mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

Committer:
AnnaBridge
Date:
Wed Feb 20 22:31:08 2019 +0000
Revision:
189:f392fc9709a3
Parent:
187:0387e8f68319
mbed library release version 165

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /**
<> 144:ef7eb2e8f9f7 2 ******************************************************************************
<> 144:ef7eb2e8f9f7 3 * @file stm32f1xx_hal_rcc.c
<> 144:ef7eb2e8f9f7 4 * @author MCD Application Team
<> 144:ef7eb2e8f9f7 5 * @brief RCC HAL module driver.
<> 144:ef7eb2e8f9f7 6 * This file provides firmware functions to manage the following
<> 144:ef7eb2e8f9f7 7 * functionalities of the Reset and Clock Control (RCC) peripheral:
<> 144:ef7eb2e8f9f7 8 * + Initialization and de-initialization functions
<> 144:ef7eb2e8f9f7 9 * + Peripheral Control functions
<> 144:ef7eb2e8f9f7 10 *
<> 144:ef7eb2e8f9f7 11 @verbatim
<> 144:ef7eb2e8f9f7 12 ==============================================================================
<> 144:ef7eb2e8f9f7 13 ##### RCC specific features #####
<> 144:ef7eb2e8f9f7 14 ==============================================================================
<> 144:ef7eb2e8f9f7 15 [..]
<> 144:ef7eb2e8f9f7 16 After reset the device is running from Internal High Speed oscillator
<> 144:ef7eb2e8f9f7 17 (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled,
<> 144:ef7eb2e8f9f7 18 and all peripherals are off except internal SRAM, Flash and JTAG.
<> 144:ef7eb2e8f9f7 19 (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
<> 144:ef7eb2e8f9f7 20 all peripherals mapped on these buses are running at HSI speed.
<> 144:ef7eb2e8f9f7 21 (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
<> 144:ef7eb2e8f9f7 22 (+) All GPIOs are in input floating state, except the JTAG pins which
<> 144:ef7eb2e8f9f7 23 are assigned to be used for debug purpose.
<> 144:ef7eb2e8f9f7 24 [..] Once the device started from reset, the user application has to:
<> 144:ef7eb2e8f9f7 25 (+) Configure the clock source to be used to drive the System clock
<> 144:ef7eb2e8f9f7 26 (if the application needs higher frequency/performance)
<> 144:ef7eb2e8f9f7 27 (+) Configure the System clock frequency and Flash settings
<> 144:ef7eb2e8f9f7 28 (+) Configure the AHB and APB buses prescalers
<> 144:ef7eb2e8f9f7 29 (+) Enable the clock for the peripheral(s) to be used
<> 144:ef7eb2e8f9f7 30 (+) Configure the clock source(s) for peripherals whose clocks are not
<> 144:ef7eb2e8f9f7 31 derived from the System clock (I2S, RTC, ADC, USB OTG FS)
<> 144:ef7eb2e8f9f7 32
<> 144:ef7eb2e8f9f7 33 ##### RCC Limitations #####
<> 144:ef7eb2e8f9f7 34 ==============================================================================
<> 144:ef7eb2e8f9f7 35 [..]
<> 144:ef7eb2e8f9f7 36 A delay between an RCC peripheral clock enable and the effective peripheral
<> 144:ef7eb2e8f9f7 37 enabling should be taken into account in order to manage the peripheral read/write
<> 144:ef7eb2e8f9f7 38 from/to registers.
<> 144:ef7eb2e8f9f7 39 (+) This delay depends on the peripheral mapping.
<> 144:ef7eb2e8f9f7 40 (++) AHB & APB peripherals, 1 dummy read is necessary
<> 144:ef7eb2e8f9f7 41
<> 144:ef7eb2e8f9f7 42 [..]
<> 144:ef7eb2e8f9f7 43 Workarounds:
<> 144:ef7eb2e8f9f7 44 (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
<> 144:ef7eb2e8f9f7 45 inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
<> 144:ef7eb2e8f9f7 46
<> 144:ef7eb2e8f9f7 47 @endverbatim
<> 144:ef7eb2e8f9f7 48 ******************************************************************************
<> 144:ef7eb2e8f9f7 49 * @attention
<> 144:ef7eb2e8f9f7 50 *
<> 144:ef7eb2e8f9f7 51 * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
<> 144:ef7eb2e8f9f7 52 *
<> 144:ef7eb2e8f9f7 53 * Redistribution and use in source and binary forms, with or without modification,
<> 144:ef7eb2e8f9f7 54 * are permitted provided that the following conditions are met:
<> 144:ef7eb2e8f9f7 55 * 1. Redistributions of source code must retain the above copyright notice,
<> 144:ef7eb2e8f9f7 56 * this list of conditions and the following disclaimer.
<> 144:ef7eb2e8f9f7 57 * 2. Redistributions in binary form must reproduce the above copyright notice,
<> 144:ef7eb2e8f9f7 58 * this list of conditions and the following disclaimer in the documentation
<> 144:ef7eb2e8f9f7 59 * and/or other materials provided with the distribution.
<> 144:ef7eb2e8f9f7 60 * 3. Neither the name of STMicroelectronics nor the names of its contributors
<> 144:ef7eb2e8f9f7 61 * may be used to endorse or promote products derived from this software
<> 144:ef7eb2e8f9f7 62 * without specific prior written permission.
<> 144:ef7eb2e8f9f7 63 *
<> 144:ef7eb2e8f9f7 64 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
<> 144:ef7eb2e8f9f7 65 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
<> 144:ef7eb2e8f9f7 66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
<> 144:ef7eb2e8f9f7 67 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
<> 144:ef7eb2e8f9f7 68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
<> 144:ef7eb2e8f9f7 69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
<> 144:ef7eb2e8f9f7 70 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
<> 144:ef7eb2e8f9f7 71 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
<> 144:ef7eb2e8f9f7 72 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
<> 144:ef7eb2e8f9f7 73 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
<> 144:ef7eb2e8f9f7 74 *
<> 144:ef7eb2e8f9f7 75 ******************************************************************************
<> 144:ef7eb2e8f9f7 76 */
<> 144:ef7eb2e8f9f7 77
<> 144:ef7eb2e8f9f7 78 /* Includes ------------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 79 #include "stm32f1xx_hal.h"
<> 144:ef7eb2e8f9f7 80
<> 144:ef7eb2e8f9f7 81 /** @addtogroup STM32F1xx_HAL_Driver
<> 144:ef7eb2e8f9f7 82 * @{
<> 144:ef7eb2e8f9f7 83 */
<> 144:ef7eb2e8f9f7 84
<> 144:ef7eb2e8f9f7 85 /** @defgroup RCC RCC
<> 144:ef7eb2e8f9f7 86 * @brief RCC HAL module driver
<> 144:ef7eb2e8f9f7 87 * @{
<> 144:ef7eb2e8f9f7 88 */
<> 144:ef7eb2e8f9f7 89
<> 144:ef7eb2e8f9f7 90 #ifdef HAL_RCC_MODULE_ENABLED
<> 144:ef7eb2e8f9f7 91
<> 144:ef7eb2e8f9f7 92 /* Private typedef -----------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 93 /* Private define ------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 94 /** @defgroup RCC_Private_Constants RCC Private Constants
<> 144:ef7eb2e8f9f7 95 * @{
<> 144:ef7eb2e8f9f7 96 */
<> 144:ef7eb2e8f9f7 97 /**
<> 144:ef7eb2e8f9f7 98 * @}
<> 144:ef7eb2e8f9f7 99 */
<> 144:ef7eb2e8f9f7 100 /* Private macro -------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 101 /** @defgroup RCC_Private_Macros RCC Private Macros
<> 144:ef7eb2e8f9f7 102 * @{
<> 144:ef7eb2e8f9f7 103 */
<> 144:ef7eb2e8f9f7 104
<> 144:ef7eb2e8f9f7 105 #define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
<> 144:ef7eb2e8f9f7 106 #define MCO1_GPIO_PORT GPIOA
<> 144:ef7eb2e8f9f7 107 #define MCO1_PIN GPIO_PIN_8
<> 144:ef7eb2e8f9f7 108
<> 144:ef7eb2e8f9f7 109 /**
<> 144:ef7eb2e8f9f7 110 * @}
<> 144:ef7eb2e8f9f7 111 */
<> 144:ef7eb2e8f9f7 112
<> 144:ef7eb2e8f9f7 113 /* Private variables ---------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 114 /** @defgroup RCC_Private_Variables RCC Private Variables
<> 144:ef7eb2e8f9f7 115 * @{
<> 144:ef7eb2e8f9f7 116 */
<> 144:ef7eb2e8f9f7 117 /**
<> 144:ef7eb2e8f9f7 118 * @}
<> 144:ef7eb2e8f9f7 119 */
<> 144:ef7eb2e8f9f7 120
<> 144:ef7eb2e8f9f7 121 /* Private function prototypes -----------------------------------------------*/
AnnaBridge 165:e614a9f1c9e2 122 static void RCC_Delay(uint32_t mdelay);
AnnaBridge 165:e614a9f1c9e2 123
AnnaBridge 165:e614a9f1c9e2 124 /* Exported functions --------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 125
<> 144:ef7eb2e8f9f7 126 /** @defgroup RCC_Exported_Functions RCC Exported Functions
<> 144:ef7eb2e8f9f7 127 * @{
<> 144:ef7eb2e8f9f7 128 */
<> 144:ef7eb2e8f9f7 129
<> 144:ef7eb2e8f9f7 130 /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
<> 144:ef7eb2e8f9f7 131 * @brief Initialization and Configuration functions
<> 144:ef7eb2e8f9f7 132 *
<> 144:ef7eb2e8f9f7 133 @verbatim
<> 144:ef7eb2e8f9f7 134 ===============================================================================
<> 144:ef7eb2e8f9f7 135 ##### Initialization and de-initialization functions #####
<> 144:ef7eb2e8f9f7 136 ===============================================================================
<> 144:ef7eb2e8f9f7 137 [..]
