mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

Revision:
160:d5399cc887bb
Child:
187:0387e8f68319
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_STM/pwmout_api.c	Tue Mar 14 16:40:56 2017 +0000
@@ -0,0 +1,343 @@
+/* mbed Microcontroller Library
+ *******************************************************************************
+ * Copyright (c) 2015, STMicroelectronics
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ *    this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ *    this list of conditions and the following disclaimer in the documentation
+ *    and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ *    may be used to endorse or promote products derived from this software
+ *    without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *******************************************************************************
+ */
+#include "pwmout_api.h"
+
+#if DEVICE_PWMOUT
+
+#include "cmsis.h"
+#include "pinmap.h"
+#include "mbed_error.h"
+#include "PeripheralPins.h"
+#include "pwmout_device.h"
+
+static TIM_HandleTypeDef TimHandle;
+
+void pwmout_init(pwmout_t* obj, PinName pin)
+{
+    // Get the peripheral name from the pin and assign it to the object
+    obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
+    MBED_ASSERT(obj->pwm != (PWMName)NC);
+
+    // Get the functions (timer channel, (non)inverted) from the pin and assign it to the object
+    uint32_t function = pinmap_function(pin, PinMap_PWM);
+    MBED_ASSERT(function != (uint32_t)NC);
+    obj->channel = STM_PIN_CHANNEL(function);
+    obj->inverted = STM_PIN_INVERTED(function);
+
+    // Enable TIM clock
+#if defined(TIM1_BASE)
+    if (obj->pwm == PWM_1){
+        __HAL_RCC_TIM1_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM2_BASE)
+    if (obj->pwm == PWM_2) {
+        __HAL_RCC_TIM2_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM3_BASE)
+    if (obj->pwm == PWM_3) {
+        __HAL_RCC_TIM3_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM4_BASE)
+    if (obj->pwm == PWM_4) {
+        __HAL_RCC_TIM4_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM5_BASE)
+    if (obj->pwm == PWM_5) {
+        __HAL_RCC_TIM5_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM8_BASE)
+    if (obj->pwm == PWM_8) {
+        __HAL_RCC_TIM8_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM9_BASE)
+    if (obj->pwm == PWM_9) {
+        __HAL_RCC_TIM9_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM10_BASE)
+    if (obj->pwm == PWM_10) {
+        __HAL_RCC_TIM10_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM11_BASE)
+    if (obj->pwm == PWM_11) {
+        __HAL_RCC_TIM11_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM12_BASE)
+    if (obj->pwm == PWM_12) {
+        __HAL_RCC_TIM12_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM13_BASE)
+    if (obj->pwm == PWM_13) {
+        __HAL_RCC_TIM13_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM14_BASE)
+    if (obj->pwm == PWM_14) {
+        __HAL_RCC_TIM14_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM15_BASE)
+    if (obj->pwm == PWM_15) {
+        __HAL_RCC_TIM15_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM16_BASE)
+    if (obj->pwm == PWM_16) {
+        __HAL_RCC_TIM16_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM17_BASE)
+    if (obj->pwm == PWM_17) {
+        __HAL_RCC_TIM17_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM18_BASE)
+    if (obj->pwm == PWM_18) {
+        __HAL_RCC_TIM18_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM19_BASE)
+    if (obj->pwm == PWM_19) {
+        __HAL_RCC_TIM19_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM20_BASE)
+    if (obj->pwm == PWM_20) {
+        __HAL_RCC_TIM20_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM21_BASE)
+    if (obj->pwm == PWM_21) {
+        __HAL_RCC_TIM21_CLK_ENABLE();
+    }
+#endif
+#if defined(TIM22_BASE)
+    if (obj->pwm == PWM_22) {
+        __HAL_RCC_TIM22_CLK_ENABLE();
+    }
+#endif
+    // Configure GPIO
+    pinmap_pinout(pin, PinMap_PWM);
+
+    obj->pin = pin;
+    obj->period = 0;
+    obj->pulse = 0;
+    obj->prescaler = 1;
+
+    pwmout_period_us(obj, 20000); // 20 ms per default
+}
+
+void pwmout_free(pwmout_t* obj)
+{
+    // Configure GPIO
+    pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+}
+
+void pwmout_write(pwmout_t* obj, float value)
+{
+    TIM_OC_InitTypeDef sConfig;
+    int channel = 0;
+
+    TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
+
+    if (value < (float)0.0) {
+        value = 0.0;
+    } else if (value > (float)1.0) {
+        value = 1.0;
+    }
+
+    obj->pulse = (uint32_t)((float)obj->period * value);
+
