mbed library sources. Supersedes mbed-src.
Dependents: Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more
targets/TARGET_STM/stm_spi_api.c
- Committer:
- AnnaBridge
- Date:
- 2017-07-06
- Revision:
- 168:9672193075cf
- Parent:
- 167:e84263d55307
- Child:
- 170:19eb464bc2be
File content as of revision 168:9672193075cf:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2015, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "mbed_assert.h" #include "mbed_error.h" #include "spi_api.h" #if DEVICE_SPI #include <stdbool.h> #include <math.h> #include <string.h> #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" #include "spi_device.h" #if DEVICE_SPI_ASYNCH #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi.spi)) #else #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi)) #endif #if DEVICE_SPI_ASYNCH #define SPI_S(obj) (( struct spi_s *)(&(obj->spi))) #else #define SPI_S(obj) (( struct spi_s *)(obj)) #endif #ifndef DEBUG_STDIO # define DEBUG_STDIO 0 #endif #if DEBUG_STDIO # include <stdio.h> # define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0) #else # define DEBUG_PRINTF(...) {} #endif void init_spi(spi_t *obj) { struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); __HAL_SPI_DISABLE(handle); DEBUG_PRINTF("init_spi: instance=0x%8X\r\n", (int)handle->Instance); if (HAL_SPI_Init(handle) != HAL_OK) { error("Cannot initialize SPI"); } __HAL_SPI_ENABLE(handle); } void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); // Determine the SPI to use SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); spiobj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl); MBED_ASSERT(spiobj->spi != (SPIName)NC); #if defined SPI1_BASE // Enable SPI clock if (spiobj->spi == SPI_1) { __HAL_RCC_SPI1_CLK_ENABLE(); spiobj->spiIRQ = SPI1_IRQn; } #endif #if defined SPI2_BASE if (spiobj->spi == SPI_2) { __HAL_RCC_SPI2_CLK_ENABLE(); spiobj->spiIRQ = SPI2_IRQn; } #endif #if defined SPI3_BASE if (spiobj->spi == SPI_3) { __HAL_RCC_SPI3_CLK_ENABLE(); spiobj->spiIRQ = SPI3_IRQn; } #endif #if defined SPI4_BASE if (spiobj->spi == SPI_4) { __HAL_RCC_SPI4_CLK_ENABLE(); spiobj->spiIRQ = SPI4_IRQn; } #endif #if defined SPI5_BASE if (spiobj->spi == SPI_5) { __HAL_RCC_SPI5_CLK_ENABLE(); spiobj->spiIRQ = SPI5_IRQn; } #endif #if defined SPI6_BASE if (spiobj->spi == SPI_6) { __HAL_RCC_SPI6_CLK_ENABLE(); spiobj->spiIRQ = SPI6_IRQn; } #endif // Configure the SPI pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); spiobj->pin_miso = miso; spiobj->pin_mosi = mosi; spiobj->pin_sclk = sclk; spiobj->pin_ssel = ssel; if (ssel != NC) { pinmap_pinout(ssel, PinMap_SPI_SSEL); } else { handle->Init.NSS = SPI_NSS_SOFT; } /* Fill default value */ handle->Instance = SPI_INST(obj); handle->Init.Mode = SPI_MODE_MASTER; handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; handle->Init.Direction = SPI_DIRECTION_2LINES; handle->Init.CLKPhase = SPI_PHASE_1EDGE; handle->Init.CLKPolarity = SPI_POLARITY_LOW; handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; handle->Init.CRCPolynomial = 7; handle->Init.DataSize = SPI_DATASIZE_8BIT; handle->Init.FirstBit = SPI_FIRSTBIT_MSB; handle->Init.TIMode = SPI_TIMODE_DISABLE; init_spi(obj); } void spi_free(spi_t *obj) { struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); DEBUG_PRINTF("spi_free\r\n"); __HAL_SPI_DISABLE(handle); HAL_SPI_DeInit(handle); #if defined SPI1_BASE // Reset SPI and disable clock if (spiobj->spi == SPI_1) { __HAL_RCC_SPI1_FORCE_RESET(); __HAL_RCC_SPI1_RELEASE_RESET(); __HAL_RCC_SPI1_CLK_DISABLE(); } #endif #if defined SPI2_BASE if (spiobj->spi == SPI_2) { __HAL_RCC_SPI2_FORCE_RESET(); __HAL_RCC_SPI2_RELEASE_RESET(); __HAL_RCC_SPI2_CLK_DISABLE(); } #endif #if defined SPI3_BASE if (spiobj->spi == SPI_3) { __HAL_RCC_SPI3_FORCE_RESET(); __HAL_RCC_SPI3_RELEASE_RESET(); __HAL_RCC_SPI3_CLK_DISABLE(); } #endif #if defined SPI4_BASE if (spiobj->spi == SPI_4) { __HAL_RCC_SPI4_FORCE_RESET(); __HAL_RCC_SPI4_RELEASE_RESET(); __HAL_RCC_SPI4_CLK_DISABLE(); } #endif #if defined SPI5_BASE if (spiobj->spi == SPI_5) { __HAL_RCC_SPI5_FORCE_RESET(); __HAL_RCC_SPI5_RELEASE_RESET(); __HAL_RCC_SPI5_CLK_DISABLE(); } #endif #if defined SPI6_BASE if (spiobj->spi == SPI_6) { __HAL_RCC_SPI6_FORCE_RESET(); __HAL_RCC_SPI6_RELEASE_RESET(); __HAL_RCC_SPI6_CLK_DISABLE(); } #endif // Configure GPIOs pin_function(spiobj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(spiobj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(spiobj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); if (handle->Init.NSS != SPI_NSS_SOFT) { pin_function(spiobj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); } } void spi_format(spi_t *obj, int bits, int mode, int slave) { struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); DEBUG_PRINTF("spi_format, bits:%d, mode:%d, slave?:%d\r\n", bits, mode, slave); // Save new values handle->Init.DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT; switch (mode) { case 0: handle->Init.CLKPolarity = SPI_POLARITY_LOW; handle->Init.CLKPhase = SPI_PHASE_1EDGE; break; case 1: handle->Init.CLKPolarity = SPI_POLARITY_LOW; handle->Init.CLKPhase = SPI_PHASE_2EDGE; break; case 2: handle->Init.CLKPolarity = SPI_POLARITY_HIGH; handle->Init.CLKPhase = SPI_PHASE_1EDGE; break; default: handle->Init.CLKPolarity = SPI_POLARITY_HIGH; handle->Init.CLKPhase = SPI_PHASE_2EDGE; break; } if (handle->Init.NSS != SPI_NSS_SOFT) { handle->Init.NSS = (slave) ? SPI_NSS_HARD_INPUT : SPI_NSS_HARD_OUTPUT; } handle->Init.Mode = (slave) ? SPI_MODE_SLAVE : SPI_MODE_MASTER; init_spi(obj); } /* * Only the IP clock input is family dependant so it computed * separately in spi_get_clock_freq */ extern int spi_get_clock_freq(spi_t *obj); static const uint16_t baudrate_prescaler_table[] = {SPI_BAUDRATEPRESCALER_2, SPI_BAUDRATEPRESCALER_4, SPI_BAUDRATEPRESCALER_8, SPI_BAUDRATEPRESCALER_16, SPI_BAUDRATEPRESCALER_32, SPI_BAUDRATEPRESCALER_64, SPI_BAUDRATEPRESCALER_128, SPI_BAUDRATEPRESCALER_256}; void spi_frequency(spi_t *obj, int hz) { struct spi_s *spiobj = SPI_S(obj); int spi_hz = 0; uint8_t prescaler_rank = 0; uint8_t last_index = (sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0])) - 1; SPI_HandleTypeDef *handle = &(spiobj->handle); /* Calculate the spi clock for prescaler_rank 0: SPI_BAUDRATEPRESCALER_2 */ spi_hz = spi_get_clock_freq(obj) / 2; /* Define pre-scaler in order to get highest available frequency below requested frequency */ while ((spi_hz > hz) && (prescaler_rank < last_index)) { spi_hz = spi_hz / 2; prescaler_rank++; } /* Use the best fit pre-scaler */ handle->Init.BaudRatePrescaler = baudrate_prescaler_table[prescaler_rank]; /* In case maximum pre-scaler still gives too high freq, raise an error */ if (spi_hz > hz) { DEBUG_PRINTF("WARNING: lowest SPI freq (%d) higher than requested (%d)\r\n", spi_hz, hz); } DEBUG_PRINTF("spi_frequency, request:%d, select:%d\r\n", hz, spi_hz); init_spi(obj); } static inline int ssp_readable(spi_t *obj) { int status; struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); // Check if data is received status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXNE) != RESET) ? 1 : 0); return status; } static inline int ssp_writeable(spi_t *obj) { int status; struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); // Check if data is transmitted status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXE) != RESET) ? 