<> 144:ef7eb2e8f9f7 138 This section provides functions allowing to configure the internal/external oscillators
<> 144:ef7eb2e8f9f7 139 (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
<> 144:ef7eb2e8f9f7 140 and APB2).
<> 144:ef7eb2e8f9f7 141
<> 144:ef7eb2e8f9f7 142 [..] Internal/external clock and PLL configuration
<> 144:ef7eb2e8f9f7 143 (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
<> 144:ef7eb2e8f9f7 144 the PLL as System clock source.
<> 144:ef7eb2e8f9f7 145 (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
<> 144:ef7eb2e8f9f7 146 clock source.
<> 144:ef7eb2e8f9f7 147
<> 144:ef7eb2e8f9f7 148 (#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x) crystal oscillator used directly or
<> 144:ef7eb2e8f9f7 149 through the PLL as System clock source. Can be used also as RTC clock source.
<> 144:ef7eb2e8f9f7 150
<> 144:ef7eb2e8f9f7 151 (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
<> 144:ef7eb2e8f9f7 152
<> 144:ef7eb2e8f9f7 153 (#) PLL (clocked by HSI or HSE), featuring different output clocks:
<> 144:ef7eb2e8f9f7 154 (++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx)
<> 144:ef7eb2e8f9f7 155 (++) The second output is used to generate the clock for the USB OTG FS (48 MHz)
<> 144:ef7eb2e8f9f7 156
<> 144:ef7eb2e8f9f7 157 (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
<> 144:ef7eb2e8f9f7 158 and if a HSE clock failure occurs(HSE used directly or through PLL as System
<> 144:ef7eb2e8f9f7 159 clock source), the System clocks automatically switched to HSI and an interrupt
<> 144:ef7eb2e8f9f7 160 is generated if enabled. The interrupt is linked to the Cortex-M3 NMI
<> 144:ef7eb2e8f9f7 161 (Non-Maskable Interrupt) exception vector.
<> 144:ef7eb2e8f9f7 162
<> 144:ef7eb2e8f9f7 163 (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI,
<> 144:ef7eb2e8f9f7 164 HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x
<> 144:ef7eb2e8f9f7 165
<> 144:ef7eb2e8f9f7 166 [..] System, AHB and APB buses clocks configuration
<> 144:ef7eb2e8f9f7 167 (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
<> 144:ef7eb2e8f9f7 168 HSE and PLL.
<> 144:ef7eb2e8f9f7 169 The AHB clock (HCLK) is derived from System clock through configurable
<> 144:ef7eb2e8f9f7 170 prescaler and used to clock the CPU, memory and peripherals mapped
<> 144:ef7eb2e8f9f7 171 on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
<> 144:ef7eb2e8f9f7 172 from AHB clock through configurable prescalers and used to clock
<> 144:ef7eb2e8f9f7 173 the peripherals mapped on these buses. You can use
<> 144:ef7eb2e8f9f7 174 "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
<> 144:ef7eb2e8f9f7 175
<> 144:ef7eb2e8f9f7 176 -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
<> 144:ef7eb2e8f9f7 177 (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock
<> 144:ef7eb2e8f9f7 178 divided by 128.
<> 144:ef7eb2e8f9f7 179 (+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz
<> 144:ef7eb2e8f9f7 180 to work correctly. This clock is derived of the main PLL through PLL Multiplier.
<> 144:ef7eb2e8f9f7 181 (+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK
<> 144:ef7eb2e8f9f7 182 (+@) IWDG clock which is always the LSI clock.
<> 144:ef7eb2e8f9f7 183
<> 144:ef7eb2e8f9f7 184 (#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz.
<> 144:ef7eb2e8f9f7 185 For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz.
<> 144:ef7eb2e8f9f7 186 Depending on the SYSCLK frequency, the flash latency should be adapted accordingly.
<> 144:ef7eb2e8f9f7 187 @endverbatim
<> 144:ef7eb2e8f9f7 188 * @{
<> 144:ef7eb2e8f9f7 189 */
<> 144:ef7eb2e8f9f7 190
<> 144:ef7eb2e8f9f7 191 /*
<> 144:ef7eb2e8f9f7 192 Additional consideration on the SYSCLK based on Latency settings:
<> 144:ef7eb2e8f9f7 193 +-----------------------------------------------+
<> 144:ef7eb2e8f9f7 194 | Latency | SYSCLK clock frequency (MHz) |
<> 144:ef7eb2e8f9f7 195 |---------------|-------------------------------|
<> 144:ef7eb2e8f9f7 196 |0WS(1CPU cycle)| 0 < SYSCLK <= 24 |
<> 144:ef7eb2e8f9f7 197 |---------------|-------------------------------|
<> 144:ef7eb2e8f9f7 198 |1WS(2CPU cycle)| 24 < SYSCLK <= 48 |
<> 144:ef7eb2e8f9f7 199 |---------------|-------------------------------|
<> 144:ef7eb2e8f9f7 200 |2WS(3CPU cycle)| 48 < SYSCLK <= 72 |
<> 144:ef7eb2e8f9f7 201 +-----------------------------------------------+
<> 144:ef7eb2e8f9f7 202 */
<> 144:ef7eb2e8f9f7 203
<> 144:ef7eb2e8f9f7 204 /**
<> 144:ef7eb2e8f9f7 205 * @brief Resets the RCC clock configuration to the default reset state.
<> 144:ef7eb2e8f9f7 206 * @note The default reset state of the clock configuration is given below:
<> 144:ef7eb2e8f9f7 207 * - HSI ON and used as system clock source
AnnaBridge 187:0387e8f68319 208 * - HSE, PLL, PLL2 and PLL3 are OFF
<> 144:ef7eb2e8f9f7 209 * - AHB, APB1 and APB2 prescaler set to 1.
<> 144:ef7eb2e8f9f7 210 * - CSS and MCO1 OFF
<> 144:ef7eb2e8f9f7 211 * - All interrupts disabled
AnnaBridge 187:0387e8f68319 212 * - All flags are cleared
<> 144:ef7eb2e8f9f7 213 * @note This function does not modify the configuration of the
<> 144:ef7eb2e8f9f7 214 * - Peripheral clocks
<> 144:ef7eb2e8f9f7 215 * - LSI, LSE and RTC clocks
AnnaBridge 187:0387e8f68319 216 * @retval HAL_StatusTypeDef
<> 144:ef7eb2e8f9f7 217 */
AnnaBridge 187:0387e8f68319 218 HAL_StatusTypeDef HAL_RCC_DeInit(void)
<> 144:ef7eb2e8f9f7 219 {
AnnaBridge 187:0387e8f68319 220 uint32_t tickstart;
AnnaBridge 187:0387e8f68319 221
AnnaBridge 187:0387e8f68319 222 /* Get Start Tick */
AnnaBridge 187:0387e8f68319 223 tickstart = HAL_GetTick();
AnnaBridge 187:0387e8f68319 224
AnnaBridge 187:0387e8f68319 225 /* Set HSION bit */
AnnaBridge 187:0387e8f68319 226 SET_BIT(RCC->CR, RCC_CR_HSION);
AnnaBridge 187:0387e8f68319 227
AnnaBridge 187:0387e8f68319 228 /* Wait till HSI is ready */
AnnaBridge 187:0387e8f68319 229 while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET)
AnnaBridge 187:0387e8f68319 230 {
AnnaBridge 187:0387e8f68319 231 if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
AnnaBridge 187:0387e8f68319 232 {
AnnaBridge 187:0387e8f68319 233 return HAL_TIMEOUT;
AnnaBridge 187:0387e8f68319 234 }
AnnaBridge 187:0387e8f68319 235 }
AnnaBridge 187:0387e8f68319 236
AnnaBridge 187:0387e8f68319 237 /* Set HSITRIM bits to the reset value */
AnnaBridge 187:0387e8f68319 238 MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, (0x10U << RCC_CR_HSITRIM_Pos));
AnnaBridge 187:0387e8f68319 239
AnnaBridge 187:0387e8f68319 240 /* Get Start Tick */
