fd96258d940d 3326 /**
Kojto 148:fd96258d940d 3327 * @brief Partial convolution of Q7 sequences.
Kojto 148:fd96258d940d 3328 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 3329 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 3330 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 3331 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 3332 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3333 * @param[in] firstIndex is the first output sample to start with.
Kojto 148:fd96258d940d 3334 * @param[in] numPoints is the number of output points to be computed.
Kojto 148:fd96258d940d 3335 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 148:fd96258d940d 3336 */
Kojto 148:fd96258d940d 3337 arm_status arm_conv_partial_q7(
Kojto 148:fd96258d940d 3338 q7_t * pSrcA,
Kojto 148:fd96258d940d 3339 uint32_t srcALen,
Kojto 148:fd96258d940d 3340 q7_t * pSrcB,
Kojto 148:fd96258d940d 3341 uint32_t srcBLen,
Kojto 148:fd96258d940d 3342 q7_t * pDst,
Kojto 148:fd96258d940d 3343 uint32_t firstIndex,
Kojto 148:fd96258d940d 3344 uint32_t numPoints);
Kojto 148:fd96258d940d 3345
Kojto 148:fd96258d940d 3346
Kojto 148:fd96258d940d 3347 /**
Kojto 148:fd96258d940d 3348 * @brief Instance structure for the Q15 FIR decimator.
Kojto 148:fd96258d940d 3349 */
Kojto 148:fd96258d940d 3350 typedef struct
Kojto 148:fd96258d940d 3351 {
Kojto 148:fd96258d940d 3352 uint8_t M; /**< decimation factor. */
Kojto 148:fd96258d940d 3353 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 3354 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 148:fd96258d940d 3355 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 3356 } arm_fir_decimate_instance_q15;
Kojto 148:fd96258d940d 3357
Kojto 148:fd96258d940d 3358 /**
Kojto 148:fd96258d940d 3359 * @brief Instance structure for the Q31 FIR decimator.
Kojto 148:fd96258d940d 3360 */
Kojto 148:fd96258d940d 3361 typedef struct
Kojto 148:fd96258d940d 3362 {
Kojto 148:fd96258d940d 3363 uint8_t M; /**< decimation factor. */
Kojto 148:fd96258d940d 3364 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 3365 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 148:fd96258d940d 3366 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 3367 } arm_fir_decimate_instance_q31;
Kojto 148:fd96258d940d 3368
Kojto 148:fd96258d940d 3369 /**
Kojto 148:fd96258d940d 3370 * @brief Instance structure for the floating-point FIR decimator.
Kojto 148:fd96258d940d 3371 */
Kojto 148:fd96258d940d 3372 typedef struct
Kojto 148:fd96258d940d 3373 {
Kojto 148:fd96258d940d 3374 uint8_t M; /**< decimation factor. */
Kojto 148:fd96258d940d 3375 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 3376 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 148:fd96258d940d 3377 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 3378 } arm_fir_decimate_instance_f32;
Kojto 148:fd96258d940d 3379
Kojto 148:fd96258d940d 3380
Kojto 148:fd96258d940d 3381 /**
Kojto 148:fd96258d940d 3382 * @brief Processing function for the floating-point FIR decimator.
Kojto 148:fd96258d940d 3383 * @param[in] S points to an instance of the floating-point FIR decimator structure.
Kojto 148:fd96258d940d 3384 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3385 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3386 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3387 */
Kojto 148:fd96258d940d 3388 void arm_fir_decimate_f32(
Kojto 148:fd96258d940d 3389 const arm_fir_decimate_instance_f32 * S,
Kojto 148:fd96258d940d 3390 float32_t * pSrc,
Kojto 148:fd96258d940d 3391 float32_t * pDst,
Kojto 148:fd96258d940d 3392 uint32_t blockSize);
Kojto 148:fd96258d940d 3393
Kojto 148:fd96258d940d 3394
Kojto 148:fd96258d940d 3395 /**
Kojto 148:fd96258d940d 3396 * @brief Initialization function for the floating-point FIR decimator.
Kojto 148:fd96258d940d 3397 * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
Kojto 148:fd96258d940d 3398 * @param[in] numTaps number of coefficients in the filter.
Kojto 148:fd96258d940d 3399 * @param[in] M decimation factor.
Kojto 148:fd96258d940d 3400 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 3401 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3402 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3403 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 148:fd96258d940d 3404 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 148:fd96258d940d 3405 */
Kojto 148:fd96258d940d 3406 arm_status arm_fir_decimate_init_f32(
Kojto 148:fd96258d940d 3407 arm_fir_decimate_instance_f32 * S,
Kojto 148:fd96258d940d 3408 uint16_t numTaps,
Kojto 148:fd96258d940d 3409 uint8_t M,
Kojto 148:fd96258d940d 3410 float32_t * pCoeffs,
Kojto 148:fd96258d940d 3411 float32_t * pState,
Kojto 148:fd96258d940d 3412 uint32_t blockSize);
Kojto 148:fd96258d940d 3413
Kojto 148:fd96258d940d 3414
Kojto 148:fd96258d940d 3415 /**
Kojto 148:fd96258d940d 3416 * @brief Processing function for the Q15 FIR decimator.
Kojto 148:fd96258d940d 3417 * @param[in] S points to an instance of the Q15 FIR decimator structure.
Kojto 148:fd96258d940d 3418 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3419 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3420 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3421 */
Kojto 148:fd96258d940d 3422 void arm_fir_decimate_q15(
Kojto 148:fd96258d940d 3423 const arm_fir_decimate_instance_q15 * S,
Kojto 148:fd96258d940d 3424 q15_t * pSrc,
Kojto 148:fd96258d940d 3425 q15_t * pDst,
Kojto 148:fd96258d940d 3426 uint32_t blockSize);
Kojto 148:fd96258d940d 3427
Kojto 148:fd96258d940d 3428
Kojto 148:fd96258d940d 3429 /**
Kojto 148:fd96258d940d 3430 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
Kojto 148:fd96258d940d 3431 * @param[in] S points to an instance of the Q15 FIR decimator structure.
Kojto 148:fd96258d940d 3432 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3433 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3434 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3435 */
Kojto 148:fd96258d940d 3436 void arm_fir_decimate_fast_q15(
Kojto 148:fd96258d940d 3437 const arm_fir_decimate_instance_q15 * S,
Kojto 148:fd96258d940d 3438 q15_t * pSrc,
Kojto 148:fd96258d940d 3439 q15_t * pDst,
Kojto 148:fd96258d940d 3440 uint32_t blockSize);
Kojto 148:fd96258d940d 3441
Kojto 148:fd96258d940d 3442
Kojto 148:fd96258d940d 3443 /**
Kojto 148:fd96258d940d 3444 * @brief Initialization function for the Q15 FIR decimator.
Kojto 148:fd96258d940d 3445 * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
Kojto 148:fd96258d940d 3446 * @param[in] numTaps number of coefficients in the filter.
Kojto 148:fd96258d940d 3447 * @param[in] M decimation factor.
Kojto 148:fd96258d940d 3448 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 3449 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3450 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3451 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 148:fd96258d940d 3452 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 148:fd96258d940d 3453 */
Kojto 148:fd96258d940d 3454 arm_status arm_fir_decimate_init_q15(
Kojto 148:fd96258d940d 3455 arm_fir_decimate_instance_q15 * S,
Kojto 148:fd96258d940d 3456 uint16_t numTaps,
Kojto 148:fd96258d940d 3457 uint8_t M,
Kojto 148:fd96258d940d 3458 q15_t * pCoeffs,
Kojto 148:fd96258d940d 3459 q15_t * pState,
Kojto 148:fd96258d940d 3460 uint32_t blockSize);
Kojto 148:fd96258d940d 3461
Kojto 148:fd96258d940d 3462
Kojto 148:fd96258d940d 3463 /**
Kojto 148:fd96258d940d 3464 * @brief Processing function for the Q31 FIR decimator.
Kojto 148:fd96258d940d 3465 * @param[in] S points to an instance of the Q31 FIR decimator structure.
Kojto 148:fd96258d940d 3466 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3467 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3468 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3469 */
Kojto 148:fd96258d940d 3470 void arm_fir_decimate_q31(
Kojto 148:fd96258d940d 3471 const arm_fir_decimate_instance_q31 * S,
Kojto 148:fd96258d940d 3472 q31_t * pSrc,
Kojto 148:fd96258d940d 3473 q31_t * pDst,
Kojto 148:fd96258d940d 3474 uint32_t blockSize);
Kojto 148:fd96258d940d 3475
Kojto 148:fd96258d940d 3476 /**
Kojto 148:fd96258d940d 3477 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
Kojto 148:fd96258d940d 3478 * @param[in] S points to an instance of the Q31 FIR decimator structure.
Kojto 148:fd96258d940d 3479 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3480 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3481 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3482 */
Kojto 148:fd96258d940d 3483 void arm_fir_decimate_fast_q31(
Kojto 148:fd96258d940d 3484 arm_fir_decimate_instance_q31 * S,
Kojto 148:fd96258d940d 3485 q31_t * pSrc,
Kojto 148:fd96258d940d 3486 q31_t * pDst,
Kojto 148:fd96258d940d 3487 uint32_t blockSize);
Kojto 148:fd96258d940d 3488
Kojto 148:fd96258d940d 3489
Kojto 148:fd96258d940d 3490 /**
Kojto 148:fd96258d940d 3491 * @brief Initialization function for the Q31 FIR decimator.
Kojto 148:fd96258d940d 3492 * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
Kojto 148:fd96258d940d 3493 * @param[in] numTaps number of coefficients in the filter.
Kojto 148:fd96258d940d 3494 * @param[in] M decimation factor.
Kojto 148:fd96258d940d 3495 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 3496 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3497 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3498 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 148:fd96258d940d 3499 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 148:fd96258d940d 3500 */
Kojto 148:fd96258d940d 3501 arm_status arm_fir_decimate_init_q31(
Kojto 148:fd96258d940d 3502 arm_fir_decimate_instance_q31 * S,
Kojto 148:fd96258d940d 3503 uint16_t numTaps,
Kojto 148:fd96258d940d 3504 uint8_t M,
Kojto 148:fd96258d940d 3505 q31_t * pCoeffs,
Kojto 148:fd96258d940d 3506 q31_t * pState,
Kojto 148:fd96258d940d 3507 uint32_t blockSize);
Kojto 148:fd96258d940d 3508
Kojto 148:fd96258d940d 3509
Kojto 148:fd96258d940d 3510 /**
Kojto 148:fd96258d940d 3511 * @brief Instance structure for the Q15 FIR interpolator.
Kojto 148:fd96258d940d 3512 */
Kojto 148:fd96258d940d 3513 typedef struct
Kojto 148:fd96258d940d 3514 {
Kojto 148:fd96258d940d 3515 uint8_t L; /**< upsample factor. */
Kojto 148:fd96258d940d 3516 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 148:fd96258d940d 3517 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 148:fd96258d940d 3518 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
Kojto 148:fd96258d940d 3519 } arm_fir_interpolate_instance_q15;
Kojto 148:fd96258d940d 3520
Kojto 148:fd96258d940d 3521 /**
Kojto 148:fd96258d940d 3522 * @brief Instance structure for the Q31 FIR interpolator.
Kojto 148:fd96258d940d 3523 */
Kojto 148:fd96258d940d 3524 typedef struct
Kojto 148:fd96258d940d 3525 {
Kojto 148:fd96258d940d 3526 uint8_t L; /**< upsample factor. */
Kojto 148:fd96258d940d 3527 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 148:fd96258d940d 3528 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 148:fd96258d940d 3529 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
Kojto 148:fd96258d940d 3530 } arm_fir_interpolate_instance_q31;
Kojto 148:fd96258d940d 3531
Kojto 148:fd96258d940d 3532 /**
Kojto 148:fd96258d940d 3533 * @brief Instance structure for the floating-point FIR interpolator.
Kojto 148:fd96258d940d 3534 */
Kojto 148:fd96258d940d 3535 typedef struct
Kojto 148:fd96258d940d 3536 {
Kojto 148:fd96258d940d 3537 uint8_t L; /**< upsample factor. */
Kojto 148:fd96258d940d 3538 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 148:fd96258d940d 3539 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 148:fd96258d940d 3540 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
Kojto 148:fd96258d940d 3541 } arm_fir_interpolate_instance_f32;
Kojto 148:fd96258d940d 3542
Kojto 148:fd96258d940d 3543
Kojto 148:fd96258d940d 3544 /**
Kojto 148:fd96258d940d 3545 * @brief Processing function for the Q15 FIR interpolator.
Kojto 148:fd96258d940d 3546 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
Kojto 148:fd96258d940d 3547 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3548 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 3549 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3550 */
Kojto 148:fd96258d940d 3551 void arm_fir_interpolate_q15(
Kojto 148:fd96258d940d 3552 const arm_fir_interpolate_instance_q15 * S,
Kojto 148:fd96258d940d 3553 q15_t * pSrc,
Kojto 148:fd96258d940d 3554 q15_t * pDst,
Kojto 148:fd96258d940d 3555 uint32_t blockSize);
Kojto 148:fd96258d940d 3556
Kojto 148:fd96258d940d 3557
Kojto 148:fd96258d940d 3558 /**
Kojto 148:fd96258d940d 3559 * @brief Initialization function for the Q15 FIR interpolator.
Kojto 148:fd96258d940d 3560 * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
Kojto 148:fd96258d940d 3561 * @param[in] L upsample factor.
Kojto 148:fd96258d940d 3562 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 148:fd96258d940d 3563 * @param[in] pCoeffs points to the filter coefficient buffer.
Kojto 148:fd96258d940d 3564 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3565 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3566 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 148:fd96258d940d 3567 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 148:fd96258d940d 3568 */
Kojto 148:fd96258d940d 3569 arm_status arm_fir_interpolate_init_q15(
Kojto 148:fd96258d940d 3570 arm_fir_interpolate_instance_q15 * S,
Kojto 148:fd96258d940d 3571 uint8_t L,
Kojto 148:fd96258d940d 3572 uint16_t numTaps,
Kojto 148:fd96258d940d 3573 q15_t * pCoeffs,
Kojto 148:fd96258d940d 3574 q15_t * pState,
Kojto 148:fd96258d940d 3575 uint32_t blockSize);
Kojto 148:fd96258d940d 3576
Kojto 148:fd96258d940d 3577
Kojto 148:fd96258d940d 3578 /**
Kojto 148:fd96258d940d 3579 * @brief Processing function for the Q31 FIR interpolator.
Kojto 148:fd96258d940d 3580 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
Kojto 148:fd96258d940d 3581 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3582 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 3583 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3584 */
Kojto 148:fd96258d940d 3585 void arm_fir_interpolate_q31(
Kojto 148:fd96258d940d 3586 const arm_fir_interpolate_instance_q31 * S,
Kojto 148:fd96258d940d 3587 q31_t * pSrc,
Kojto 148:fd96258d940d 3588 q31_t * pDst,
Kojto 148:fd96258d940d 3589 uint32_t blockSize);
Kojto 148:fd96258d940d 3590
Kojto 148:fd96258d940d 3591
Kojto 148:fd96258d940d 3592 /**
Kojto 148:fd96258d940d 3593 * @brief Initialization function for the Q31 FIR interpolator.
Kojto 148:fd96258d940d 3594 * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
Kojto 148:fd96258d940d 3595 * @param[in] L upsample factor.
Kojto 148:fd96258d940d 3596 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 148:fd96258d940d 3597 * @param[in] pCoeffs points to the filter coefficient buffer.
Kojto 148:fd96258d940d 3598 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3599 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3600 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 148:fd96258d940d 3601 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 148:fd96258d940d 3602 */
Kojto 148:fd96258d940d 3603 arm_status arm_fir_interpolate_init_q31(
Kojto 148:fd96258d940d 3604 arm_fir_interpolate_instance_q31 * S,
Kojto 148:fd96258d940d 3605 uint8_t L,
Kojto 148:fd96258d940d 3606 uint16_t numTaps,
Kojto 148:fd96258d940d 3607 q31_t * pCoeffs,
Kojto 148:fd96258d940d 3608 q31_t * pState,
Kojto 148:fd96258d940d 3609 uint32_t blockSize);
Kojto 148:fd96258d940d 3610
Kojto 148:fd96258d940d 3611
Kojto 148:fd96258d940d 3612 /**
Kojto 148:fd96258d940d 3613 * @brief Processing function for the floating-point FIR interpolator.
Kojto 148:fd96258d940d 3614 * @param[in] S points to an instance of the floating-point FIR interpolator structure.
Kojto 148:fd96258d940d 3615 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3616 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 3617 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3618 */
Kojto 148:fd96258d940d 3619 void arm_fir_interpolate_f32(
Kojto 148:fd96258d940d 3620 const arm_fir_interpolate_instance_f32 * S,
Kojto 148:fd96258d940d 3621 float32_t * pSrc,
Kojto 148:fd96258d940d 3622 float32_t * pDst,
Kojto 148:fd96258d940d 3623 uint32_t blockSize);
Kojto 148:fd96258d940d 3624
Kojto 148:fd96258d940d 3625
Kojto 148:fd96258d940d 3626 /**
Kojto 148:fd96258d940d 3627 * @brief Initialization function for the floating-point FIR interpolator.
Kojto 148:fd96258d940d 3628 * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
Kojto 148:fd96258d940d 3629 * @param[in] L upsample factor.
Kojto 148:fd96258d940d 3630 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 148:fd96258d940d 3631 * @param[in] pCoeffs points to the filter coefficient buffer.
Kojto 148:fd96258d940d 3632 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3633 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 3634 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 148:fd96258d940d 3635 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 148:fd96258d940d 3636 */
Kojto 148:fd96258d940d 3637 arm_status arm_fir_interpolate_init_f32(
Kojto 148:fd96258d940d 3638 arm_fir_interpolate_instance_f32 * S,
Kojto 148:fd96258d940d 3639 uint8_t L,
Kojto 148:fd96258d940d 3640 uint16_t numTaps,
Kojto 148:fd96258d940d 3641 float32_t * pCoeffs,
Kojto 148:fd96258d940d 3642 float32_t * pState,
Kojto 148:fd96258d940d 3643 uint32_t blockSize);
Kojto 148:fd96258d940d 3644
Kojto 148:fd96258d940d 3645
Kojto 148:fd96258d940d 3646 /**
Kojto 148:fd96258d940d 3647 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
Kojto 148:fd96258d940d 3648 */
Kojto 148:fd96258d940d 3649 typedef struct
Kojto 148:fd96258d940d 3650 {
Kojto 148:fd96258d940d 3651 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 148:fd96258d940d 3652 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 148:fd96258d940d 3653 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 148:fd96258d940d 3654 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
Kojto 148:fd96258d940d 3655 } arm_biquad_cas_df1_32x64_ins_q31;
Kojto 148:fd96258d940d 3656
Kojto 148:fd96258d940d 3657
Kojto 148:fd96258d940d 3658 /**
Kojto 148:fd96258d940d 3659 * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
Kojto 148:fd96258d940d 3660 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3661 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3662 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3663 */
Kojto 148:fd96258d940d 3664 void arm_biquad_cas_df1_32x64_q31(
Kojto 148:fd96258d940d 3665 const arm_biquad_cas_df1_32x64_ins_q31 * S,
Kojto 148:fd96258d940d 3666 q31_t * pSrc,
Kojto 148:fd96258d940d 3667 q31_t * pDst,
Kojto 148:fd96258d940d 3668 uint32_t blockSize);
Kojto 148:fd96258d940d 3669
Kojto 148:fd96258d940d 3670
Kojto 148:fd96258d940d 3671 /**
Kojto 148:fd96258d940d 3672 * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
Kojto 148:fd96258d940d 3673 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 148:fd96258d940d 3674 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 3675 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3676 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
Kojto 148:fd96258d940d 3677 */
Kojto 148:fd96258d940d 3678 void arm_biquad_cas_df1_32x64_init_q31(
Kojto 148:fd96258d940d 3679 arm_biquad_cas_df1_32x64_ins_q31 * S,
Kojto 148:fd96258d940d 3680 uint8_t numStages,
Kojto 148:fd96258d940d 3681 q31_t * pCoeffs,
Kojto 148:fd96258d940d 3682 q63_t * pState,
Kojto 148:fd96258d940d 3683 uint8_t postShift);
Kojto 148:fd96258d940d 3684
Kojto 148:fd96258d940d 3685
Kojto 148:fd96258d940d 3686 /**
Kojto 148:fd96258d940d 3687 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 148:fd96258d940d 3688 */
Kojto 148:fd96258d940d 3689 typedef struct
Kojto 148:fd96258d940d 3690 {
Kojto 148:fd96258d940d 3691 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 148:fd96258d940d 3692 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
Kojto 148:fd96258d940d 3693 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 148:fd96258d940d 3694 } arm_biquad_cascade_df2T_instance_f32;
Kojto 148:fd96258d940d 3695
Kojto 148:fd96258d940d 3696 /**
Kojto 148:fd96258d940d 3697 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 148:fd96258d940d 3698 */
Kojto 148:fd96258d940d 3699 typedef struct
Kojto 148:fd96258d940d 3700 {
Kojto 148:fd96258d940d 3701 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 148:fd96258d940d 3702 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 148:fd96258d940d 3703 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 148:fd96258d940d 3704 } arm_biquad_cascade_stereo_df2T_instance_f32;
Kojto 148:fd96258d940d 3705
Kojto 148:fd96258d940d 3706 /**
Kojto 148:fd96258d940d 3707 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 148:fd96258d940d 3708 */
Kojto 148:fd96258d940d 3709 typedef struct
Kojto 148:fd96258d940d 3710 {
Kojto 148:fd96258d940d 3711 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 148:fd96258d940d 3712 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
Kojto 148:fd96258d940d 3713 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 148:fd96258d940d 3714 } arm_biquad_cascade_df2T_instance_f64;
Kojto 148:fd96258d940d 3715
Kojto 148:fd96258d940d 3716
Kojto 148:fd96258d940d 3717 /**
Kojto 148:fd96258d940d 3718 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 148:fd96258d940d 3719 * @param[in] S points to an instance of the filter data structure.
Kojto 148:fd96258d940d 3720 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3721 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3722 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3723 */
Kojto 148:fd96258d940d 3724 void arm_biquad_cascade_df2T_f32(
Kojto 148:fd96258d940d 3725 const arm_biquad_cascade_df2T_instance_f32 * S,
Kojto 148:fd96258d940d 3726 float32_t * pSrc,
Kojto 148:fd96258d940d 3727 float32_t * pDst,
Kojto 148:fd96258d940d 3728 uint32_t blockSize);
Kojto 148:fd96258d940d 3729
Kojto 148:fd96258d940d 3730
Kojto 148:fd96258d940d 3731 /**
Kojto 148:fd96258d940d 3732 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
Kojto 148:fd96258d940d 3733 * @param[in] S points to an instance of the filter data structure.
Kojto 148:fd96258d940d 3734 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3735 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3736 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3737 */
Kojto 148:fd96258d940d 3738 void arm_biquad_cascade_stereo_df2T_f32(
Kojto 148:fd96258d940d 3739 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
Kojto 148:fd96258d940d 3740 float32_t * pSrc,
Kojto 148:fd96258d940d 3741 float32_t * pDst,
Kojto 148:fd96258d940d 3742 uint32_t blockSize);
Kojto 148:fd96258d940d 3743
Kojto 148:fd96258d940d 3744
Kojto 148:fd96258d940d 3745 /**
Kojto 148:fd96258d940d 3746 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 148:fd96258d940d 3747 * @param[in] S points to an instance of the filter data structure.
Kojto 148:fd96258d940d 3748 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3749 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3750 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3751 */
Kojto 148:fd96258d940d 3752 void arm_biquad_cascade_df2T_f64(
Kojto 148:fd96258d940d 3753 const arm_biquad_cascade_df2T_instance_f64 * S,
Kojto 148:fd96258d940d 3754 float64_t * pSrc,
Kojto 148:fd96258d940d 3755 float64_t * pDst,
Kojto 148:fd96258d940d 3756 uint32_t blockSize);
Kojto 148:fd96258d940d 3757
Kojto 148:fd96258d940d 3758
Kojto 148:fd96258d940d 3759 /**
Kojto 148:fd96258d940d 3760 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 148:fd96258d940d 3761 * @param[in,out] S points to an instance of the filter data structure.
Kojto 148:fd96258d940d 3762 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 148:fd96258d940d 3763 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 3764 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3765 */
Kojto 148:fd96258d940d 3766 void arm_biquad_cascade_df2T_init_f32(
Kojto 148:fd96258d940d 3767 arm_biquad_cascade_df2T_instance_f32 * S,
Kojto 148:fd96258d940d 3768 uint8_t numStages,
Kojto 148:fd96258d940d 3769 float32_t * pCoeffs,
Kojto 148:fd96258d940d 3770 float32_t * pState);
Kojto 148:fd96258d940d 3771
Kojto 148:fd96258d940d 3772
Kojto 148:fd96258d940d 3773 /**
Kojto 148:fd96258d940d 3774 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 148:fd96258d940d 3775 * @param[in,out] S points to an instance of the filter data structure.
Kojto 148:fd96258d940d 3776 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 148:fd96258d940d 3777 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 3778 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3779 */
Kojto 148:fd96258d940d 3780 void arm_biquad_cascade_stereo_df2T_init_f32(
Kojto 148:fd96258d940d 3781 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
Kojto 148:fd96258d940d 3782 uint8_t numStages,
Kojto 148:fd96258d940d 3783 float32_t * pCoeffs,
Kojto 148:fd96258d940d 3784 float32_t * pState);
Kojto 148:fd96258d940d 3785
Kojto 148:fd96258d940d 3786
Kojto 148:fd96258d940d 3787 /**
Kojto 148:fd96258d940d 3788 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 148:fd96258d940d 3789 * @param[in,out] S points to an instance of the filter data structure.
Kojto 148:fd96258d940d 3790 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 148:fd96258d940d 3791 * @param[in] pCoeffs points to the filter coefficients.
Kojto 148:fd96258d940d 3792 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 3793 */
Kojto 148:fd96258d940d 3794 void arm_biquad_cascade_df2T_init_f64(
Kojto 148:fd96258d940d 3795 arm_biquad_cascade_df2T_instance_f64 * S,
Kojto 148:fd96258d940d 3796 uint8_t numStages,
Kojto 148:fd96258d940d 3797 float64_t * pCoeffs,
Kojto 148:fd96258d940d 3798 float64_t * pState);
Kojto 148:fd96258d940d 3799
Kojto 148:fd96258d940d 3800
Kojto 148:fd96258d940d 3801 /**
Kojto 148:fd96258d940d 3802 * @brief Instance structure for the Q15 FIR lattice filter.
Kojto 148:fd96258d940d 3803 */
Kojto 148:fd96258d940d 3804 typedef struct
Kojto 148:fd96258d940d 3805 {
Kojto 148:fd96258d940d 3806 uint16_t numStages; /**< number of filter stages. */
Kojto 148:fd96258d940d 3807 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 148:fd96258d940d 3808 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 148:fd96258d940d 3809 } arm_fir_lattice_instance_q15;
Kojto 148:fd96258d940d 3810
Kojto 148:fd96258d940d 3811 /**
Kojto 148:fd96258d940d 3812 * @brief Instance structure for the Q31 FIR lattice filter.
Kojto 148:fd96258d940d 3813 */
Kojto 148:fd96258d940d 3814 typedef struct
Kojto 148:fd96258d940d 3815 {
Kojto 148:fd96258d940d 3816 uint16_t numStages; /**< number of filter stages. */
Kojto 148:fd96258d940d 3817 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 148:fd96258d940d 3818 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 148:fd96258d940d 3819 } arm_fir_lattice_instance_q31;
Kojto 148:fd96258d940d 3820
Kojto 148:fd96258d940d 3821 /**
Kojto 148:fd96258d940d 3822 * @brief Instance structure for the floating-point FIR lattice filter.
Kojto 148:fd96258d940d 3823 */
Kojto 148:fd96258d940d 3824 typedef struct
Kojto 148:fd96258d940d 3825 {
Kojto 148:fd96258d940d 3826 uint16_t numStages; /**< number of filter stages. */
Kojto 148:fd96258d940d 3827 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 148:fd96258d940d 3828 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 148:fd96258d940d 3829 } arm_fir_lattice_instance_f32;
Kojto 148:fd96258d940d 3830
Kojto 148:fd96258d940d 3831
Kojto 148:fd96258d940d 3832 /**
Kojto 148:fd96258d940d 3833 * @brief Initialization function for the Q15 FIR lattice filter.
Kojto 148:fd96258d940d 3834 * @param[in] S points to an instance of the Q15 FIR lattice structure.
Kojto 148:fd96258d940d 3835 * @param[in] numStages number of filter stages.
Kojto 148:fd96258d940d 3836 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 148:fd96258d940d 3837 * @param[in] pState points to the state buffer. The array is of length numStages.
Kojto 148:fd96258d940d 3838 */
Kojto 148:fd96258d940d 3839 void arm_fir_lattice_init_q15(
Kojto 148:fd96258d940d 3840 arm_fir_lattice_instance_q15 * S,
Kojto 148:fd96258d940d 3841 uint16_t numStages,
Kojto 148:fd96258d940d 3842 q15_t * pCoeffs,
Kojto 148:fd96258d940d 3843 q15_t * pState);
Kojto 148:fd96258d940d 3844
Kojto 148:fd96258d940d 3845
Kojto 148:fd96258d940d 3846 /**
Kojto 148:fd96258d940d 3847 * @brief Processing function for the Q15 FIR lattice filter.
Kojto 148:fd96258d940d 3848 * @param[in] S points to an instance of the Q15 FIR lattice structure.
Kojto 148:fd96258d940d 3849 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3850 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 3851 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3852 */
Kojto 148:fd96258d940d 3853 void arm_fir_lattice_q15(
Kojto 148:fd96258d940d 3854 const arm_fir_lattice_instance_q15 * S,
Kojto 148:fd96258d940d 3855 q15_t * pSrc,
Kojto 148:fd96258d940d 3856 q15_t * pDst,
Kojto 148:fd96258d940d 3857 uint32_t blockSize);
Kojto 148:fd96258d940d 3858
Kojto 148:fd96258d940d 3859
Kojto 148:fd96258d940d 3860 /**
Kojto 148:fd96258d940d 3861 * @brief Initialization function for the Q31 FIR lattice filter.