+    // Configure channels
+    sConfig.OCMode       = TIM_OCMODE_PWM1;
+    sConfig.Pulse        = obj->pulse / obj->prescaler;
+    sConfig.OCPolarity   = TIM_OCPOLARITY_HIGH;
+    sConfig.OCFastMode   = TIM_OCFAST_DISABLE;
+#if defined(TIM_OCIDLESTATE_RESET)
+    sConfig.OCIdleState  = TIM_OCIDLESTATE_RESET;
+#endif
+#if defined(TIM_OCNIDLESTATE_RESET)
+    sConfig.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
+    sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
+#endif
+
+    switch (obj->channel) {
+        case 1:
+            channel = TIM_CHANNEL_1;
+            break;
+        case 2:
+            channel = TIM_CHANNEL_2;
+            break;
+        case 3:
+            channel = TIM_CHANNEL_3;
+            break;
+        case 4:
+            channel = TIM_CHANNEL_4;
+            break;
+        default:
+            return;
+    }
+
+    if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel) != HAL_OK) {
+        error("Cannot initialize PWM\n");
+    }
+
+#if !defined(PWMOUT_INVERTED_NOT_SUPPORTED)
+    if (obj->inverted) {
+        HAL_TIMEx_PWMN_Start(&TimHandle, channel);
+    } else
+#endif
+    {
+        HAL_TIM_PWM_Start(&TimHandle, channel);
+    }
+}
+
+float pwmout_read(pwmout_t* obj)
+{
+    float value = 0;
+    if (obj->period > 0) {
+        value = (float)(obj->pulse) / (float)(obj->period);
+    }
+    return ((value > (float)1.0) ? (float)(1.0) : (value));
+}
+
+void pwmout_period(pwmout_t* obj, float seconds)
+{
+    pwmout_period_us(obj, seconds * 1000000.0f);
+}
+
+void pwmout_period_ms(pwmout_t* obj, int ms)
+{
+    pwmout_period_us(obj, ms * 1000);
+}
+
+void pwmout_period_us(pwmout_t* obj, int us)
+{
+    TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
+    RCC_ClkInitTypeDef RCC_ClkInitStruct;
+    uint32_t PclkFreq = 0;
+    uint32_t APBxCLKDivider = RCC_HCLK_DIV1;
+    float dc = pwmout_read(obj);
+    uint8_t i = 0;
+
+    __HAL_TIM_DISABLE(&TimHandle);
+
+    // Get clock configuration
+    // Note: PclkFreq contains here the Latency (not used after)
+    HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq);
+
+    /*  Parse the pwm / apb mapping table to find the right entry */
+    while(pwm_apb_map_table[i].pwm != obj->pwm) {
+        i++;
+    }
+
+    if(pwm_apb_map_table[i].pwm == 0)
+        error("Unknown PWM instance");
+
+    if(pwm_apb_map_table[i].pwmoutApb == PWMOUT_ON_APB1) {
+        PclkFreq = HAL_RCC_GetPCLK1Freq();
+        APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
+    } else {
+#if !defined(PWMOUT_APB2_NOT_SUPPORTED)
+        PclkFreq = HAL_RCC_GetPCLK2Freq();
+        APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
+#endif
+    }
+
+
+    /* By default use, 1us as SW pre-scaler */
+    obj->prescaler = 1;
+    // TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx
+    if (APBxCLKDivider == RCC_HCLK_DIV1) {
+        TimHandle.Init.Prescaler = (((PclkFreq) / 1000000)) - 1; // 1 us tick
+    } else {
+        TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000)) - 1; // 1 us tick
+    }
+    TimHandle.Init.Period = (us - 1);
+
+    /*  In case period or pre-scalers are out of range, loop-in to get valid values */
+    while ((TimHandle.Init.Period > 0xFFFF) || (TimHandle.Init.Prescaler > 0xFFFF)) {
+        obj->prescaler = obj->prescaler * 2;
+        if (APBxCLKDivider == RCC_HCLK_DIV1) {
+          TimHandle.Init.Prescaler = (((PclkFreq) / 1000000) * obj->prescaler) - 1;
+        } else {
+          TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000) * obj->prescaler) - 1;
+        }
+        TimHandle.Init.Period = (us - 1) / obj->prescaler;
+        /*  Period decreases and prescaler increases over loops, so check for
+         *  possible out of range cases */
+        if ((TimHandle.Init.Period < 0xFFFF) && (TimHandle.Init.Prescaler > 0xFFFF)) {
+            error("Cannot initialize PWM\n");
+            break;
+        }
+    }
+
+    TimHandle.Init.ClockDivision = 0;
+    TimHandle.Init.CounterMode   = TIM_COUNTERMODE_UP;
+
+    if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
+        error("Cannot initialize PWM\n");
+    }
+
+    // Save for future use
+    obj->period = us;
+
+    // Set duty cycle again
+    pwmout_write(obj, dc);
+
+    __HAL_TIM_ENABLE(&TimHandle);
+}
+
+void pwmout_pulsewidth(pwmout_t* obj, float seconds)
+{
+    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
+}
+
+void pwmout_pulsewidth_ms(pwmout_t* obj, int ms)
+{
+    pwmout_pulsewidth_us(obj, ms * 1000);
+}
+
+void pwmout_pulsewidth_us(pwmout_t* obj, int us)
+{
+    float value = (float)us / (float)obj->period;
+    pwmout_write(obj, value);
+}
+
+#endif