AnnaBridge 187:0387e8f68319 241 tickstart = HAL_GetTick();
AnnaBridge 187:0387e8f68319 242
AnnaBridge 187:0387e8f68319 243 /* Reset CFGR register */
AnnaBridge 187:0387e8f68319 244 CLEAR_REG(RCC->CFGR);
AnnaBridge 187:0387e8f68319 245
AnnaBridge 187:0387e8f68319 246 /* Wait till clock switch is ready */
AnnaBridge 187:0387e8f68319 247 while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RESET)
AnnaBridge 187:0387e8f68319 248 {
AnnaBridge 187:0387e8f68319 249 if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
AnnaBridge 187:0387e8f68319 250 {
AnnaBridge 187:0387e8f68319 251 return HAL_TIMEOUT;
AnnaBridge 187:0387e8f68319 252 }
AnnaBridge 187:0387e8f68319 253 }
AnnaBridge 187:0387e8f68319 254
AnnaBridge 187:0387e8f68319 255 /* Update the SystemCoreClock global variable */
AnnaBridge 187:0387e8f68319 256 SystemCoreClock = HSI_VALUE;
<> 144:ef7eb2e8f9f7 257
AnnaBridge 187:0387e8f68319 258 /* Adapt Systick interrupt period */
AnnaBridge 187:0387e8f68319 259 if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
AnnaBridge 187:0387e8f68319 260 {
AnnaBridge 187:0387e8f68319 261 return HAL_ERROR;
AnnaBridge 187:0387e8f68319 262 }
AnnaBridge 187:0387e8f68319 263
AnnaBridge 187:0387e8f68319 264 /* Get Start Tick */
AnnaBridge 187:0387e8f68319 265 tickstart = HAL_GetTick();
AnnaBridge 187:0387e8f68319 266
AnnaBridge 187:0387e8f68319 267 /* Second step is to clear PLLON bit */
AnnaBridge 187:0387e8f68319 268 CLEAR_BIT(RCC->CR, RCC_CR_PLLON);
AnnaBridge 187:0387e8f68319 269
AnnaBridge 187:0387e8f68319 270 /* Wait till PLL is disabled */
AnnaBridge 187:0387e8f68319 271 while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET)
AnnaBridge 187:0387e8f68319 272 {
AnnaBridge 187:0387e8f68319 273 if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
AnnaBridge 187:0387e8f68319 274 {
AnnaBridge 187:0387e8f68319 275 return HAL_TIMEOUT;
AnnaBridge 187:0387e8f68319 276 }
AnnaBridge 187:0387e8f68319 277 }
AnnaBridge 187:0387e8f68319 278
AnnaBridge 187:0387e8f68319 279 /* Ensure to reset PLLSRC and PLLMUL bits */
AnnaBridge 187:0387e8f68319 280 CLEAR_REG(RCC->CFGR);
AnnaBridge 187:0387e8f68319 281
AnnaBridge 187:0387e8f68319 282 /* Get Start Tick */
AnnaBridge 187:0387e8f68319 283 tickstart = HAL_GetTick();
AnnaBridge 187:0387e8f68319 284
AnnaBridge 187:0387e8f68319 285 /* Reset HSEON & CSSON bits */
AnnaBridge 187:0387e8f68319 286 CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON);
AnnaBridge 187:0387e8f68319 287
AnnaBridge 187:0387e8f68319 288 /* Wait till HSE is disabled */
AnnaBridge 187:0387e8f68319 289 while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET)
AnnaBridge 187:0387e8f68319 290 {
AnnaBridge 187:0387e8f68319 291 if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
AnnaBridge 187:0387e8f68319 292 {
AnnaBridge 187:0387e8f68319 293 return HAL_TIMEOUT;
AnnaBridge 187:0387e8f68319 294 }
AnnaBridge 187:0387e8f68319 295 }
AnnaBridge 187:0387e8f68319 296
<> 144:ef7eb2e8f9f7 297 /* Reset HSEBYP bit */
<> 144:ef7eb2e8f9f7 298 CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
AnnaBridge 187:0387e8f68319 299
AnnaBridge 187:0387e8f68319 300 #if defined(RCC_PLL2_SUPPORT)
AnnaBridge 187:0387e8f68319 301 /* Get Start Tick */
AnnaBridge 187:0387e8f68319 302 tickstart = HAL_GetTick();
AnnaBridge 187:0387e8f68319 303
AnnaBridge 187:0387e8f68319 304 /* Clear PLL2ON bit */
AnnaBridge 187:0387e8f68319 305 CLEAR_BIT(RCC->CR, RCC_CR_PLL2ON);
AnnaBridge 187:0387e8f68319 306
AnnaBridge 187:0387e8f68319 307 /* Wait till PLL2 is disabled */
AnnaBridge 187:0387e8f68319 308 while (READ_BIT(RCC->CR, RCC_CR_PLL2RDY) != RESET)
AnnaBridge 187:0387e8f68319 309 {
AnnaBridge 187:0387e8f68319 310 if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE)
AnnaBridge 187:0387e8f68319 311 {
AnnaBridge 187:0387e8f68319 312 return HAL_TIMEOUT;
AnnaBridge 187:0387e8f68319 313 }
AnnaBridge 187:0387e8f68319 314 }
AnnaBridge 187:0387e8f68319 315 #endif /* RCC_PLL2_SUPPORT */
AnnaBridge 187:0387e8f68319 316
AnnaBridge 187:0387e8f68319 317 #if defined(RCC_PLLI2S_SUPPORT)
AnnaBridge 187:0387e8f68319 318 /* Get Start Tick */
AnnaBridge 187:0387e8f68319 319 tickstart = HAL_GetTick();
AnnaBridge 187:0387e8f68319 320
AnnaBridge 187:0387e8f68319 321 /* Clear PLL3ON bit */
AnnaBridge 187:0387e8f68319 322 CLEAR_BIT(RCC->CR, RCC_CR_PLL3ON);
AnnaBridge 187:0387e8f68319 323
AnnaBridge 187:0387e8f68319 324 /* Wait till PLL3 is disabled */
AnnaBridge 187:0387e8f68319 325 while (READ_BIT(RCC->CR, RCC_CR_PLL3RDY) != RESET)
AnnaBridge 187:0387e8f68319 326 {
AnnaBridge 187:0387e8f68319 327 if ((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE)
AnnaBridge 187:0387e8f68319 328 {
AnnaBridge 187:0387e8f68319 329 return HAL_TIMEOUT;
AnnaBridge 187:0387e8f68319 330 }
AnnaBridge 187:0387e8f68319 331 }
AnnaBridge 187:0387e8f68319 332 #endif /* RCC_PLLI2S_SUPPORT */
AnnaBridge 187:0387e8f68319 333
AnnaBridge 187:0387e8f68319 334 #if defined(RCC_CFGR2_PREDIV1)
<> 144:ef7eb2e8f9f7 335 /* Reset CFGR2 register */
<> 144:ef7eb2e8f9f7 336 CLEAR_REG(RCC->CFGR2);
AnnaBridge 187:0387e8f68319 337 #endif /* RCC_CFGR2_PREDIV1 */
<> 144:ef7eb2e8f9f7 338
AnnaBridge 187:0387e8f68319 339 /* Reset all CSR flags */
AnnaBridge 187:0387e8f68319 340 SET_BIT(RCC->CSR, RCC_CSR_RMVF);
AnnaBridge 187:0387e8f68319 341
<> 144:ef7eb2e8f9f7 342 /* Disable all interrupts */
<> 144:ef7eb2e8f9f7 343 CLEAR_REG(RCC->CIR);
<> 144:ef7eb2e8f9f7 344
AnnaBridge 187:0387e8f68319 345 return HAL_OK;
<> 144:ef7eb2e8f9f7 346 }
<> 144:ef7eb2e8f9f7 347
<> 144:ef7eb2e8f9f7 348 /**
<> 144:ef7eb2e8f9f7 349 * @brief Initializes the RCC Oscillators according to the specified parameters in the
<> 144:ef7eb2e8f9f7 350 * RCC_OscInitTypeDef.
<> 144:ef7eb2e8f9f7 351 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
<> 144:ef7eb2e8f9f7 352 * contains the configuration information for the RCC Oscillators.
<> 144:ef7eb2e8f9f7 353 * @note The PLL is not disabled when used as system clock.
<> 144:ef7eb2e8f9f7 354 * @note The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS)
<> 144:ef7eb2e8f9f7 355 * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
<> 144:ef7eb2e8f9f7 356 * supported by this macro. User should request a transition to LSE Off
<> 144:ef7eb2e8f9f7 357 * first and then LSE On or LSE Bypass.
<> 144:ef7eb2e8f9f7 358 * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
<> 144:ef7eb2e8f9f7 359 * supported by this macro. User should request a transition to HSE Off
<> 144:ef7eb2e8f9f7 360 * first and then HSE On or HSE Bypass.