Kojto 148:fd96258d940d 3862 * @param[in] S points to an instance of the Q31 FIR lattice structure.
Kojto 148:fd96258d940d 3863 * @param[in] numStages number of filter stages.
Kojto 148:fd96258d940d 3864 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 148:fd96258d940d 3865 * @param[in] pState points to the state buffer. The array is of length numStages.
Kojto 148:fd96258d940d 3866 */
Kojto 148:fd96258d940d 3867 void arm_fir_lattice_init_q31(
Kojto 148:fd96258d940d 3868 arm_fir_lattice_instance_q31 * S,
Kojto 148:fd96258d940d 3869 uint16_t numStages,
Kojto 148:fd96258d940d 3870 q31_t * pCoeffs,
Kojto 148:fd96258d940d 3871 q31_t * pState);
Kojto 148:fd96258d940d 3872
Kojto 148:fd96258d940d 3873
Kojto 148:fd96258d940d 3874 /**
Kojto 148:fd96258d940d 3875 * @brief Processing function for the Q31 FIR lattice filter.
Kojto 148:fd96258d940d 3876 * @param[in] S points to an instance of the Q31 FIR lattice structure.
Kojto 148:fd96258d940d 3877 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3878 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3879 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3880 */
Kojto 148:fd96258d940d 3881 void arm_fir_lattice_q31(
Kojto 148:fd96258d940d 3882 const arm_fir_lattice_instance_q31 * S,
Kojto 148:fd96258d940d 3883 q31_t * pSrc,
Kojto 148:fd96258d940d 3884 q31_t * pDst,
Kojto 148:fd96258d940d 3885 uint32_t blockSize);
Kojto 148:fd96258d940d 3886
Kojto 148:fd96258d940d 3887
Kojto 148:fd96258d940d 3888 /**
Kojto 148:fd96258d940d 3889 * @brief Initialization function for the floating-point FIR lattice filter.
Kojto 148:fd96258d940d 3890 * @param[in] S points to an instance of the floating-point FIR lattice structure.
Kojto 148:fd96258d940d 3891 * @param[in] numStages number of filter stages.
Kojto 148:fd96258d940d 3892 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 148:fd96258d940d 3893 * @param[in] pState points to the state buffer. The array is of length numStages.
Kojto 148:fd96258d940d 3894 */
Kojto 148:fd96258d940d 3895 void arm_fir_lattice_init_f32(
Kojto 148:fd96258d940d 3896 arm_fir_lattice_instance_f32 * S,
Kojto 148:fd96258d940d 3897 uint16_t numStages,
Kojto 148:fd96258d940d 3898 float32_t * pCoeffs,
Kojto 148:fd96258d940d 3899 float32_t * pState);
Kojto 148:fd96258d940d 3900
Kojto 148:fd96258d940d 3901
Kojto 148:fd96258d940d 3902 /**
Kojto 148:fd96258d940d 3903 * @brief Processing function for the floating-point FIR lattice filter.
Kojto 148:fd96258d940d 3904 * @param[in] S points to an instance of the floating-point FIR lattice structure.
Kojto 148:fd96258d940d 3905 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3906 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 3907 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3908 */
Kojto 148:fd96258d940d 3909 void arm_fir_lattice_f32(
Kojto 148:fd96258d940d 3910 const arm_fir_lattice_instance_f32 * S,
Kojto 148:fd96258d940d 3911 float32_t * pSrc,
Kojto 148:fd96258d940d 3912 float32_t * pDst,
Kojto 148:fd96258d940d 3913 uint32_t blockSize);
Kojto 148:fd96258d940d 3914
Kojto 148:fd96258d940d 3915
Kojto 148:fd96258d940d 3916 /**
Kojto 148:fd96258d940d 3917 * @brief Instance structure for the Q15 IIR lattice filter.
Kojto 148:fd96258d940d 3918 */
Kojto 148:fd96258d940d 3919 typedef struct
Kojto 148:fd96258d940d 3920 {
Kojto 148:fd96258d940d 3921 uint16_t numStages; /**< number of stages in the filter. */
Kojto 148:fd96258d940d 3922 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 148:fd96258d940d 3923 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 148:fd96258d940d 3924 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 148:fd96258d940d 3925 } arm_iir_lattice_instance_q15;
Kojto 148:fd96258d940d 3926
Kojto 148:fd96258d940d 3927 /**
Kojto 148:fd96258d940d 3928 * @brief Instance structure for the Q31 IIR lattice filter.
Kojto 148:fd96258d940d 3929 */
Kojto 148:fd96258d940d 3930 typedef struct
Kojto 148:fd96258d940d 3931 {
Kojto 148:fd96258d940d 3932 uint16_t numStages; /**< number of stages in the filter. */
Kojto 148:fd96258d940d 3933 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 148:fd96258d940d 3934 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 148:fd96258d940d 3935 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 148:fd96258d940d 3936 } arm_iir_lattice_instance_q31;
Kojto 148:fd96258d940d 3937
Kojto 148:fd96258d940d 3938 /**
Kojto 148:fd96258d940d 3939 * @brief Instance structure for the floating-point IIR lattice filter.
Kojto 148:fd96258d940d 3940 */
Kojto 148:fd96258d940d 3941 typedef struct
Kojto 148:fd96258d940d 3942 {
Kojto 148:fd96258d940d 3943 uint16_t numStages; /**< number of stages in the filter. */
Kojto 148:fd96258d940d 3944 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 148:fd96258d940d 3945 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 148:fd96258d940d 3946 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 148:fd96258d940d 3947 } arm_iir_lattice_instance_f32;
Kojto 148:fd96258d940d 3948
Kojto 148:fd96258d940d 3949
Kojto 148:fd96258d940d 3950 /**
Kojto 148:fd96258d940d 3951 * @brief Processing function for the floating-point IIR lattice filter.
Kojto 148:fd96258d940d 3952 * @param[in] S points to an instance of the floating-point IIR lattice structure.
Kojto 148:fd96258d940d 3953 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3954 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 3955 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3956 */
Kojto 148:fd96258d940d 3957 void arm_iir_lattice_f32(
Kojto 148:fd96258d940d 3958 const arm_iir_lattice_instance_f32 * S,
Kojto 148:fd96258d940d 3959 float32_t * pSrc,
Kojto 148:fd96258d940d 3960 float32_t * pDst,
Kojto 148:fd96258d940d 3961 uint32_t blockSize);
Kojto 148:fd96258d940d 3962
Kojto 148:fd96258d940d 3963
Kojto 148:fd96258d940d 3964 /**
Kojto 148:fd96258d940d 3965 * @brief Initialization function for the floating-point IIR lattice filter.
Kojto 148:fd96258d940d 3966 * @param[in] S points to an instance of the floating-point IIR lattice structure.
Kojto 148:fd96258d940d 3967 * @param[in] numStages number of stages in the filter.
Kojto 148:fd96258d940d 3968 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
Kojto 148:fd96258d940d 3969 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
Kojto 148:fd96258d940d 3970 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
Kojto 148:fd96258d940d 3971 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3972 */
Kojto 148:fd96258d940d 3973 void arm_iir_lattice_init_f32(
Kojto 148:fd96258d940d 3974 arm_iir_lattice_instance_f32 * S,
Kojto 148:fd96258d940d 3975 uint16_t numStages,
Kojto 148:fd96258d940d 3976 float32_t * pkCoeffs,
Kojto 148:fd96258d940d 3977 float32_t * pvCoeffs,
Kojto 148:fd96258d940d 3978 float32_t * pState,
Kojto 148:fd96258d940d 3979 uint32_t blockSize);
Kojto 148:fd96258d940d 3980
Kojto 148:fd96258d940d 3981
Kojto 148:fd96258d940d 3982 /**
Kojto 148:fd96258d940d 3983 * @brief Processing function for the Q31 IIR lattice filter.
Kojto 148:fd96258d940d 3984 * @param[in] S points to an instance of the Q31 IIR lattice structure.
Kojto 148:fd96258d940d 3985 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 3986 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 3987 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 3988 */
Kojto 148:fd96258d940d 3989 void arm_iir_lattice_q31(
Kojto 148:fd96258d940d 3990 const arm_iir_lattice_instance_q31 * S,
Kojto 148:fd96258d940d 3991 q31_t * pSrc,
Kojto 148:fd96258d940d 3992 q31_t * pDst,
Kojto 148:fd96258d940d 3993 uint32_t blockSize);
Kojto 148:fd96258d940d 3994
Kojto 148:fd96258d940d 3995
Kojto 148:fd96258d940d 3996 /**
Kojto 148:fd96258d940d 3997 * @brief Initialization function for the Q31 IIR lattice filter.
Kojto 148:fd96258d940d 3998 * @param[in] S points to an instance of the Q31 IIR lattice structure.
Kojto 148:fd96258d940d 3999 * @param[in] numStages number of stages in the filter.
Kojto 148:fd96258d940d 4000 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
Kojto 148:fd96258d940d 4001 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
Kojto 148:fd96258d940d 4002 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
Kojto 148:fd96258d940d 4003 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4004 */
Kojto 148:fd96258d940d 4005 void arm_iir_lattice_init_q31(
Kojto 148:fd96258d940d 4006 arm_iir_lattice_instance_q31 * S,
Kojto 148:fd96258d940d 4007 uint16_t numStages,
Kojto 148:fd96258d940d 4008 q31_t * pkCoeffs,
Kojto 148:fd96258d940d 4009 q31_t * pvCoeffs,
Kojto 148:fd96258d940d 4010 q31_t * pState,
Kojto 148:fd96258d940d 4011 uint32_t blockSize);
Kojto 148:fd96258d940d 4012
Kojto 148:fd96258d940d 4013
Kojto 148:fd96258d940d 4014 /**
Kojto 148:fd96258d940d 4015 * @brief Processing function for the Q15 IIR lattice filter.
Kojto 148:fd96258d940d 4016 * @param[in] S points to an instance of the Q15 IIR lattice structure.
Kojto 148:fd96258d940d 4017 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4018 * @param[out] pDst points to the block of output data.
Kojto 148:fd96258d940d 4019 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4020 */
Kojto 148:fd96258d940d 4021 void arm_iir_lattice_q15(
Kojto 148:fd96258d940d 4022 const arm_iir_lattice_instance_q15 * S,
Kojto 148:fd96258d940d 4023 q15_t * pSrc,
Kojto 148:fd96258d940d 4024 q15_t * pDst,
Kojto 148:fd96258d940d 4025 uint32_t blockSize);
Kojto 148:fd96258d940d 4026
Kojto 148:fd96258d940d 4027
Kojto 148:fd96258d940d 4028 /**
Kojto 148:fd96258d940d 4029 * @brief Initialization function for the Q15 IIR lattice filter.
Kojto 148:fd96258d940d 4030 * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
Kojto 148:fd96258d940d 4031 * @param[in] numStages number of stages in the filter.
Kojto 148:fd96258d940d 4032 * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
Kojto 148:fd96258d940d 4033 * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
Kojto 148:fd96258d940d 4034 * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
Kojto 148:fd96258d940d 4035 * @param[in] blockSize number of samples to process per call.
Kojto 148:fd96258d940d 4036 */
Kojto 148:fd96258d940d 4037 void arm_iir_lattice_init_q15(
Kojto 148:fd96258d940d 4038 arm_iir_lattice_instance_q15 * S,
Kojto 148:fd96258d940d 4039 uint16_t numStages,
Kojto 148:fd96258d940d 4040 q15_t * pkCoeffs,
Kojto 148:fd96258d940d 4041 q15_t * pvCoeffs,
Kojto 148:fd96258d940d 4042 q15_t * pState,
Kojto 148:fd96258d940d 4043 uint32_t blockSize);
Kojto 148:fd96258d940d 4044
Kojto 148:fd96258d940d 4045
Kojto 148:fd96258d940d 4046 /**
Kojto 148:fd96258d940d 4047 * @brief Instance structure for the floating-point LMS filter.
Kojto 148:fd96258d940d 4048 */
Kojto 148:fd96258d940d 4049 typedef struct
Kojto 148:fd96258d940d 4050 {
Kojto 148:fd96258d940d 4051 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 4052 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 4053 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 148:fd96258d940d 4054 float32_t mu; /**< step size that controls filter coefficient updates. */
Kojto 148:fd96258d940d 4055 } arm_lms_instance_f32;
Kojto 148:fd96258d940d 4056
Kojto 148:fd96258d940d 4057
Kojto 148:fd96258d940d 4058 /**
Kojto 148:fd96258d940d 4059 * @brief Processing function for floating-point LMS filter.
Kojto 148:fd96258d940d 4060 * @param[in] S points to an instance of the floating-point LMS filter structure.
Kojto 148:fd96258d940d 4061 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4062 * @param[in] pRef points to the block of reference data.
Kojto 148:fd96258d940d 4063 * @param[out] pOut points to the block of output data.
Kojto 148:fd96258d940d 4064 * @param[out] pErr points to the block of error data.
Kojto 148:fd96258d940d 4065 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4066 */
Kojto 148:fd96258d940d 4067 void arm_lms_f32(
Kojto 148:fd96258d940d 4068 const arm_lms_instance_f32 * S,
Kojto 148:fd96258d940d 4069 float32_t * pSrc,
Kojto 148:fd96258d940d 4070 float32_t * pRef,
Kojto 148:fd96258d940d 4071 float32_t * pOut,
Kojto 148:fd96258d940d 4072 float32_t * pErr,
Kojto 148:fd96258d940d 4073 uint32_t blockSize);
Kojto 148:fd96258d940d 4074
Kojto 148:fd96258d940d 4075
Kojto 148:fd96258d940d 4076 /**
Kojto 148:fd96258d940d 4077 * @brief Initialization function for floating-point LMS filter.
Kojto 148:fd96258d940d 4078 * @param[in] S points to an instance of the floating-point LMS filter structure.
Kojto 148:fd96258d940d 4079 * @param[in] numTaps number of filter coefficients.
Kojto 148:fd96258d940d 4080 * @param[in] pCoeffs points to the coefficient buffer.
Kojto 148:fd96258d940d 4081 * @param[in] pState points to state buffer.
Kojto 148:fd96258d940d 4082 * @param[in] mu step size that controls filter coefficient updates.
Kojto 148:fd96258d940d 4083 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4084 */
Kojto 148:fd96258d940d 4085 void arm_lms_init_f32(
Kojto 148:fd96258d940d 4086 arm_lms_instance_f32 * S,
Kojto 148:fd96258d940d 4087 uint16_t numTaps,
Kojto 148:fd96258d940d 4088 float32_t * pCoeffs,
Kojto 148:fd96258d940d 4089 float32_t * pState,
Kojto 148:fd96258d940d 4090 float32_t mu,
Kojto 148:fd96258d940d 4091 uint32_t blockSize);
Kojto 148:fd96258d940d 4092
Kojto 148:fd96258d940d 4093
Kojto 148:fd96258d940d 4094 /**
Kojto 148:fd96258d940d 4095 * @brief Instance structure for the Q15 LMS filter.
Kojto 148:fd96258d940d 4096 */
Kojto 148:fd96258d940d 4097 typedef struct
Kojto 148:fd96258d940d 4098 {
Kojto 148:fd96258d940d 4099 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 4100 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 4101 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 148:fd96258d940d 4102 q15_t mu; /**< step size that controls filter coefficient updates. */
Kojto 148:fd96258d940d 4103 uint32_t postShift; /**< bit shift applied to coefficients. */
Kojto 148:fd96258d940d 4104 } arm_lms_instance_q15;
Kojto 148:fd96258d940d 4105
Kojto 148:fd96258d940d 4106
Kojto 148:fd96258d940d 4107 /**
Kojto 148:fd96258d940d 4108 * @brief Initialization function for the Q15 LMS filter.
Kojto 148:fd96258d940d 4109 * @param[in] S points to an instance of the Q15 LMS filter structure.
Kojto 148:fd96258d940d 4110 * @param[in] numTaps number of filter coefficients.
Kojto 148:fd96258d940d 4111 * @param[in] pCoeffs points to the coefficient buffer.
Kojto 148:fd96258d940d 4112 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 4113 * @param[in] mu step size that controls filter coefficient updates.
Kojto 148:fd96258d940d 4114 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4115 * @param[in] postShift bit shift applied to coefficients.
Kojto 148:fd96258d940d 4116 */
Kojto 148:fd96258d940d 4117 void arm_lms_init_q15(
Kojto 148:fd96258d940d 4118 arm_lms_instance_q15 * S,
Kojto 148:fd96258d940d 4119 uint16_t numTaps,
Kojto 148:fd96258d940d 4120 q15_t * pCoeffs,
Kojto 148:fd96258d940d 4121 q15_t * pState,
Kojto 148:fd96258d940d 4122 q15_t mu,
Kojto 148:fd96258d940d 4123 uint32_t blockSize,
Kojto 148:fd96258d940d 4124 uint32_t postShift);
Kojto 148:fd96258d940d 4125
Kojto 148:fd96258d940d 4126
Kojto 148:fd96258d940d 4127 /**
Kojto 148:fd96258d940d 4128 * @brief Processing function for Q15 LMS filter.
Kojto 148:fd96258d940d 4129 * @param[in] S points to an instance of the Q15 LMS filter structure.
Kojto 148:fd96258d940d 4130 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4131 * @param[in] pRef points to the block of reference data.
Kojto 148:fd96258d940d 4132 * @param[out] pOut points to the block of output data.
Kojto 148:fd96258d940d 4133 * @param[out] pErr points to the block of error data.
Kojto 148:fd96258d940d 4134 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4135 */
Kojto 148:fd96258d940d 4136 void arm_lms_q15(
Kojto 148:fd96258d940d 4137 const arm_lms_instance_q15 * S,
Kojto 148:fd96258d940d 4138 q15_t * pSrc,
Kojto 148:fd96258d940d 4139 q15_t * pRef,
Kojto 148:fd96258d940d 4140 q15_t * pOut,
Kojto 148:fd96258d940d 4141 q15_t * pErr,
Kojto 148:fd96258d940d 4142 uint32_t blockSize);
Kojto 148:fd96258d940d 4143
Kojto 148:fd96258d940d 4144
Kojto 148:fd96258d940d 4145 /**
Kojto 148:fd96258d940d 4146 * @brief Instance structure for the Q31 LMS filter.
Kojto 148:fd96258d940d 4147 */
Kojto 148:fd96258d940d 4148 typedef struct
Kojto 148:fd96258d940d 4149 {
Kojto 148:fd96258d940d 4150 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 4151 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 4152 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 148:fd96258d940d 4153 q31_t mu; /**< step size that controls filter coefficient updates. */
Kojto 148:fd96258d940d 4154 uint32_t postShift; /**< bit shift applied to coefficients. */
Kojto 148:fd96258d940d 4155 } arm_lms_instance_q31;
Kojto 148:fd96258d940d 4156
Kojto 148:fd96258d940d 4157
Kojto 148:fd96258d940d 4158 /**
Kojto 148:fd96258d940d 4159 * @brief Processing function for Q31 LMS filter.
Kojto 148:fd96258d940d 4160 * @param[in] S points to an instance of the Q15 LMS filter structure.
Kojto 148:fd96258d940d 4161 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4162 * @param[in] pRef points to the block of reference data.
Kojto 148:fd96258d940d 4163 * @param[out] pOut points to the block of output data.
Kojto 148:fd96258d940d 4164 * @param[out] pErr points to the block of error data.
Kojto 148:fd96258d940d 4165 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4166 */
Kojto 148:fd96258d940d 4167 void arm_lms_q31(
Kojto 148:fd96258d940d 4168 const arm_lms_instance_q31 * S,
Kojto 148:fd96258d940d 4169 q31_t * pSrc,
Kojto 148:fd96258d940d 4170 q31_t * pRef,
Kojto 148:fd96258d940d 4171 q31_t * pOut,
Kojto 148:fd96258d940d 4172 q31_t * pErr,
Kojto 148:fd96258d940d 4173 uint32_t blockSize);
Kojto 148:fd96258d940d 4174
Kojto 148:fd96258d940d 4175
Kojto 148:fd96258d940d 4176 /**
Kojto 148:fd96258d940d 4177 * @brief Initialization function for Q31 LMS filter.
Kojto 148:fd96258d940d 4178 * @param[in] S points to an instance of the Q31 LMS filter structure.
Kojto 148:fd96258d940d 4179 * @param[in] numTaps number of filter coefficients.
Kojto 148:fd96258d940d 4180 * @param[in] pCoeffs points to coefficient buffer.
Kojto 148:fd96258d940d 4181 * @param[in] pState points to state buffer.
Kojto 148:fd96258d940d 4182 * @param[in] mu step size that controls filter coefficient updates.
Kojto 148:fd96258d940d 4183 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4184 * @param[in] postShift bit shift applied to coefficients.
Kojto 148:fd96258d940d 4185 */
Kojto 148:fd96258d940d 4186 void arm_lms_init_q31(
Kojto 148:fd96258d940d 4187 arm_lms_instance_q31 * S,
Kojto 148:fd96258d940d 4188 uint16_t numTaps,
Kojto 148:fd96258d940d 4189 q31_t * pCoeffs,
Kojto 148:fd96258d940d 4190 q31_t * pState,
Kojto 148:fd96258d940d 4191 q31_t mu,
Kojto 148:fd96258d940d 4192 uint32_t blockSize,
Kojto 148:fd96258d940d 4193 uint32_t postShift);
Kojto 148:fd96258d940d 4194
Kojto 148:fd96258d940d 4195
Kojto 148:fd96258d940d 4196 /**
Kojto 148:fd96258d940d 4197 * @brief Instance structure for the floating-point normalized LMS filter.
Kojto 148:fd96258d940d 4198 */
Kojto 148:fd96258d940d 4199 typedef struct
Kojto 148:fd96258d940d 4200 {
Kojto 148:fd96258d940d 4201 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 4202 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 4203 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 148:fd96258d940d 4204 float32_t mu; /**< step size that control filter coefficient updates. */
Kojto 148:fd96258d940d 4205 float32_t energy; /**< saves previous frame energy. */
Kojto 148:fd96258d940d 4206 float32_t x0; /**< saves previous input sample. */
Kojto 148:fd96258d940d 4207 } arm_lms_norm_instance_f32;
Kojto 148:fd96258d940d 4208
Kojto 148:fd96258d940d 4209
Kojto 148:fd96258d940d 4210 /**
Kojto 148:fd96258d940d 4211 * @brief Processing function for floating-point normalized LMS filter.
Kojto 148:fd96258d940d 4212 * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
Kojto 148:fd96258d940d 4213 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4214 * @param[in] pRef points to the block of reference data.
Kojto 148:fd96258d940d 4215 * @param[out] pOut points to the block of output data.
Kojto 148:fd96258d940d 4216 * @param[out] pErr points to the block of error data.
Kojto 148:fd96258d940d 4217 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4218 */
Kojto 148:fd96258d940d 4219 void arm_lms_norm_f32(
Kojto 148:fd96258d940d 4220 arm_lms_norm_instance_f32 * S,
Kojto 148:fd96258d940d 4221 float32_t * pSrc,
Kojto 148:fd96258d940d 4222 float32_t * pRef,
Kojto 148:fd96258d940d 4223 float32_t * pOut,
Kojto 148:fd96258d940d 4224 float32_t * pErr,
Kojto 148:fd96258d940d 4225 uint32_t blockSize);
Kojto 148:fd96258d940d 4226
Kojto 148:fd96258d940d 4227
Kojto 148:fd96258d940d 4228 /**
Kojto 148:fd96258d940d 4229 * @brief Initialization function for floating-point normalized LMS filter.
Kojto 148:fd96258d940d 4230 * @param[in] S points to an instance of the floating-point LMS filter structure.
Kojto 148:fd96258d940d 4231 * @param[in] numTaps number of filter coefficients.
Kojto 148:fd96258d940d 4232 * @param[in] pCoeffs points to coefficient buffer.
Kojto 148:fd96258d940d 4233 * @param[in] pState points to state buffer.
Kojto 148:fd96258d940d 4234 * @param[in] mu step size that controls filter coefficient updates.
Kojto 148:fd96258d940d 4235 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4236 */
Kojto 148:fd96258d940d 4237 void arm_lms_norm_init_f32(
Kojto 148:fd96258d940d 4238 arm_lms_norm_instance_f32 * S,
Kojto 148:fd96258d940d 4239 uint16_t numTaps,
Kojto 148:fd96258d940d 4240 float32_t * pCoeffs,
Kojto 148:fd96258d940d 4241 float32_t * pState,
Kojto 148:fd96258d940d 4242 float32_t mu,
Kojto 148:fd96258d940d 4243 uint32_t blockSize);
Kojto 148:fd96258d940d 4244
Kojto 148:fd96258d940d 4245
Kojto 148:fd96258d940d 4246 /**
Kojto 148:fd96258d940d 4247 * @brief Instance structure for the Q31 normalized LMS filter.
Kojto 148:fd96258d940d 4248 */
Kojto 148:fd96258d940d 4249 typedef struct
Kojto 148:fd96258d940d 4250 {
Kojto 148:fd96258d940d 4251 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 4252 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 4253 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 148:fd96258d940d 4254 q31_t mu; /**< step size that controls filter coefficient updates. */
Kojto 148:fd96258d940d 4255 uint8_t postShift; /**< bit shift applied to coefficients. */
Kojto 148:fd96258d940d 4256 q31_t *recipTable; /**< points to the reciprocal initial value table. */
Kojto 148:fd96258d940d 4257 q31_t energy; /**< saves previous frame energy. */
Kojto 148:fd96258d940d 4258 q31_t x0; /**< saves previous input sample. */
Kojto 148:fd96258d940d 4259 } arm_lms_norm_instance_q31;
Kojto 148:fd96258d940d 4260
Kojto 148:fd96258d940d 4261
Kojto 148:fd96258d940d 4262 /**
Kojto 148:fd96258d940d 4263 * @brief Processing function for Q31 normalized LMS filter.
Kojto 148:fd96258d940d 4264 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
Kojto 148:fd96258d940d 4265 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4266 * @param[in] pRef points to the block of reference data.
Kojto 148:fd96258d940d 4267 * @param[out] pOut points to the block of output data.
Kojto 148:fd96258d940d 4268 * @param[out] pErr points to the block of error data.
Kojto 148:fd96258d940d 4269 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4270 */
Kojto 148:fd96258d940d 4271 void arm_lms_norm_q31(
Kojto 148:fd96258d940d 4272 arm_lms_norm_instance_q31 * S,
Kojto 148:fd96258d940d 4273 q31_t * pSrc,
Kojto 148:fd96258d940d 4274 q31_t * pRef,
Kojto 148:fd96258d940d 4275 q31_t * pOut,
Kojto 148:fd96258d940d 4276 q31_t * pErr,
Kojto 148:fd96258d940d 4277 uint32_t blockSize);
Kojto 148:fd96258d940d 4278
Kojto 148:fd96258d940d 4279
Kojto 148:fd96258d940d 4280 /**
Kojto 148:fd96258d940d 4281 * @brief Initialization function for Q31 normalized LMS filter.
Kojto 148:fd96258d940d 4282 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
Kojto 148:fd96258d940d 4283 * @param[in] numTaps number of filter coefficients.
Kojto 148:fd96258d940d 4284 * @param[in] pCoeffs points to coefficient buffer.
Kojto 148:fd96258d940d 4285 * @param[in] pState points to state buffer.
Kojto 148:fd96258d940d 4286 * @param[in] mu step size that controls filter coefficient updates.
Kojto 148:fd96258d940d 4287 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4288 * @param[in] postShift bit shift applied to coefficients.
Kojto 148:fd96258d940d 4289 */
Kojto 148:fd96258d940d 4290 void arm_lms_norm_init_q31(
Kojto 148:fd96258d940d 4291 arm_lms_norm_instance_q31 * S,
Kojto 148:fd96258d940d 4292 uint16_t numTaps,
Kojto 148:fd96258d940d 4293 q31_t * pCoeffs,
Kojto 148:fd96258d940d 4294 q31_t * pState,
Kojto 148:fd96258d940d 4295 q31_t mu,
Kojto 148:fd96258d940d 4296 uint32_t blockSize,
Kojto 148:fd96258d940d 4297 uint8_t postShift);
Kojto 148:fd96258d940d 4298
Kojto 148:fd96258d940d 4299
Kojto 148:fd96258d940d 4300 /**
Kojto 148:fd96258d940d 4301 * @brief Instance structure for the Q15 normalized LMS filter.
Kojto 148:fd96258d940d 4302 */
Kojto 148:fd96258d940d 4303 typedef struct
Kojto 148:fd96258d940d 4304 {
Kojto 148:fd96258d940d 4305 uint16_t numTaps; /**< Number of coefficients in the filter. */
Kojto 148:fd96258d940d 4306 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 148:fd96258d940d 4307 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 148:fd96258d940d 4308 q15_t mu; /**< step size that controls filter coefficient updates. */
Kojto 148:fd96258d940d 4309 uint8_t postShift; /**< bit shift applied to coefficients. */
Kojto 148:fd96258d940d 4310 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
Kojto 148:fd96258d940d 4311 q15_t energy; /**< saves previous frame energy. */
Kojto 148:fd96258d940d 4312 q15_t x0; /**< saves previous input sample. */
Kojto 148:fd96258d940d 4313 } arm_lms_norm_instance_q15;
Kojto 148:fd96258d940d 4314
Kojto 148:fd96258d940d 4315
Kojto 148:fd96258d940d 4316 /**
Kojto 148:fd96258d940d 4317 * @brief Processing function for Q15 normalized LMS filter.
Kojto 148:fd96258d940d 4318 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
Kojto 148:fd96258d940d 4319 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4320 * @param[in] pRef points to the block of reference data.
Kojto 148:fd96258d940d 4321 * @param[out] pOut points to the block of output data.
Kojto 148:fd96258d940d 4322 * @param[out] pErr points to the block of error data.
Kojto 148:fd96258d940d 4323 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4324 */
Kojto 148:fd96258d940d 4325 void arm_lms_norm_q15(
Kojto 148:fd96258d940d 4326 arm_lms_norm_instance_q15 * S,
Kojto 148:fd96258d940d 4327 q15_t * pSrc,
Kojto 148:fd96258d940d 4328 q15_t * pRef,
Kojto 148:fd96258d940d 4329 q15_t * pOut,
Kojto 148:fd96258d940d 4330 q15_t * pErr,
Kojto 148:fd96258d940d 4331 uint32_t blockSize);
Kojto 148:fd96258d940d 4332
Kojto 148:fd96258d940d 4333
Kojto 148:fd96258d940d 4334 /**
Kojto 148:fd96258d940d 4335 * @brief Initialization function for Q15 normalized LMS filter.