1 : 0); return status; } static inline int ssp_busy(spi_t *obj) { int status; struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_BSY) != RESET) ? 1 : 0); return status; } int spi_master_write(spi_t *obj, int value) { struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); #if defined(LL_SPI_RX_FIFO_TH_HALF) /* Configure the default data size */ if (handle->Init.DataSize == SPI_DATASIZE_16BIT) { LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_HALF); } else { LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_QUARTER); } #endif /* Here we're using LL which means direct registers access * There is no error management, so we may end up looping * infinitely here in case of faulty device for insatnce, * but this will increase performances significantly */ /* Wait TXE flag to transmit data */ while (!LL_SPI_IsActiveFlag_TXE(SPI_INST(obj))); if (handle->Init.DataSize == SPI_DATASIZE_16BIT) { LL_SPI_TransmitData16(SPI_INST(obj), value); } else { LL_SPI_TransmitData8(SPI_INST(obj), (uint8_t) value); } /* Then wait RXE flag before reading */ while (!LL_SPI_IsActiveFlag_RXNE(SPI_INST(obj))); if (handle->Init.DataSize == SPI_DATASIZE_16BIT) { return LL_SPI_ReceiveData16(SPI_INST(obj)); } else { return LL_SPI_ReceiveData8(SPI_INST(obj)); } } int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length) { int total = (tx_length > rx_length) ? tx_length : rx_length; for (int i = 0; i < total; i++) { char out = (i < tx_length) ? tx_buffer[i] : 0xff; char in = spi_master_write(obj, out); if (i < rx_length) { rx_buffer[i] = in; } } return total; } int spi_slave_receive(spi_t *obj) { return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0); }; int spi_slave_read(spi_t *obj) { SPI_TypeDef *spi = SPI_INST(obj); struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); while (!ssp_readable(obj)); if (handle->Init.DataSize == SPI_DATASIZE_8BIT) { // Force 8-bit access to the data register uint8_t *p_spi_dr = 0; p_spi_dr = (uint8_t *) & (spi->DR); return (int)(*p_spi_dr); } else { return (int)spi->DR; } } void spi_slave_write(spi_t *obj, int value) { SPI_TypeDef *spi = SPI_INST(obj); struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); while (!ssp_writeable(obj)); if (handle->Init.DataSize == SPI_DATASIZE_8BIT) { // Force 8-bit access to the data register uint8_t *p_spi_dr = 0; p_spi_dr = (uint8_t *) & (spi->DR); *p_spi_dr = (uint8_t)value; } else { // SPI_DATASIZE_16BIT spi->DR = (uint16_t)value; } } int spi_busy(spi_t *obj) { return ssp_busy(obj); } #ifdef DEVICE_SPI_ASYNCH typedef enum { SPI_TRANSFER_TYPE_NONE = 0, SPI_TRANSFER_TYPE_TX = 1, SPI_TRANSFER_TYPE_RX = 2, SPI_TRANSFER_TYPE_TXRX = 3, } transfer_type_t; /// @returns the number of bytes transferred, or `0` if nothing transferred static int spi_master_start_asynch_transfer(spi_t *obj, transfer_type_t transfer_type, const void *tx, void *rx, size_t length) { struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT); // the HAL expects number of transfers instead of number of bytes // so for 16 bit transfer width the count needs to be halved size_t words; DEBUG_PRINTF("SPI inst=0x%8X Start: %u, %u\r\n", (int)handle->Instance, transfer_type, length); obj->spi.transfer_type = transfer_type; if (is16bit) { words = length / 2; } else { words = length; } // enable the interrupt IRQn_Type irq_n = spiobj->spiIRQ; NVIC_DisableIRQ(irq_n); NVIC_ClearPendingIRQ(irq_n); NVIC_SetPriority(irq_n, 1); NVIC_EnableIRQ(irq_n); // enable the right hal transfer int rc = 0; switch(transfer_type) { case