<> 144:ef7eb2e8f9f7 361 * @retval HAL status
<> 144:ef7eb2e8f9f7 362 */
<> 144:ef7eb2e8f9f7 363 HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
<> 144:ef7eb2e8f9f7 364 {
AnnaBridge 165:e614a9f1c9e2 365 uint32_t tickstart = 0U;
<> 144:ef7eb2e8f9f7 366
<> 144:ef7eb2e8f9f7 367 /* Check the parameters */
<> 144:ef7eb2e8f9f7 368 assert_param(RCC_OscInitStruct != NULL);
<> 144:ef7eb2e8f9f7 369 assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
<> 144:ef7eb2e8f9f7 370
<> 144:ef7eb2e8f9f7 371 /*------------------------------- HSE Configuration ------------------------*/
<> 144:ef7eb2e8f9f7 372 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
<> 144:ef7eb2e8f9f7 373 {
<> 144:ef7eb2e8f9f7 374 /* Check the parameters */
<> 144:ef7eb2e8f9f7 375 assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
<> 144:ef7eb2e8f9f7 376
<> 144:ef7eb2e8f9f7 377 /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
<> 144:ef7eb2e8f9f7 378 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
<> 144:ef7eb2e8f9f7 379 || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
<> 144:ef7eb2e8f9f7 380 {
<> 144:ef7eb2e8f9f7 381 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
<> 144:ef7eb2e8f9f7 382 {
<> 144:ef7eb2e8f9f7 383 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 384 }
<> 144:ef7eb2e8f9f7 385 }
<> 144:ef7eb2e8f9f7 386 else
<> 144:ef7eb2e8f9f7 387 {
<> 144:ef7eb2e8f9f7 388 /* Set the new HSE configuration ---------------------------------------*/
<> 144:ef7eb2e8f9f7 389 __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
<> 144:ef7eb2e8f9f7 390
<> 144:ef7eb2e8f9f7 391
<> 144:ef7eb2e8f9f7 392 /* Check the HSE State */
<> 144:ef7eb2e8f9f7 393 if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
<> 144:ef7eb2e8f9f7 394 {
<> 144:ef7eb2e8f9f7 395 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 396 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 397
<> 144:ef7eb2e8f9f7 398 /* Wait till HSE is ready */
<> 144:ef7eb2e8f9f7 399 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
<> 144:ef7eb2e8f9f7 400 {
<> 144:ef7eb2e8f9f7 401 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 402 {
<> 144:ef7eb2e8f9f7 403 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 404 }
<> 144:ef7eb2e8f9f7 405 }
<> 144:ef7eb2e8f9f7 406 }
<> 144:ef7eb2e8f9f7 407 else
<> 144:ef7eb2e8f9f7 408 {
<> 144:ef7eb2e8f9f7 409 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 410 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 411
<> 144:ef7eb2e8f9f7 412 /* Wait till HSE is disabled */
<> 144:ef7eb2e8f9f7 413 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
<> 144:ef7eb2e8f9f7 414 {
<> 144:ef7eb2e8f9f7 415 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 416 {
<> 144:ef7eb2e8f9f7 417 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 418 }
<> 144:ef7eb2e8f9f7 419 }
<> 144:ef7eb2e8f9f7 420 }
<> 144:ef7eb2e8f9f7 421 }
<> 144:ef7eb2e8f9f7 422 }
<> 144:ef7eb2e8f9f7 423 /*----------------------------- HSI Configuration --------------------------*/
<> 144:ef7eb2e8f9f7 424 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
<> 144:ef7eb2e8f9f7 425 {
<> 144:ef7eb2e8f9f7 426 /* Check the parameters */
<> 144:ef7eb2e8f9f7 427 assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
<> 144:ef7eb2e8f9f7 428 assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
<> 144:ef7eb2e8f9f7 429
<> 144:ef7eb2e8f9f7 430 /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
<> 144:ef7eb2e8f9f7 431 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
<> 144:ef7eb2e8f9f7 432 || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2)))
<> 144:ef7eb2e8f9f7 433 {
<> 144:ef7eb2e8f9f7 434 /* When HSI is used as system clock it will not disabled */
<> 144:ef7eb2e8f9f7 435 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
<> 144:ef7eb2e8f9f7 436 {
<> 144:ef7eb2e8f9f7 437 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 438 }
<> 144:ef7eb2e8f9f7 439 /* Otherwise, just the calibration is allowed */
<> 144:ef7eb2e8f9f7 440 else
<> 144:ef7eb2e8f9f7 441 {
<> 144:ef7eb2e8f9f7 442 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
<> 144:ef7eb2e8f9f7 443 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
<> 144:ef7eb2e8f9f7 444 }
<> 144:ef7eb2e8f9f7 445 }
<> 144:ef7eb2e8f9f7 446 else
<> 144:ef7eb2e8f9f7 447 {
<> 144:ef7eb2e8f9f7 448 /* Check the HSI State */
<> 144:ef7eb2e8f9f7 449 if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
<> 144:ef7eb2e8f9f7 450 {
<> 144:ef7eb2e8f9f7 451 /* Enable the Internal High Speed oscillator (HSI). */
<> 144:ef7eb2e8f9f7 452 __HAL_RCC_HSI_ENABLE();
<> 144:ef7eb2e8f9f7 453
<> 144:ef7eb2e8f9f7 454 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 455 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 456
<> 144:ef7eb2e8f9f7 457 /* Wait till HSI is ready */
<> 144:ef7eb2e8f9f7 458 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
<> 144:ef7eb2e8f9f7 459 {
<> 144:ef7eb2e8f9f7 460 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 461 {
<> 144:ef7eb2e8f9f7 462 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 463 }
<> 144:ef7eb2e8f9f7 464 }
<> 144:ef7eb2e8f9f7 465
<> 144:ef7eb2e8f9f7 466 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
<> 144:ef7eb2e8f9f7 467 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
<> 144:ef7eb2e8f9f7 468 }
<> 144:ef7eb2e8f9f7 469 else
<> 144:ef7eb2e8f9f7 470 {
<> 144:ef7eb2e8f9f7 471 /* Disable the Internal High Speed oscillator (HSI). */
<> 144:ef7eb2e8f9f7 472 __HAL_RCC_HSI_DISABLE();
<> 144:ef7eb2e8f9f7 473
<> 144:ef7eb2e8f9f7 474 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 475 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 476
<> 144:ef7eb2e8f9f7 477 /* Wait till HSI is disabled */
<> 144:ef7eb2e8f9f7 478 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
<> 144:ef7eb2e8f9f7 479 {
<> 144:ef7eb2e8f9f7 480 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 481 {
<> 144:ef7eb2e8f9f7 482 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 483 }
<> 144:ef7eb2e8f9f7 484 }
<> 144:ef7eb2e8f9f7 485 }
<> 144:ef7eb2e8f9f7 486 }
<> 144:ef7eb2e8f9f7 487 }
<> 144:ef7eb2e8f9f7 488 /*------------------------------ LSI Configuration -------------------------*/
<> 144:ef7eb2e8f9f7 489 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
<> 144:ef7eb2e8f9f7 490 {
<> 144:ef7eb2e8f9f7 491 /* Check the parameters */
<> 144:ef7eb2e8f9f7 492 assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
<> 144:ef7eb2e8f9f7 493
<> 144:ef7eb2e8f9f7 494 /* Check the LSI State */
<> 144:ef7eb2e8f9f7 495 if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
<> 144:ef7eb2e8f9f7 496 {
<> 144:ef7eb2e8f9f7 497 /* Enable the Internal Low Speed oscillator (LSI). */
<> 144:ef7eb2e8f9f7 498 __HAL_RCC_LSI_ENABLE();
<> 144:ef7eb2e8f9f7 499
<> 144:ef7eb2e8f9f7 500 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 501 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 502
<> 144:ef7eb2e8f9f7 503 /* Wait till LSI is ready */
<> 144:ef7eb2e8f9f7 504 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
<> 144:ef7eb2e8f9f7 505 {
<> 144:ef7eb2e8f9f7 506 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 507 {
<> 144:ef7eb2e8f9f7 508 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 509 }
<> 144:ef7eb2e8f9f7 510 }
<> 144:ef7eb2e8f9f7 511 /* To have a fully stabilized clock in the specified range, a software delay of 1ms
<> 144:ef7eb2e8f9f7 512 should be added.*/
AnnaBridge 165:e614a9f1c9e2 513 RCC_Delay(1);
<> 144:ef7eb2e8f9f7 514 }
<> 144:ef7eb2e8f9f7 515 else
<> 144:ef7eb2e8f9f7 516 {
<> 144:ef7eb2e8f9f7 517 /* Disable the Internal Low Speed oscillator (LSI). */
<> 144:ef7eb2e8f9f7 518 __HAL_RCC_LSI_DISABLE();
<> 144:ef7eb2e8f9f7 519
<> 144:ef7eb2e8f9f7 520 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 521 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 522
<> 144:ef7eb2e8f9f7 523 /* Wait till LSI is disabled */
<> 144:ef7eb2e8f9f7 524 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
<> 144:ef7eb2e8f9f7 525 {
<> 144:ef7eb2e8f9f7 526 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 527 {
<> 144:ef7eb2e8f9f7 528 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 529 }
<> 144:ef7eb2e8f9f7 530 }
<> 144:ef7eb2e8f9f7 531 }
<> 144:ef7eb2e8f9f7 532 }
<> 144:ef7eb2e8f9f7 533 /*------------------------------ LSE Configuration -------------------------*/
<> 144:ef7eb2e8f9f7 534 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
<> 144:ef7eb2e8f9f7 535 {
AnnaBridge 165:e614a9f1c9e2 536 FlagStatus pwrclkchanged = RESET;
AnnaBridge 165:e614a9f1c9e2 537
<> 144:ef7eb2e8f9f7 538 /* Check the parameters */