Kojto 148:fd96258d940d 4336 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
Kojto 148:fd96258d940d 4337 * @param[in] numTaps number of filter coefficients.
Kojto 148:fd96258d940d 4338 * @param[in] pCoeffs points to coefficient buffer.
Kojto 148:fd96258d940d 4339 * @param[in] pState points to state buffer.
Kojto 148:fd96258d940d 4340 * @param[in] mu step size that controls filter coefficient updates.
Kojto 148:fd96258d940d 4341 * @param[in] blockSize number of samples to process.
Kojto 148:fd96258d940d 4342 * @param[in] postShift bit shift applied to coefficients.
Kojto 148:fd96258d940d 4343 */
Kojto 148:fd96258d940d 4344 void arm_lms_norm_init_q15(
Kojto 148:fd96258d940d 4345 arm_lms_norm_instance_q15 * S,
Kojto 148:fd96258d940d 4346 uint16_t numTaps,
Kojto 148:fd96258d940d 4347 q15_t * pCoeffs,
Kojto 148:fd96258d940d 4348 q15_t * pState,
Kojto 148:fd96258d940d 4349 q15_t mu,
Kojto 148:fd96258d940d 4350 uint32_t blockSize,
Kojto 148:fd96258d940d 4351 uint8_t postShift);
Kojto 148:fd96258d940d 4352
Kojto 148:fd96258d940d 4353
Kojto 148:fd96258d940d 4354 /**
Kojto 148:fd96258d940d 4355 * @brief Correlation of floating-point sequences.
Kojto 148:fd96258d940d 4356 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 4357 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 4358 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 4359 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 4360 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 148:fd96258d940d 4361 */
Kojto 148:fd96258d940d 4362 void arm_correlate_f32(
Kojto 148:fd96258d940d 4363 float32_t * pSrcA,
Kojto 148:fd96258d940d 4364 uint32_t srcALen,
Kojto 148:fd96258d940d 4365 float32_t * pSrcB,
Kojto 148:fd96258d940d 4366 uint32_t srcBLen,
Kojto 148:fd96258d940d 4367 float32_t * pDst);
Kojto 148:fd96258d940d 4368
Kojto 148:fd96258d940d 4369
Kojto 148:fd96258d940d 4370 /**
Kojto 148:fd96258d940d 4371 * @brief Correlation of Q15 sequences
Kojto 148:fd96258d940d 4372 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 4373 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 4374 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 4375 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 4376 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 148:fd96258d940d 4377 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 148:fd96258d940d 4378 */
Kojto 148:fd96258d940d 4379 void arm_correlate_opt_q15(
Kojto 148:fd96258d940d 4380 q15_t * pSrcA,
Kojto 148:fd96258d940d 4381 uint32_t srcALen,
Kojto 148:fd96258d940d 4382 q15_t * pSrcB,
Kojto 148:fd96258d940d 4383 uint32_t srcBLen,
Kojto 148:fd96258d940d 4384 q15_t * pDst,
Kojto 148:fd96258d940d 4385 q15_t * pScratch);
Kojto 148:fd96258d940d 4386
Kojto 148:fd96258d940d 4387
Kojto 148:fd96258d940d 4388 /**
Kojto 148:fd96258d940d 4389 * @brief Correlation of Q15 sequences.
Kojto 148:fd96258d940d 4390 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 4391 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 4392 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 4393 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 4394 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 148:fd96258d940d 4395 */
Kojto 148:fd96258d940d 4396
Kojto 148:fd96258d940d 4397 void arm_correlate_q15(
Kojto 148:fd96258d940d 4398 q15_t * pSrcA,
Kojto 148:fd96258d940d 4399 uint32_t srcALen,
Kojto 148:fd96258d940d 4400 q15_t * pSrcB,
Kojto 148:fd96258d940d 4401 uint32_t srcBLen,
Kojto 148:fd96258d940d 4402 q15_t * pDst);
Kojto 148:fd96258d940d 4403
Kojto 148:fd96258d940d 4404
Kojto 148:fd96258d940d 4405 /**
Kojto 148:fd96258d940d 4406 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
Kojto 148:fd96258d940d 4407 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 4408 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 4409 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 4410 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 4411 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 148:fd96258d940d 4412 */
Kojto 148:fd96258d940d 4413
Kojto 148:fd96258d940d 4414 void arm_correlate_fast_q15(
Kojto 148:fd96258d940d 4415 q15_t * pSrcA,
Kojto 148:fd96258d940d 4416 uint32_t srcALen,
Kojto 148:fd96258d940d 4417 q15_t * pSrcB,
Kojto 148:fd96258d940d 4418 uint32_t srcBLen,
Kojto 148:fd96258d940d 4419 q15_t * pDst);
Kojto 148:fd96258d940d 4420
Kojto 148:fd96258d940d 4421
Kojto 148:fd96258d940d 4422 /**
Kojto 148:fd96258d940d 4423 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
Kojto 148:fd96258d940d 4424 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 4425 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 4426 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 4427 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 4428 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 148:fd96258d940d 4429 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 148:fd96258d940d 4430 */
Kojto 148:fd96258d940d 4431 void arm_correlate_fast_opt_q15(
Kojto 148:fd96258d940d 4432 q15_t * pSrcA,
Kojto 148:fd96258d940d 4433 uint32_t srcALen,
Kojto 148:fd96258d940d 4434 q15_t * pSrcB,
Kojto 148:fd96258d940d 4435 uint32_t srcBLen,
Kojto 148:fd96258d940d 4436 q15_t * pDst,
Kojto 148:fd96258d940d 4437 q15_t * pScratch);
Kojto 148:fd96258d940d 4438
Kojto 148:fd96258d940d 4439
Kojto 148:fd96258d940d 4440 /**
Kojto 148:fd96258d940d 4441 * @brief Correlation of Q31 sequences.
Kojto 148:fd96258d940d 4442 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 4443 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 4444 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 4445 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 4446 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 148:fd96258d940d 4447 */
Kojto 148:fd96258d940d 4448 void arm_correlate_q31(
Kojto 148:fd96258d940d 4449 q31_t * pSrcA,
Kojto 148:fd96258d940d 4450 uint32_t srcALen,
Kojto 148:fd96258d940d 4451 q31_t * pSrcB,
Kojto 148:fd96258d940d 4452 uint32_t srcBLen,
Kojto 148:fd96258d940d 4453 q31_t * pDst);
Kojto 148:fd96258d940d 4454
Kojto 148:fd96258d940d 4455
Kojto 148:fd96258d940d 4456 /**
Kojto 148:fd96258d940d 4457 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 148:fd96258d940d 4458 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 4459 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 4460 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 4461 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 4462 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 148:fd96258d940d 4463 */
Kojto 148:fd96258d940d 4464 void arm_correlate_fast_q31(
Kojto 148:fd96258d940d 4465 q31_t * pSrcA,
Kojto 148:fd96258d940d 4466 uint32_t srcALen,
Kojto 148:fd96258d940d 4467 q31_t * pSrcB,
Kojto 148:fd96258d940d 4468 uint32_t srcBLen,
Kojto 148:fd96258d940d 4469 q31_t * pDst);
Kojto 148:fd96258d940d 4470
Kojto 148:fd96258d940d 4471
Kojto 148:fd96258d940d 4472 /**
Kojto 148:fd96258d940d 4473 * @brief Correlation of Q7 sequences.
Kojto 148:fd96258d940d 4474 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 4475 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 4476 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 4477 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 4478 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 148:fd96258d940d 4479 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 148:fd96258d940d 4480 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 148:fd96258d940d 4481 */
Kojto 148:fd96258d940d 4482 void arm_correlate_opt_q7(
Kojto 148:fd96258d940d 4483 q7_t * pSrcA,
Kojto 148:fd96258d940d 4484 uint32_t srcALen,
Kojto 148:fd96258d940d 4485 q7_t * pSrcB,
Kojto 148:fd96258d940d 4486 uint32_t srcBLen,
Kojto 148:fd96258d940d 4487 q7_t * pDst,
Kojto 148:fd96258d940d 4488 q15_t * pScratch1,
Kojto 148:fd96258d940d 4489 q15_t * pScratch2);
Kojto 148:fd96258d940d 4490
Kojto 148:fd96258d940d 4491
Kojto 148:fd96258d940d 4492 /**
Kojto 148:fd96258d940d 4493 * @brief Correlation of Q7 sequences.
Kojto 148:fd96258d940d 4494 * @param[in] pSrcA points to the first input sequence.
Kojto 148:fd96258d940d 4495 * @param[in] srcALen length of the first input sequence.
Kojto 148:fd96258d940d 4496 * @param[in] pSrcB points to the second input sequence.
Kojto 148:fd96258d940d 4497 * @param[in] srcBLen length of the second input sequence.
Kojto 148:fd96258d940d 4498 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 148:fd96258d940d 4499 */
Kojto 148:fd96258d940d 4500 void arm_correlate_q7(
Kojto 148:fd96258d940d 4501 q7_t * pSrcA,
Kojto 148:fd96258d940d 4502 uint32_t srcALen,
Kojto 148:fd96258d940d 4503 q7_t * pSrcB,
Kojto 148:fd96258d940d 4504 uint32_t srcBLen,
Kojto 148:fd96258d940d 4505 q7_t * pDst);
Kojto 148:fd96258d940d 4506
Kojto 148:fd96258d940d 4507
Kojto 148:fd96258d940d 4508 /**
Kojto 148:fd96258d940d 4509 * @brief Instance structure for the floating-point sparse FIR filter.
Kojto 148:fd96258d940d 4510 */
Kojto 148:fd96258d940d 4511 typedef struct
Kojto 148:fd96258d940d 4512 {
Kojto 148:fd96258d940d 4513 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 4514 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 148:fd96258d940d 4515 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 148:fd96258d940d 4516 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 148:fd96258d940d 4517 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 148:fd96258d940d 4518 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 148:fd96258d940d 4519 } arm_fir_sparse_instance_f32;
Kojto 148:fd96258d940d 4520
Kojto 148:fd96258d940d 4521 /**
Kojto 148:fd96258d940d 4522 * @brief Instance structure for the Q31 sparse FIR filter.
Kojto 148:fd96258d940d 4523 */
Kojto 148:fd96258d940d 4524 typedef struct
Kojto 148:fd96258d940d 4525 {
Kojto 148:fd96258d940d 4526 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 4527 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 148:fd96258d940d 4528 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 148:fd96258d940d 4529 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 148:fd96258d940d 4530 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 148:fd96258d940d 4531 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 148:fd96258d940d 4532 } arm_fir_sparse_instance_q31;
Kojto 148:fd96258d940d 4533
Kojto 148:fd96258d940d 4534 /**
Kojto 148:fd96258d940d 4535 * @brief Instance structure for the Q15 sparse FIR filter.
Kojto 148:fd96258d940d 4536 */
Kojto 148:fd96258d940d 4537 typedef struct
Kojto 148:fd96258d940d 4538 {
Kojto 148:fd96258d940d 4539 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 4540 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 148:fd96258d940d 4541 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 148:fd96258d940d 4542 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 148:fd96258d940d 4543 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 148:fd96258d940d 4544 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 148:fd96258d940d 4545 } arm_fir_sparse_instance_q15;
Kojto 148:fd96258d940d 4546
Kojto 148:fd96258d940d 4547 /**
Kojto 148:fd96258d940d 4548 * @brief Instance structure for the Q7 sparse FIR filter.
Kojto 148:fd96258d940d 4549 */
Kojto 148:fd96258d940d 4550 typedef struct
Kojto 148:fd96258d940d 4551 {
Kojto 148:fd96258d940d 4552 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 148:fd96258d940d 4553 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 148:fd96258d940d 4554 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 148:fd96258d940d 4555 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 148:fd96258d940d 4556 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 148:fd96258d940d 4557 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 148:fd96258d940d 4558 } arm_fir_sparse_instance_q7;
Kojto 148:fd96258d940d 4559
Kojto 148:fd96258d940d 4560
Kojto 148:fd96258d940d 4561 /**
Kojto 148:fd96258d940d 4562 * @brief Processing function for the floating-point sparse FIR filter.
Kojto 148:fd96258d940d 4563 * @param[in] S points to an instance of the floating-point sparse FIR structure.
Kojto 148:fd96258d940d 4564 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4565 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 4566 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
Kojto 148:fd96258d940d 4567 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 4568 */
Kojto 148:fd96258d940d 4569 void arm_fir_sparse_f32(
Kojto 148:fd96258d940d 4570 arm_fir_sparse_instance_f32 * S,
Kojto 148:fd96258d940d 4571 float32_t * pSrc,
Kojto 148:fd96258d940d 4572 float32_t * pDst,
Kojto 148:fd96258d940d 4573 float32_t * pScratchIn,
Kojto 148:fd96258d940d 4574 uint32_t blockSize);
Kojto 148:fd96258d940d 4575
Kojto 148:fd96258d940d 4576
Kojto 148:fd96258d940d 4577 /**
Kojto 148:fd96258d940d 4578 * @brief Initialization function for the floating-point sparse FIR filter.
Kojto 148:fd96258d940d 4579 * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
Kojto 148:fd96258d940d 4580 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 148:fd96258d940d 4581 * @param[in] pCoeffs points to the array of filter coefficients.
Kojto 148:fd96258d940d 4582 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 4583 * @param[in] pTapDelay points to the array of offset times.
Kojto 148:fd96258d940d 4584 * @param[in] maxDelay maximum offset time supported.
Kojto 148:fd96258d940d 4585 * @param[in] blockSize number of samples that will be processed per block.
Kojto 148:fd96258d940d 4586 */
Kojto 148:fd96258d940d 4587 void arm_fir_sparse_init_f32(
Kojto 148:fd96258d940d 4588 arm_fir_sparse_instance_f32 * S,
Kojto 148:fd96258d940d 4589 uint16_t numTaps,
Kojto 148:fd96258d940d 4590 float32_t * pCoeffs,
Kojto 148:fd96258d940d 4591 float32_t * pState,
Kojto 148:fd96258d940d 4592 int32_t * pTapDelay,
Kojto 148:fd96258d940d 4593 uint16_t maxDelay,
Kojto 148:fd96258d940d 4594 uint32_t blockSize);
Kojto 148:fd96258d940d 4595
Kojto 148:fd96258d940d 4596
Kojto 148:fd96258d940d 4597 /**
Kojto 148:fd96258d940d 4598 * @brief Processing function for the Q31 sparse FIR filter.
Kojto 148:fd96258d940d 4599 * @param[in] S points to an instance of the Q31 sparse FIR structure.
Kojto 148:fd96258d940d 4600 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4601 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 4602 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
Kojto 148:fd96258d940d 4603 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 4604 */
Kojto 148:fd96258d940d 4605 void arm_fir_sparse_q31(
Kojto 148:fd96258d940d 4606 arm_fir_sparse_instance_q31 * S,
Kojto 148:fd96258d940d 4607 q31_t * pSrc,
Kojto 148:fd96258d940d 4608 q31_t * pDst,
Kojto 148:fd96258d940d 4609 q31_t * pScratchIn,
Kojto 148:fd96258d940d 4610 uint32_t blockSize);
Kojto 148:fd96258d940d 4611
Kojto 148:fd96258d940d 4612
Kojto 148:fd96258d940d 4613 /**
Kojto 148:fd96258d940d 4614 * @brief Initialization function for the Q31 sparse FIR filter.
Kojto 148:fd96258d940d 4615 * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
Kojto 148:fd96258d940d 4616 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 148:fd96258d940d 4617 * @param[in] pCoeffs points to the array of filter coefficients.
Kojto 148:fd96258d940d 4618 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 4619 * @param[in] pTapDelay points to the array of offset times.
Kojto 148:fd96258d940d 4620 * @param[in] maxDelay maximum offset time supported.
Kojto 148:fd96258d940d 4621 * @param[in] blockSize number of samples that will be processed per block.
Kojto 148:fd96258d940d 4622 */
Kojto 148:fd96258d940d 4623 void arm_fir_sparse_init_q31(
Kojto 148:fd96258d940d 4624 arm_fir_sparse_instance_q31 * S,
Kojto 148:fd96258d940d 4625 uint16_t numTaps,
Kojto 148:fd96258d940d 4626 q31_t * pCoeffs,
Kojto 148:fd96258d940d 4627 q31_t * pState,
Kojto 148:fd96258d940d 4628 int32_t * pTapDelay,
Kojto 148:fd96258d940d 4629 uint16_t maxDelay,
Kojto 148:fd96258d940d 4630 uint32_t blockSize);
Kojto 148:fd96258d940d 4631
Kojto 148:fd96258d940d 4632
Kojto 148:fd96258d940d 4633 /**
Kojto 148:fd96258d940d 4634 * @brief Processing function for the Q15 sparse FIR filter.
Kojto 148:fd96258d940d 4635 * @param[in] S points to an instance of the Q15 sparse FIR structure.
Kojto 148:fd96258d940d 4636 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4637 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 4638 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
Kojto 148:fd96258d940d 4639 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
Kojto 148:fd96258d940d 4640 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 4641 */
Kojto 148:fd96258d940d 4642 void arm_fir_sparse_q15(
Kojto 148:fd96258d940d 4643 arm_fir_sparse_instance_q15 * S,
Kojto 148:fd96258d940d 4644 q15_t * pSrc,
Kojto 148:fd96258d940d 4645 q15_t * pDst,
Kojto 148:fd96258d940d 4646 q15_t * pScratchIn,
Kojto 148:fd96258d940d 4647 q31_t * pScratchOut,
Kojto 148:fd96258d940d 4648 uint32_t blockSize);
Kojto 148:fd96258d940d 4649
Kojto 148:fd96258d940d 4650
Kojto 148:fd96258d940d 4651 /**
Kojto 148:fd96258d940d 4652 * @brief Initialization function for the Q15 sparse FIR filter.
Kojto 148:fd96258d940d 4653 * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
Kojto 148:fd96258d940d 4654 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 148:fd96258d940d 4655 * @param[in] pCoeffs points to the array of filter coefficients.
Kojto 148:fd96258d940d 4656 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 4657 * @param[in] pTapDelay points to the array of offset times.
Kojto 148:fd96258d940d 4658 * @param[in] maxDelay maximum offset time supported.
Kojto 148:fd96258d940d 4659 * @param[in] blockSize number of samples that will be processed per block.
Kojto 148:fd96258d940d 4660 */
Kojto 148:fd96258d940d 4661 void arm_fir_sparse_init_q15(
Kojto 148:fd96258d940d 4662 arm_fir_sparse_instance_q15 * S,
Kojto 148:fd96258d940d 4663 uint16_t numTaps,
Kojto 148:fd96258d940d 4664 q15_t * pCoeffs,
Kojto 148:fd96258d940d 4665 q15_t * pState,
Kojto 148:fd96258d940d 4666 int32_t * pTapDelay,
Kojto 148:fd96258d940d 4667 uint16_t maxDelay,
Kojto 148:fd96258d940d 4668 uint32_t blockSize);
Kojto 148:fd96258d940d 4669
Kojto 148:fd96258d940d 4670
Kojto 148:fd96258d940d 4671 /**
Kojto 148:fd96258d940d 4672 * @brief Processing function for the Q7 sparse FIR filter.
Kojto 148:fd96258d940d 4673 * @param[in] S points to an instance of the Q7 sparse FIR structure.
Kojto 148:fd96258d940d 4674 * @param[in] pSrc points to the block of input data.
Kojto 148:fd96258d940d 4675 * @param[out] pDst points to the block of output data
Kojto 148:fd96258d940d 4676 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
Kojto 148:fd96258d940d 4677 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
Kojto 148:fd96258d940d 4678 * @param[in] blockSize number of input samples to process per call.
Kojto 148:fd96258d940d 4679 */
Kojto 148:fd96258d940d 4680 void arm_fir_sparse_q7(
Kojto 148:fd96258d940d 4681 arm_fir_sparse_instance_q7 * S,
Kojto 148:fd96258d940d 4682 q7_t * pSrc,
Kojto 148:fd96258d940d 4683 q7_t * pDst,
Kojto 148:fd96258d940d 4684 q7_t * pScratchIn,
Kojto 148:fd96258d940d 4685 q31_t * pScratchOut,
Kojto 148:fd96258d940d 4686 uint32_t blockSize);
Kojto 148:fd96258d940d 4687
Kojto 148:fd96258d940d 4688
Kojto 148:fd96258d940d 4689 /**
Kojto 148:fd96258d940d 4690 * @brief Initialization function for the Q7 sparse FIR filter.
Kojto 148:fd96258d940d 4691 * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
Kojto 148:fd96258d940d 4692 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 148:fd96258d940d 4693 * @param[in] pCoeffs points to the array of filter coefficients.
Kojto 148:fd96258d940d 4694 * @param[in] pState points to the state buffer.
Kojto 148:fd96258d940d 4695 * @param[in] pTapDelay points to the array of offset times.
Kojto 148:fd96258d940d 4696 * @param[in] maxDelay maximum offset time supported.
Kojto 148:fd96258d940d 4697 * @param[in] blockSize number of samples that will be processed per block.
Kojto 148:fd96258d940d 4698 */
Kojto 148:fd96258d940d 4699 void arm_fir_sparse_init_q7(
Kojto 148:fd96258d940d 4700 arm_fir_sparse_instance_q7 * S,
Kojto 148:fd96258d940d 4701 uint16_t numTaps,
Kojto 148:fd96258d940d 4702 q7_t * pCoeffs,
Kojto 148:fd96258d940d 4703 q7_t * pState,
Kojto 148:fd96258d940d 4704 int32_t * pTapDelay,
Kojto 148:fd96258d940d 4705 uint16_t maxDelay,
Kojto 148:fd96258d940d 4706 uint32_t blockSize);
Kojto 148:fd96258d940d 4707
Kojto 148:fd96258d940d 4708
Kojto 148:fd96258d940d 4709 /**
Kojto 148:fd96258d940d 4710 * @brief Floating-point sin_cos function.
Kojto 148:fd96258d940d 4711 * @param[in] theta input value in degrees
Kojto 148:fd96258d940d 4712 * @param[out] pSinVal points to the processed sine output.
Kojto 148:fd96258d940d 4713 * @param[out] pCosVal points to the processed cos output.
Kojto 148:fd96258d940d 4714 */
Kojto 148:fd96258d940d 4715 void arm_sin_cos_f32(
Kojto 148:fd96258d940d 4716 float32_t theta,
Kojto 148:fd96258d940d 4717 float32_t * pSinVal,
Kojto 148:fd96258d940d 4718 float32_t * pCosVal);
Kojto 148:fd96258d940d 4719
Kojto 148:fd96258d940d 4720
Kojto 148:fd96258d940d 4721 /**
Kojto 148:fd96258d940d 4722 * @brief Q31 sin_cos function.
Kojto 148:fd96258d940d 4723 * @param[in] theta scaled input value in degrees
Kojto 148:fd96258d940d 4724 * @param[out] pSinVal points to the processed sine output.
Kojto 148:fd96258d940d 4725 * @param[out] pCosVal points to the processed cosine output.
Kojto 148:fd96258d940d 4726 */
Kojto 148:fd96258d940d 4727 void arm_sin_cos_q31(
Kojto 148:fd96258d940d 4728 q31_t theta,
Kojto 148:fd96258d940d 4729 q31_t * pSinVal,
Kojto 148:fd96258d940d 4730 q31_t * pCosVal);
Kojto 148:fd96258d940d 4731
Kojto 148:fd96258d940d 4732
Kojto 148:fd96258d940d 4733 /**
Kojto 148:fd96258d940d 4734 * @brief Floating-point complex conjugate.
Kojto 148:fd96258d940d 4735 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 4736 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 4737 * @param[in] numSamples number of complex samples in each vector
Kojto 148:fd96258d940d 4738 */
Kojto 148:fd96258d940d 4739 void arm_cmplx_conj_f32(
Kojto 148:fd96258d940d 4740 float32_t * pSrc,
Kojto 148:fd96258d940d 4741 float32_t * pDst,
Kojto 148:fd96258d940d 4742 uint32_t numSamples);
Kojto 148:fd96258d940d 4743
Kojto 148:fd96258d940d 4744 /**
Kojto 148:fd96258d940d 4745 * @brief Q31 complex conjugate.
Kojto 148:fd96258d940d 4746 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 4747 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 4748 * @param[in] numSamples number of complex samples in each vector
Kojto 148:fd96258d940d 4749 */
Kojto 148:fd96258d940d 4750 void arm_cmplx_conj_q31(
Kojto 148:fd96258d940d 4751 q31_t * pSrc,
Kojto 148:fd96258d940d 4752 q31_t * pDst,
Kojto 148:fd96258d940d 4753 uint32_t numSamples);
Kojto 148:fd96258d940d 4754
Kojto 148:fd96258d940d 4755
Kojto 148:fd96258d940d 4756 /**
Kojto 148:fd96258d940d 4757 * @brief Q15 complex conjugate.
Kojto 148:fd96258d940d 4758 * @param[in] pSrc points to the input vector
Kojto 148:fd96258d940d 4759 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 4760 * @param[in] numSamples number of complex samples in each vector
Kojto 148:fd96258d940d 4761 */
Kojto 148:fd96258d940d 4762 void arm_cmplx_conj_q15(
Kojto 148:fd96258d940d 4763 q15_t * pSrc,
Kojto 148:fd96258d940d 4764 q15_t * pDst,
Kojto 148:fd96258d940d 4765 uint32_t numSamples);
Kojto 148:fd96258d940d 4766
Kojto 148:fd96258d940d 4767
Kojto 148:fd96258d940d 4768 /**
Kojto 148:fd96258d940d 4769 * @brief Floating-point complex magnitude squared
Kojto 148:fd96258d940d 4770 * @param[in] pSrc points to the complex input vector
Kojto 148:fd96258d940d 4771 * @param[out] pDst points to the real output vector
Kojto 148:fd96258d940d 4772 * @param[in] numSamples number of complex samples in the input vector
Kojto 148:fd96258d940d 4773 */
Kojto 148:fd96258d940d 4774 void arm_cmplx_mag_squared_f32(
Kojto 148:fd96258d940d 4775 float32_t * pSrc,
Kojto 148:fd96258d940d 4776 float32_t * pDst,
Kojto 148:fd96258d940d 4777 uint32_t numSamples);
Kojto 148:fd96258d940d 4778
Kojto 148:fd96258d940d 4779
Kojto 148:fd96258d940d 4780 /**
Kojto 148:fd96258d940d 4781 * @brief Q31 complex magnitude squared
Kojto 148:fd96258d940d 4782 * @param[in] pSrc points to the complex input vector
Kojto 148:fd96258d940d 4783 * @param[out] pDst points to the real output vector
Kojto 148:fd96258d940d 4784 * @param[in] numSamples number of complex samples in the input vector
Kojto 148:fd96258d940d 4785 */
Kojto 148:fd96258d940d 4786 void arm_cmplx_mag_squared_q31(
Kojto 148:fd96258d940d 4787 q31_t * pSrc,
Kojto 148:fd96258d940d 4788 q31_t * pDst,
Kojto 148:fd96258d940d 4789 uint32_t numSamples);
Kojto 148:fd96258d940d 4790
Kojto 148:fd96258d940d 4791
Kojto 148:fd96258d940d 4792 /**
Kojto 148:fd96258d940d 4793 * @brief Q15 complex magnitude squared
Kojto 148:fd96258d940d 4794 * @param[in] pSrc points to the complex input vector
Kojto 148:fd96258d940d 4795 * @param[out] pDst points to the real output vector
Kojto 148:fd96258d940d 4796 * @param[in] numSamples number of complex samples in the input vector
Kojto 148:fd96258d940d 4797 */
Kojto 148:fd96258d940d 4798 void arm_cmplx_mag_squared_q15(
Kojto 148:fd96258d940d 4799 q15_t * pSrc,
Kojto 148:fd96258d940d 4800 q15_t * pDst,
Kojto 148:fd96258d940d 4801 uint32_t numSamples);
Kojto 148:fd96258d940d 4802
Kojto 148:fd96258d940d 4803
Kojto 148:fd96258d940d 4804 /**
Kojto 148:fd96258d940d 4805 * @ingroup groupController
Kojto 148:fd96258d940d 4806 */
Kojto 148:fd96258d940d 4807
Kojto 148:fd96258d940d 4808 /**
Kojto 148:fd96258d940d 4809 * @defgroup PID PID Motor Control
Kojto 148:fd96258d940d 4810 *
Kojto 148:fd96258d940d 4811 * A Proportional Integral Derivative (PID) controller is a generic feedback control
Kojto 148:fd96258d940d 4812 * loop mechanism widely used in industrial control systems.
Kojto 148:fd96258d940d 4813 * A PID controller is the most commonly used type of feedback controller.
Kojto 148:fd96258d940d 4814 *
Kojto 148:fd96258d940d 4815 * This set of functions implements (PID) controllers
Kojto 148:fd96258d940d 4816 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
Kojto 148:fd96258d940d 4817 * of data and each call to the function returns a single processed value.
Kojto 148:fd96258d940d 4818 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
Kojto 148:fd96258d940d 4819 * is the input sample value. The functions return the output value.
Kojto 148:fd96258d940d 4820 *
Kojto 148:fd96258d940d 4821 * \par Algorithm:
Kojto 148:fd96258d940d 4822 * <pre>
Kojto 148:fd96258d940d 4823 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
Kojto 148:fd96258d940d 4824 * A0 = Kp + Ki + Kd
Kojto 148:fd96258d940d 4825 * A1 = (-Kp ) - (2 * Kd )
Kojto 148:fd96258d940d 4826 * A2 = Kd </pre>
Kojto 148:fd96258d940d 4827 *
Kojto 148:fd96258d940d 4828 * \par
Kojto 148:fd96258d940d 4829 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
Kojto 148:fd96258d940d 4830 *
Kojto 148:fd96258d940d 4831 * \par
Kojto 148:fd96258d940d 4832 * \image html PID.gif "Proportional Integral Derivative Controller"
Kojto 148:fd96258d940d 4833 *
Kojto 148:fd96258d940d 4834 * \par
Kojto 148:fd96258d940d 4835 * The PID controller calculates an "error" value as the difference between
Kojto 148:fd96258d940d 4836 * the measured output and the reference input.