SPI_TRANSFER_TYPE_TXRX: rc = HAL_SPI_TransmitReceive_IT(handle, (uint8_t*)tx, (uint8_t*)rx, words); break; case SPI_TRANSFER_TYPE_TX: rc = HAL_SPI_Transmit_IT(handle, (uint8_t*)tx, words); break; case SPI_TRANSFER_TYPE_RX: // the receive function also "transmits" the receive buffer so in order // to guarantee that 0xff is on the line, we explicitly memset it here memset(rx, SPI_FILL_WORD, length); rc = HAL_SPI_Receive_IT(handle, (uint8_t*)rx, words); break; default: length = 0; } if (rc) { DEBUG_PRINTF("SPI: RC=%u\n", rc); length = 0; } return length; } // asynchronous API void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint) { struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); // TODO: DMA usage is currently ignored (void) hint; // check which use-case we have bool use_tx = (tx != NULL && tx_length > 0); bool use_rx = (rx != NULL && rx_length > 0); bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT); // don't do anything, if the buffers aren't valid if (!use_tx && !use_rx) return; // copy the buffers to the SPI object obj->tx_buff.buffer = (void *) tx; obj->tx_buff.length = tx_length; obj->tx_buff.pos = 0; obj->tx_buff.width = is16bit ? 16 : 8; obj->rx_buff.buffer = rx; obj->rx_buff.length = rx_length; obj->rx_buff.pos = 0; obj->rx_buff.width = obj->tx_buff.width; obj->spi.event = event; DEBUG_PRINTF("SPI: Transfer: %u, %u\n", tx_length, rx_length); // register the thunking handler IRQn_Type irq_n = spiobj->spiIRQ; NVIC_SetVector(irq_n, (uint32_t)handler); // enable the right hal transfer if (use_tx && use_rx) { // we cannot manage different rx / tx sizes, let's use smaller one size_t size = (tx_length < rx_length)? tx_length : rx_length; if(tx_length != rx_length) { DEBUG_PRINTF("SPI: Full duplex transfer only 1 size: %d\n", size); obj->tx_buff.length = size; obj->rx_buff.length = size; } spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TXRX, tx, rx, size); } else if (use_tx) { spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TX, tx, NULL, tx_length); } else if (use_rx) { spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_RX, NULL, rx, rx_length); } } inline uint32_t spi_irq_handler_asynch(spi_t *obj) { int event = 0; // call the CubeF4 handler, this will update the handle HAL_SPI_IRQHandler(&obj->spi.handle); if (obj->spi.handle.State == HAL_SPI_STATE_READY) { // When HAL SPI is back to READY state, check if there was an error int error = obj->spi.handle.ErrorCode; if(error != HAL_SPI_ERROR_NONE) { // something went wrong and the transfer has definitely completed event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE; if (error & HAL_SPI_ERROR_OVR) { // buffer overrun event |= SPI_EVENT_RX_OVERFLOW; } } else { // else we're done event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE; } // enable the interrupt NVIC_DisableIRQ(obj->spi.spiIRQ); NVIC_ClearPendingIRQ(obj->spi.spiIRQ); } return (event & (obj->spi.event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE)); } uint8_t spi_active(spi_t *obj) { struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); HAL_SPI_StateTypeDef state = HAL_SPI_GetState(handle); switch(state) { case HAL_SPI_STATE_RESET: case HAL_SPI_STATE_READY: case HAL_SPI_STATE_ERROR: return 0; default: return 1; } } void spi_abort_asynch(spi_t *obj) { struct spi_s *spiobj = SPI_S(obj); SPI_HandleTypeDef *handle = &(spiobj->handle); // disable interrupt IRQn_Type irq_n = spiobj->spiIRQ; NVIC_ClearPendingIRQ(irq_n); NVIC_DisableIRQ(irq_n); // clean-up __HAL_SPI_DISABLE(handle); HAL_SPI_DeInit(handle); HAL_SPI_Init(handle); __HAL_SPI_ENABLE(handle); } #endif //DEVICE_SPI_ASYNCH #endif