<> 144:ef7eb2e8f9f7 539 assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
<> 144:ef7eb2e8f9f7 540
AnnaBridge 165:e614a9f1c9e2 541 /* Update LSE configuration in Backup Domain control register */
AnnaBridge 165:e614a9f1c9e2 542 /* Requires to enable write access to Backup Domain of necessary */
AnnaBridge 165:e614a9f1c9e2 543 if(__HAL_RCC_PWR_IS_CLK_DISABLED())
AnnaBridge 165:e614a9f1c9e2 544 {
<> 144:ef7eb2e8f9f7 545 __HAL_RCC_PWR_CLK_ENABLE();
AnnaBridge 165:e614a9f1c9e2 546 pwrclkchanged = SET;
AnnaBridge 165:e614a9f1c9e2 547 }
<> 144:ef7eb2e8f9f7 548
AnnaBridge 165:e614a9f1c9e2 549 if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
AnnaBridge 165:e614a9f1c9e2 550 {
<> 144:ef7eb2e8f9f7 551 /* Enable write access to Backup domain */
<> 144:ef7eb2e8f9f7 552 SET_BIT(PWR->CR, PWR_CR_DBP);
<> 144:ef7eb2e8f9f7 553
<> 144:ef7eb2e8f9f7 554 /* Wait for Backup domain Write protection disable */
<> 144:ef7eb2e8f9f7 555 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 556
AnnaBridge 165:e614a9f1c9e2 557 while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
<> 144:ef7eb2e8f9f7 558 {
<> 144:ef7eb2e8f9f7 559 if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 560 {
<> 144:ef7eb2e8f9f7 561 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 562 }
<> 144:ef7eb2e8f9f7 563 }
AnnaBridge 165:e614a9f1c9e2 564 }
<> 144:ef7eb2e8f9f7 565
<> 144:ef7eb2e8f9f7 566 /* Set the new LSE configuration -----------------------------------------*/
<> 144:ef7eb2e8f9f7 567 __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
<> 144:ef7eb2e8f9f7 568 /* Check the LSE State */
<> 144:ef7eb2e8f9f7 569 if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
<> 144:ef7eb2e8f9f7 570 {
<> 144:ef7eb2e8f9f7 571 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 572 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 573
<> 144:ef7eb2e8f9f7 574 /* Wait till LSE is ready */
<> 144:ef7eb2e8f9f7 575 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
<> 144:ef7eb2e8f9f7 576 {
<> 144:ef7eb2e8f9f7 577 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 578 {
<> 144:ef7eb2e8f9f7 579 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 580 }
<> 144:ef7eb2e8f9f7 581 }
<> 144:ef7eb2e8f9f7 582 }
<> 144:ef7eb2e8f9f7 583 else
<> 144:ef7eb2e8f9f7 584 {
<> 144:ef7eb2e8f9f7 585 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 586 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 587
<> 144:ef7eb2e8f9f7 588 /* Wait till LSE is disabled */
<> 144:ef7eb2e8f9f7 589 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
<> 144:ef7eb2e8f9f7 590 {
<> 144:ef7eb2e8f9f7 591 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 592 {
<> 144:ef7eb2e8f9f7 593 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 594 }
<> 144:ef7eb2e8f9f7 595 }
<> 144:ef7eb2e8f9f7 596 }
AnnaBridge 165:e614a9f1c9e2 597
AnnaBridge 165:e614a9f1c9e2 598 /* Require to disable power clock if necessary */
AnnaBridge 165:e614a9f1c9e2 599 if(pwrclkchanged == SET)
AnnaBridge 165:e614a9f1c9e2 600 {
AnnaBridge 165:e614a9f1c9e2 601 __HAL_RCC_PWR_CLK_DISABLE();
AnnaBridge 165:e614a9f1c9e2 602 }
<> 144:ef7eb2e8f9f7 603 }
<> 144:ef7eb2e8f9f7 604
<> 144:ef7eb2e8f9f7 605 #if defined(RCC_CR_PLL2ON)
<> 144:ef7eb2e8f9f7 606 /*-------------------------------- PLL2 Configuration -----------------------*/
<> 144:ef7eb2e8f9f7 607 /* Check the parameters */
<> 144:ef7eb2e8f9f7 608 assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State));
<> 144:ef7eb2e8f9f7 609 if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE)
<> 144:ef7eb2e8f9f7 610 {
<> 144:ef7eb2e8f9f7 611 /* This bit can not be cleared if the PLL2 clock is used indirectly as system
<> 144:ef7eb2e8f9f7 612 clock (i.e. it is used as PLL clock entry that is used as system clock). */
<> 144:ef7eb2e8f9f7 613 if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
<> 144:ef7eb2e8f9f7 614 (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
<> 144:ef7eb2e8f9f7 615 ((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
<> 144:ef7eb2e8f9f7 616 {
<> 144:ef7eb2e8f9f7 617 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 618 }
<> 144:ef7eb2e8f9f7 619 else
<> 144:ef7eb2e8f9f7 620 {
<> 144:ef7eb2e8f9f7 621 if((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON)
<> 144:ef7eb2e8f9f7 622 {
<> 144:ef7eb2e8f9f7 623 /* Check the parameters */
<> 144:ef7eb2e8f9f7 624 assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL));
<> 144:ef7eb2e8f9f7 625 assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value));
<> 144:ef7eb2e8f9f7 626
<> 144:ef7eb2e8f9f7 627 /* Prediv2 can be written only when the PLLI2S is disabled. */
<> 144:ef7eb2e8f9f7 628 /* Return an error only if new value is different from the programmed value */
<> 144:ef7eb2e8f9f7 629 if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \
<> 144:ef7eb2e8f9f7 630 (__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value))
<> 144:ef7eb2e8f9f7 631 {
<> 144:ef7eb2e8f9f7 632 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 633 }
<> 144:ef7eb2e8f9f7 634
<> 144:ef7eb2e8f9f7 635 /* Disable the main PLL2. */
<> 144:ef7eb2e8f9f7 636 __HAL_RCC_PLL2_DISABLE();
<> 144:ef7eb2e8f9f7 637
<> 144:ef7eb2e8f9f7 638 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 639 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 640
<> 144:ef7eb2e8f9f7 641 /* Wait till PLL2 is disabled */
<> 144:ef7eb2e8f9f7 642 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
<> 144:ef7eb2e8f9f7 643 {
<> 144:ef7eb2e8f9f7 644 if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 645 {
<> 144:ef7eb2e8f9f7 646 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 647 }
<> 144:ef7eb2e8f9f7 648 }
<> 144:ef7eb2e8f9f7 649
<> 144:ef7eb2e8f9f7 650 /* Configure the HSE prediv2 factor --------------------------------*/
<> 144:ef7eb2e8f9f7 651 __HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value);
<> 144:ef7eb2e8f9f7 652
<> 144:ef7eb2e8f9f7 653 /* Configure the main PLL2 multiplication factors. */
<> 144:ef7eb2e8f9f7 654 __HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL);
<> 144:ef7eb2e8f9f7 655
<> 144:ef7eb2e8f9f7 656 /* Enable the main PLL2. */
<> 144:ef7eb2e8f9f7 657 __HAL_RCC_PLL2_ENABLE();
<> 144:ef7eb2e8f9f7 658
<> 144:ef7eb2e8f9f7 659 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 660 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 661
<> 144:ef7eb2e8f9f7 662 /* Wait till PLL2 is ready */
<> 144:ef7eb2e8f9f7 663 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET)
<> 144:ef7eb2e8f9f7 664 {
<> 144:ef7eb2e8f9f7 665 if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 666 {
<> 144:ef7eb2e8f9f7 667 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 668 }
<> 144:ef7eb2e8f9f7 669 }
<> 144:ef7eb2e8f9f7 670 }
<> 144:ef7eb2e8f9f7 671 else
<> 144:ef7eb2e8f9f7 672 {
<> 144:ef7eb2e8f9f7 673 /* Set PREDIV1 source to HSE */
<> 144:ef7eb2e8f9f7 674 CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC);
<> 144:ef7eb2e8f9f7 675
<> 144:ef7eb2e8f9f7 676 /* Disable the main PLL2. */
<> 144:ef7eb2e8f9f7 677 __HAL_RCC_PLL2_DISABLE();
<> 144:ef7eb2e8f9f7 678
<> 144:ef7eb2e8f9f7 679 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 680 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 681
<> 144:ef7eb2e8f9f7 682 /* Wait till PLL2 is disabled */
<> 144:ef7eb2e8f9f7 683 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
<> 144:ef7eb2e8f9f7 684 {
<> 144:ef7eb2e8f9f7 685 if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 686 {
<> 144:ef7eb2e8f9f7 687 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 688 }
<> 144:ef7eb2e8f9f7 689 }
<> 144:ef7eb2e8f9f7 690 }
<> 144:ef7eb2e8f9f7 691 }
<> 144:ef7eb2e8f9f7 692 }
<> 144:ef7eb2e8f9f7 693
<> 144:ef7eb2e8f9f7 694 #endif /* RCC_CR_PLL2ON */
<> 144:ef7eb2e8f9f7 695 /*-------------------------------- PLL Configuration -----------------------*/
<> 144:ef7eb2e8f9f7 696 /* Check the parameters */
<> 144:ef7eb2e8f9f7 697 assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
<> 144:ef7eb2e8f9f7 698 if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
<> 144:ef7eb2e8f9f7 699 {
<> 144:ef7eb2e8f9f7 700 /* Check if the PLL is used as system clock or not */
<> 144:ef7eb2e8f9f7 701 if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
<> 144:ef7eb2e8f9f7 702 {
<> 144:ef7eb2e8f9f7 703 if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
<> 144:ef7eb2e8f9f7 704 {
<> 144:ef7eb2e8f9f7 705 /* Check the parameters */
<> 144:ef7eb2e8f9f7 706 assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
<> 144:ef7eb2e8f9f7 707 assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