Kojto 148:fd96258d940d 4837 * The controller attempts to minimize the error by adjusting the process control inputs.
Kojto 148:fd96258d940d 4838 * The proportional value determines the reaction to the current error,
Kojto 148:fd96258d940d 4839 * the integral value determines the reaction based on the sum of recent errors,
Kojto 148:fd96258d940d 4840 * and the derivative value determines the reaction based on the rate at which the error has been changing.
Kojto 148:fd96258d940d 4841 *
Kojto 148:fd96258d940d 4842 * \par Instance Structure
Kojto 148:fd96258d940d 4843 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
Kojto 148:fd96258d940d 4844 * A separate instance structure must be defined for each PID Controller.
Kojto 148:fd96258d940d 4845 * There are separate instance structure declarations for each of the 3 supported data types.
Kojto 148:fd96258d940d 4846 *
Kojto 148:fd96258d940d 4847 * \par Reset Functions
Kojto 148:fd96258d940d 4848 * There is also an associated reset function for each data type which clears the state array.
Kojto 148:fd96258d940d 4849 *
Kojto 148:fd96258d940d 4850 * \par Initialization Functions
Kojto 148:fd96258d940d 4851 * There is also an associated initialization function for each data type.
Kojto 148:fd96258d940d 4852 * The initialization function performs the following operations:
Kojto 148:fd96258d940d 4853 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
Kojto 148:fd96258d940d 4854 * - Zeros out the values in the state buffer.
Kojto 148:fd96258d940d 4855 *
Kojto 148:fd96258d940d 4856 * \par
Kojto 148:fd96258d940d 4857 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
Kojto 148:fd96258d940d 4858 *
Kojto 148:fd96258d940d 4859 * \par Fixed-Point Behavior
Kojto 148:fd96258d940d 4860 * Care must be taken when using the fixed-point versions of the PID Controller functions.
Kojto 148:fd96258d940d 4861 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
Kojto 148:fd96258d940d 4862 * Refer to the function specific documentation below for usage guidelines.
Kojto 148:fd96258d940d 4863 */
Kojto 148:fd96258d940d 4864
Kojto 148:fd96258d940d 4865 /**
Kojto 148:fd96258d940d 4866 * @addtogroup PID
Kojto 148:fd96258d940d 4867 * @{
Kojto 148:fd96258d940d 4868 */
Kojto 148:fd96258d940d 4869
Kojto 148:fd96258d940d 4870 /**
Kojto 148:fd96258d940d 4871 * @brief Process function for the floating-point PID Control.
Kojto 148:fd96258d940d 4872 * @param[in,out] S is an instance of the floating-point PID Control structure
Kojto 148:fd96258d940d 4873 * @param[in] in input sample to process
Kojto 148:fd96258d940d 4874 * @return out processed output sample.
Kojto 148:fd96258d940d 4875 */
Kojto 148:fd96258d940d 4876 CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32(
Kojto 148:fd96258d940d 4877 arm_pid_instance_f32 * S,
Kojto 148:fd96258d940d 4878 float32_t in)
Kojto 148:fd96258d940d 4879 {
Kojto 148:fd96258d940d 4880 float32_t out;
Kojto 148:fd96258d940d 4881
Kojto 148:fd96258d940d 4882 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
Kojto 148:fd96258d940d 4883 out = (S->A0 * in) +
Kojto 148:fd96258d940d 4884 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
Kojto 148:fd96258d940d 4885
Kojto 148:fd96258d940d 4886 /* Update state */
Kojto 148:fd96258d940d 4887 S->state[1] = S->state[0];
Kojto 148:fd96258d940d 4888 S->state[0] = in;
Kojto 148:fd96258d940d 4889 S->state[2] = out;
Kojto 148:fd96258d940d 4890
Kojto 148:fd96258d940d 4891 /* return to application */
Kojto 148:fd96258d940d 4892 return (out);
Kojto 148:fd96258d940d 4893
Kojto 148:fd96258d940d 4894 }
Kojto 148:fd96258d940d 4895
Kojto 148:fd96258d940d 4896 /**
Kojto 148:fd96258d940d 4897 * @brief Process function for the Q31 PID Control.
Kojto 148:fd96258d940d 4898 * @param[in,out] S points to an instance of the Q31 PID Control structure
Kojto 148:fd96258d940d 4899 * @param[in] in input sample to process
Kojto 148:fd96258d940d 4900 * @return out processed output sample.
Kojto 148:fd96258d940d 4901 *
Kojto 148:fd96258d940d 4902 * <b>Scaling and Overflow Behavior:</b>
Kojto 148:fd96258d940d 4903 * \par
Kojto 148:fd96258d940d 4904 * The function is implemented using an internal 64-bit accumulator.
Kojto 148:fd96258d940d 4905 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
Kojto 148:fd96258d940d 4906 * Thus, if the accumulator result overflows it wraps around rather than clip.
Kojto 148:fd96258d940d 4907 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
Kojto 148:fd96258d940d 4908 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
Kojto 148:fd96258d940d 4909 */
Kojto 148:fd96258d940d 4910 CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31(
Kojto 148:fd96258d940d 4911 arm_pid_instance_q31 * S,
Kojto 148:fd96258d940d 4912 q31_t in)
Kojto 148:fd96258d940d 4913 {
Kojto 148:fd96258d940d 4914 q63_t acc;
Kojto 148:fd96258d940d 4915 q31_t out;
Kojto 148:fd96258d940d 4916
Kojto 148:fd96258d940d 4917 /* acc = A0 * x[n] */
Kojto 148:fd96258d940d 4918 acc = (q63_t) S->A0 * in;
Kojto 148:fd96258d940d 4919
Kojto 148:fd96258d940d 4920 /* acc += A1 * x[n-1] */
Kojto 148:fd96258d940d 4921 acc += (q63_t) S->A1 * S->state[0];
Kojto 148:fd96258d940d 4922
Kojto 148:fd96258d940d 4923 /* acc += A2 * x[n-2] */
Kojto 148:fd96258d940d 4924 acc += (q63_t) S->A2 * S->state[1];
Kojto 148:fd96258d940d 4925
Kojto 148:fd96258d940d 4926 /* convert output to 1.31 format to add y[n-1] */
Kojto 148:fd96258d940d 4927 out = (q31_t) (acc >> 31u);
Kojto 148:fd96258d940d 4928
Kojto 148:fd96258d940d 4929 /* out += y[n-1] */
Kojto 148:fd96258d940d 4930 out += S->state[2];
Kojto 148:fd96258d940d 4931
Kojto 148:fd96258d940d 4932 /* Update state */
Kojto 148:fd96258d940d 4933 S->state[1] = S->state[0];
Kojto 148:fd96258d940d 4934 S->state[0] = in;
Kojto 148:fd96258d940d 4935 S->state[2] = out;
Kojto 148:fd96258d940d 4936
Kojto 148:fd96258d940d 4937 /* return to application */
Kojto 148:fd96258d940d 4938 return (out);
Kojto 148:fd96258d940d 4939 }
Kojto 148:fd96258d940d 4940
Kojto 148:fd96258d940d 4941
Kojto 148:fd96258d940d 4942 /**
Kojto 148:fd96258d940d 4943 * @brief Process function for the Q15 PID Control.
Kojto 148:fd96258d940d 4944 * @param[in,out] S points to an instance of the Q15 PID Control structure
Kojto 148:fd96258d940d 4945 * @param[in] in input sample to process
Kojto 148:fd96258d940d 4946 * @return out processed output sample.
Kojto 148:fd96258d940d 4947 *
Kojto 148:fd96258d940d 4948 * <b>Scaling and Overflow Behavior:</b>
Kojto 148:fd96258d940d 4949 * \par
Kojto 148:fd96258d940d 4950 * The function is implemented using a 64-bit internal accumulator.
Kojto 148:fd96258d940d 4951 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
Kojto 148:fd96258d940d 4952 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
Kojto 148:fd96258d940d 4953 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
Kojto 148:fd96258d940d 4954 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
Kojto 148:fd96258d940d 4955 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
Kojto 148:fd96258d940d 4956 */
Kojto 148:fd96258d940d 4957 CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15(
Kojto 148:fd96258d940d 4958 arm_pid_instance_q15 * S,
Kojto 148:fd96258d940d 4959 q15_t in)
Kojto 148:fd96258d940d 4960 {
Kojto 148:fd96258d940d 4961 q63_t acc;
Kojto 148:fd96258d940d 4962 q15_t out;
Kojto 148:fd96258d940d 4963
Kojto 148:fd96258d940d 4964 #if defined (ARM_MATH_DSP)
Kojto 148:fd96258d940d 4965 __SIMD32_TYPE *vstate;
Kojto 148:fd96258d940d 4966
Kojto 148:fd96258d940d 4967 /* Implementation of PID controller */
Kojto 148:fd96258d940d 4968
Kojto 148:fd96258d940d 4969 /* acc = A0 * x[n] */
Kojto 148:fd96258d940d 4970 acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
Kojto 148:fd96258d940d 4971
Kojto 148:fd96258d940d 4972 /* acc += A1 * x[n-1] + A2 * x[n-2] */
Kojto 148:fd96258d940d 4973 vstate = __SIMD32_CONST(S->state);
Kojto 148:fd96258d940d 4974 acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
Kojto 148:fd96258d940d 4975 #else
Kojto 148:fd96258d940d 4976 /* acc = A0 * x[n] */
Kojto 148:fd96258d940d 4977 acc = ((q31_t) S->A0) * in;
Kojto 148:fd96258d940d 4978
Kojto 148:fd96258d940d 4979 /* acc += A1 * x[n-1] + A2 * x[n-2] */
Kojto 148:fd96258d940d 4980 acc += (q31_t) S->A1 * S->state[0];
Kojto 148:fd96258d940d 4981 acc += (q31_t) S->A2 * S->state[1];
Kojto 148:fd96258d940d 4982 #endif
Kojto 148:fd96258d940d 4983
Kojto 148:fd96258d940d 4984 /* acc += y[n-1] */
Kojto 148:fd96258d940d 4985 acc += (q31_t) S->state[2] << 15;
Kojto 148:fd96258d940d 4986
Kojto 148:fd96258d940d 4987 /* saturate the output */
Kojto 148:fd96258d940d 4988 out = (q15_t) (__SSAT((acc >> 15), 16));
Kojto 148:fd96258d940d 4989
Kojto 148:fd96258d940d 4990 /* Update state */
Kojto 148:fd96258d940d 4991 S->state[1] = S->state[0];
Kojto 148:fd96258d940d 4992 S->state[0] = in;
Kojto 148:fd96258d940d 4993 S->state[2] = out;
Kojto 148:fd96258d940d 4994
Kojto 148:fd96258d940d 4995 /* return to application */
Kojto 148:fd96258d940d 4996 return (out);
Kojto 148:fd96258d940d 4997 }
Kojto 148:fd96258d940d 4998
Kojto 148:fd96258d940d 4999 /**
Kojto 148:fd96258d940d 5000 * @} end of PID group
Kojto 148:fd96258d940d 5001 */
Kojto 148:fd96258d940d 5002
Kojto 148:fd96258d940d 5003
Kojto 148:fd96258d940d 5004 /**
Kojto 148:fd96258d940d 5005 * @brief Floating-point matrix inverse.
Kojto 148:fd96258d940d 5006 * @param[in] src points to the instance of the input floating-point matrix structure.
Kojto 148:fd96258d940d 5007 * @param[out] dst points to the instance of the output floating-point matrix structure.
Kojto 148:fd96258d940d 5008 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
Kojto 148:fd96258d940d 5009 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
Kojto 148:fd96258d940d 5010 */
Kojto 148:fd96258d940d 5011 arm_status arm_mat_inverse_f32(
Kojto 148:fd96258d940d 5012 const arm_matrix_instance_f32 * src,
Kojto 148:fd96258d940d 5013 arm_matrix_instance_f32 * dst);
Kojto 148:fd96258d940d 5014
Kojto 148:fd96258d940d 5015
Kojto 148:fd96258d940d 5016 /**
Kojto 148:fd96258d940d 5017 * @brief Floating-point matrix inverse.
Kojto 148:fd96258d940d 5018 * @param[in] src points to the instance of the input floating-point matrix structure.
Kojto 148:fd96258d940d 5019 * @param[out] dst points to the instance of the output floating-point matrix structure.
Kojto 148:fd96258d940d 5020 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
Kojto 148:fd96258d940d 5021 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
Kojto 148:fd96258d940d 5022 */
Kojto 148:fd96258d940d 5023 arm_status arm_mat_inverse_f64(
Kojto 148:fd96258d940d 5024 const arm_matrix_instance_f64 * src,
Kojto 148:fd96258d940d 5025 arm_matrix_instance_f64 * dst);
Kojto 148:fd96258d940d 5026
Kojto 148:fd96258d940d 5027
Kojto 148:fd96258d940d 5028
Kojto 148:fd96258d940d 5029 /**
Kojto 148:fd96258d940d 5030 * @ingroup groupController
Kojto 148:fd96258d940d 5031 */
Kojto 148:fd96258d940d 5032
Kojto 148:fd96258d940d 5033 /**
Kojto 148:fd96258d940d 5034 * @defgroup clarke Vector Clarke Transform
Kojto 148:fd96258d940d 5035 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
Kojto 148:fd96258d940d 5036 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
Kojto 148:fd96258d940d 5037 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
Kojto 148:fd96258d940d 5038 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
Kojto 148:fd96258d940d 5039 * \image html clarke.gif Stator current space vector and its components in (a,b).
Kojto 148:fd96258d940d 5040 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
Kojto 148:fd96258d940d 5041 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
Kojto 148:fd96258d940d 5042 *
Kojto 148:fd96258d940d 5043 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 148:fd96258d940d 5044 * The library provides separate functions for Q31 and floating-point data types.
Kojto 148:fd96258d940d 5045 * \par Algorithm
Kojto 148:fd96258d940d 5046 * \image html clarkeFormula.gif
Kojto 148:fd96258d940d 5047 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
Kojto 148:fd96258d940d 5048 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
Kojto 148:fd96258d940d 5049 * \par Fixed-Point Behavior
Kojto 148:fd96258d940d 5050 * Care must be taken when using the Q31 version of the Clarke transform.
Kojto 148:fd96258d940d 5051 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 148:fd96258d940d 5052 * Refer to the function specific documentation below for usage guidelines.
Kojto 148:fd96258d940d 5053 */
Kojto 148:fd96258d940d 5054
Kojto 148:fd96258d940d 5055 /**
Kojto 148:fd96258d940d 5056 * @addtogroup clarke
Kojto 148:fd96258d940d 5057 * @{
Kojto 148:fd96258d940d 5058 */
Kojto 148:fd96258d940d 5059
Kojto 148:fd96258d940d 5060 /**
Kojto 148:fd96258d940d 5061 *
Kojto 148:fd96258d940d 5062 * @brief Floating-point Clarke transform
Kojto 148:fd96258d940d 5063 * @param[in] Ia input three-phase coordinate <code>a</code>
Kojto 148:fd96258d940d 5064 * @param[in] Ib input three-phase coordinate <code>b</code>
Kojto 148:fd96258d940d 5065 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 148:fd96258d940d 5066 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
Kojto 148:fd96258d940d 5067 */
Kojto 148:fd96258d940d 5068 CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32(
Kojto 148:fd96258d940d 5069 float32_t Ia,
Kojto 148:fd96258d940d 5070 float32_t Ib,
Kojto 148:fd96258d940d 5071 float32_t * pIalpha,
Kojto 148:fd96258d940d 5072 float32_t * pIbeta)
Kojto 148:fd96258d940d 5073 {
Kojto 148:fd96258d940d 5074 /* Calculate pIalpha using the equation, pIalpha = Ia */
Kojto 148:fd96258d940d 5075 *pIalpha = Ia;
Kojto 148:fd96258d940d 5076
Kojto 148:fd96258d940d 5077 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
Kojto 148:fd96258d940d 5078 *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
Kojto 148:fd96258d940d 5079 }
Kojto 148:fd96258d940d 5080
Kojto 148:fd96258d940d 5081
Kojto 148:fd96258d940d 5082 /**
Kojto 148:fd96258d940d 5083 * @brief Clarke transform for Q31 version
Kojto 148:fd96258d940d 5084 * @param[in] Ia input three-phase coordinate <code>a</code>
Kojto 148:fd96258d940d 5085 * @param[in] Ib input three-phase coordinate <code>b</code>
Kojto 148:fd96258d940d 5086 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 148:fd96258d940d 5087 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
Kojto 148:fd96258d940d 5088 *
Kojto 148:fd96258d940d 5089 * <b>Scaling and Overflow Behavior:</b>
Kojto 148:fd96258d940d 5090 * \par
Kojto 148:fd96258d940d 5091 * The function is implemented using an internal 32-bit accumulator.
Kojto 148:fd96258d940d 5092 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 148:fd96258d940d 5093 * There is saturation on the addition, hence there is no risk of overflow.
Kojto 148:fd96258d940d 5094 */
Kojto 148:fd96258d940d 5095 CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31(
Kojto 148:fd96258d940d 5096 q31_t Ia,
Kojto 148:fd96258d940d 5097 q31_t Ib,
Kojto 148:fd96258d940d 5098 q31_t * pIalpha,
Kojto 148:fd96258d940d 5099 q31_t * pIbeta)
Kojto 148:fd96258d940d 5100 {
Kojto 148:fd96258d940d 5101 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 148:fd96258d940d 5102
Kojto 148:fd96258d940d 5103 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
Kojto 148:fd96258d940d 5104 *pIalpha = Ia;
Kojto 148:fd96258d940d 5105
Kojto 148:fd96258d940d 5106 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
Kojto 148:fd96258d940d 5107 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
Kojto 148:fd96258d940d 5108
Kojto 148:fd96258d940d 5109 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
Kojto 148:fd96258d940d 5110 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
Kojto 148:fd96258d940d 5111
Kojto 148:fd96258d940d 5112 /* pIbeta is calculated by adding the intermediate products */
Kojto 148:fd96258d940d 5113 *pIbeta = __QADD(product1, product2);
Kojto 148:fd96258d940d 5114 }
Kojto 148:fd96258d940d 5115
Kojto 148:fd96258d940d 5116 /**
Kojto 148:fd96258d940d 5117 * @} end of clarke group
Kojto 148:fd96258d940d 5118 */
Kojto 148:fd96258d940d 5119
Kojto 148:fd96258d940d 5120 /**
Kojto 148:fd96258d940d 5121 * @brief Converts the elements of the Q7 vector to Q31 vector.
Kojto 148:fd96258d940d 5122 * @param[in] pSrc input pointer
Kojto 148:fd96258d940d 5123 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 5124 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 5125 */
Kojto 148:fd96258d940d 5126 void arm_q7_to_q31(
Kojto 148:fd96258d940d 5127 q7_t * pSrc,
Kojto 148:fd96258d940d 5128 q31_t * pDst,
Kojto 148:fd96258d940d 5129 uint32_t blockSize);
Kojto 148:fd96258d940d 5130
Kojto 148:fd96258d940d 5131
Kojto 148:fd96258d940d 5132
Kojto 148:fd96258d940d 5133 /**
Kojto 148:fd96258d940d 5134 * @ingroup groupController
Kojto 148:fd96258d940d 5135 */
Kojto 148:fd96258d940d 5136
Kojto 148:fd96258d940d 5137 /**
Kojto 148:fd96258d940d 5138 * @defgroup inv_clarke Vector Inverse Clarke Transform
Kojto 148:fd96258d940d 5139 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
Kojto 148:fd96258d940d 5140 *
Kojto 148:fd96258d940d 5141 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 148:fd96258d940d 5142 * The library provides separate functions for Q31 and floating-point data types.
Kojto 148:fd96258d940d 5143 * \par Algorithm
Kojto 148:fd96258d940d 5144 * \image html clarkeInvFormula.gif
Kojto 148:fd96258d940d 5145 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
Kojto 148:fd96258d940d 5146 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
Kojto 148:fd96258d940d 5147 * \par Fixed-Point Behavior
Kojto 148:fd96258d940d 5148 * Care must be taken when using the Q31 version of the Clarke transform.
Kojto 148:fd96258d940d 5149 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 148:fd96258d940d 5150 * Refer to the function specific documentation below for usage guidelines.
Kojto 148:fd96258d940d 5151 */
Kojto 148:fd96258d940d 5152
Kojto 148:fd96258d940d 5153 /**
Kojto 148:fd96258d940d 5154 * @addtogroup inv_clarke
Kojto 148:fd96258d940d 5155 * @{
Kojto 148:fd96258d940d 5156 */
Kojto 148:fd96258d940d 5157
Kojto 148:fd96258d940d 5158 /**
Kojto 148:fd96258d940d 5159 * @brief Floating-point Inverse Clarke transform
Kojto 148:fd96258d940d 5160 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
Kojto 148:fd96258d940d 5161 * @param[in] Ibeta input two-phase orthogonal vector axis beta
Kojto 148:fd96258d940d 5162 * @param[out] pIa points to output three-phase coordinate <code>a</code>
Kojto 148:fd96258d940d 5163 * @param[out] pIb points to output three-phase coordinate <code>b</code>
Kojto 148:fd96258d940d 5164 */
Kojto 148:fd96258d940d 5165 CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32(
Kojto 148:fd96258d940d 5166 float32_t Ialpha,
Kojto 148:fd96258d940d 5167 float32_t Ibeta,
Kojto 148:fd96258d940d 5168 float32_t * pIa,
Kojto 148:fd96258d940d 5169 float32_t * pIb)
Kojto 148:fd96258d940d 5170 {
Kojto 148:fd96258d940d 5171 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
Kojto 148:fd96258d940d 5172 *pIa = Ialpha;
Kojto 148:fd96258d940d 5173
Kojto 148:fd96258d940d 5174 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
Kojto 148:fd96258d940d 5175 *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
Kojto 148:fd96258d940d 5176 }
Kojto 148:fd96258d940d 5177
Kojto 148:fd96258d940d 5178
Kojto 148:fd96258d940d 5179 /**
Kojto 148:fd96258d940d 5180 * @brief Inverse Clarke transform for Q31 version
Kojto 148:fd96258d940d 5181 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
Kojto 148:fd96258d940d 5182 * @param[in] Ibeta input two-phase orthogonal vector axis beta
Kojto 148:fd96258d940d 5183 * @param[out] pIa points to output three-phase coordinate <code>a</code>
Kojto 148:fd96258d940d 5184 * @param[out] pIb points to output three-phase coordinate <code>b</code>
Kojto 148:fd96258d940d 5185 *
Kojto 148:fd96258d940d 5186 * <b>Scaling and Overflow Behavior:</b>
Kojto 148:fd96258d940d 5187 * \par
Kojto 148:fd96258d940d 5188 * The function is implemented using an internal 32-bit accumulator.
Kojto 148:fd96258d940d 5189 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 148:fd96258d940d 5190 * There is saturation on the subtraction, hence there is no risk of overflow.
Kojto 148:fd96258d940d 5191 */
Kojto 148:fd96258d940d 5192 CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31(
Kojto 148:fd96258d940d 5193 q31_t Ialpha,
Kojto 148:fd96258d940d 5194 q31_t Ibeta,
Kojto 148:fd96258d940d 5195 q31_t * pIa,
Kojto 148:fd96258d940d 5196 q31_t * pIb)
Kojto 148:fd96258d940d 5197 {
Kojto 148:fd96258d940d 5198 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 148:fd96258d940d 5199
Kojto 148:fd96258d940d 5200 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
Kojto 148:fd96258d940d 5201 *pIa = Ialpha;
Kojto 148:fd96258d940d 5202
Kojto 148:fd96258d940d 5203 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
Kojto 148:fd96258d940d 5204 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
Kojto 148:fd96258d940d 5205
Kojto 148:fd96258d940d 5206 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
Kojto 148:fd96258d940d 5207 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
Kojto 148:fd96258d940d 5208
Kojto 148:fd96258d940d 5209 /* pIb is calculated by subtracting the products */
Kojto 148:fd96258d940d 5210 *pIb = __QSUB(product2, product1);
Kojto 148:fd96258d940d 5211 }
Kojto 148:fd96258d940d 5212
Kojto 148:fd96258d940d 5213 /**
Kojto 148:fd96258d940d 5214 * @} end of inv_clarke group
Kojto 148:fd96258d940d 5215 */
Kojto 148:fd96258d940d 5216
Kojto 148:fd96258d940d 5217 /**
Kojto 148:fd96258d940d 5218 * @brief Converts the elements of the Q7 vector to Q15 vector.
Kojto 148:fd96258d940d 5219 * @param[in] pSrc input pointer
Kojto 148:fd96258d940d 5220 * @param[out] pDst output pointer
Kojto 148:fd96258d940d 5221 * @param[in] blockSize number of samples to process
Kojto 148:fd96258d940d 5222 */
Kojto 148:fd96258d940d 5223 void arm_q7_to_q15(
Kojto 148:fd96258d940d 5224 q7_t * pSrc,
Kojto 148:fd96258d940d 5225 q15_t * pDst,
Kojto 148:fd96258d940d 5226 uint32_t blockSize);
Kojto 148:fd96258d940d 5227
Kojto 148:fd96258d940d 5228
Kojto 148:fd96258d940d 5229
Kojto 148:fd96258d940d 5230 /**
Kojto 148:fd96258d940d 5231 * @ingroup groupController
Kojto 148:fd96258d940d 5232 */
Kojto 148:fd96258d940d 5233
Kojto 148:fd96258d940d 5234 /**
Kojto 148:fd96258d940d 5235 * @defgroup park Vector Park Transform
Kojto 148:fd96258d940d 5236 *
Kojto 148:fd96258d940d 5237 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
Kojto 148:fd96258d940d 5238 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
Kojto 148:fd96258d940d 5239 * from the stationary to the moving reference frame and control the spatial relationship between
Kojto 148:fd96258d940d 5240 * the stator vector current and rotor flux vector.
Kojto 148:fd96258d940d 5241 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
Kojto 148:fd96258d940d 5242 * current vector and the relationship from the two reference frames:
Kojto 148:fd96258d940d 5243 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
Kojto 148:fd96258d940d 5244 *
Kojto 148:fd96258d940d 5245 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 148:fd96258d940d 5246 * The library provides separate functions for Q31 and floating-point data types.
Kojto 148:fd96258d940d 5247 * \par Algorithm
Kojto 148:fd96258d940d 5248 * \image html parkFormula.gif
Kojto 148:fd96258d940d 5249 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
Kojto 148:fd96258d940d 5250 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
Kojto 148:fd96258d940d 5251 * cosine and sine values of theta (rotor flux position).
Kojto 148:fd96258d940d 5252 * \par Fixed-Point Behavior
Kojto 148:fd96258d940d 5253 * Care must be taken when using the Q31 version of the Park transform.
Kojto 148:fd96258d940d 5254 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 148:fd96258d940d 5255 * Refer to the function specific documentation below for usage guidelines.
Kojto 148:fd96258d940d 5256 */
Kojto 148:fd96258d940d 5257
Kojto 148:fd96258d940d 5258 /**
Kojto 148:fd96258d940d 5259 * @addtogroup park
Kojto 148:fd96258d940d 5260 * @{
Kojto 148:fd96258d940d 5261 */
Kojto 148:fd96258d940d 5262
Kojto 148:fd96258d940d 5263 /**
Kojto 148:fd96258d940d 5264 * @brief Floating-point Park transform
Kojto 148:fd96258d940d 5265 * @param[in] Ialpha input two-phase vector coordinate alpha
Kojto 148:fd96258d940d 5266 * @param[in] Ibeta input two-phase vector coordinate beta
Kojto 148:fd96258d940d 5267 * @param[out] pId points to output rotor reference frame d
Kojto 148:fd96258d940d 5268 * @param[out] pIq points to output rotor reference frame q
Kojto 148:fd96258d940d 5269 * @param[in] sinVal sine value of rotation angle theta
Kojto 148:fd96258d940d 5270 * @param[in] cosVal cosine value of rotation angle theta
Kojto 148:fd96258d940d 5271 *
Kojto 148:fd96258d940d 5272 * The function implements the forward Park transform.
Kojto 148:fd96258d940d 5273 *
Kojto 148:fd96258d940d 5274 */
Kojto 148:fd96258d940d 5275 CMSIS_INLINE __STATIC_INLINE void arm_park_f32(
Kojto 148:fd96258d940d 5276 float32_t Ialpha,
Kojto 148:fd96258d940d 5277 float32_t Ibeta,
Kojto 148:fd96258d940d 5278 float32_t * pId,
Kojto 148:fd96258d940d 5279 float32_t * pIq,
Kojto 148:fd96258d940d 5280 float32_t sinVal,
Kojto 148:fd96258d940d 5281 float32_t cosVal)
Kojto 148:fd96258d940d 5282 {
Kojto 148:fd96258d940d 5283 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
Kojto 148:fd96258d940d 5284 *pId = Ialpha * cosVal + Ibeta * sinVal;
Kojto 148:fd96258d940d 5285
Kojto 148:fd96258d940d 5286 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
Kojto 148:fd96258d940d 5287 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
Kojto 148:fd96258d940d 5288 }
Kojto 148:fd96258d940d 5289
Kojto 148:fd96258d940d 5290
Kojto 148:fd96258d940d 5291 /**
Kojto 148:fd96258d940d 5292 * @brief Park transform for Q31 version
Kojto 148:fd96258d940d 5293 * @param[in] Ialpha input two-phase vector coordinate alpha
Kojto 148:fd96258d940d 5294 * @param[in] Ibeta input two-phase vector coordinate beta
Kojto 148:fd96258d940d 5295 * @param[out] pId points to output rotor reference frame d
Kojto 148:fd96258d940d 5296 * @param[out] pIq points to output rotor reference frame q
Kojto 148:fd96258d940d 5297 * @param[in] sinVal sine value of rotation angle theta
Kojto 148:fd96258d940d 5298 * @param[in] cosVal cosine value of rotation angle theta
Kojto 148:fd96258d940d 5299 *
Kojto 148:fd96258d940d 5300 * <b>Scaling and Overflow Behavior:</b>
Kojto 148:fd96258d940d 5301 * \par
Kojto 148:fd96258d940d 5302 * The function is implemented using an internal 32-bit accumulator.
