mbed library sources. Supersedes mbed-src.
Dependents: Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more
Diff: targets/TARGET_ONSEMI/TARGET_NCS36510/rtc.c
- Revision:
- 149:156823d33999
- Child:
- 150:02e0a0aed4ec
diff -r 21d94c44109e -r 156823d33999 targets/TARGET_ONSEMI/TARGET_NCS36510/rtc.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/targets/TARGET_ONSEMI/TARGET_NCS36510/rtc.c Fri Oct 28 11:17:30 2016 +0100 @@ -0,0 +1,285 @@ +/** + ******************************************************************************* + * @file rtc.c + * @brief Implementation of a Rtc driver + * @internal + * @author ON Semiconductor + * $Rev: 3525 $ + * $Date: 2015-07-20 15:24:25 +0530 (Mon, 20 Jul 2015) $ + ****************************************************************************** + * Copyright 2016 Semiconductor Components Industries LLC (d/b/a ON Semiconductor). + * All rights reserved. This software and/or documentation is licensed by ON Semiconductor + * under limited terms and conditions. The terms and conditions pertaining to the software + * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf + * (ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software) and + * if applicable the software license agreement. Do not use this software and/or + * documentation unless you have carefully read and you agree to the limited terms and + * conditions. By using this software and/or documentation, you agree to the limited + * terms and conditions. + * + * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED + * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. + * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, + * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. + * @endinternal + * + * @ingroup rtc + * + * @details + * A real-time clock (RTC) is a computer clock ,that keeps track of the current time. The heart of the RTC is a series of + * freely running counters one for each time unit, The series of counters is linked as follows: a roll over event of + * the seconds counter produces a minutes enable pulse; a roll over event of the minutes counter produces an hours + * enable pulse, etc.Note that all Counter registers are in an undefined state on power-up. + * Use the Reset bit in the Control Register to reset the counters to their default values. + * DIVISOR is the register containing the value to divide the clock frequency to produce 1Hz strobe ; 1Hz strobe is used + * internally to time the incrementing of the Seconds Counter. + * There is a set of register to set the values in the counter for each time unit.from where time is start to increment. + * There is another set of register to set the ALARM ...Each of the Alarm Registers can be programmed with a value that + * is used to compare to a Counter Register in order to produce an alarm (an interrupt) when the values match. + * There is a programmable bit in each Alarm Register that determines if the alarm occurs upon a value match, or + * if the alarm occurs upon a Counter increment condition. + * + */ +#include "rtc.h" +#include "mbed_assert.h" + +static uint16_t SubSecond; +static uint64_t LastRtcTimeus; + +/* See rtc.h for details */ +void fRtcInit(void) +{ + CLOCK_ENABLE(CLOCK_RTC); /* enable rtc peripheral */ + CLOCKREG->CCR.BITS.RTCEN = True; /* Enable RTC clock 32K */ + + /* Reset RTC control register */ + RTCREG->CONTROL.WORD = False; + + /* Initialize all counters */ + RTCREG->SECOND_COUNTER = False; + RTCREG->SUB_SECOND_COUNTER = False; + RTCREG->SECOND_ALARM = False; + RTCREG->SUB_SECOND_ALARM = False; + LastRtcTimeus = 0; + + /* Reset RTC Status register */ + RTCREG->STATUS.WORD = False; + + /* Clear interrupt status */ + RTCREG->INT_CLEAR.WORD = False; + + /* Start sec & sub_sec counter */ + while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);/* Wait previous write to complete */ + RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | + (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); + + /* enable interruption associated with the rtc at NVIC level */ + NVIC_SetVector(Rtc_IRQn,(uint32_t)fRtcHandler); /* TODO define lp_ticker_isr */ + NVIC_ClearPendingIRQ(Rtc_IRQn); + NVIC_EnableIRQ(Rtc_IRQn); + + while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ + + return; +} + +/* See rtc.h for details */ +void fRtcFree(void) +{ + /* Reset RTC control register */ + RTCREG->CONTROL.WORD = False; + + /* disable interruption associated with the rtc */ + NVIC_DisableIRQ(Rtc_IRQn); + + while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ +} + +/* See rtc.h for details */ +void fRtcSetInterrupt(uint32_t timestamp) +{ + SubSecond = False; + uint32_t Second = False; + uint8_t DividerAdjust = 1; + + if(timestamp) { + if(timestamp >= RTC_SEC_TO_US) { + /* TimeStamp is big enough to set second alarm */ + Second = ((timestamp / RTC_SEC_TO_US) & RTC_SEC_MASK); /* Convert micro second to second */ + RTCREG->SECOND_ALARM = Second; /* Write to alarm register */ + + /* Enable second interrupt */ + RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS); + } + timestamp = timestamp - Second * RTC_SEC_TO_US; /* Take out micro second for sub second alarm */ + if(timestamp > False) { + /* We have some thing for sub second */ + + /* Convert micro second to sub_seconds(each count = 30.5 us) */ + if(timestamp > 131000) { + DividerAdjust = 100; + } + + volatile uint64_t Temp = (timestamp / DividerAdjust * RTC_CLOCK_HZ); + Temp = (uint64_t)(Temp / RTC_SEC_TO_US * DividerAdjust); + SubSecond = Temp & RTC_SUB_SEC_MASK; + + if(SubSecond <= 5) { + SubSecond = 0; + } + + + if(SubSecond > False) { + /* Second interrupt not enabled */ + + /* Set SUB SEC_ALARM */ + RTCREG->SUB_SECOND_ALARM = SubSecond; /* Write to sub second alarm */ + + /* Enable sub second interrupt */ + while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); + RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); + } + } + + while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ + } + return; +} + +/* See rtc.h for details */ +void fRtcDisableInterrupt(void) +{ + /* Disable subsec/sec interrupt */ + RTCREG->CONTROL.WORD &= ~((RTC_ALL_INTERRUPT_BIT_VAL) << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); + while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ +} + +/* See rtc.h for details */ +void fRtcEnableInterrupt(void) +{ + /* Disable subsec/sec interrupt */ + RTCREG->CONTROL.WORD |= ((RTC_ALL_INTERRUPT_BIT_VAL) << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); + while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ +} + +/* See rtc.h for details */ +void fRtcClearInterrupt(void) +{ + /* Disable subsec/sec interrupt */ + /* Clear sec & sub_sec interrupts */ + RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) | + (True << RTC_INT_CLR_SEC_BIT_POS)); + while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ +} + +/* See rtc.h for details */ +uint64_t fRtcRead(void) +{ + uint32_t Second; + uint16_t SubSecond; + + /* Hardware Bug fix: The rollover of the sub-second counter initiates the increment of the second counter. + * That means there is one cycle where the sub-second has rolled back to zero and the second counter has not incremented + * and a read during that cycle will be incorrect. That will occur for one RTC cycle and that is about 31us of exposure. + * If you read a zero in the sub-second counter then increment the second counter by 1. + * Alternatively, subtract 1 from the Sub-seconds counter to align the Second and Sub-Second rollover. + */ + + /* Read the Second and Sub-second counters, then read the Second counter again. + * If it changed, then the Second rolled over while reading Sub-seconds, so go back and read them both again. + */ + + do { + Second = RTCREG->SECOND_COUNTER; /* Get SEC_COUNTER reg value */ + SubSecond = (RTCREG->SUB_SECOND_COUNTER - 1) & 0x7FFF; /* Get SUB_SEC_COUNTER reg value */ + } while (Second != RTCREG->SECOND_COUNTER); /* Repeat if the second has changed */ + + //note: casting to float removed to avoid reduction in resolution + uint64_t RtcTimeus = ((uint64_t)SubSecond * RTC_SEC_TO_US / RTC_CLOCK_HZ) + ((uint64_t)Second * RTC_SEC_TO_US); + + /*check that the time did not go backwards */ + MBED_ASSERT(RtcTimeus >= LastRtcTimeus); + LastRtcTimeus = RtcTimeus; + + return RtcTimeus; +} + +/* See rtc.h for details */ +void fRtcWrite(uint64_t RtcTimeus) +{ + uint32_t Second = 0; + uint16_t SubSecond = 0; + /* Stop RTC */ + RTCREG->CONTROL.WORD &= ~((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | + (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); + + if(RtcTimeus > RTC_SEC_TO_US) { + /* TimeStamp is big enough to set second counter */ + Second = ((RtcTimeus / RTC_SEC_TO_US) & RTC_SEC_MASK); + } + RTCREG->SECOND_COUNTER = Second; + RtcTimeus = RtcTimeus - (Second * RTC_SEC_TO_US); + if(RtcTimeus > False) { + /* Convert TimeStamp to sub_seconds */ + SubSecond = (uint16_t)((float)(RtcTimeus * RTC_CLOCK_HZ / RTC_SEC_TO_US)) & RTC_SUB_SEC_MASK; + } + /* Set SUB_SEC_ALARM */ + RTCREG->SUB_SECOND_COUNTER = SubSecond; + + while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ + /* Start RTC */ + RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | + (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); + + while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ +} + +/* See rtc.h for details */ +void fRtcHandler(void) +{ + /* SUB_SECOND/SECOND interrupt occured */ + volatile uint32_t TempStatus = RTCREG->STATUS.WORD; + + /* Disable RTC interrupt */ + NVIC_DisableIRQ(Rtc_IRQn); + + /* Clear sec & sub_sec interrupts */ + RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) | + (True << RTC_INT_CLR_SEC_BIT_POS)); + + /* TODO ANDing SUB_SEC & SEC interrupt - work around for RTC issue - will be resolved in REV G */ + if(TempStatus & RTC_SEC_INT_STATUS_MASK) { + /* Second interrupt occured */ + if(SubSecond > False) { + /* Set SUB SEC_ALARM */ + RTCREG->SUB_SECOND_ALARM = SubSecond + RTCREG->SUB_SECOND_COUNTER; + /* Enable sub second interrupt */ + RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); + } else { + /* We reach here after second interrupt is occured */ + RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) | + (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS); + } + } else { + /* We reach here after sub_second or (Sub second + second) interrupt occured */ + /* Disable Second and sub_second interrupt */ + RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) | + (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS); + } + + NVIC_EnableIRQ(Rtc_IRQn); + + while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ + + lp_ticker_irq_handler(); +} + +boolean fIsRtcEnabled(void) +{ + if(RTCREG->CONTROL.BITS.SUB_SEC_COUNTER_EN | RTCREG->CONTROL.BITS.SEC_COUNTER_EN) { + return True; + } else { + return False; + } +}