<> 144:ef7eb2e8f9f7 708
<> 144:ef7eb2e8f9f7 709 /* Disable the main PLL. */
<> 144:ef7eb2e8f9f7 710 __HAL_RCC_PLL_DISABLE();
<> 144:ef7eb2e8f9f7 711
<> 144:ef7eb2e8f9f7 712 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 713 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 714
<> 144:ef7eb2e8f9f7 715 /* Wait till PLL is disabled */
<> 144:ef7eb2e8f9f7 716 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
<> 144:ef7eb2e8f9f7 717 {
<> 144:ef7eb2e8f9f7 718 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 719 {
<> 144:ef7eb2e8f9f7 720 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 721 }
<> 144:ef7eb2e8f9f7 722 }
<> 144:ef7eb2e8f9f7 723
<> 144:ef7eb2e8f9f7 724 /* Configure the HSE prediv factor --------------------------------*/
<> 144:ef7eb2e8f9f7 725 /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */
<> 144:ef7eb2e8f9f7 726 if(RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE)
<> 144:ef7eb2e8f9f7 727 {
<> 144:ef7eb2e8f9f7 728 /* Check the parameter */
<> 144:ef7eb2e8f9f7 729 assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue));
<> 144:ef7eb2e8f9f7 730 #if defined(RCC_CFGR2_PREDIV1SRC)
<> 144:ef7eb2e8f9f7 731 assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source));
<> 144:ef7eb2e8f9f7 732
<> 144:ef7eb2e8f9f7 733 /* Set PREDIV1 source */
<> 144:ef7eb2e8f9f7 734 SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source);
<> 144:ef7eb2e8f9f7 735 #endif /* RCC_CFGR2_PREDIV1SRC */
<> 144:ef7eb2e8f9f7 736
<> 144:ef7eb2e8f9f7 737 /* Set PREDIV1 Value */
<> 144:ef7eb2e8f9f7 738 __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue);
<> 144:ef7eb2e8f9f7 739 }
<> 144:ef7eb2e8f9f7 740
<> 144:ef7eb2e8f9f7 741 /* Configure the main PLL clock source and multiplication factors. */
<> 144:ef7eb2e8f9f7 742 __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
<> 144:ef7eb2e8f9f7 743 RCC_OscInitStruct->PLL.PLLMUL);
<> 144:ef7eb2e8f9f7 744 /* Enable the main PLL. */
<> 144:ef7eb2e8f9f7 745 __HAL_RCC_PLL_ENABLE();
<> 144:ef7eb2e8f9f7 746
<> 144:ef7eb2e8f9f7 747 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 748 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 749
<> 144:ef7eb2e8f9f7 750 /* Wait till PLL is ready */
<> 144:ef7eb2e8f9f7 751 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
<> 144:ef7eb2e8f9f7 752 {
<> 144:ef7eb2e8f9f7 753 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 754 {
<> 144:ef7eb2e8f9f7 755 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 756 }
<> 144:ef7eb2e8f9f7 757 }
<> 144:ef7eb2e8f9f7 758 }
<> 144:ef7eb2e8f9f7 759 else
<> 144:ef7eb2e8f9f7 760 {
<> 144:ef7eb2e8f9f7 761 /* Disable the main PLL. */
<> 144:ef7eb2e8f9f7 762 __HAL_RCC_PLL_DISABLE();
<> 144:ef7eb2e8f9f7 763
<> 144:ef7eb2e8f9f7 764 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 765 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 766
<> 144:ef7eb2e8f9f7 767 /* Wait till PLL is disabled */
<> 144:ef7eb2e8f9f7 768 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
<> 144:ef7eb2e8f9f7 769 {
<> 144:ef7eb2e8f9f7 770 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 771 {
<> 144:ef7eb2e8f9f7 772 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 773 }
<> 144:ef7eb2e8f9f7 774 }
<> 144:ef7eb2e8f9f7 775 }
<> 144:ef7eb2e8f9f7 776 }
<> 144:ef7eb2e8f9f7 777 else
<> 144:ef7eb2e8f9f7 778 {
<> 144:ef7eb2e8f9f7 779 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 780 }
<> 144:ef7eb2e8f9f7 781 }
<> 144:ef7eb2e8f9f7 782
<> 144:ef7eb2e8f9f7 783 return HAL_OK;
<> 144:ef7eb2e8f9f7 784 }
<> 144:ef7eb2e8f9f7 785
<> 144:ef7eb2e8f9f7 786 /**
<> 144:ef7eb2e8f9f7 787 * @brief Initializes the CPU, AHB and APB buses clocks according to the specified
<> 144:ef7eb2e8f9f7 788 * parameters in the RCC_ClkInitStruct.
<> 144:ef7eb2e8f9f7 789 * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
<> 144:ef7eb2e8f9f7 790 * contains the configuration information for the RCC peripheral.
<> 144:ef7eb2e8f9f7 791 * @param FLatency FLASH Latency
<> 144:ef7eb2e8f9f7 792 * The value of this parameter depend on device used within the same series
<> 144:ef7eb2e8f9f7 793 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
<> 144:ef7eb2e8f9f7 794 * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
<> 144:ef7eb2e8f9f7 795 *
<> 144:ef7eb2e8f9f7 796 * @note The HSI is used (enabled by hardware) as system clock source after
<> 144:ef7eb2e8f9f7 797 * start-up from Reset, wake-up from STOP and STANDBY mode, or in case
<> 144:ef7eb2e8f9f7 798 * of failure of the HSE used directly or indirectly as system clock
<> 144:ef7eb2e8f9f7 799 * (if the Clock Security System CSS is enabled).
<> 144:ef7eb2e8f9f7 800 *
<> 144:ef7eb2e8f9f7 801 * @note A switch from one clock source to another occurs only if the target
<> 144:ef7eb2e8f9f7 802 * clock source is ready (clock stable after start-up delay or PLL locked).
<> 144:ef7eb2e8f9f7 803 * If a clock source which is not yet ready is selected, the switch will
<> 144:ef7eb2e8f9f7 804 * occur when the clock source will be ready.
<> 144:ef7eb2e8f9f7 805 * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
<> 144:ef7eb2e8f9f7 806 * currently used as system clock source.
<> 144:ef7eb2e8f9f7 807 * @retval HAL status
<> 144:ef7eb2e8f9f7 808 */
<> 144:ef7eb2e8f9f7 809 HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
<> 144:ef7eb2e8f9f7 810 {
AnnaBridge 165:e614a9f1c9e2 811 uint32_t tickstart = 0U;
<> 144:ef7eb2e8f9f7 812
<> 144:ef7eb2e8f9f7 813 /* Check the parameters */
<> 144:ef7eb2e8f9f7 814 assert_param(RCC_ClkInitStruct != NULL);
<> 144:ef7eb2e8f9f7 815 assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
<> 144:ef7eb2e8f9f7 816 assert_param(IS_FLASH_LATENCY(FLatency));
<> 144:ef7eb2e8f9f7 817
<> 144:ef7eb2e8f9f7 818 /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
<> 144:ef7eb2e8f9f7 819 must be correctly programmed according to the frequency of the CPU clock
<> 144:ef7eb2e8f9f7 820 (HCLK) of the device. */
<> 144:ef7eb2e8f9f7 821
<> 144:ef7eb2e8f9f7 822 #if defined(FLASH_ACR_LATENCY)
<> 144:ef7eb2e8f9f7 823 /* Increasing the number of wait states because of higher CPU frequency */
<> 144:ef7eb2e8f9f7 824 if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
<> 144:ef7eb2e8f9f7 825 {
<> 144:ef7eb2e8f9f7 826 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 827 __HAL_FLASH_SET_LATENCY(FLatency);
<> 144:ef7eb2e8f9f7 828
<> 144:ef7eb2e8f9f7 829 /* Check that the new number of wait states is taken into account to access the Flash
<> 144:ef7eb2e8f9f7 830 memory by reading the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 831 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
<> 144:ef7eb2e8f9f7 832 {
<> 144:ef7eb2e8f9f7 833 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 834 }
<> 144:ef7eb2e8f9f7 835 }
<> 144:ef7eb2e8f9f7 836
<> 144:ef7eb2e8f9f7 837 #endif /* FLASH_ACR_LATENCY */
<> 144:ef7eb2e8f9f7 838 /*-------------------------- HCLK Configuration --------------------------*/
<> 144:ef7eb2e8f9f7 839 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
<> 144:ef7eb2e8f9f7 840 {
<> 144:ef7eb2e8f9f7 841 assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
<> 144:ef7eb2e8f9f7 842 MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
<> 144:ef7eb2e8f9f7 843 }
<> 144:ef7eb2e8f9f7 844
<> 144:ef7eb2e8f9f7 845 /*------------------------- SYSCLK Configuration ---------------------------*/
<> 144:ef7eb2e8f9f7 846 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
<> 144:ef7eb2e8f9f7 847 {
<> 144:ef7eb2e8f9f7 848 assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
<> 144:ef7eb2e8f9f7 849
<> 144:ef7eb2e8f9f7 850 /* HSE is selected as System Clock Source */
<> 144:ef7eb2e8f9f7 851 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
<> 144:ef7eb2e8f9f7 852 {
<> 144:ef7eb2e8f9f7 853 /* Check the HSE ready flag */
<> 144:ef7eb2e8f9f7 854 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
<> 144:ef7eb2e8f9f7 855 {
<> 144:ef7eb2e8f9f7 856 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 857 }
<> 144:ef7eb2e8f9f7 858 }
<> 144:ef7eb2e8f9f7 859 /* PLL is selected as System Clock Source */
<> 144:ef7eb2e8f9f7 860 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
<> 144:ef7eb2e8f9f7 861 {
<> 144:ef7eb2e8f9f7 862 /* Check the PLL ready flag */
<> 144:ef7eb2e8f9f7 863 if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
<> 144:ef7eb2e8f9f7 864 {
<> 144:ef7eb2e8f9f7 865 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 866 }
<> 144:ef7eb2e8f9f7 867 }
<> 144:ef7eb2e8f9f7 868 /* HSI is selected as System Clock Source */