Kojto 148:fd96258d940d 5303 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 148:fd96258d940d 5304 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
Kojto 148:fd96258d940d 5305 */
Kojto 148:fd96258d940d 5306 CMSIS_INLINE __STATIC_INLINE void arm_park_q31(
Kojto 148:fd96258d940d 5307 q31_t Ialpha,
Kojto 148:fd96258d940d 5308 q31_t Ibeta,
Kojto 148:fd96258d940d 5309 q31_t * pId,
Kojto 148:fd96258d940d 5310 q31_t * pIq,
Kojto 148:fd96258d940d 5311 q31_t sinVal,
Kojto 148:fd96258d940d 5312 q31_t cosVal)
Kojto 148:fd96258d940d 5313 {
Kojto 148:fd96258d940d 5314 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 148:fd96258d940d 5315 q31_t product3, product4; /* Temporary variables used to store intermediate results */
Kojto 148:fd96258d940d 5316
Kojto 148:fd96258d940d 5317 /* Intermediate product is calculated by (Ialpha * cosVal) */
Kojto 148:fd96258d940d 5318 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
Kojto 148:fd96258d940d 5319
Kojto 148:fd96258d940d 5320 /* Intermediate product is calculated by (Ibeta * sinVal) */
Kojto 148:fd96258d940d 5321 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
Kojto 148:fd96258d940d 5322
Kojto 148:fd96258d940d 5323
Kojto 148:fd96258d940d 5324 /* Intermediate product is calculated by (Ialpha * sinVal) */
Kojto 148:fd96258d940d 5325 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
Kojto 148:fd96258d940d 5326
Kojto 148:fd96258d940d 5327 /* Intermediate product is calculated by (Ibeta * cosVal) */
Kojto 148:fd96258d940d 5328 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
Kojto 148:fd96258d940d 5329
Kojto 148:fd96258d940d 5330 /* Calculate pId by adding the two intermediate products 1 and 2 */
Kojto 148:fd96258d940d 5331 *pId = __QADD(product1, product2);
Kojto 148:fd96258d940d 5332
Kojto 148:fd96258d940d 5333 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
Kojto 148:fd96258d940d 5334 *pIq = __QSUB(product4, product3);
Kojto 148:fd96258d940d 5335 }
Kojto 148:fd96258d940d 5336
Kojto 148:fd96258d940d 5337 /**
Kojto 148:fd96258d940d 5338 * @} end of park group
Kojto 148:fd96258d940d 5339 */
Kojto 148:fd96258d940d 5340
Kojto 148:fd96258d940d 5341 /**
Kojto 148:fd96258d940d 5342 * @brief Converts the elements of the Q7 vector to floating-point vector.
Kojto 148:fd96258d940d 5343 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 5344 * @param[out] pDst is output pointer
Kojto 148:fd96258d940d 5345 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 5346 */
Kojto 148:fd96258d940d 5347 void arm_q7_to_float(
Kojto 148:fd96258d940d 5348 q7_t * pSrc,
Kojto 148:fd96258d940d 5349 float32_t * pDst,
Kojto 148:fd96258d940d 5350 uint32_t blockSize);
Kojto 148:fd96258d940d 5351
Kojto 148:fd96258d940d 5352
Kojto 148:fd96258d940d 5353 /**
Kojto 148:fd96258d940d 5354 * @ingroup groupController
Kojto 148:fd96258d940d 5355 */
Kojto 148:fd96258d940d 5356
Kojto 148:fd96258d940d 5357 /**
Kojto 148:fd96258d940d 5358 * @defgroup inv_park Vector Inverse Park transform
Kojto 148:fd96258d940d 5359 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
Kojto 148:fd96258d940d 5360 *
Kojto 148:fd96258d940d 5361 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 148:fd96258d940d 5362 * The library provides separate functions for Q31 and floating-point data types.
Kojto 148:fd96258d940d 5363 * \par Algorithm
Kojto 148:fd96258d940d 5364 * \image html parkInvFormula.gif
Kojto 148:fd96258d940d 5365 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
Kojto 148:fd96258d940d 5366 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
Kojto 148:fd96258d940d 5367 * cosine and sine values of theta (rotor flux position).
Kojto 148:fd96258d940d 5368 * \par Fixed-Point Behavior
Kojto 148:fd96258d940d 5369 * Care must be taken when using the Q31 version of the Park transform.
Kojto 148:fd96258d940d 5370 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 148:fd96258d940d 5371 * Refer to the function specific documentation below for usage guidelines.
Kojto 148:fd96258d940d 5372 */
Kojto 148:fd96258d940d 5373
Kojto 148:fd96258d940d 5374 /**
Kojto 148:fd96258d940d 5375 * @addtogroup inv_park
Kojto 148:fd96258d940d 5376 * @{
Kojto 148:fd96258d940d 5377 */
Kojto 148:fd96258d940d 5378
Kojto 148:fd96258d940d 5379 /**
Kojto 148:fd96258d940d 5380 * @brief Floating-point Inverse Park transform
Kojto 148:fd96258d940d 5381 * @param[in] Id input coordinate of rotor reference frame d
Kojto 148:fd96258d940d 5382 * @param[in] Iq input coordinate of rotor reference frame q
Kojto 148:fd96258d940d 5383 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 148:fd96258d940d 5384 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
Kojto 148:fd96258d940d 5385 * @param[in] sinVal sine value of rotation angle theta
Kojto 148:fd96258d940d 5386 * @param[in] cosVal cosine value of rotation angle theta
Kojto 148:fd96258d940d 5387 */
Kojto 148:fd96258d940d 5388 CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32(
Kojto 148:fd96258d940d 5389 float32_t Id,
Kojto 148:fd96258d940d 5390 float32_t Iq,
Kojto 148:fd96258d940d 5391 float32_t * pIalpha,
Kojto 148:fd96258d940d 5392 float32_t * pIbeta,
Kojto 148:fd96258d940d 5393 float32_t sinVal,
Kojto 148:fd96258d940d 5394 float32_t cosVal)
Kojto 148:fd96258d940d 5395 {
Kojto 148:fd96258d940d 5396 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
Kojto 148:fd96258d940d 5397 *pIalpha = Id * cosVal - Iq * sinVal;
Kojto 148:fd96258d940d 5398
Kojto 148:fd96258d940d 5399 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
Kojto 148:fd96258d940d 5400 *pIbeta = Id * sinVal + Iq * cosVal;
Kojto 148:fd96258d940d 5401 }
Kojto 148:fd96258d940d 5402
Kojto 148:fd96258d940d 5403
Kojto 148:fd96258d940d 5404 /**
Kojto 148:fd96258d940d 5405 * @brief Inverse Park transform for Q31 version
Kojto 148:fd96258d940d 5406 * @param[in] Id input coordinate of rotor reference frame d
Kojto 148:fd96258d940d 5407 * @param[in] Iq input coordinate of rotor reference frame q
Kojto 148:fd96258d940d 5408 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 148:fd96258d940d 5409 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
Kojto 148:fd96258d940d 5410 * @param[in] sinVal sine value of rotation angle theta
Kojto 148:fd96258d940d 5411 * @param[in] cosVal cosine value of rotation angle theta
Kojto 148:fd96258d940d 5412 *
Kojto 148:fd96258d940d 5413 * <b>Scaling and Overflow Behavior:</b>
Kojto 148:fd96258d940d 5414 * \par
Kojto 148:fd96258d940d 5415 * The function is implemented using an internal 32-bit accumulator.
Kojto 148:fd96258d940d 5416 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 148:fd96258d940d 5417 * There is saturation on the addition, hence there is no risk of overflow.
Kojto 148:fd96258d940d 5418 */
Kojto 148:fd96258d940d 5419 CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31(
Kojto 148:fd96258d940d 5420 q31_t Id,
Kojto 148:fd96258d940d 5421 q31_t Iq,
Kojto 148:fd96258d940d 5422 q31_t * pIalpha,
Kojto 148:fd96258d940d 5423 q31_t * pIbeta,
Kojto 148:fd96258d940d 5424 q31_t sinVal,
Kojto 148:fd96258d940d 5425 q31_t cosVal)
Kojto 148:fd96258d940d 5426 {
Kojto 148:fd96258d940d 5427 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 148:fd96258d940d 5428 q31_t product3, product4; /* Temporary variables used to store intermediate results */
Kojto 148:fd96258d940d 5429
Kojto 148:fd96258d940d 5430 /* Intermediate product is calculated by (Id * cosVal) */
Kojto 148:fd96258d940d 5431 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
Kojto 148:fd96258d940d 5432
Kojto 148:fd96258d940d 5433 /* Intermediate product is calculated by (Iq * sinVal) */
Kojto 148:fd96258d940d 5434 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
Kojto 148:fd96258d940d 5435
Kojto 148:fd96258d940d 5436
Kojto 148:fd96258d940d 5437 /* Intermediate product is calculated by (Id * sinVal) */
Kojto 148:fd96258d940d 5438 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
Kojto 148:fd96258d940d 5439
Kojto 148:fd96258d940d 5440 /* Intermediate product is calculated by (Iq * cosVal) */
Kojto 148:fd96258d940d 5441 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
Kojto 148:fd96258d940d 5442
Kojto 148:fd96258d940d 5443 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
Kojto 148:fd96258d940d 5444 *pIalpha = __QSUB(product1, product2);
Kojto 148:fd96258d940d 5445
Kojto 148:fd96258d940d 5446 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
Kojto 148:fd96258d940d 5447 *pIbeta = __QADD(product4, product3);
Kojto 148:fd96258d940d 5448 }
Kojto 148:fd96258d940d 5449
Kojto 148:fd96258d940d 5450 /**
Kojto 148:fd96258d940d 5451 * @} end of Inverse park group
Kojto 148:fd96258d940d 5452 */
Kojto 148:fd96258d940d 5453
Kojto 148:fd96258d940d 5454
Kojto 148:fd96258d940d 5455 /**
Kojto 148:fd96258d940d 5456 * @brief Converts the elements of the Q31 vector to floating-point vector.
Kojto 148:fd96258d940d 5457 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 5458 * @param[out] pDst is output pointer
Kojto 148:fd96258d940d 5459 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 5460 */
Kojto 148:fd96258d940d 5461 void arm_q31_to_float(
Kojto 148:fd96258d940d 5462 q31_t * pSrc,
Kojto 148:fd96258d940d 5463 float32_t * pDst,
Kojto 148:fd96258d940d 5464 uint32_t blockSize);
Kojto 148:fd96258d940d 5465
Kojto 148:fd96258d940d 5466 /**
Kojto 148:fd96258d940d 5467 * @ingroup groupInterpolation
Kojto 148:fd96258d940d 5468 */
Kojto 148:fd96258d940d 5469
Kojto 148:fd96258d940d 5470 /**
Kojto 148:fd96258d940d 5471 * @defgroup LinearInterpolate Linear Interpolation
Kojto 148:fd96258d940d 5472 *
Kojto 148:fd96258d940d 5473 * Linear interpolation is a method of curve fitting using linear polynomials.
Kojto 148:fd96258d940d 5474 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
Kojto 148:fd96258d940d 5475 *
Kojto 148:fd96258d940d 5476 * \par
Kojto 148:fd96258d940d 5477 * \image html LinearInterp.gif "Linear interpolation"
Kojto 148:fd96258d940d 5478 *
Kojto 148:fd96258d940d 5479 * \par
Kojto 148:fd96258d940d 5480 * A Linear Interpolate function calculates an output value(y), for the input(x)
Kojto 148:fd96258d940d 5481 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
Kojto 148:fd96258d940d 5482 *
Kojto 148:fd96258d940d 5483 * \par Algorithm:
Kojto 148:fd96258d940d 5484 * <pre>
Kojto 148:fd96258d940d 5485 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
Kojto 148:fd96258d940d 5486 * where x0, x1 are nearest values of input x
Kojto 148:fd96258d940d 5487 * y0, y1 are nearest values to output y
Kojto 148:fd96258d940d 5488 * </pre>
Kojto 148:fd96258d940d 5489 *
Kojto 148:fd96258d940d 5490 * \par
Kojto 148:fd96258d940d 5491 * This set of functions implements Linear interpolation process
Kojto 148:fd96258d940d 5492 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
Kojto 148:fd96258d940d 5493 * sample of data and each call to the function returns a single processed value.
Kojto 148:fd96258d940d 5494 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
Kojto 148:fd96258d940d 5495 * <code>x</code> is the input sample value. The functions returns the output value.
Kojto 148:fd96258d940d 5496 *
Kojto 148:fd96258d940d 5497 * \par
Kojto 148:fd96258d940d 5498 * if x is outside of the table boundary, Linear interpolation returns first value of the table
Kojto 148:fd96258d940d 5499 * if x is below input range and returns last value of table if x is above range.
Kojto 148:fd96258d940d 5500 */
Kojto 148:fd96258d940d 5501
Kojto 148:fd96258d940d 5502 /**
Kojto 148:fd96258d940d 5503 * @addtogroup LinearInterpolate
Kojto 148:fd96258d940d 5504 * @{
Kojto 148:fd96258d940d 5505 */
Kojto 148:fd96258d940d 5506
Kojto 148:fd96258d940d 5507 /**
Kojto 148:fd96258d940d 5508 * @brief Process function for the floating-point Linear Interpolation Function.
Kojto 148:fd96258d940d 5509 * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
Kojto 148:fd96258d940d 5510 * @param[in] x input sample to process
Kojto 148:fd96258d940d 5511 * @return y processed output sample.
Kojto 148:fd96258d940d 5512 *
Kojto 148:fd96258d940d 5513 */
Kojto 148:fd96258d940d 5514 CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32(
Kojto 148:fd96258d940d 5515 arm_linear_interp_instance_f32 * S,
Kojto 148:fd96258d940d 5516 float32_t x)
Kojto 148:fd96258d940d 5517 {
Kojto 148:fd96258d940d 5518 float32_t y;
Kojto 148:fd96258d940d 5519 float32_t x0, x1; /* Nearest input values */
Kojto 148:fd96258d940d 5520 float32_t y0, y1; /* Nearest output values */
Kojto 148:fd96258d940d 5521 float32_t xSpacing = S->xSpacing; /* spacing between input values */
Kojto 148:fd96258d940d 5522 int32_t i; /* Index variable */
Kojto 148:fd96258d940d 5523 float32_t *pYData = S->pYData; /* pointer to output table */
Kojto 148:fd96258d940d 5524
Kojto 148:fd96258d940d 5525 /* Calculation of index */
Kojto 148:fd96258d940d 5526 i = (int32_t) ((x - S->x1) / xSpacing);
Kojto 148:fd96258d940d 5527
Kojto 148:fd96258d940d 5528 if (i < 0)
Kojto 148:fd96258d940d 5529 {
Kojto 148:fd96258d940d 5530 /* Iniatilize output for below specified range as least output value of table */
Kojto 148:fd96258d940d 5531 y = pYData[0];
Kojto 148:fd96258d940d 5532 }
Kojto 148:fd96258d940d 5533 else if ((uint32_t)i >= S->nValues)
Kojto 148:fd96258d940d 5534 {
Kojto 148:fd96258d940d 5535 /* Iniatilize output for above specified range as last output value of table */
Kojto 148:fd96258d940d 5536 y = pYData[S->nValues - 1];
Kojto 148:fd96258d940d 5537 }
Kojto 148:fd96258d940d 5538 else
Kojto 148:fd96258d940d 5539 {
Kojto 148:fd96258d940d 5540 /* Calculation of nearest input values */
Kojto 148:fd96258d940d 5541 x0 = S->x1 + i * xSpacing;
Kojto 148:fd96258d940d 5542 x1 = S->x1 + (i + 1) * xSpacing;
Kojto 148:fd96258d940d 5543
Kojto 148:fd96258d940d 5544 /* Read of nearest output values */
Kojto 148:fd96258d940d 5545 y0 = pYData[i];
Kojto 148:fd96258d940d 5546 y1 = pYData[i + 1];
Kojto 148:fd96258d940d 5547
Kojto 148:fd96258d940d 5548 /* Calculation of output */
Kojto 148:fd96258d940d 5549 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
Kojto 148:fd96258d940d 5550
Kojto 148:fd96258d940d 5551 }
Kojto 148:fd96258d940d 5552
Kojto 148:fd96258d940d 5553 /* returns output value */
Kojto 148:fd96258d940d 5554 return (y);
Kojto 148:fd96258d940d 5555 }
Kojto 148:fd96258d940d 5556
Kojto 148:fd96258d940d 5557
Kojto 148:fd96258d940d 5558 /**
Kojto 148:fd96258d940d 5559 *
Kojto 148:fd96258d940d 5560 * @brief Process function for the Q31 Linear Interpolation Function.
Kojto 148:fd96258d940d 5561 * @param[in] pYData pointer to Q31 Linear Interpolation table
Kojto 148:fd96258d940d 5562 * @param[in] x input sample to process
Kojto 148:fd96258d940d 5563 * @param[in] nValues number of table values
Kojto 148:fd96258d940d 5564 * @return y processed output sample.
Kojto 148:fd96258d940d 5565 *
Kojto 148:fd96258d940d 5566 * \par
Kojto 148:fd96258d940d 5567 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 148:fd96258d940d 5568 * This function can support maximum of table size 2^12.
Kojto 148:fd96258d940d 5569 *
Kojto 148:fd96258d940d 5570 */
Kojto 148:fd96258d940d 5571 CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31(
Kojto 148:fd96258d940d 5572 q31_t * pYData,
Kojto 148:fd96258d940d 5573 q31_t x,
Kojto 148:fd96258d940d 5574 uint32_t nValues)
Kojto 148:fd96258d940d 5575 {
Kojto 148:fd96258d940d 5576 q31_t y; /* output */
Kojto 148:fd96258d940d 5577 q31_t y0, y1; /* Nearest output values */
Kojto 148:fd96258d940d 5578 q31_t fract; /* fractional part */
Kojto 148:fd96258d940d 5579 int32_t index; /* Index to read nearest output values */
Kojto 148:fd96258d940d 5580
Kojto 148:fd96258d940d 5581 /* Input is in 12.20 format */
Kojto 148:fd96258d940d 5582 /* 12 bits for the table index */
Kojto 148:fd96258d940d 5583 /* Index value calculation */
Kojto 148:fd96258d940d 5584 index = ((x & (q31_t)0xFFF00000) >> 20);
Kojto 148:fd96258d940d 5585
Kojto 148:fd96258d940d 5586 if (index >= (int32_t)(nValues - 1))
Kojto 148:fd96258d940d 5587 {
Kojto 148:fd96258d940d 5588 return (pYData[nValues - 1]);
Kojto 148:fd96258d940d 5589 }
Kojto 148:fd96258d940d 5590 else if (index < 0)
Kojto 148:fd96258d940d 5591 {
Kojto 148:fd96258d940d 5592 return (pYData[0]);
Kojto 148:fd96258d940d 5593 }
Kojto 148:fd96258d940d 5594 else
Kojto 148:fd96258d940d 5595 {
Kojto 148:fd96258d940d 5596 /* 20 bits for the fractional part */
Kojto 148:fd96258d940d 5597 /* shift left by 11 to keep fract in 1.31 format */
Kojto 148:fd96258d940d 5598 fract = (x & 0x000FFFFF) << 11;
Kojto 148:fd96258d940d 5599
Kojto 148:fd96258d940d 5600 /* Read two nearest output values from the index in 1.31(q31) format */
Kojto 148:fd96258d940d 5601 y0 = pYData[index];
Kojto 148:fd96258d940d 5602 y1 = pYData[index + 1];
Kojto 148:fd96258d940d 5603
Kojto 148:fd96258d940d 5604 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
Kojto 148:fd96258d940d 5605 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
Kojto 148:fd96258d940d 5606
Kojto 148:fd96258d940d 5607 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
Kojto 148:fd96258d940d 5608 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
Kojto 148:fd96258d940d 5609
Kojto 148:fd96258d940d 5610 /* Convert y to 1.31 format */
Kojto 148:fd96258d940d 5611 return (y << 1u);
Kojto 148:fd96258d940d 5612 }
Kojto 148:fd96258d940d 5613 }
Kojto 148:fd96258d940d 5614
Kojto 148:fd96258d940d 5615
Kojto 148:fd96258d940d 5616 /**
Kojto 148:fd96258d940d 5617 *
Kojto 148:fd96258d940d 5618 * @brief Process function for the Q15 Linear Interpolation Function.
Kojto 148:fd96258d940d 5619 * @param[in] pYData pointer to Q15 Linear Interpolation table
Kojto 148:fd96258d940d 5620 * @param[in] x input sample to process
Kojto 148:fd96258d940d 5621 * @param[in] nValues number of table values
Kojto 148:fd96258d940d 5622 * @return y processed output sample.
Kojto 148:fd96258d940d 5623 *
Kojto 148:fd96258d940d 5624 * \par
Kojto 148:fd96258d940d 5625 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 148:fd96258d940d 5626 * This function can support maximum of table size 2^12.
Kojto 148:fd96258d940d 5627 *
Kojto 148:fd96258d940d 5628 */
Kojto 148:fd96258d940d 5629 CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15(
Kojto 148:fd96258d940d 5630 q15_t * pYData,
Kojto 148:fd96258d940d 5631 q31_t x,
Kojto 148:fd96258d940d 5632 uint32_t nValues)
Kojto 148:fd96258d940d 5633 {
Kojto 148:fd96258d940d 5634 q63_t y; /* output */
Kojto 148:fd96258d940d 5635 q15_t y0, y1; /* Nearest output values */
Kojto 148:fd96258d940d 5636 q31_t fract; /* fractional part */
Kojto 148:fd96258d940d 5637 int32_t index; /* Index to read nearest output values */
Kojto 148:fd96258d940d 5638
Kojto 148:fd96258d940d 5639 /* Input is in 12.20 format */
Kojto 148:fd96258d940d 5640 /* 12 bits for the table index */
Kojto 148:fd96258d940d 5641 /* Index value calculation */
Kojto 148:fd96258d940d 5642 index = ((x & (int32_t)0xFFF00000) >> 20);
Kojto 148:fd96258d940d 5643
Kojto 148:fd96258d940d 5644 if (index >= (int32_t)(nValues - 1))
Kojto 148:fd96258d940d 5645 {
Kojto 148:fd96258d940d 5646 return (pYData[nValues - 1]);
Kojto 148:fd96258d940d 5647 }
Kojto 148:fd96258d940d 5648 else if (index < 0)
Kojto 148:fd96258d940d 5649 {
Kojto 148:fd96258d940d 5650 return (pYData[0]);
Kojto 148:fd96258d940d 5651 }
Kojto 148:fd96258d940d 5652 else
Kojto 148:fd96258d940d 5653 {
Kojto 148:fd96258d940d 5654 /* 20 bits for the fractional part */
Kojto 148:fd96258d940d 5655 /* fract is in 12.20 format */
Kojto 148:fd96258d940d 5656 fract = (x & 0x000FFFFF);
Kojto 148:fd96258d940d 5657
Kojto 148:fd96258d940d 5658 /* Read two nearest output values from the index */
Kojto 148:fd96258d940d 5659 y0 = pYData[index];
Kojto 148:fd96258d940d 5660 y1 = pYData[index + 1];
Kojto 148:fd96258d940d 5661
Kojto 148:fd96258d940d 5662 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
Kojto 148:fd96258d940d 5663 y = ((q63_t) y0 * (0xFFFFF - fract));
Kojto 148:fd96258d940d 5664
Kojto 148:fd96258d940d 5665 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
Kojto 148:fd96258d940d 5666 y += ((q63_t) y1 * (fract));
Kojto 148:fd96258d940d 5667
Kojto 148:fd96258d940d 5668 /* convert y to 1.15 format */
Kojto 148:fd96258d940d 5669 return (q15_t) (y >> 20);
Kojto 148:fd96258d940d 5670 }
Kojto 148:fd96258d940d 5671 }
Kojto 148:fd96258d940d 5672
Kojto 148:fd96258d940d 5673
Kojto 148:fd96258d940d 5674 /**
Kojto 148:fd96258d940d 5675 *
Kojto 148:fd96258d940d 5676 * @brief Process function for the Q7 Linear Interpolation Function.
Kojto 148:fd96258d940d 5677 * @param[in] pYData pointer to Q7 Linear Interpolation table
Kojto 148:fd96258d940d 5678 * @param[in] x input sample to process
Kojto 148:fd96258d940d 5679 * @param[in] nValues number of table values
Kojto 148:fd96258d940d 5680 * @return y processed output sample.
Kojto 148:fd96258d940d 5681 *
Kojto 148:fd96258d940d 5682 * \par
Kojto 148:fd96258d940d 5683 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 148:fd96258d940d 5684 * This function can support maximum of table size 2^12.
Kojto 148:fd96258d940d 5685 */
Kojto 148:fd96258d940d 5686 CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7(
Kojto 148:fd96258d940d 5687 q7_t * pYData,
Kojto 148:fd96258d940d 5688 q31_t x,
Kojto 148:fd96258d940d 5689 uint32_t nValues)
Kojto 148:fd96258d940d 5690 {
Kojto 148:fd96258d940d 5691 q31_t y; /* output */
Kojto 148:fd96258d940d 5692 q7_t y0, y1; /* Nearest output values */
Kojto 148:fd96258d940d 5693 q31_t fract; /* fractional part */
Kojto 148:fd96258d940d 5694 uint32_t index; /* Index to read nearest output values */
Kojto 148:fd96258d940d 5695
Kojto 148:fd96258d940d 5696 /* Input is in 12.20 format */
Kojto 148:fd96258d940d 5697 /* 12 bits for the table index */
Kojto 148:fd96258d940d 5698 /* Index value calculation */
Kojto 148:fd96258d940d 5699 if (x < 0)
Kojto 148:fd96258d940d 5700 {
Kojto 148:fd96258d940d 5701 return (pYData[0]);
Kojto 148:fd96258d940d 5702 }
Kojto 148:fd96258d940d 5703 index = (x >> 20) & 0xfff;
Kojto 148:fd96258d940d 5704
Kojto 148:fd96258d940d 5705 if (index >= (nValues - 1))
Kojto 148:fd96258d940d 5706 {
Kojto 148:fd96258d940d 5707 return (pYData[nValues - 1]);
Kojto 148:fd96258d940d 5708 }
Kojto 148:fd96258d940d 5709 else
Kojto 148:fd96258d940d 5710 {
Kojto 148:fd96258d940d 5711 /* 20 bits for the fractional part */
Kojto 148:fd96258d940d 5712 /* fract is in 12.20 format */
Kojto 148:fd96258d940d 5713 fract = (x & 0x000FFFFF);
Kojto 148:fd96258d940d 5714
Kojto 148:fd96258d940d 5715 /* Read two nearest output values from the index and are in 1.7(q7) format */
Kojto 148:fd96258d940d 5716 y0 = pYData[index];
Kojto 148:fd96258d940d 5717 y1 = pYData[index + 1];
Kojto 148:fd96258d940d 5718
Kojto 148:fd96258d940d 5719 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
Kojto 148:fd96258d940d 5720 y = ((y0 * (0xFFFFF - fract)));
Kojto 148:fd96258d940d 5721
Kojto 148:fd96258d940d 5722 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
Kojto 148:fd96258d940d 5723 y += (y1 * fract);
Kojto 148:fd96258d940d 5724
Kojto 148:fd96258d940d 5725 /* convert y to 1.7(q7) format */
Kojto 148:fd96258d940d 5726 return (q7_t) (y >> 20);
Kojto 148:fd96258d940d 5727 }
Kojto 148:fd96258d940d 5728 }
Kojto 148:fd96258d940d 5729
Kojto 148:fd96258d940d 5730 /**
Kojto 148:fd96258d940d 5731 * @} end of LinearInterpolate group
Kojto 148:fd96258d940d 5732 */
Kojto 148:fd96258d940d 5733
Kojto 148:fd96258d940d 5734 /**
Kojto 148:fd96258d940d 5735 * @brief Fast approximation to the trigonometric sine function for floating-point data.
Kojto 148:fd96258d940d 5736 * @param[in] x input value in radians.
Kojto 148:fd96258d940d 5737 * @return sin(x).
Kojto 148:fd96258d940d 5738 */
Kojto 148:fd96258d940d 5739 float32_t arm_sin_f32(
Kojto 148:fd96258d940d 5740 float32_t x);
Kojto 148:fd96258d940d 5741
Kojto 148:fd96258d940d 5742
Kojto 148:fd96258d940d 5743 /**
Kojto 148:fd96258d940d 5744 * @brief Fast approximation to the trigonometric sine function for Q31 data.
Kojto 148:fd96258d940d 5745 * @param[in] x Scaled input value in radians.
Kojto 148:fd96258d940d 5746 * @return sin(x).
Kojto 148:fd96258d940d 5747 */
Kojto 148:fd96258d940d 5748 q31_t arm_sin_q31(
Kojto 148:fd96258d940d 5749 q31_t x);
Kojto 148:fd96258d940d 5750
Kojto 148:fd96258d940d 5751
Kojto 148:fd96258d940d 5752 /**
Kojto 148:fd96258d940d 5753 * @brief Fast approximation to the trigonometric sine function for Q15 data.
Kojto 148:fd96258d940d 5754 * @param[in] x Scaled input value in radians.
Kojto 148:fd96258d940d 5755 * @return sin(x).
Kojto 148:fd96258d940d 5756 */
Kojto 148:fd96258d940d 5757 q15_t arm_sin_q15(
Kojto 148:fd96258d940d 5758 q15_t x);
Kojto 148:fd96258d940d 5759
Kojto 148:fd96258d940d 5760
Kojto 148:fd96258d940d 5761 /**
Kojto 148:fd96258d940d 5762 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
Kojto 148:fd96258d940d 5763 * @param[in] x input value in radians.
Kojto 148:fd96258d940d 5764 * @return cos(x).
Kojto 148:fd96258d940d 5765 */
Kojto 148:fd96258d940d 5766 float32_t arm_cos_f32(
Kojto 148:fd96258d940d 5767 float32_t x);
Kojto 148:fd96258d940d 5768
Kojto 148:fd96258d940d 5769
Kojto 148:fd96258d940d 5770 /**
Kojto 148:fd96258d940d 5771 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
Kojto 148:fd96258d940d 5772 * @param[in] x Scaled input value in radians.