<> 144:ef7eb2e8f9f7 869 else
<> 144:ef7eb2e8f9f7 870 {
<> 144:ef7eb2e8f9f7 871 /* Check the HSI ready flag */
<> 144:ef7eb2e8f9f7 872 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
<> 144:ef7eb2e8f9f7 873 {
<> 144:ef7eb2e8f9f7 874 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 875 }
<> 144:ef7eb2e8f9f7 876 }
<> 144:ef7eb2e8f9f7 877 __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
<> 144:ef7eb2e8f9f7 878
<> 144:ef7eb2e8f9f7 879 /* Get Start Tick */
<> 144:ef7eb2e8f9f7 880 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 881
<> 144:ef7eb2e8f9f7 882 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
<> 144:ef7eb2e8f9f7 883 {
<> 144:ef7eb2e8f9f7 884 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
<> 144:ef7eb2e8f9f7 885 {
<> 144:ef7eb2e8f9f7 886 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 887 {
<> 144:ef7eb2e8f9f7 888 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 889 }
<> 144:ef7eb2e8f9f7 890 }
<> 144:ef7eb2e8f9f7 891 }
<> 144:ef7eb2e8f9f7 892 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
<> 144:ef7eb2e8f9f7 893 {
<> 144:ef7eb2e8f9f7 894 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
<> 144:ef7eb2e8f9f7 895 {
<> 144:ef7eb2e8f9f7 896 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 897 {
<> 144:ef7eb2e8f9f7 898 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 899 }
<> 144:ef7eb2e8f9f7 900 }
<> 144:ef7eb2e8f9f7 901 }
<> 144:ef7eb2e8f9f7 902 else
<> 144:ef7eb2e8f9f7 903 {
<> 144:ef7eb2e8f9f7 904 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
<> 144:ef7eb2e8f9f7 905 {
<> 144:ef7eb2e8f9f7 906 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 907 {
<> 144:ef7eb2e8f9f7 908 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 909 }
<> 144:ef7eb2e8f9f7 910 }
<> 144:ef7eb2e8f9f7 911 }
<> 144:ef7eb2e8f9f7 912 }
<> 144:ef7eb2e8f9f7 913 #if defined(FLASH_ACR_LATENCY)
<> 144:ef7eb2e8f9f7 914 /* Decreasing the number of wait states because of lower CPU frequency */
<> 144:ef7eb2e8f9f7 915 if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
<> 144:ef7eb2e8f9f7 916 {
<> 144:ef7eb2e8f9f7 917 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 918 __HAL_FLASH_SET_LATENCY(FLatency);
<> 144:ef7eb2e8f9f7 919
<> 144:ef7eb2e8f9f7 920 /* Check that the new number of wait states is taken into account to access the Flash
<> 144:ef7eb2e8f9f7 921 memory by reading the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 922 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
<> 144:ef7eb2e8f9f7 923 {
<> 144:ef7eb2e8f9f7 924 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 925 }
<> 144:ef7eb2e8f9f7 926 }
<> 144:ef7eb2e8f9f7 927 #endif /* FLASH_ACR_LATENCY */
<> 144:ef7eb2e8f9f7 928
<> 144:ef7eb2e8f9f7 929 /*-------------------------- PCLK1 Configuration ---------------------------*/
<> 144:ef7eb2e8f9f7 930 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
<> 144:ef7eb2e8f9f7 931 {
<> 144:ef7eb2e8f9f7 932 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
<> 144:ef7eb2e8f9f7 933 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
<> 144:ef7eb2e8f9f7 934 }
<> 144:ef7eb2e8f9f7 935
<> 144:ef7eb2e8f9f7 936 /*-------------------------- PCLK2 Configuration ---------------------------*/
<> 144:ef7eb2e8f9f7 937 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
<> 144:ef7eb2e8f9f7 938 {
<> 144:ef7eb2e8f9f7 939 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
<> 144:ef7eb2e8f9f7 940 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
<> 144:ef7eb2e8f9f7 941 }
<> 144:ef7eb2e8f9f7 942
<> 144:ef7eb2e8f9f7 943 /* Update the SystemCoreClock global variable */
AnnaBridge 165:e614a9f1c9e2 944 SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_Pos];
<> 144:ef7eb2e8f9f7 945
<> 144:ef7eb2e8f9f7 946 /* Configure the source of time base considering new system clocks settings*/
<> 144:ef7eb2e8f9f7 947 HAL_InitTick (TICK_INT_PRIORITY);
<> 144:ef7eb2e8f9f7 948
<> 144:ef7eb2e8f9f7 949 return HAL_OK;
<> 144:ef7eb2e8f9f7 950 }
<> 144:ef7eb2e8f9f7 951
<> 144:ef7eb2e8f9f7 952 /**
<> 144:ef7eb2e8f9f7 953 * @}
<> 144:ef7eb2e8f9f7 954 */
<> 144:ef7eb2e8f9f7 955
<> 144:ef7eb2e8f9f7 956 /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
<> 144:ef7eb2e8f9f7 957 * @brief RCC clocks control functions
<> 144:ef7eb2e8f9f7 958 *
<> 144:ef7eb2e8f9f7 959 @verbatim
<> 144:ef7eb2e8f9f7 960 ===============================================================================
<> 144:ef7eb2e8f9f7 961 ##### Peripheral Control functions #####
<> 144:ef7eb2e8f9f7 962 ===============================================================================
<> 144:ef7eb2e8f9f7 963 [..]
<> 144:ef7eb2e8f9f7 964 This subsection provides a set of functions allowing to control the RCC Clocks
<> 144:ef7eb2e8f9f7 965 frequencies.
<> 144:ef7eb2e8f9f7 966
<> 144:ef7eb2e8f9f7 967 @endverbatim
<> 144:ef7eb2e8f9f7 968 * @{
<> 144:ef7eb2e8f9f7 969 */
<> 144:ef7eb2e8f9f7 970
<> 144:ef7eb2e8f9f7 971 /**
<> 144:ef7eb2e8f9f7 972 * @brief Selects the clock source to output on MCO pin.
<> 144:ef7eb2e8f9f7 973 * @note MCO pin should be configured in alternate function mode.
<> 144:ef7eb2e8f9f7 974 * @param RCC_MCOx specifies the output direction for the clock source.
<> 144:ef7eb2e8f9f7 975 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 976 * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
<> 144:ef7eb2e8f9f7 977 * @param RCC_MCOSource specifies the clock source to output.
<> 144:ef7eb2e8f9f7 978 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 979 * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
<> 144:ef7eb2e8f9f7 980 * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock
<> 144:ef7eb2e8f9f7 981 * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
<> 144:ef7eb2e8f9f7 982 * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
<> 144:ef7eb2e8f9f7 983 @if STM32F105xC
<> 144:ef7eb2e8f9f7 984 * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
<> 144:ef7eb2e8f9f7 985 * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
<> 144:ef7eb2e8f9f7 986 * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
<> 144:ef7eb2e8f9f7 987 * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
<> 144:ef7eb2e8f9f7 988 * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
<> 144:ef7eb2e8f9f7 989 @endif
<> 144:ef7eb2e8f9f7 990 @if STM32F107xC
<> 144:ef7eb2e8f9f7 991 * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
<> 144:ef7eb2e8f9f7 992 * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
<> 144:ef7eb2e8f9f7 993 * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
<> 144:ef7eb2e8f9f7 994 * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
<> 144:ef7eb2e8f9f7 995 * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
<> 144:ef7eb2e8f9f7 996 @endif
<> 144:ef7eb2e8f9f7 997 * @param RCC_MCODiv specifies the MCO DIV.
<> 144:ef7eb2e8f9f7 998 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 999 * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
<> 144:ef7eb2e8f9f7 1000 * @retval None
<> 144:ef7eb2e8f9f7 1001 */
<> 144:ef7eb2e8f9f7 1002 void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
<> 144:ef7eb2e8f9f7 1003 {
AnnaBridge 165:e614a9f1c9e2 1004 GPIO_InitTypeDef gpio = {0U};
<> 144:ef7eb2e8f9f7 1005
<> 144:ef7eb2e8f9f7 1006 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1007 assert_param(IS_RCC_MCO(RCC_MCOx));
<> 144:ef7eb2e8f9f7 1008 assert_param(IS_RCC_MCODIV(RCC_MCODiv));
<> 144:ef7eb2e8f9f7 1009 assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
AnnaBridge 165:e614a9f1c9e2 1010
AnnaBridge 165:e614a9f1c9e2 1011 /* Prevent unused argument(s) compilation warning */
AnnaBridge 165:e614a9f1c9e2 1012 UNUSED(RCC_MCOx);
AnnaBridge 165:e614a9f1c9e2 1013 UNUSED(RCC_MCODiv);
AnnaBridge 165:e614a9f1c9e2 1014
<> 144:ef7eb2e8f9f7 1015 /* Configure the MCO1 pin in alternate function mode */
<> 144:ef7eb2e8f9f7 1016 gpio.Mode = GPIO_MODE_AF_PP;
<> 144:ef7eb2e8f9f7 1017 gpio.Speed = GPIO_SPEED_FREQ_HIGH;
<> 144:ef7eb2e8f9f7 1018 gpio.Pull = GPIO_NOPULL;
<> 144:ef7eb2e8f9f7 1019 gpio.Pin = MCO1_PIN;
<> 144:ef7eb2e8f9f7 1020
<> 144:ef7eb2e8f9f7 1021 /* MCO1 Clock Enable */
<> 144:ef7eb2e8f9f7 1022 MCO1_CLK_ENABLE();
AnnaBridge 165:e614a9f1c9e2 1023
<> 144:ef7eb2e8f9f7 1024 HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
AnnaBridge 165:e614a9f1c9e2 1025
<> 144:ef7eb2e8f9f7 1026 /* Configure the MCO clock source */
<> 144:ef7eb2e8f9f7 1027 __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
<> 144:ef7eb2e8f9f7 1028 }
<> 144:ef7eb2e8f9f7 1029
<> 144:ef7eb2e8f9f7 1030 /**
<> 144:ef7eb2e8f9f7 1031 * @brief Enables the Clock Security System.