Kojto 148:fd96258d940d 5773 * @return cos(x).
Kojto 148:fd96258d940d 5774 */
Kojto 148:fd96258d940d 5775 q31_t arm_cos_q31(
Kojto 148:fd96258d940d 5776 q31_t x);
Kojto 148:fd96258d940d 5777
Kojto 148:fd96258d940d 5778
Kojto 148:fd96258d940d 5779 /**
Kojto 148:fd96258d940d 5780 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
Kojto 148:fd96258d940d 5781 * @param[in] x Scaled input value in radians.
Kojto 148:fd96258d940d 5782 * @return cos(x).
Kojto 148:fd96258d940d 5783 */
Kojto 148:fd96258d940d 5784 q15_t arm_cos_q15(
Kojto 148:fd96258d940d 5785 q15_t x);
Kojto 148:fd96258d940d 5786
Kojto 148:fd96258d940d 5787
Kojto 148:fd96258d940d 5788 /**
Kojto 148:fd96258d940d 5789 * @ingroup groupFastMath
Kojto 148:fd96258d940d 5790 */
Kojto 148:fd96258d940d 5791
Kojto 148:fd96258d940d 5792
Kojto 148:fd96258d940d 5793 /**
Kojto 148:fd96258d940d 5794 * @defgroup SQRT Square Root
Kojto 148:fd96258d940d 5795 *
Kojto 148:fd96258d940d 5796 * Computes the square root of a number.
Kojto 148:fd96258d940d 5797 * There are separate functions for Q15, Q31, and floating-point data types.
Kojto 148:fd96258d940d 5798 * The square root function is computed using the Newton-Raphson algorithm.
Kojto 148:fd96258d940d 5799 * This is an iterative algorithm of the form:
Kojto 148:fd96258d940d 5800 * <pre>
Kojto 148:fd96258d940d 5801 * x1 = x0 - f(x0)/f'(x0)
Kojto 148:fd96258d940d 5802 * </pre>
Kojto 148:fd96258d940d 5803 * where <code>x1</code> is the current estimate,
Kojto 148:fd96258d940d 5804 * <code>x0</code> is the previous estimate, and
Kojto 148:fd96258d940d 5805 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
Kojto 148:fd96258d940d 5806 * For the square root function, the algorithm reduces to:
Kojto 148:fd96258d940d 5807 * <pre>
Kojto 148:fd96258d940d 5808 * x0 = in/2 [initial guess]
Kojto 148:fd96258d940d 5809 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
Kojto 148:fd96258d940d 5810 * </pre>
Kojto 148:fd96258d940d 5811 */
Kojto 148:fd96258d940d 5812
Kojto 148:fd96258d940d 5813
Kojto 148:fd96258d940d 5814 /**
Kojto 148:fd96258d940d 5815 * @addtogroup SQRT
Kojto 148:fd96258d940d 5816 * @{
Kojto 148:fd96258d940d 5817 */
Kojto 148:fd96258d940d 5818
Kojto 148:fd96258d940d 5819 /**
Kojto 148:fd96258d940d 5820 * @brief Floating-point square root function.
Kojto 148:fd96258d940d 5821 * @param[in] in input value.
Kojto 148:fd96258d940d 5822 * @param[out] pOut square root of input value.
Kojto 148:fd96258d940d 5823 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 148:fd96258d940d 5824 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 148:fd96258d940d 5825 */
Kojto 148:fd96258d940d 5826 CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32(
Kojto 148:fd96258d940d 5827 float32_t in,
Kojto 148:fd96258d940d 5828 float32_t * pOut)
Kojto 148:fd96258d940d 5829 {
Kojto 148:fd96258d940d 5830 if (in >= 0.0f)
Kojto 148:fd96258d940d 5831 {
Kojto 148:fd96258d940d 5832
Kojto 148:fd96258d940d 5833 #if (__FPU_USED == 1) && defined ( __CC_ARM )
Kojto 148:fd96258d940d 5834 *pOut = __sqrtf(in);
Kojto 148:fd96258d940d 5835 #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
Kojto 148:fd96258d940d 5836 *pOut = __builtin_sqrtf(in);
Kojto 148:fd96258d940d 5837 #elif (__FPU_USED == 1) && defined(__GNUC__)
Kojto 148:fd96258d940d 5838 *pOut = __builtin_sqrtf(in);
Kojto 148:fd96258d940d 5839 #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
Kojto 148:fd96258d940d 5840 __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
Kojto 148:fd96258d940d 5841 #else
Kojto 148:fd96258d940d 5842 *pOut = sqrtf(in);
Kojto 148:fd96258d940d 5843 #endif
Kojto 148:fd96258d940d 5844
Kojto 148:fd96258d940d 5845 return (ARM_MATH_SUCCESS);
Kojto 148:fd96258d940d 5846 }
Kojto 148:fd96258d940d 5847 else
Kojto 148:fd96258d940d 5848 {
Kojto 148:fd96258d940d 5849 *pOut = 0.0f;
Kojto 148:fd96258d940d 5850 return (ARM_MATH_ARGUMENT_ERROR);
Kojto 148:fd96258d940d 5851 }
Kojto 148:fd96258d940d 5852 }
Kojto 148:fd96258d940d 5853
Kojto 148:fd96258d940d 5854
Kojto 148:fd96258d940d 5855 /**
Kojto 148:fd96258d940d 5856 * @brief Q31 square root function.
Kojto 148:fd96258d940d 5857 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
Kojto 148:fd96258d940d 5858 * @param[out] pOut square root of input value.
Kojto 148:fd96258d940d 5859 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 148:fd96258d940d 5860 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 148:fd96258d940d 5861 */
Kojto 148:fd96258d940d 5862 arm_status arm_sqrt_q31(
Kojto 148:fd96258d940d 5863 q31_t in,
Kojto 148:fd96258d940d 5864 q31_t * pOut);
Kojto 148:fd96258d940d 5865
Kojto 148:fd96258d940d 5866
Kojto 148:fd96258d940d 5867 /**
Kojto 148:fd96258d940d 5868 * @brief Q15 square root function.
Kojto 148:fd96258d940d 5869 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
Kojto 148:fd96258d940d 5870 * @param[out] pOut square root of input value.
Kojto 148:fd96258d940d 5871 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 148:fd96258d940d 5872 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 148:fd96258d940d 5873 */
Kojto 148:fd96258d940d 5874 arm_status arm_sqrt_q15(
Kojto 148:fd96258d940d 5875 q15_t in,
Kojto 148:fd96258d940d 5876 q15_t * pOut);
Kojto 148:fd96258d940d 5877
Kojto 148:fd96258d940d 5878 /**
Kojto 148:fd96258d940d 5879 * @} end of SQRT group
Kojto 148:fd96258d940d 5880 */
Kojto 148:fd96258d940d 5881
Kojto 148:fd96258d940d 5882
Kojto 148:fd96258d940d 5883 /**
Kojto 148:fd96258d940d 5884 * @brief floating-point Circular write function.
Kojto 148:fd96258d940d 5885 */
Kojto 148:fd96258d940d 5886 CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32(
Kojto 148:fd96258d940d 5887 int32_t * circBuffer,
Kojto 148:fd96258d940d 5888 int32_t L,
Kojto 148:fd96258d940d 5889 uint16_t * writeOffset,
Kojto 148:fd96258d940d 5890 int32_t bufferInc,
Kojto 148:fd96258d940d 5891 const int32_t * src,
Kojto 148:fd96258d940d 5892 int32_t srcInc,
Kojto 148:fd96258d940d 5893 uint32_t blockSize)
Kojto 148:fd96258d940d 5894 {
Kojto 148:fd96258d940d 5895 uint32_t i = 0u;
Kojto 148:fd96258d940d 5896 int32_t wOffset;
Kojto 148:fd96258d940d 5897
Kojto 148:fd96258d940d 5898 /* Copy the value of Index pointer that points
Kojto 148:fd96258d940d 5899 * to the current location where the input samples to be copied */
Kojto 148:fd96258d940d 5900 wOffset = *writeOffset;
Kojto 148:fd96258d940d 5901
Kojto 148:fd96258d940d 5902 /* Loop over the blockSize */
Kojto 148:fd96258d940d 5903 i = blockSize;
Kojto 148:fd96258d940d 5904
Kojto 148:fd96258d940d 5905 while (i > 0u)
Kojto 148:fd96258d940d 5906 {
Kojto 148:fd96258d940d 5907 /* copy the input sample to the circular buffer */
Kojto 148:fd96258d940d 5908 circBuffer[wOffset] = *src;
Kojto 148:fd96258d940d 5909
Kojto 148:fd96258d940d 5910 /* Update the input pointer */
Kojto 148:fd96258d940d 5911 src += srcInc;
Kojto 148:fd96258d940d 5912
Kojto 148:fd96258d940d 5913 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 148:fd96258d940d 5914 wOffset += bufferInc;
Kojto 148:fd96258d940d 5915 if (wOffset >= L)
Kojto 148:fd96258d940d 5916 wOffset -= L;
Kojto 148:fd96258d940d 5917
Kojto 148:fd96258d940d 5918 /* Decrement the loop counter */
Kojto 148:fd96258d940d 5919 i--;
Kojto 148:fd96258d940d 5920 }
Kojto 148:fd96258d940d 5921
Kojto 148:fd96258d940d 5922 /* Update the index pointer */
Kojto 148:fd96258d940d 5923 *writeOffset = (uint16_t)wOffset;
Kojto 148:fd96258d940d 5924 }
Kojto 148:fd96258d940d 5925
Kojto 148:fd96258d940d 5926
Kojto 148:fd96258d940d 5927
Kojto 148:fd96258d940d 5928 /**
Kojto 148:fd96258d940d 5929 * @brief floating-point Circular Read function.
Kojto 148:fd96258d940d 5930 */
Kojto 148:fd96258d940d 5931 CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32(
Kojto 148:fd96258d940d 5932 int32_t * circBuffer,
Kojto 148:fd96258d940d 5933 int32_t L,
Kojto 148:fd96258d940d 5934 int32_t * readOffset,
Kojto 148:fd96258d940d 5935 int32_t bufferInc,
Kojto 148:fd96258d940d 5936 int32_t * dst,
Kojto 148:fd96258d940d 5937 int32_t * dst_base,
Kojto 148:fd96258d940d 5938 int32_t dst_length,
Kojto 148:fd96258d940d 5939 int32_t dstInc,
Kojto 148:fd96258d940d 5940 uint32_t blockSize)
Kojto 148:fd96258d940d 5941 {
Kojto 148:fd96258d940d 5942 uint32_t i = 0u;
Kojto 148:fd96258d940d 5943 int32_t rOffset, dst_end;
Kojto 148:fd96258d940d 5944
Kojto 148:fd96258d940d 5945 /* Copy the value of Index pointer that points
Kojto 148:fd96258d940d 5946 * to the current location from where the input samples to be read */
Kojto 148:fd96258d940d 5947 rOffset = *readOffset;
Kojto 148:fd96258d940d 5948 dst_end = (int32_t) (dst_base + dst_length);
Kojto 148:fd96258d940d 5949
Kojto 148:fd96258d940d 5950 /* Loop over the blockSize */
Kojto 148:fd96258d940d 5951 i = blockSize;
Kojto 148:fd96258d940d 5952
Kojto 148:fd96258d940d 5953 while (i > 0u)
Kojto 148:fd96258d940d 5954 {
Kojto 148:fd96258d940d 5955 /* copy the sample from the circular buffer to the destination buffer */
Kojto 148:fd96258d940d 5956 *dst = circBuffer[rOffset];
Kojto 148:fd96258d940d 5957
Kojto 148:fd96258d940d 5958 /* Update the input pointer */
Kojto 148:fd96258d940d 5959 dst += dstInc;
Kojto 148:fd96258d940d 5960
Kojto 148:fd96258d940d 5961 if (dst == (int32_t *) dst_end)
Kojto 148:fd96258d940d 5962 {
Kojto 148:fd96258d940d 5963 dst = dst_base;
Kojto 148:fd96258d940d 5964 }
Kojto 148:fd96258d940d 5965
Kojto 148:fd96258d940d 5966 /* Circularly update rOffset. Watch out for positive and negative value */
Kojto 148:fd96258d940d 5967 rOffset += bufferInc;
Kojto 148:fd96258d940d 5968
Kojto 148:fd96258d940d 5969 if (rOffset >= L)
Kojto 148:fd96258d940d 5970 {
Kojto 148:fd96258d940d 5971 rOffset -= L;
Kojto 148:fd96258d940d 5972 }
Kojto 148:fd96258d940d 5973
Kojto 148:fd96258d940d 5974 /* Decrement the loop counter */
Kojto 148:fd96258d940d 5975 i--;
Kojto 148:fd96258d940d 5976 }
Kojto 148:fd96258d940d 5977
Kojto 148:fd96258d940d 5978 /* Update the index pointer */
Kojto 148:fd96258d940d 5979 *readOffset = rOffset;
Kojto 148:fd96258d940d 5980 }
Kojto 148:fd96258d940d 5981
Kojto 148:fd96258d940d 5982
Kojto 148:fd96258d940d 5983 /**
Kojto 148:fd96258d940d 5984 * @brief Q15 Circular write function.
Kojto 148:fd96258d940d 5985 */
Kojto 148:fd96258d940d 5986 CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15(
Kojto 148:fd96258d940d 5987 q15_t * circBuffer,
Kojto 148:fd96258d940d 5988 int32_t L,
Kojto 148:fd96258d940d 5989 uint16_t * writeOffset,
Kojto 148:fd96258d940d 5990 int32_t bufferInc,
Kojto 148:fd96258d940d 5991 const q15_t * src,
Kojto 148:fd96258d940d 5992 int32_t srcInc,
Kojto 148:fd96258d940d 5993 uint32_t blockSize)
Kojto 148:fd96258d940d 5994 {
Kojto 148:fd96258d940d 5995 uint32_t i = 0u;
Kojto 148:fd96258d940d 5996 int32_t wOffset;
Kojto 148:fd96258d940d 5997
Kojto 148:fd96258d940d 5998 /* Copy the value of Index pointer that points
Kojto 148:fd96258d940d 5999 * to the current location where the input samples to be copied */
Kojto 148:fd96258d940d 6000 wOffset = *writeOffset;
Kojto 148:fd96258d940d 6001
Kojto 148:fd96258d940d 6002 /* Loop over the blockSize */
Kojto 148:fd96258d940d 6003 i = blockSize;
Kojto 148:fd96258d940d 6004
Kojto 148:fd96258d940d 6005 while (i > 0u)
Kojto 148:fd96258d940d 6006 {
Kojto 148:fd96258d940d 6007 /* copy the input sample to the circular buffer */
Kojto 148:fd96258d940d 6008 circBuffer[wOffset] = *src;
Kojto 148:fd96258d940d 6009
Kojto 148:fd96258d940d 6010 /* Update the input pointer */
Kojto 148:fd96258d940d 6011 src += srcInc;
Kojto 148:fd96258d940d 6012
Kojto 148:fd96258d940d 6013 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 148:fd96258d940d 6014 wOffset += bufferInc;
Kojto 148:fd96258d940d 6015 if (wOffset >= L)
Kojto 148:fd96258d940d 6016 wOffset -= L;
Kojto 148:fd96258d940d 6017
Kojto 148:fd96258d940d 6018 /* Decrement the loop counter */
Kojto 148:fd96258d940d 6019 i--;
Kojto 148:fd96258d940d 6020 }
Kojto 148:fd96258d940d 6021
Kojto 148:fd96258d940d 6022 /* Update the index pointer */
Kojto 148:fd96258d940d 6023 *writeOffset = (uint16_t)wOffset;
Kojto 148:fd96258d940d 6024 }
Kojto 148:fd96258d940d 6025
Kojto 148:fd96258d940d 6026
Kojto 148:fd96258d940d 6027 /**
Kojto 148:fd96258d940d 6028 * @brief Q15 Circular Read function.
Kojto 148:fd96258d940d 6029 */
Kojto 148:fd96258d940d 6030 CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15(
Kojto 148:fd96258d940d 6031 q15_t * circBuffer,
Kojto 148:fd96258d940d 6032 int32_t L,
Kojto 148:fd96258d940d 6033 int32_t * readOffset,
Kojto 148:fd96258d940d 6034 int32_t bufferInc,
Kojto 148:fd96258d940d 6035 q15_t * dst,
Kojto 148:fd96258d940d 6036 q15_t * dst_base,
Kojto 148:fd96258d940d 6037 int32_t dst_length,
Kojto 148:fd96258d940d 6038 int32_t dstInc,
Kojto 148:fd96258d940d 6039 uint32_t blockSize)
Kojto 148:fd96258d940d 6040 {
Kojto 148:fd96258d940d 6041 uint32_t i = 0;
Kojto 148:fd96258d940d 6042 int32_t rOffset, dst_end;
Kojto 148:fd96258d940d 6043
Kojto 148:fd96258d940d 6044 /* Copy the value of Index pointer that points
Kojto 148:fd96258d940d 6045 * to the current location from where the input samples to be read */
Kojto 148:fd96258d940d 6046 rOffset = *readOffset;
Kojto 148:fd96258d940d 6047
Kojto 148:fd96258d940d 6048 dst_end = (int32_t) (dst_base + dst_length);
Kojto 148:fd96258d940d 6049
Kojto 148:fd96258d940d 6050 /* Loop over the blockSize */
Kojto 148:fd96258d940d 6051 i = blockSize;
Kojto 148:fd96258d940d 6052
Kojto 148:fd96258d940d 6053 while (i > 0u)
Kojto 148:fd96258d940d 6054 {
Kojto 148:fd96258d940d 6055 /* copy the sample from the circular buffer to the destination buffer */
Kojto 148:fd96258d940d 6056 *dst = circBuffer[rOffset];
Kojto 148:fd96258d940d 6057
Kojto 148:fd96258d940d 6058 /* Update the input pointer */
Kojto 148:fd96258d940d 6059 dst += dstInc;
Kojto 148:fd96258d940d 6060
Kojto 148:fd96258d940d 6061 if (dst == (q15_t *) dst_end)
Kojto 148:fd96258d940d 6062 {
Kojto 148:fd96258d940d 6063 dst = dst_base;
Kojto 148:fd96258d940d 6064 }
Kojto 148:fd96258d940d 6065
Kojto 148:fd96258d940d 6066 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 148:fd96258d940d 6067 rOffset += bufferInc;
Kojto 148:fd96258d940d 6068
Kojto 148:fd96258d940d 6069 if (rOffset >= L)
Kojto 148:fd96258d940d 6070 {
Kojto 148:fd96258d940d 6071 rOffset -= L;
Kojto 148:fd96258d940d 6072 }
Kojto 148:fd96258d940d 6073
Kojto 148:fd96258d940d 6074 /* Decrement the loop counter */
Kojto 148:fd96258d940d 6075 i--;
Kojto 148:fd96258d940d 6076 }
Kojto 148:fd96258d940d 6077
Kojto 148:fd96258d940d 6078 /* Update the index pointer */
Kojto 148:fd96258d940d 6079 *readOffset = rOffset;
Kojto 148:fd96258d940d 6080 }
Kojto 148:fd96258d940d 6081
Kojto 148:fd96258d940d 6082
Kojto 148:fd96258d940d 6083 /**
Kojto 148:fd96258d940d 6084 * @brief Q7 Circular write function.
Kojto 148:fd96258d940d 6085 */
Kojto 148:fd96258d940d 6086 CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7(
Kojto 148:fd96258d940d 6087 q7_t * circBuffer,
Kojto 148:fd96258d940d 6088 int32_t L,
Kojto 148:fd96258d940d 6089 uint16_t * writeOffset,
Kojto 148:fd96258d940d 6090 int32_t bufferInc,
Kojto 148:fd96258d940d 6091 const q7_t * src,
Kojto 148:fd96258d940d 6092 int32_t srcInc,
Kojto 148:fd96258d940d 6093 uint32_t blockSize)
Kojto 148:fd96258d940d 6094 {
Kojto 148:fd96258d940d 6095 uint32_t i = 0u;
Kojto 148:fd96258d940d 6096 int32_t wOffset;
Kojto 148:fd96258d940d 6097
Kojto 148:fd96258d940d 6098 /* Copy the value of Index pointer that points
Kojto 148:fd96258d940d 6099 * to the current location where the input samples to be copied */
Kojto 148:fd96258d940d 6100 wOffset = *writeOffset;
Kojto 148:fd96258d940d 6101
Kojto 148:fd96258d940d 6102 /* Loop over the blockSize */
Kojto 148:fd96258d940d 6103 i = blockSize;
Kojto 148:fd96258d940d 6104
Kojto 148:fd96258d940d 6105 while (i > 0u)
Kojto 148:fd96258d940d 6106 {
Kojto 148:fd96258d940d 6107 /* copy the input sample to the circular buffer */
Kojto 148:fd96258d940d 6108 circBuffer[wOffset] = *src;
Kojto 148:fd96258d940d 6109
Kojto 148:fd96258d940d 6110 /* Update the input pointer */
Kojto 148:fd96258d940d 6111 src += srcInc;
Kojto 148:fd96258d940d 6112
Kojto 148:fd96258d940d 6113 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 148:fd96258d940d 6114 wOffset += bufferInc;
Kojto 148:fd96258d940d 6115 if (wOffset >= L)
Kojto 148:fd96258d940d 6116 wOffset -= L;
Kojto 148:fd96258d940d 6117
Kojto 148:fd96258d940d 6118 /* Decrement the loop counter */
Kojto 148:fd96258d940d 6119 i--;
Kojto 148:fd96258d940d 6120 }
Kojto 148:fd96258d940d 6121
Kojto 148:fd96258d940d 6122 /* Update the index pointer */
Kojto 148:fd96258d940d 6123 *writeOffset = (uint16_t)wOffset;
Kojto 148:fd96258d940d 6124 }
Kojto 148:fd96258d940d 6125
Kojto 148:fd96258d940d 6126
Kojto 148:fd96258d940d 6127 /**
Kojto 148:fd96258d940d 6128 * @brief Q7 Circular Read function.
Kojto 148:fd96258d940d 6129 */
Kojto 148:fd96258d940d 6130 CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7(
Kojto 148:fd96258d940d 6131 q7_t * circBuffer,
Kojto 148:fd96258d940d 6132 int32_t L,
Kojto 148:fd96258d940d 6133 int32_t * readOffset,
Kojto 148:fd96258d940d 6134 int32_t bufferInc,
Kojto 148:fd96258d940d 6135 q7_t * dst,
Kojto 148:fd96258d940d 6136 q7_t * dst_base,
Kojto 148:fd96258d940d 6137 int32_t dst_length,
Kojto 148:fd96258d940d 6138 int32_t dstInc,
Kojto 148:fd96258d940d 6139 uint32_t blockSize)
Kojto 148:fd96258d940d 6140 {
Kojto 148:fd96258d940d 6141 uint32_t i = 0;
Kojto 148:fd96258d940d 6142 int32_t rOffset, dst_end;
Kojto 148:fd96258d940d 6143
Kojto 148:fd96258d940d 6144 /* Copy the value of Index pointer that points
Kojto 148:fd96258d940d 6145 * to the current location from where the input samples to be read */
Kojto 148:fd96258d940d 6146 rOffset = *readOffset;
Kojto 148:fd96258d940d 6147
Kojto 148:fd96258d940d 6148 dst_end = (int32_t) (dst_base + dst_length);
Kojto 148:fd96258d940d 6149
Kojto 148:fd96258d940d 6150 /* Loop over the blockSize */
Kojto 148:fd96258d940d 6151 i = blockSize;
Kojto 148:fd96258d940d 6152
Kojto 148:fd96258d940d 6153 while (i > 0u)
Kojto 148:fd96258d940d 6154 {
Kojto 148:fd96258d940d 6155 /* copy the sample from the circular buffer to the destination buffer */
Kojto 148:fd96258d940d 6156 *dst = circBuffer[rOffset];
Kojto 148:fd96258d940d 6157
Kojto 148:fd96258d940d 6158 /* Update the input pointer */
Kojto 148:fd96258d940d 6159 dst += dstInc;
Kojto 148:fd96258d940d 6160
Kojto 148:fd96258d940d 6161 if (dst == (q7_t *) dst_end)
Kojto 148:fd96258d940d 6162 {
Kojto 148:fd96258d940d 6163 dst = dst_base;
Kojto 148:fd96258d940d 6164 }
Kojto 148:fd96258d940d 6165
Kojto 148:fd96258d940d 6166 /* Circularly update rOffset. Watch out for positive and negative value */
Kojto 148:fd96258d940d 6167 rOffset += bufferInc;
Kojto 148:fd96258d940d 6168
Kojto 148:fd96258d940d 6169 if (rOffset >= L)
Kojto 148:fd96258d940d 6170 {
Kojto 148:fd96258d940d 6171 rOffset -= L;
Kojto 148:fd96258d940d 6172 }
Kojto 148:fd96258d940d 6173
Kojto 148:fd96258d940d 6174 /* Decrement the loop counter */
Kojto 148:fd96258d940d 6175 i--;
Kojto 148:fd96258d940d 6176 }
Kojto 148:fd96258d940d 6177
Kojto 148:fd96258d940d 6178 /* Update the index pointer */
Kojto 148:fd96258d940d 6179 *readOffset = rOffset;
Kojto 148:fd96258d940d 6180 }
Kojto 148:fd96258d940d 6181
Kojto 148:fd96258d940d 6182
Kojto 148:fd96258d940d 6183 /**
Kojto 148:fd96258d940d 6184 * @brief Sum of the squares of the elements of a Q31 vector.
Kojto 148:fd96258d940d 6185 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6186 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6187 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6188 */
Kojto 148:fd96258d940d 6189 void arm_power_q31(
Kojto 148:fd96258d940d 6190 q31_t * pSrc,
Kojto 148:fd96258d940d 6191 uint32_t blockSize,
Kojto 148:fd96258d940d 6192 q63_t * pResult);
Kojto 148:fd96258d940d 6193
Kojto 148:fd96258d940d 6194
Kojto 148:fd96258d940d 6195 /**
Kojto 148:fd96258d940d 6196 * @brief Sum of the squares of the elements of a floating-point vector.
Kojto 148:fd96258d940d 6197 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6198 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6199 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6200 */
Kojto 148:fd96258d940d 6201 void arm_power_f32(
Kojto 148:fd96258d940d 6202 float32_t * pSrc,
Kojto 148:fd96258d940d 6203 uint32_t blockSize,
Kojto 148:fd96258d940d 6204 float32_t * pResult);
Kojto 148:fd96258d940d 6205
Kojto 148:fd96258d940d 6206
Kojto 148:fd96258d940d 6207 /**
Kojto 148:fd96258d940d 6208 * @brief Sum of the squares of the elements of a Q15 vector.
Kojto 148:fd96258d940d 6209 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6210 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6211 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6212 */
Kojto 148:fd96258d940d 6213 void arm_power_q15(
Kojto 148:fd96258d940d 6214 q15_t * pSrc,
Kojto 148:fd96258d940d 6215 uint32_t blockSize,
Kojto 148:fd96258d940d 6216 q63_t * pResult);
Kojto 148:fd96258d940d 6217
Kojto 148:fd96258d940d 6218
Kojto 148:fd96258d940d 6219 /**
Kojto 148:fd96258d940d 6220 * @brief Sum of the squares of the elements of a Q7 vector.
Kojto 148:fd96258d940d 6221 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6222 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6223 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6224 */
Kojto 148:fd96258d940d 6225 void arm_power_q7(
Kojto 148:fd96258d940d 6226 q7_t * pSrc,
Kojto 148:fd96258d940d 6227 uint32_t blockSize,
Kojto 148:fd96258d940d 6228 q31_t * pResult);
Kojto 148:fd96258d940d 6229
Kojto 148:fd96258d940d 6230
Kojto 148:fd96258d940d 6231 /**
Kojto 148:fd96258d940d 6232 * @brief Mean value of a Q7 vector.
Kojto 148:fd96258d940d 6233 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6234 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6235 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6236 */
Kojto 148:fd96258d940d 6237 void arm_mean_q7(
Kojto 148:fd96258d940d 6238 q7_t * pSrc,
Kojto 148:fd96258d940d 6239 uint32_t blockSize,
Kojto 148:fd96258d940d 6240 q7_t * pResult);
Kojto 148:fd96258d940d 6241
Kojto 148:fd96258d940d 6242
Kojto 148:fd96258d940d 6243 /**
Kojto 148:fd96258d940d 6244 * @brief Mean value of a Q15 vector.
Kojto 148:fd96258d940d 6245 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6246 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6247 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6248 */
Kojto 148:fd96258d940d 6249 void arm_mean_q15(
Kojto 148:fd96258d940d 6250 q15_t * pSrc,
Kojto 148:fd96258d940d 6251 uint32_t blockSize,
Kojto 148:fd96258d940d 6252 q15_t * pResult);
Kojto 148:fd96258d940d 6253
Kojto 148:fd96258d940d 6254
Kojto 148:fd96258d940d 6255 /**
Kojto 148:fd96258d940d 6256 * @brief Mean value of a Q31 vector.
Kojto 148:fd96258d940d 6257 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6258 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6259 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6260 */
Kojto 148:fd96258d940d 6261 void arm_mean_q31(
Kojto 148:fd96258d940d 6262 q31_t * pSrc,
Kojto 148:fd96258d940d 6263 uint32_t blockSize,
Kojto 148:fd96258d940d 6264 q31_t * pResult);
Kojto 148:fd96258d940d 6265
Kojto 148:fd96258d940d 6266
Kojto 148:fd96258d940d 6267 /**
Kojto 148:fd96258d940d 6268 * @brief Mean value of a floating-point vector.
Kojto 148:fd96258d940d 6269 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6270 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6271 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6272 */
Kojto 148:fd96258d940d 6273 void arm_mean_f32(
Kojto 148:fd96258d940d 6274 float32_t * pSrc,
Kojto 148:fd96258d940d 6275 uint32_t blockSize,
Kojto 148:fd96258d940d 6276 float32_t * pResult);
Kojto 148:fd96258d940d 6277
Kojto 148:fd96258d940d 6278
Kojto 148:fd96258d940d 6279 /**
Kojto 148:fd96258d940d 6280 * @brief Variance of the elements of a floating-point vector.
Kojto 148:fd96258d940d 6281 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6282 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6283 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6284 */
Kojto 148:fd96258d940d 6285 void arm_var_f32(
Kojto 148:fd96258d940d 6286 float32_t * pSrc,
Kojto 148:fd96258d940d 6287 uint32_t blockSize,
Kojto 148:fd96258d940d 6288 float32_t * pResult);
Kojto 148:fd96258d940d 6289
Kojto 148:fd96258d940d 6290
Kojto 148:fd96258d940d 6291 /**
Kojto 148:fd96258d940d 6292 * @brief Variance of the elements of a Q31 vector.
Kojto 148:fd96258d940d 6293 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6294 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6295 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6296 */
Kojto 148:fd96258d940d 6297 void arm_var_q31(
Kojto 148:fd96258d940d 6298 q31_t * pSrc,
Kojto 148:fd96258d940d 6299 uint32_t blockSize,
Kojto 148:fd96258d940d 6300 q31_t * pResult);
Kojto 148:fd96258d940d 6301
Kojto 148:fd96258d940d 6302
Kojto 148:fd96258d940d 6303 /**
Kojto 148:fd96258d940d 6304 * @brief Variance of the elements of a Q15 vector.
Kojto 148:fd96258d940d 6305 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6306 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6307 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6308 */
Kojto 148:fd96258d940d 6309 void arm_var_q15(
Kojto 148:fd96258d940d 6310 q15_t * pSrc,
Kojto 148:fd96258d940d 6311 uint32_t blockSize,
Kojto 148:fd96258d940d 6312 q15_t * pResult);
Kojto 148:fd96258d940d 6313
Kojto 148:fd96258d940d 6314
Kojto 148:fd96258d940d 6315 /**
Kojto 148:fd96258d940d 6316 * @brief Root Mean Square of the elements of a floating-point vector.
Kojto 148:fd96258d940d 6317 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6318 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6319 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6320 */
Kojto 148:fd96258d940d 6321 void arm_rms_f32(
Kojto 148:fd96258d940d 6322 float32_t * pSrc,
Kojto 148:fd96258d940d 6323 uint32_t blockSize,
Kojto 148:fd96258d940d 6324 float32_t * pResult);
Kojto 148:fd96258d940d 6325
Kojto 148:fd96258d940d 6326
Kojto 148:fd96258d940d 6327 /**
Kojto 148:fd96258d940d 6328 * @brief Root Mean Square of the elements of a Q31 vector.
Kojto 148:fd96258d940d 6329 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6330 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6331 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6332 */
Kojto 148:fd96258d940d 6333 void arm_rms_q31(
Kojto 148:fd96258d940d 6334 q31_t * pSrc,
Kojto 148:fd96258d940d 6335 uint32_t blockSize,
Kojto 148:fd96258d940d 6336 q31_t * pResult);
Kojto 148:fd96258d940d 6337
Kojto 148:fd96258d940d 6338
Kojto 148:fd96258d940d 6339 /**
Kojto 148:fd96258d940d 6340 * @brief Root Mean Square of the elements of a Q15 vector.
Kojto 148:fd96258d940d 6341 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6342 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6343 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6344 */
Kojto 148:fd96258d940d 6345 void arm_rms_q15(
Kojto 148:fd96258d940d 6346 q15_t * pSrc,
Kojto 148:fd96258d940d 6347 uint32_t blockSize,
Kojto 148:fd96258d940d 6348 q15_t * pResult);
Kojto 148:fd96258d940d 6349
Kojto 148:fd96258d940d 6350
Kojto 148:fd96258d940d 6351 /**
Kojto 148:fd96258d940d 6352 * @brief Standard deviation of the elements of a floating-point vector.
Kojto 148:fd96258d940d 6353 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6354 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6355 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6356 */
Kojto 148:fd96258d940d 6357 void arm_std_f32(
Kojto 148:fd96258d940d 6358 float32_t * pSrc,
Kojto 148:fd96258d940d 6359 uint32_t blockSize,
Kojto 148:fd96258d940d 6360 float32_t * pResult);
Kojto 148:fd96258d940d 6361
Kojto 148:fd96258d940d 6362
Kojto 148:fd96258d940d 6363 /**
Kojto 148:fd96258d940d 6364 * @brief Standard deviation of the elements of a Q31 vector.
Kojto 148:fd96258d940d 6365 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6366 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6367 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6368 */
Kojto 148:fd96258d940d 6369 void arm_std_q31(
Kojto 148:fd96258d940d 6370 q31_t * pSrc,
Kojto 148:fd96258d940d 6371 uint32_t blockSize,
Kojto 148:fd96258d940d 6372 q31_t * pResult);
Kojto 148:fd96258d940d 6373
Kojto 148:fd96258d940d 6374
Kojto 148:fd96258d940d 6375 /**
Kojto 148:fd96258d940d 6376 * @brief Standard deviation of the elements of a Q15 vector.
Kojto 148:fd96258d940d 6377 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6378 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6379 * @param[out] pResult is output value.
Kojto 148:fd96258d940d 6380 */
Kojto 148:fd96258d940d 6381 void arm_std_q15(
Kojto 148:fd96258d940d 6382 q15_t * pSrc,
Kojto 148:fd96258d940d 6383 uint32_t blockSize,
Kojto 148:fd96258d940d 6384 q15_t * pResult);
Kojto 148:fd96258d940d 6385
Kojto 148:fd96258d940d 6386
Kojto 148:fd96258d940d 6387 /**
Kojto 148:fd96258d940d 6388 * @brief Floating-point complex magnitude
Kojto 148:fd96258d940d 6389 * @param[in] pSrc points to the complex input vector
Kojto 148:fd96258d940d 6390 * @param[out] pDst points to the real output vector
Kojto 148:fd96258d940d 6391 * @param[in] numSamples number of complex samples in the input vector
Kojto 148:fd96258d940d 6392 */
Kojto 148:fd96258d940d 6393 void arm_cmplx_mag_f32(
Kojto 148:fd96258d940d 6394 float32_t * pSrc,
Kojto 148:fd96258d940d 6395 float32_t * pDst,
Kojto 148:fd96258d940d 6396 uint32_t numSamples);
Kojto 148:fd96258d940d 6397
Kojto 148:fd96258d940d 6398
Kojto 148:fd96258d940d 6399 /**
Kojto 148:fd96258d940d 6400 * @brief Q31 complex magnitude
Kojto 148:fd96258d940d 6401 * @param[in] pSrc points to the complex input vector
Kojto 148:fd96258d940d 6402 * @param[out] pDst points to the real output vector
Kojto 148:fd96258d940d 6403 * @param[in] numSamples number of complex samples in the input vector
Kojto 148:fd96258d940d 6404 */
Kojto 148:fd96258d940d 6405 void arm_cmplx_mag_q31(
Kojto 148:fd96258d940d 6406 q31_t * pSrc,
Kojto 148:fd96258d940d 6407 q31_t * pDst,
Kojto 148:fd96258d940d 6408 uint32_t numSamples);
Kojto 148:fd96258d940d 6409
Kojto 148:fd96258d940d 6410
Kojto 148:fd96258d940d 6411 /**
Kojto 148:fd96258d940d 6412 * @brief Q15 complex magnitude
Kojto 148:fd96258d940d 6413 * @param[in] pSrc points to the complex input vector
Kojto 148:fd96258d940d 6414 * @param[out] pDst points to the real output vector
Kojto 148:fd96258d940d 6415 * @param[in] numSamples number of complex samples in the input vector
Kojto 148:fd96258d940d 6416 */
Kojto 148:fd96258d940d 6417 void arm_cmplx_mag_q15(
Kojto 148:fd96258d940d 6418 q15_t * pSrc,
Kojto 148:fd96258d940d 6419 q15_t * pDst,
Kojto 148:fd96258d940d 6420 uint32_t numSamples);
Kojto 148:fd96258d940d 6421
Kojto 148:fd96258d940d 6422
Kojto 148:fd96258d940d 6423 /**
Kojto 148:fd96258d940d 6424 * @brief Q15 complex dot product
Kojto 148:fd96258d940d 6425 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 6426 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 6427 * @param[in] numSamples number of complex samples in each vector
Kojto 148:fd96258d940d 6428 * @param[out] realResult real part of the result returned here
Kojto 148:fd96258d940d 6429 * @param[out] imagResult imaginary part of the result returned here
Kojto 148:fd96258d940d 6430 */
Kojto 148:fd96258d940d 6431 void arm_cmplx_dot_prod_q15(
Kojto 148:fd96258d940d 6432 q15_t * pSrcA,
Kojto 148:fd96258d940d 6433 q15_t * pSrcB,
Kojto 148:fd96258d940d 6434 uint32_t numSamples,
Kojto 148:fd96258d940d 6435 q31_t * realResult,
Kojto 148:fd96258d940d 6436 q31_t * imagResult);
Kojto 148:fd96258d940d 6437
Kojto 148:fd96258d940d 6438
Kojto 148:fd96258d940d 6439 /**
Kojto 148:fd96258d940d 6440 * @brief Q31 complex dot product
Kojto 148:fd96258d940d 6441 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 6442 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 6443 * @param[in] numSamples number of complex samples in each vector
Kojto 148:fd96258d940d 6444 * @param[out] realResult real part of the result returned here
Kojto 148:fd96258d940d 6445 * @param[out] imagResult imaginary part of the result returned here
Kojto 148:fd96258d940d 6446 */
Kojto 148:fd96258d940d 6447 void arm_cmplx_dot_prod_q31(
Kojto 148:fd96258d940d 6448 q31_t * pSrcA,
Kojto 148:fd96258d940d 6449 q31_t * pSrcB,
Kojto 148:fd96258d940d 6450 uint32_t numSamples,
Kojto 148:fd96258d940d 6451 q63_t * realResult,
Kojto 148:fd96258d940d 6452 q63_t * imagResult);
Kojto 148:fd96258d940d 6453
Kojto 148:fd96258d940d 6454
Kojto 148:fd96258d940d 6455 /**
Kojto 148:fd96258d940d 6456 * @brief Floating-point complex dot product
Kojto 148:fd96258d940d 6457 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 6458 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 6459 * @param[in] numSamples number of complex samples in each vector
Kojto 148:fd96258d940d 6460 * @param[out] realResult real part of the result returned here
Kojto 148:fd96258d940d 6461 * @param[out] imagResult imaginary part of the result returned here
Kojto 148:fd96258d940d 6462 */
Kojto 148:fd96258d940d 6463 void arm_cmplx_dot_prod_f32(
Kojto 148:fd96258d940d 6464 float32_t * pSrcA,
Kojto 148:fd96258d940d 6465 float32_t * pSrcB,
Kojto 148:fd96258d940d 6466 uint32_t numSamples,
Kojto 148:fd96258d940d 6467 float32_t * realResult,
Kojto 148:fd96258d940d 6468 float32_t * imagResult);
Kojto 148:fd96258d940d 6469
Kojto 148:fd96258d940d 6470
Kojto 148:fd96258d940d 6471 /**
Kojto 148:fd96258d940d 6472 * @brief Q15 complex-by-real multiplication
Kojto 148:fd96258d940d 6473 * @param[in] pSrcCmplx points to the complex input vector
Kojto 148:fd96258d940d 6474 * @param[in] pSrcReal points to the real input vector
Kojto 148:fd96258d940d 6475 * @param[out] pCmplxDst points to the complex output vector
Kojto 148:fd96258d940d 6476 * @param[in] numSamples number of samples in each vector
Kojto 148:fd96258d940d 6477 */
Kojto 148:fd96258d940d 6478 void arm_cmplx_mult_real_q15(
Kojto 148:fd96258d940d 6479 q15_t * pSrcCmplx,
Kojto 148:fd96258d940d 6480 q15_t * pSrcReal,
Kojto 148:fd96258d940d 6481 q15_t * pCmplxDst,
Kojto 148:fd96258d940d 6482 uint32_t numSamples);
Kojto 148:fd96258d940d 6483
Kojto 148:fd96258d940d 6484
Kojto 148:fd96258d940d 6485 /**
Kojto 148:fd96258d940d 6486 * @brief Q31 complex-by-real multiplication
Kojto 148:fd96258d940d 6487 * @param[in] pSrcCmplx points to the complex input vector
Kojto 148:fd96258d940d 6488 * @param[in] pSrcReal points to the real input vector
Kojto 148:fd96258d940d 6489 * @param[out] pCmplxDst points to the complex output vector
Kojto 148:fd96258d940d 6490 * @param[in] numSamples number of samples in each vector
Kojto 148:fd96258d940d 6491 */
Kojto 148:fd96258d940d 6492 void arm_cmplx_mult_real_q31(
Kojto 148:fd96258d940d 6493 q31_t * pSrcCmplx,
Kojto 148:fd96258d940d 6494 q31_t * pSrcReal,
Kojto 148:fd96258d940d 6495 q31_t * pCmplxDst,
Kojto 148:fd96258d940d 6496 uint32_t numSamples);
Kojto 148:fd96258d940d 6497
Kojto 148:fd96258d940d 6498
Kojto 148:fd96258d940d 6499 /**
Kojto 148:fd96258d940d 6500 * @brief Floating-point complex-by-real multiplication
Kojto 148:fd96258d940d 6501 * @param[in] pSrcCmplx points to the complex input vector
Kojto 148:fd96258d940d 6502 * @param[in] pSrcReal points to the real input vector
Kojto 148:fd96258d940d 6503 * @param[out] pCmplxDst points to the complex output vector
Kojto 148:fd96258d940d 6504 * @param[in] numSamples number of samples in each vector
Kojto 148:fd96258d940d 6505 */
Kojto 148:fd96258d940d 6506 void arm_cmplx_mult_real_f32(
Kojto 148:fd96258d940d 6507 float32_t * pSrcCmplx,
Kojto 148:fd96258d940d 6508 float32_t * pSrcReal,
Kojto 148:fd96258d940d 6509 float32_t * pCmplxDst,
Kojto 148:fd96258d940d 6510 uint32_t numSamples);
Kojto 148:fd96258d940d 6511
Kojto 148:fd96258d940d 6512
Kojto 148:fd96258d940d 6513 /**
Kojto 148:fd96258d940d 6514 * @brief Minimum value of a Q7 vector.
Kojto 148:fd96258d940d 6515 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6516 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6517 * @param[out] result is output pointer
Kojto 148:fd96258d940d 6518 * @param[in] index is the array index of the minimum value in the input buffer.
Kojto 148:fd96258d940d 6519 */
Kojto 148:fd96258d940d 6520 void arm_min_q7(
Kojto 148:fd96258d940d 6521 q7_t * pSrc,
Kojto 148:fd96258d940d 6522 uint32_t blockSize,
Kojto 148:fd96258d940d 6523 q7_t * result,
Kojto 148:fd96258d940d 6524 uint32_t * index);
Kojto 148:fd96258d940d 6525
Kojto 148:fd96258d940d 6526
Kojto 148:fd96258d940d 6527 /**
Kojto 148:fd96258d940d 6528 * @brief Minimum value of a Q15 vector.
Kojto 148:fd96258d940d 6529 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6530 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6531 * @param[out] pResult is output pointer
Kojto 148:fd96258d940d 6532 * @param[in] pIndex is the array index of the minimum value in the input buffer.
Kojto 148:fd96258d940d 6533 */
Kojto 148:fd96258d940d 6534 void arm_min_q15(
Kojto 148:fd96258d940d 6535 q15_t * pSrc,
Kojto 148:fd96258d940d 6536 uint32_t blockSize,
Kojto 148:fd96258d940d 6537 q15_t * pResult,
Kojto 148:fd96258d940d 6538 uint32_t * pIndex);
Kojto 148:fd96258d940d 6539
Kojto 148:fd96258d940d 6540
Kojto 148:fd96258d940d 6541 /**
Kojto 148:fd96258d940d 6542 * @brief Minimum value of a Q31 vector.
Kojto 148:fd96258d940d 6543 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6544 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6545 * @param[out] pResult is output pointer
Kojto 148:fd96258d940d 6546 * @param[out] pIndex is the array index of the minimum value in the input buffer.
Kojto 148:fd96258d940d 6547 */
Kojto 148:fd96258d940d 6548 void arm_min_q31(
Kojto 148:fd96258d940d 6549 q31_t * pSrc,
Kojto 148:fd96258d940d 6550 uint32_t blockSize,
Kojto 148:fd96258d940d 6551 q31_t * pResult,
Kojto 148:fd96258d940d 6552 uint32_t * pIndex);
Kojto 148:fd96258d940d 6553
Kojto 148:fd96258d940d 6554
Kojto 148:fd96258d940d 6555 /**
Kojto 148:fd96258d940d 6556 * @brief Minimum value of a floating-point vector.
Kojto 148:fd96258d940d 6557 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6558 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6559 * @param[out] pResult is output pointer
Kojto 148:fd96258d940d 6560 * @param[out] pIndex is the array index of the minimum value in the input buffer.
Kojto 148:fd96258d940d 6561 */
Kojto 148:fd96258d940d 6562 void arm_min_f32(
Kojto 148:fd96258d940d 6563 float32_t * pSrc,
Kojto 148:fd96258d940d 6564 uint32_t blockSize,
Kojto 148:fd96258d940d 6565 float32_t * pResult,
Kojto 148:fd96258d940d 6566 uint32_t * pIndex);
Kojto 148:fd96258d940d 6567
Kojto 148:fd96258d940d 6568
Kojto 148:fd96258d940d 6569 /**
Kojto 148:fd96258d940d 6570 * @brief Maximum value of a Q7 vector.
Kojto 148:fd96258d940d 6571 * @param[in] pSrc points to the input buffer
Kojto 148:fd96258d940d 6572 * @param[in] blockSize length of the input vector
Kojto 148:fd96258d940d 6573 * @param[out] pResult maximum value returned here
Kojto 148:fd96258d940d 6574 * @param[out] pIndex index of maximum value returned here
Kojto 148:fd96258d940d 6575 */
Kojto 148:fd96258d940d 6576 void arm_max_q7(
Kojto 148:fd96258d940d 6577 q7_t * pSrc,
Kojto 148:fd96258d940d 6578 uint32_t blockSize,
Kojto 148:fd96258d940d 6579 q7_t * pResult,
Kojto 148:fd96258d940d 6580 uint32_t * pIndex);
Kojto 148:fd96258d940d 6581
Kojto 148:fd96258d940d 6582
Kojto 148:fd96258d940d 6583 /**
Kojto 148:fd96258d940d 6584 * @brief Maximum value of a Q15 vector.
Kojto 148:fd96258d940d 6585 * @param[in] pSrc points to the input buffer
Kojto 148:fd96258d940d 6586 * @param[in] blockSize length of the input vector
Kojto 148:fd96258d940d 6587 * @param[out] pResult maximum value returned here
Kojto 148:fd96258d940d 6588 * @param[out] pIndex index of maximum value returned here
Kojto 148:fd96258d940d 6589 */
Kojto 148:fd96258d940d 6590 void arm_max_q15(
Kojto 148:fd96258d940d 6591 q15_t * pSrc,
Kojto 148:fd96258d940d 6592 uint32_t blockSize,
Kojto 148:fd96258d940d 6593 q15_t * pResult,
Kojto 148:fd96258d940d 6594 uint32_t * pIndex);
Kojto 148:fd96258d940d 6595
Kojto 148:fd96258d940d 6596
Kojto 148:fd96258d940d 6597 /**
Kojto 148:fd96258d940d 6598 * @brief Maximum value of a Q31 vector.
Kojto 148:fd96258d940d 6599 * @param[in] pSrc points to the input buffer
Kojto 148:fd96258d940d 6600 * @param[in] blockSize length of the input vector
Kojto 148:fd96258d940d 6601 * @param[out] pResult maximum value returned here
Kojto 148:fd96258d940d 6602 * @param[out] pIndex index of maximum value returned here
Kojto 148:fd96258d940d 6603 */
Kojto 148:fd96258d940d 6604 void arm_max_q31(
Kojto 148:fd96258d940d 6605 q31_t * pSrc,
Kojto 148:fd96258d940d 6606 uint32_t blockSize,
Kojto 148:fd96258d940d 6607 q31_t * pResult,
Kojto 148:fd96258d940d 6608 uint32_t * pIndex);
Kojto 148:fd96258d940d 6609
Kojto 148:fd96258d940d 6610
Kojto 148:fd96258d940d 6611 /**
Kojto 148:fd96258d940d 6612 * @brief Maximum value of a floating-point vector.
Kojto 148:fd96258d940d 6613 * @param[in] pSrc points to the input buffer
Kojto 148:fd96258d940d 6614 * @param[in] blockSize length of the input vector
Kojto 148:fd96258d940d 6615 * @param[out] pResult maximum value returned here
Kojto 148:fd96258d940d 6616 * @param[out] pIndex index of maximum value returned here
Kojto 148:fd96258d940d 6617 */
Kojto 148:fd96258d940d 6618 void arm_max_f32(
Kojto 148:fd96258d940d 6619 float32_t * pSrc,
Kojto 148:fd96258d940d 6620 uint32_t blockSize,
Kojto 148:fd96258d940d 6621 float32_t * pResult,
Kojto 148:fd96258d940d 6622 uint32_t * pIndex);
Kojto 148:fd96258d940d 6623
Kojto 148:fd96258d940d 6624
Kojto 148:fd96258d940d 6625 /**
Kojto 148:fd96258d940d 6626 * @brief Q15 complex-by-complex multiplication
Kojto 148:fd96258d940d 6627 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 6628 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 6629 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 6630 * @param[in] numSamples number of complex samples in each vector
Kojto 148:fd96258d940d 6631 */
Kojto 148:fd96258d940d 6632 void arm_cmplx_mult_cmplx_q15(
Kojto 148:fd96258d940d 6633 q15_t * pSrcA,
Kojto 148:fd96258d940d 6634 q15_t * pSrcB,
Kojto 148:fd96258d940d 6635 q15_t * pDst,
Kojto 148:fd96258d940d 6636 uint32_t numSamples);
Kojto 148:fd96258d940d 6637
Kojto 148:fd96258d940d 6638
Kojto 148:fd96258d940d 6639 /**
Kojto 148:fd96258d940d 6640 * @brief Q31 complex-by-complex multiplication
Kojto 148:fd96258d940d 6641 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 6642 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 6643 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 6644 * @param[in] numSamples number of complex samples in each vector
Kojto 148:fd96258d940d 6645 */
Kojto 148:fd96258d940d 6646 void arm_cmplx_mult_cmplx_q31(
Kojto 148:fd96258d940d 6647 q31_t * pSrcA,
Kojto 148:fd96258d940d 6648 q31_t * pSrcB,
Kojto 148:fd96258d940d 6649 q31_t * pDst,
Kojto 148:fd96258d940d 6650 uint32_t numSamples);
Kojto 148:fd96258d940d 6651
Kojto 148:fd96258d940d 6652
Kojto 148:fd96258d940d 6653 /**
Kojto 148:fd96258d940d 6654 * @brief Floating-point complex-by-complex multiplication
Kojto 148:fd96258d940d 6655 * @param[in] pSrcA points to the first input vector
Kojto 148:fd96258d940d 6656 * @param[in] pSrcB points to the second input vector
Kojto 148:fd96258d940d 6657 * @param[out] pDst points to the output vector
Kojto 148:fd96258d940d 6658 * @param[in] numSamples number of complex samples in each vector
Kojto 148:fd96258d940d 6659 */
Kojto 148:fd96258d940d 6660 void arm_cmplx_mult_cmplx_f32(
Kojto 148:fd96258d940d 6661 float32_t * pSrcA,
Kojto 148:fd96258d940d 6662 float32_t * pSrcB,
Kojto 148:fd96258d940d 6663 float32_t * pDst,
Kojto 148:fd96258d940d 6664 uint32_t numSamples);
Kojto 148:fd96258d940d 6665
Kojto 148:fd96258d940d 6666
Kojto 148:fd96258d940d 6667 /**
Kojto 148:fd96258d940d 6668 * @brief Converts the elements of the floating-point vector to Q31 vector.
Kojto 148:fd96258d940d 6669 * @param[in] pSrc points to the floating-point input vector
Kojto 148:fd96258d940d 6670 * @param[out] pDst points to the Q31 output vector
Kojto 148:fd96258d940d 6671 * @param[in] blockSize length of the input vector
Kojto 148:fd96258d940d 6672 */
Kojto 148:fd96258d940d 6673 void arm_float_to_q31(
Kojto 148:fd96258d940d 6674 float32_t * pSrc,
Kojto 148:fd96258d940d 6675 q31_t * pDst,
Kojto 148:fd96258d940d 6676 uint32_t blockSize);
Kojto 148:fd96258d940d 6677
Kojto 148:fd96258d940d 6678
Kojto 148:fd96258d940d 6679 /**
Kojto 148:fd96258d940d 6680 * @brief Converts the elements of the floating-point vector to Q15 vector.
Kojto 148:fd96258d940d 6681 * @param[in] pSrc points to the floating-point input vector
Kojto 148:fd96258d940d 6682 * @param[out] pDst points to the Q15 output vector
Kojto 148:fd96258d940d 6683 * @param[in] blockSize length of the input vector
Kojto 148:fd96258d940d 6684 */
Kojto 148:fd96258d940d 6685 void arm_float_to_q15(
Kojto 148:fd96258d940d 6686 float32_t * pSrc,
Kojto 148:fd96258d940d 6687 q15_t * pDst,
Kojto 148:fd96258d940d 6688 uint32_t blockSize);
Kojto 148:fd96258d940d 6689
Kojto 148:fd96258d940d 6690
Kojto 148:fd96258d940d 6691 /**
Kojto 148:fd96258d940d 6692 * @brief Converts the elements of the floating-point vector to Q7 vector.
Kojto 148:fd96258d940d 6693 * @param[in] pSrc points to the floating-point input vector
Kojto 148:fd96258d940d 6694 * @param[out] pDst points to the Q7 output vector
Kojto 148:fd96258d940d 6695 * @param[in] blockSize length of the input vector
Kojto 148:fd96258d940d 6696 */
Kojto 148:fd96258d940d 6697 void arm_float_to_q7(
Kojto 148:fd96258d940d 6698 float32_t * pSrc,
Kojto 148:fd96258d940d 6699 q7_t * pDst,
Kojto 148:fd96258d940d 6700 uint32_t blockSize);
Kojto 148:fd96258d940d 6701
Kojto 148:fd96258d940d 6702
Kojto 148:fd96258d940d 6703 /**
Kojto 148:fd96258d940d 6704 * @brief Converts the elements of the Q31 vector to Q15 vector.
Kojto 148:fd96258d940d 6705 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6706 * @param[out] pDst is output pointer
Kojto 148:fd96258d940d 6707 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6708 */
Kojto 148:fd96258d940d 6709 void arm_q31_to_q15(
Kojto 148:fd96258d940d 6710 q31_t * pSrc,
Kojto 148:fd96258d940d 6711 q15_t * pDst,
Kojto 148:fd96258d940d 6712 uint32_t blockSize);
Kojto 148:fd96258d940d 6713
Kojto 148:fd96258d940d 6714
Kojto 148:fd96258d940d 6715 /**
Kojto 148:fd96258d940d 6716 * @brief Converts the elements of the Q31 vector to Q7 vector.
Kojto 148:fd96258d940d 6717 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6718 * @param[out] pDst is output pointer
Kojto 148:fd96258d940d 6719 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6720 */
Kojto 148:fd96258d940d 6721 void arm_q31_to_q7(
Kojto 148:fd96258d940d 6722 q31_t * pSrc,
Kojto 148:fd96258d940d 6723 q7_t * pDst,
Kojto 148:fd96258d940d 6724 uint32_t blockSize);
Kojto 148:fd96258d940d 6725
Kojto 148:fd96258d940d 6726
Kojto 148:fd96258d940d 6727 /**
Kojto 148:fd96258d940d 6728 * @brief Converts the elements of the Q15 vector to floating-point vector.
Kojto 148:fd96258d940d 6729 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6730 * @param[out] pDst is output pointer
Kojto 148:fd96258d940d 6731 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6732 */
Kojto 148:fd96258d940d 6733 void arm_q15_to_float(
Kojto 148:fd96258d940d 6734 q15_t * pSrc,
Kojto 148:fd96258d940d 6735 float32_t * pDst,
Kojto 148:fd96258d940d 6736 uint32_t blockSize);
Kojto 148:fd96258d940d 6737
Kojto 148:fd96258d940d 6738
Kojto 148:fd96258d940d 6739 /**
Kojto 148:fd96258d940d 6740 * @brief Converts the elements of the Q15 vector to Q31 vector.
Kojto 148:fd96258d940d 6741 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6742 * @param[out] pDst is output pointer
Kojto 148:fd96258d940d 6743 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6744 */
Kojto 148:fd96258d940d 6745 void arm_q15_to_q31(
Kojto 148:fd96258d940d 6746 q15_t * pSrc,
Kojto 148:fd96258d940d 6747 q31_t * pDst,
Kojto 148:fd96258d940d 6748 uint32_t blockSize);
Kojto 148:fd96258d940d 6749
Kojto 148:fd96258d940d 6750
Kojto 148:fd96258d940d 6751 /**
Kojto 148:fd96258d940d 6752 * @brief Converts the elements of the Q15 vector to Q7 vector.
Kojto 148:fd96258d940d 6753 * @param[in] pSrc is input pointer
Kojto 148:fd96258d940d 6754 * @param[out] pDst is output pointer
Kojto 148:fd96258d940d 6755 * @param[in] blockSize is the number of samples to process
Kojto 148:fd96258d940d 6756 */
Kojto 148:fd96258d940d 6757 void arm_q15_to_q7(
Kojto 148:fd96258d940d 6758 q15_t * pSrc,
Kojto 148:fd96258d940d 6759 q7_t * pDst,
Kojto 148:fd96258d940d 6760 uint32_t blockSize);
Kojto 148:fd96258d940d 6761
Kojto 148:fd96258d940d 6762
Kojto 148:fd96258d940d 6763 /**
Kojto 148:fd96258d940d 6764 * @ingroup groupInterpolation
Kojto 148:fd96258d940d 6765 */
Kojto 148:fd96258d940d 6766
Kojto 148:fd96258d940d 6767 /**
Kojto 148:fd96258d940d 6768 * @defgroup BilinearInterpolate Bilinear Interpolation
Kojto 148:fd96258d940d 6769 *
Kojto 148:fd96258d940d 6770 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
Kojto 148:fd96258d940d 6771 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
Kojto 148:fd96258d940d 6772 * determines values between the grid points.
Kojto 148:fd96258d940d 6773 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
Kojto 148:fd96258d940d 6774 * Bilinear interpolation is often used in image processing to rescale images.
Kojto 148:fd96258d940d 6775 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
Kojto 148:fd96258d940d 6776 *
Kojto 148:fd96258d940d 6777 * <b>Algorithm</b>
Kojto 148:fd96258d940d 6778 * \par
Kojto 148:fd96258d940d 6779 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
Kojto 148:fd96258d940d 6780 * For floating-point, the instance structure is defined as:
Kojto 148:fd96258d940d 6781 * <pre>
Kojto 148:fd96258d940d 6782 * typedef struct
Kojto 148:fd96258d940d 6783 * {
Kojto 148:fd96258d940d 6784 * uint16_t numRows;
Kojto 148:fd96258d940d 6785 * uint16_t numCols;
Kojto 148:fd96258d940d 6786 * float32_t *pData;
Kojto 148:fd96258d940d 6787 * } arm_bilinear_interp_instance_f32;
Kojto 148:fd96258d940d 6788 * </pre>
Kojto 148:fd96258d940d 6789 *
Kojto 148:fd96258d940d 6790 * \par
Kojto 148:fd96258d940d 6791 * where <code>numRows</code> specifies the number of rows in the table;
Kojto 148:fd96258d940d 6792 * <code>numCols</code> specifies the number of columns in the table;
Kojto 148:fd96258d940d 6793 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
Kojto 148:fd96258d940d 6794 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
Kojto 148:fd96258d940d 6795 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
Kojto 148:fd96258d940d 6796 *
Kojto 148:fd96258d940d 6797 * \par
Kojto 148:fd96258d940d 6798 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
Kojto 148:fd96258d940d 6799 * <pre>
Kojto 148:fd96258d940d 6800 * XF = floor(x)
Kojto 148:fd96258d940d 6801 * YF = floor(y)
Kojto 148:fd96258d940d 6802 * </pre>
Kojto 148:fd96258d940d 6803 * \par
Kojto 148:fd96258d940d 6804 * The interpolated output point is computed as:
Kojto 148:fd96258d940d 6805 * <pre>
Kojto 148:fd96258d940d 6806 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
Kojto 148:fd96258d940d 6807 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
Kojto 148:fd96258d940d 6808 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
Kojto 148:fd96258d940d 6809 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
Kojto 148:fd96258d940d 6810 * </pre>
Kojto 148:fd96258d940d 6811 * Note that the coordinates (x, y) contain integer and fractional components.
Kojto 148:fd96258d940d 6812 * The integer components specify which portion of the table to use while the
Kojto 148:fd96258d940d 6813 * fractional components control the interpolation processor.
Kojto 148:fd96258d940d 6814 *
Kojto 148:fd96258d940d 6815 * \par
Kojto 148:fd96258d940d 6816 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
Kojto 148:fd96258d940d 6817 */
Kojto 148:fd96258d940d 6818
Kojto 148:fd96258d940d 6819 /**
Kojto 148:fd96258d940d 6820 * @addtogroup BilinearInterpolate
Kojto 148:fd96258d940d 6821 * @{
Kojto 148:fd96258d940d 6822 */
Kojto 148:fd96258d940d 6823
Kojto 148:fd96258d940d 6824
Kojto 148:fd96258d940d 6825 /**
Kojto 148:fd96258d940d 6826 *
Kojto 148:fd96258d940d 6827 * @brief Floating-point bilinear interpolation.
Kojto 148:fd96258d940d 6828 * @param[in,out] S points to an instance of the interpolation structure.
Kojto 148:fd96258d940d 6829 * @param[in] X interpolation coordinate.
Kojto 148:fd96258d940d 6830 * @param[in] Y interpolation coordinate.
Kojto 148:fd96258d940d 6831 * @return out interpolated value.
Kojto 148:fd96258d940d 6832 */
Kojto 148:fd96258d940d 6833 CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32(
Kojto 148:fd96258d940d 6834 const arm_bilinear_interp_instance_f32 * S,
Kojto 148:fd96258d940d 6835 float32_t X,
Kojto 148:fd96258d940d 6836 float32_t Y)
Kojto 148:fd96258d940d 6837 {
Kojto 148:fd96258d940d 6838 float32_t out;
Kojto 148:fd96258d940d 6839 float32_t f00, f01, f10, f11;
Kojto 148:fd96258d940d 6840 float32_t *pData = S->pData;
Kojto 148:fd96258d940d 6841 int32_t xIndex, yIndex, index;
Kojto 148:fd96258d940d 6842 float32_t xdiff, ydiff;
Kojto 148:fd96258d940d 6843 float32_t b1, b2, b3, b4;
Kojto 148:fd96258d940d 6844
Kojto 148:fd96258d940d 6845 xIndex = (int32_t) X;
Kojto 148:fd96258d940d 6846 yIndex = (int32_t) Y;
Kojto 148:fd96258d940d 6847
Kojto 148:fd96258d940d 6848 /* Care taken for table outside boundary */
Kojto 148:fd96258d940d 6849 /* Returns zero output when values are outside table boundary */
Kojto 148:fd96258d940d 6850 if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
Kojto 148:fd96258d940d 6851 {
Kojto 148:fd96258d940d 6852 return (0);
Kojto 148:fd96258d940d 6853 }
Kojto 148:fd96258d940d 6854
Kojto 148:fd96258d940d 6855 /* Calculation of index for two nearest points in X-direction */
Kojto 148:fd96258d940d 6856 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
Kojto 148:fd96258d940d 6857
Kojto 148:fd96258d940d 6858
Kojto 148:fd96258d940d 6859 /* Read two nearest points in X-direction */
Kojto 148:fd96258d940d 6860 f00 = pData[index];
Kojto 148:fd96258d940d 6861 f01 = pData[index + 1];
Kojto 148:fd96258d940d 6862
Kojto 148:fd96258d940d 6863 /* Calculation of index for two nearest points in Y-direction */
Kojto 148:fd96258d940d 6864 index = (xIndex - 1) + (yIndex) * S->numCols;
Kojto 148:fd96258d940d 6865
Kojto 148:fd96258d940d 6866
Kojto 148:fd96258d940d 6867 /* Read two nearest points in Y-direction */
Kojto 148:fd96258d940d 6868 f10 = pData[index];
Kojto 148:fd96258d940d 6869 f11 = pData[index + 1];
Kojto 148:fd96258d940d 6870
Kojto 148:fd96258d940d 6871 /* Calculation of intermediate values */
Kojto 148:fd96258d940d 6872 b1 = f00;
Kojto 148:fd96258d940d 6873 b2 = f01 - f00;
Kojto 148:fd96258d940d 6874 b3 = f10 - f00;
Kojto 148:fd96258d940d 6875 b4 = f00 - f01 - f10 + f11;
Kojto 148:fd96258d940d 6876
Kojto 148:fd96258d940d 6877 /* Calculation of fractional part in X */
Kojto 148:fd96258d940d 6878 xdiff = X - xIndex;
Kojto 148:fd96258d940d 6879
Kojto 148:fd96258d940d 6880 /* Calculation of fractional part in Y */
Kojto 148:fd96258d940d 6881 ydiff = Y - yIndex;
Kojto 148:fd96258d940d 6882
Kojto 148:fd96258d940d 6883 /* Calculation of bi-linear interpolated output */
Kojto 148:fd96258d940d 6884 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
Kojto 148:fd96258d940d 6885
Kojto 148:fd96258d940d 6886 /* return to application */
Kojto 148:fd96258d940d 6887 return (out);
Kojto 148:fd96258d940d 6888 }
Kojto 148:fd96258d940d 6889
Kojto 148:fd96258d940d 6890
Kojto 148:fd96258d940d 6891 /**
Kojto 148:fd96258d940d 6892 *
Kojto 148:fd96258d940d 6893 * @brief Q31 bilinear interpolation.
Kojto 148:fd96258d940d 6894 * @param[in,out] S points to an instance of the interpolation structure.
Kojto 148:fd96258d940d 6895 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 148:fd96258d940d 6896 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 148:fd96258d940d 6897 * @return out interpolated value.
Kojto 148:fd96258d940d 6898 */
Kojto 148:fd96258d940d 6899 CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31(
Kojto 148:fd96258d940d 6900 arm_bilinear_interp_instance_q31 * S,
Kojto 148:fd96258d940d 6901 q31_t X,
Kojto 148:fd96258d940d 6902 q31_t Y)
Kojto 148:fd96258d940d 6903 {
Kojto 148:fd96258d940d 6904 q31_t out; /* Temporary output */
Kojto 148:fd96258d940d 6905 q31_t acc = 0; /* output */
Kojto 148:fd96258d940d 6906 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 148:fd96258d940d 6907 q31_t x1, x2, y1, y2; /* Nearest output values */
Kojto 148:fd96258d940d 6908 int32_t rI, cI; /* Row and column indices */
Kojto 148:fd96258d940d 6909 q31_t *pYData = S->pData; /* pointer to output table values */
Kojto 148:fd96258d940d 6910 uint32_t nCols = S->numCols; /* num of rows */
Kojto 148:fd96258d940d 6911
Kojto 148:fd96258d940d 6912 /* Input is in 12.20 format */
Kojto 148:fd96258d940d 6913 /* 12 bits for the table index */
Kojto 148:fd96258d940d 6914 /* Index value calculation */
Kojto 148:fd96258d940d 6915 rI = ((X & (q31_t)0xFFF00000) >> 20);
Kojto 148:fd96258d940d 6916
Kojto 148:fd96258d940d 6917 /* Input is in 12.20 format */
Kojto 148:fd96258d940d 6918 /* 12 bits for the table index */
Kojto 148:fd96258d940d 6919 /* Index value calculation */
Kojto 148:fd96258d940d 6920 cI = ((Y & (q31_t)0xFFF00000) >> 20);
Kojto 148:fd96258d940d 6921
Kojto 148:fd96258d940d 6922 /* Care taken for table outside boundary */
Kojto 148:fd96258d940d 6923 /* Returns zero output when values are outside table boundary */
Kojto 148:fd96258d940d 6924 if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 148:fd96258d940d 6925 {
Kojto 148:fd96258d940d 6926 return (0);
Kojto 148:fd96258d940d 6927 }
Kojto 148:fd96258d940d 6928
Kojto 148:fd96258d940d 6929 /* 20 bits for the fractional part */
Kojto 148:fd96258d940d 6930 /* shift left xfract by 11 to keep 1.31 format */
Kojto 148:fd96258d940d 6931 xfract = (X & 0x000FFFFF) << 11u;
Kojto 148:fd96258d940d 6932
Kojto 148:fd96258d940d 6933 /* Read two nearest output values from the index */
Kojto 148:fd96258d940d 6934 x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
Kojto 148:fd96258d940d 6935 x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
Kojto 148:fd96258d940d 6936
Kojto 148:fd96258d940d 6937 /* 20 bits for the fractional part */
Kojto 148:fd96258d940d 6938 /* shift left yfract by 11 to keep 1.31 format */
Kojto 148:fd96258d940d 6939 yfract = (Y & 0x000FFFFF) << 11u;
Kojto 148:fd96258d940d 6940
Kojto 148:fd96258d940d 6941 /* Read two nearest output values from the index */
Kojto 148:fd96258d940d 6942 y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
Kojto 148:fd96258d940d 6943 y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
Kojto 148:fd96258d940d 6944
Kojto 148:fd96258d940d 6945 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
Kojto 148:fd96258d940d 6946 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
Kojto 148:fd96258d940d 6947 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
Kojto 148:fd96258d940d 6948
Kojto 148:fd96258d940d 6949 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
Kojto 148:fd96258d940d 6950 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
Kojto 148:fd96258d940d 6951 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
Kojto 148:fd96258d940d 6952
Kojto 148:fd96258d940d 6953 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
Kojto 148:fd96258d940d 6954 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
Kojto 148:fd96258d940d 6955 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
Kojto 148:fd96258d940d 6956
Kojto 148:fd96258d940d 6957 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
Kojto 148:fd96258d940d 6958 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
Kojto 148:fd96258d940d 6959 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
Kojto 148:fd96258d940d 6960
Kojto 148:fd96258d940d 6961 /* Convert acc to 1.31(q31) format */
Kojto 148:fd96258d940d 6962 return ((q31_t)(acc << 2));
Kojto 148:fd96258d940d 6963 }
Kojto 148:fd96258d940d 6964
Kojto 148:fd96258d940d 6965
Kojto 148:fd96258d940d 6966 /**
Kojto 148:fd96258d940d 6967 * @brief Q15 bilinear interpolation.
Kojto 148:fd96258d940d 6968 * @param[in,out] S points to an instance of the interpolation structure.
Kojto 148:fd96258d940d 6969 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 148:fd96258d940d 6970 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 148:fd96258d940d 6971 * @return out interpolated value.
Kojto 148:fd96258d940d 6972 */
Kojto 148:fd96258d940d 6973 CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15(
Kojto 148:fd96258d940d 6974 arm_bilinear_interp_instance_q15 * S,
Kojto 148:fd96258d940d 6975 q31_t X,
Kojto 148:fd96258d940d 6976 q31_t Y)
Kojto 148:fd96258d940d 6977 {
Kojto 148:fd96258d940d 6978 q63_t acc = 0; /* output */
Kojto 148:fd96258d940d 6979 q31_t out; /* Temporary output */
Kojto 148:fd96258d940d 6980 q15_t x1, x2, y1, y2; /* Nearest output values */
Kojto 148:fd96258d940d 6981 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 148:fd96258d940d 6982 int32_t rI, cI; /* Row and column indices */
Kojto 148:fd96258d940d 6983 q15_t *pYData = S->pData; /* pointer to output table values */
Kojto 148:fd96258d940d 6984 uint32_t nCols = S->numCols; /* num of rows */
Kojto 148:fd96258d940d 6985
Kojto 148:fd96258d940d 6986 /* Input is in 12.20 format */
Kojto 148:fd96258d940d 6987 /* 12 bits for the table index */
Kojto 148:fd96258d940d 6988 /* Index value calculation */
Kojto 148:fd96258d940d 6989 rI = ((X & (q31_t)0xFFF00000) >> 20);
Kojto 148:fd96258d940d 6990
Kojto 148:fd96258d940d 6991 /* Input is in 12.20 format */
Kojto 148:fd96258d940d 6992 /* 12 bits for the table index */
Kojto 148:fd96258d940d 6993 /* Index value calculation */
Kojto 148:fd96258d940d 6994 cI = ((Y & (q31_t)0xFFF00000) >> 20);
Kojto 148:fd96258d940d 6995
Kojto 148:fd96258d940d 6996 /* Care taken for table outside boundary */
Kojto 148:fd96258d940d 6997 /* Returns zero output when values are outside table boundary */
Kojto 148:fd96258d940d 6998 if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 148:fd96258d940d 6999 {
Kojto 148:fd96258d940d 7000 return (0);
Kojto 148:fd96258d940d 7001 }
Kojto 148:fd96258d940d 7002
Kojto 148:fd96258d940d 7003 /* 20 bits for the fractional part */
Kojto 148:fd96258d940d 7004 /* xfract should be in 12.20 format */
Kojto 148:fd96258d940d 7005 xfract = (X & 0x000FFFFF);
Kojto 148:fd96258d940d 7006
Kojto 148:fd96258d940d 7007 /* Read two nearest output values from the index */
Kojto 148:fd96258d940d 7008 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
Kojto 148:fd96258d940d 7009 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
Kojto 148:fd96258d940d 7010
Kojto 148:fd96258d940d 7011 /* 20 bits for the fractional part */
Kojto 148:fd96258d940d 7012 /* yfract should be in 12.20 format */
Kojto 148:fd96258d940d 7013 yfract = (Y & 0x000FFFFF);
Kojto 148:fd96258d940d 7014
Kojto 148:fd96258d940d 7015 /* Read two nearest output values from the index */
Kojto 148:fd96258d940d 7016 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
Kojto 148:fd96258d940d 7017 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
Kojto 148:fd96258d940d 7018
Kojto 148:fd96258d940d 7019 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
Kojto 148:fd96258d940d 7020
Kojto 148:fd96258d940d 7021 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
Kojto 148:fd96258d940d 7022 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
Kojto 148:fd96258d940d 7023 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
Kojto 148:fd96258d940d 7024 acc = ((q63_t) out * (0xFFFFF - yfract));
Kojto 148:fd96258d940d 7025
Kojto 148:fd96258d940d 7026 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
Kojto 148:fd96258d940d 7027 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
Kojto 148:fd96258d940d 7028 acc += ((q63_t) out * (xfract));
Kojto 148:fd96258d940d 7029
Kojto 148:fd96258d940d 7030 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
Kojto 148:fd96258d940d 7031 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
Kojto 148:fd96258d940d 7032 acc += ((q63_t) out * (yfract));
Kojto 148:fd96258d940d 7033
Kojto 148:fd96258d940d 7034 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
Kojto 148:fd96258d940d 7035 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
Kojto 148:fd96258d940d 7036 acc += ((q63_t) out * (yfract));
Kojto 148:fd96258d940d 7037
Kojto 148:fd96258d940d 7038 /* acc is in 13.51 format and down shift acc by 36 times */
Kojto 148:fd96258d940d 7039 /* Convert out to 1.15 format */
Kojto 148:fd96258d940d 7040 return ((q15_t)(acc >> 36));
Kojto 148:fd96258d940d 7041 }
Kojto 148:fd96258d940d 7042
Kojto 148:fd96258d940d 7043
Kojto 148:fd96258d940d 7044 /**
Kojto 148:fd96258d940d 7045 * @brief Q7 bilinear interpolation.
Kojto 148:fd96258d940d 7046 * @param[in,out] S points to an instance of the interpolation structure.
Kojto 148:fd96258d940d 7047 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 148:fd96258d940d 7048 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 148:fd96258d940d 7049 * @return out interpolated value.
Kojto 148:fd96258d940d 7050 */
Kojto 148:fd96258d940d 7051 CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7(
Kojto 148:fd96258d940d 7052 arm_bilinear_interp_instance_q7 * S,
Kojto 148:fd96258d940d 7053 q31_t X,
Kojto 148:fd96258d940d 7054 q31_t Y)
Kojto 148:fd96258d940d 7055 {
Kojto 148:fd96258d940d 7056 q63_t acc = 0; /* output */
Kojto 148:fd96258d940d 7057 q31_t out; /* Temporary output */
Kojto 148:fd96258d940d 7058 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 148:fd96258d940d 7059 q7_t x1, x2, y1, y2; /* Nearest output values */
Kojto 148:fd96258d940d 7060 int32_t rI, cI; /* Row and column indices */
Kojto 148:fd96258d940d 7061 q7_t *pYData = S->pData; /* pointer to output table values */
Kojto 148:fd96258d940d 7062 uint32_t nCols = S->numCols; /* num of rows */
Kojto 148:fd96258d940d 7063
Kojto 148:fd96258d940d 7064 /* Input is in 12.20 format */
Kojto 148:fd96258d940d 7065 /* 12 bits for the table index */
Kojto 148:fd96258d940d 7066 /* Index value calculation */
Kojto 148:fd96258d940d 7067 rI = ((X & (q31_t)0xFFF00000) >> 20);
Kojto 148:fd96258d940d 7068
Kojto 148:fd96258d940d 7069 /* Input is in 12.20 format */
Kojto 148:fd96258d940d 7070 /* 12 bits for the table index */
Kojto 148:fd96258d940d 7071 /* Index value calculation */
Kojto 148:fd96258d940d 7072 cI = ((Y & (q31_t)0xFFF00000) >> 20);
Kojto 148:fd96258d940d 7073
Kojto 148:fd96258d940d 7074 /* Care taken for table outside boundary */
Kojto 148:fd96258d940d 7075 /* Returns zero output when values are outside table boundary */
Kojto 148:fd96258d940d 7076 if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 148:fd96258d940d 7077 {
Kojto 148:fd96258d940d 7078 return (0);
Kojto 148:fd96258d940d 7079 }
Kojto 148:fd96258d940d 7080
Kojto 148:fd96258d940d 7081 /* 20 bits for the fractional part */
Kojto 148:fd96258d940d 7082 /* xfract should be in 12.20 format */
Kojto 148:fd96258d940d 7083 xfract = (X & (q31_t)0x000FFFFF);
Kojto 148:fd96258d940d 7084
Kojto 148:fd96258d940d 7085 /* Read two nearest output values from the index */
Kojto 148:fd96258d940d 7086 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
Kojto 148:fd96258d940d 7087 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
Kojto 148:fd96258d940d 7088
Kojto 148:fd96258d940d 7089 /* 20 bits for the fractional part */
Kojto 148:fd96258d940d 7090 /* yfract should be in 12.20 format */
Kojto 148:fd96258d940d 7091 yfract = (Y & (q31_t)0x000FFFFF);
Kojto 148:fd96258d940d 7092
Kojto 148:fd96258d940d 7093 /* Read two nearest output values from the index */
Kojto 148:fd96258d940d 7094 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
Kojto 148:fd96258d940d 7095 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
Kojto 148:fd96258d940d 7096
Kojto 148:fd96258d940d 7097 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
Kojto 148:fd96258d940d 7098 out = ((x1 * (0xFFFFF - xfract)));
Kojto 148:fd96258d940d 7099 acc = (((q63_t) out * (0xFFFFF - yfract)));
Kojto 148:fd96258d940d 7100
Kojto 148:fd96258d940d 7101 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
Kojto 148:fd96258d940d 7102 out = ((x2 * (0xFFFFF - yfract)));
Kojto 148:fd96258d940d 7103 acc += (((q63_t) out * (xfract)));
Kojto 148:fd96258d940d 7104
Kojto 148:fd96258d940d 7105 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
Kojto 148:fd96258d940d 7106 out = ((y1 * (0xFFFFF - xfract)));
Kojto 148:fd96258d940d 7107 acc += (((q63_t) out * (yfract)));
Kojto 148:fd96258d940d 7108
Kojto 148:fd96258d940d 7109 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
Kojto 148:fd96258d940d 7110 out = ((y2 * (yfract)));
Kojto 148:fd96258d940d 7111 acc += (((q63_t) out * (xfract)));
Kojto 148:fd96258d940d 7112
Kojto 148:fd96258d940d 7113 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
Kojto 148:fd96258d940d 7114 return ((q7_t)(acc >> 40));
Kojto 148:fd96258d940d 7115 }
Kojto 148:fd96258d940d 7116
Kojto 148:fd96258d940d 7117 /**
Kojto 148:fd96258d940d 7118 * @} end of BilinearInterpolate group
Kojto 148:fd96258d940d 7119 */
Kojto 148:fd96258d940d 7120
Kojto 148:fd96258d940d 7121
Kojto 148:fd96258d940d 7122 /* SMMLAR */
Kojto 148:fd96258d940d 7123 #define multAcc_32x32_keep32_R(a, x, y) \
Kojto 148:fd96258d940d 7124 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
Kojto 148:fd96258d940d 7125
Kojto 148:fd96258d940d 7126 /* SMMLSR */
Kojto 148:fd96258d940d 7127 #define multSub_32x32_keep32_R(a, x, y) \
Kojto 148:fd96258d940d 7128 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
Kojto 148:fd96258d940d 7129
Kojto 148:fd96258d940d 7130 /* SMMULR */
Kojto 148:fd96258d940d 7131 #define mult_32x32_keep32_R(a, x, y) \
Kojto 148:fd96258d940d 7132 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
Kojto 148:fd96258d940d 7133
Kojto 148:fd96258d940d 7134 /* SMMLA */
Kojto 148:fd96258d940d 7135 #define multAcc_32x32_keep32(a, x, y) \
Kojto 148:fd96258d940d 7136 a += (q31_t) (((q63_t) x * y) >> 32)
Kojto 148:fd96258d940d 7137
Kojto 148:fd96258d940d 7138 /* SMMLS */
Kojto 148:fd96258d940d 7139 #define multSub_32x32_keep32(a, x, y) \
Kojto 148:fd96258d940d 7140 a -= (q31_t) (((q63_t) x * y) >> 32)
Kojto 148:fd96258d940d 7141
Kojto 148:fd96258d940d 7142 /* SMMUL */
Kojto 148:fd96258d940d 7143 #define mult_32x32_keep32(a, x, y) \
Kojto 148:fd96258d940d 7144 a = (q31_t) (((q63_t) x * y ) >> 32)
Kojto 148:fd96258d940d 7145
Kojto 148:fd96258d940d 7146
Kojto 148:fd96258d940d 7147 #if defined ( __CC_ARM )
Kojto 148:fd96258d940d 7148 /* Enter low optimization region - place directly above function definition */
Kojto 148:fd96258d940d 7149 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
Kojto 148:fd96258d940d 7150 #define LOW_OPTIMIZATION_ENTER \
Kojto 148:fd96258d940d 7151 _Pragma ("push") \
Kojto 148:fd96258d940d 7152 _Pragma ("O1")
Kojto 148:fd96258d940d 7153 #else
Kojto 148:fd96258d940d 7154 #define LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7155 #endif
Kojto 148:fd96258d940d 7156
Kojto 148:fd96258d940d 7157 /* Exit low optimization region - place directly after end of function definition */
Kojto 148:fd96258d940d 7158 #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
Kojto 148:fd96258d940d 7159 #define LOW_OPTIMIZATION_EXIT \
Kojto 148:fd96258d940d 7160 _Pragma ("pop")
Kojto 148:fd96258d940d 7161 #else
Kojto 148:fd96258d940d 7162 #define LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7163 #endif
Kojto 148:fd96258d940d 7164
Kojto 148:fd96258d940d 7165 /* Enter low optimization region - place directly above function definition */
Kojto 148:fd96258d940d 7166 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7167
Kojto 148:fd96258d940d 7168 /* Exit low optimization region - place directly after end of function definition */
Kojto 148:fd96258d940d 7169 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7170
Kojto 148:fd96258d940d 7171 #elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
Kojto 148:fd96258d940d 7172 #define LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7173 #define LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7174 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7175 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7176
Kojto 148:fd96258d940d 7177 #elif defined ( __GNUC__ )
Kojto 148:fd96258d940d 7178 #define LOW_OPTIMIZATION_ENTER \
Kojto 148:fd96258d940d 7179 __attribute__(( optimize("-O1") ))
Kojto 148:fd96258d940d 7180 #define LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7181 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7182 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7183
Kojto 148:fd96258d940d 7184 #elif defined ( __ICCARM__ )
Kojto 148:fd96258d940d 7185 /* Enter low optimization region - place directly above function definition */
Kojto 148:fd96258d940d 7186 #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
Kojto 148:fd96258d940d 7187 #define LOW_OPTIMIZATION_ENTER \
Kojto 148:fd96258d940d 7188 _Pragma ("optimize=low")
Kojto 148:fd96258d940d 7189 #else
Kojto 148:fd96258d940d 7190 #define LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7191 #endif
Kojto 148:fd96258d940d 7192
Kojto 148:fd96258d940d 7193 /* Exit low optimization region - place directly after end of function definition */
Kojto 148:fd96258d940d 7194 #define LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7195
Kojto 148:fd96258d940d 7196 /* Enter low optimization region - place directly above function definition */
Kojto 148:fd96258d940d 7197 #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
Kojto 148:fd96258d940d 7198 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
Kojto 148:fd96258d940d 7199 _Pragma ("optimize=low")
Kojto 148:fd96258d940d 7200 #else
Kojto 148:fd96258d940d 7201 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7202 #endif
Kojto 148:fd96258d940d 7203
Kojto 148:fd96258d940d 7204 /* Exit low optimization region - place directly after end of function definition */
Kojto 148:fd96258d940d 7205 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7206
Kojto 148:fd96258d940d 7207 #elif defined ( __TI_ARM__ )
Kojto 148:fd96258d940d 7208 #define LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7209 #define LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7210 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7211 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7212
Kojto 148:fd96258d940d 7213 #elif defined ( __CSMC__ )
Kojto 148:fd96258d940d 7214 #define LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7215 #define LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7216 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7217 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7218
Kojto 148:fd96258d940d 7219 #elif defined ( __TASKING__ )
Kojto 148:fd96258d940d 7220 #define LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7221 #define LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7222 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 148:fd96258d940d 7223 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 148:fd96258d940d 7224
Kojto 148:fd96258d940d 7225 #endif
Kojto 148:fd96258d940d 7226
Kojto 148:fd96258d940d 7227
Kojto 148:fd96258d940d 7228 #ifdef __cplusplus
Kojto 148:fd96258d940d 7229 }
Kojto 148:fd96258d940d 7230 #endif
Kojto 148:fd96258d940d 7231
Kojto 148:fd96258d940d 7232 /* Compiler specific diagnostic adjustment */
Kojto 148:fd96258d940d 7233 #if defined ( __CC_ARM )
Kojto 148:fd96258d940d 7234
Kojto 148:fd96258d940d 7235 #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
Kojto 148:fd96258d940d 7236
Kojto 148:fd96258d940d 7237 #elif defined ( __GNUC__ )
Kojto 148:fd96258d940d 7238 #pragma GCC diagnostic pop
Kojto 148:fd96258d940d 7239
Kojto 148:fd96258d940d 7240 #elif defined ( __ICCARM__ )
Kojto 148:fd96258d940d 7241
Kojto 148:fd96258d940d 7242 #elif defined ( __TI_ARM__ )
Kojto 148:fd96258d940d 7243
Kojto 148:fd96258d940d 7244 #elif defined ( __CSMC__ )
Kojto 148:fd96258d940d 7245
Kojto 148:fd96258d940d 7246 #elif defined ( __TASKING__ )
Kojto 148:fd96258d940d 7247
Kojto 148:fd96258d940d 7248 #else
Kojto 148:fd96258d940d 7249 #error Unknown compiler
Kojto 148:fd96258d940d 7250 #endif
Kojto 148:fd96258d940d 7251
Kojto 148:fd96258d940d 7252 #endif /* _ARM_MATH_H */
Kojto 148:fd96258d940d 7253
Kojto 148:fd96258d940d 7254 /**
Kojto 148:fd96258d940d 7255 *
Kojto 148:fd96258d940d 7256 * End of file.
Kojto 148:fd96258d940d 7257 */