<> 144:ef7eb2e8f9f7 1032 * @note If a failure is detected on the HSE oscillator clock, this oscillator
<> 144:ef7eb2e8f9f7 1033 * is automatically disabled and an interrupt is generated to inform the
<> 144:ef7eb2e8f9f7 1034 * software about the failure (Clock Security System Interrupt, CSSI),
<> 144:ef7eb2e8f9f7 1035 * allowing the MCU to perform rescue operations. The CSSI is linked to
<> 144:ef7eb2e8f9f7 1036 * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.
<> 144:ef7eb2e8f9f7 1037 * @retval None
<> 144:ef7eb2e8f9f7 1038 */
<> 144:ef7eb2e8f9f7 1039 void HAL_RCC_EnableCSS(void)
<> 144:ef7eb2e8f9f7 1040 {
<> 144:ef7eb2e8f9f7 1041 *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;
<> 144:ef7eb2e8f9f7 1042 }
<> 144:ef7eb2e8f9f7 1043
<> 144:ef7eb2e8f9f7 1044 /**
<> 144:ef7eb2e8f9f7 1045 * @brief Disables the Clock Security System.
<> 144:ef7eb2e8f9f7 1046 * @retval None
<> 144:ef7eb2e8f9f7 1047 */
<> 144:ef7eb2e8f9f7 1048 void HAL_RCC_DisableCSS(void)
<> 144:ef7eb2e8f9f7 1049 {
<> 144:ef7eb2e8f9f7 1050 *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;
<> 144:ef7eb2e8f9f7 1051 }
<> 144:ef7eb2e8f9f7 1052
<> 144:ef7eb2e8f9f7 1053 /**
<> 144:ef7eb2e8f9f7 1054 * @brief Returns the SYSCLK frequency
<> 144:ef7eb2e8f9f7 1055 * @note The system frequency computed by this function is not the real
<> 144:ef7eb2e8f9f7 1056 * frequency in the chip. It is calculated based on the predefined
<> 144:ef7eb2e8f9f7 1057 * constant and the selected clock source:
<> 144:ef7eb2e8f9f7 1058 * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
<> 144:ef7eb2e8f9f7 1059 * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE
<> 144:ef7eb2e8f9f7 1060 * divided by PREDIV factor(**)
<> 144:ef7eb2e8f9f7 1061 * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE
<> 144:ef7eb2e8f9f7 1062 * divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor.
<> 144:ef7eb2e8f9f7 1063 * @note (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
<> 144:ef7eb2e8f9f7 1064 * 8 MHz) but the real value may vary depending on the variations
<> 144:ef7eb2e8f9f7 1065 * in voltage and temperature.
<> 144:ef7eb2e8f9f7 1066 * @note (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
<> 144:ef7eb2e8f9f7 1067 * 8 MHz), user has to ensure that HSE_VALUE is same as the real
<> 144:ef7eb2e8f9f7 1068 * frequency of the crystal used. Otherwise, this function may
<> 144:ef7eb2e8f9f7 1069 * have wrong result.
<> 144:ef7eb2e8f9f7 1070 *
<> 144:ef7eb2e8f9f7 1071 * @note The result of this function could be not correct when using fractional
<> 144:ef7eb2e8f9f7 1072 * value for HSE crystal.
<> 144:ef7eb2e8f9f7 1073 *
<> 144:ef7eb2e8f9f7 1074 * @note This function can be used by the user application to compute the
<> 144:ef7eb2e8f9f7 1075 * baud-rate for the communication peripherals or configure other parameters.
<> 144:ef7eb2e8f9f7 1076 *
<> 144:ef7eb2e8f9f7 1077 * @note Each time SYSCLK changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 1078 * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 1079 *
<> 144:ef7eb2e8f9f7 1080 * @retval SYSCLK frequency
<> 144:ef7eb2e8f9f7 1081 */
<> 144:ef7eb2e8f9f7 1082 uint32_t HAL_RCC_GetSysClockFreq(void)
<> 144:ef7eb2e8f9f7 1083 {
AnnaBridge 165:e614a9f1c9e2 1084 #if defined(RCC_CFGR2_PREDIV1SRC)
AnnaBridge 165:e614a9f1c9e2 1085 const uint8_t aPLLMULFactorTable[14] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 13};
AnnaBridge 165:e614a9f1c9e2 1086 const uint8_t aPredivFactorTable[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
<> 144:ef7eb2e8f9f7 1087 #else
AnnaBridge 165:e614a9f1c9e2 1088 const uint8_t aPLLMULFactorTable[16] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16};
<> 144:ef7eb2e8f9f7 1089 #if defined(RCC_CFGR2_PREDIV1)
AnnaBridge 165:e614a9f1c9e2 1090 const uint8_t aPredivFactorTable[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
<> 144:ef7eb2e8f9f7 1091 #else
AnnaBridge 165:e614a9f1c9e2 1092 const uint8_t aPredivFactorTable[2] = {1, 2};
<> 144:ef7eb2e8f9f7 1093 #endif /*RCC_CFGR2_PREDIV1*/
<> 144:ef7eb2e8f9f7 1094
<> 144:ef7eb2e8f9f7 1095 #endif
AnnaBridge 165:e614a9f1c9e2 1096 uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U;
AnnaBridge 165:e614a9f1c9e2 1097 uint32_t sysclockfreq = 0U;
<> 144:ef7eb2e8f9f7 1098 #if defined(RCC_CFGR2_PREDIV1SRC)
AnnaBridge 165:e614a9f1c9e2 1099 uint32_t prediv2 = 0U, pll2mul = 0U;
<> 144:ef7eb2e8f9f7 1100 #endif /*RCC_CFGR2_PREDIV1SRC*/
AnnaBridge 187:0387e8f68319 1101
<> 144:ef7eb2e8f9f7 1102 tmpreg = RCC->CFGR;
AnnaBridge 187:0387e8f68319 1103
<> 144:ef7eb2e8f9f7 1104 /* Get SYSCLK source -------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 1105 switch (tmpreg & RCC_CFGR_SWS)
<> 144:ef7eb2e8f9f7 1106 {
<> 144:ef7eb2e8f9f7 1107 case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */
<> 144:ef7eb2e8f9f7 1108 {
<> 144:ef7eb2e8f9f7 1109 sysclockfreq = HSE_VALUE;
<> 144:ef7eb2e8f9f7 1110 break;
<> 144:ef7eb2e8f9f7 1111 }
<> 144:ef7eb2e8f9f7 1112 case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */
<> 144:ef7eb2e8f9f7 1113 {
AnnaBridge 165:e614a9f1c9e2 1114 pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> RCC_CFGR_PLLMULL_Pos];
<> 144:ef7eb2e8f9f7 1115 if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
<> 144:ef7eb2e8f9f7 1116 {
<> 144:ef7eb2e8f9f7 1117 #if defined(RCC_CFGR2_PREDIV1)
AnnaBridge 165:e614a9f1c9e2 1118 prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> RCC_CFGR2_PREDIV1_Pos];
<> 144:ef7eb2e8f9f7 1119 #else
AnnaBridge 165:e614a9f1c9e2 1120 prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> RCC_CFGR_PLLXTPRE_Pos];
<> 144:ef7eb2e8f9f7 1121 #endif /*RCC_CFGR2_PREDIV1*/
<> 144:ef7eb2e8f9f7 1122 #if defined(RCC_CFGR2_PREDIV1SRC)
<> 144:ef7eb2e8f9f7 1123
<> 144:ef7eb2e8f9f7 1124 if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC))
<> 144:ef7eb2e8f9f7 1125 {
<> 144:ef7eb2e8f9f7 1126 /* PLL2 selected as Prediv1 source */
<> 144:ef7eb2e8f9f7 1127 /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
AnnaBridge 165:e614a9f1c9e2 1128 prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> RCC_CFGR2_PREDIV2_Pos) + 1;
AnnaBridge 165:e614a9f1c9e2 1129 pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> RCC_CFGR2_PLL2MUL_Pos) + 2;
AnnaBridge 187:0387e8f68319 1130 pllclk = (uint32_t)(((uint64_t)HSE_VALUE * (uint64_t)pll2mul * (uint64_t)pllmul) / ((uint64_t)prediv2 * (uint64_t)prediv));
<> 144:ef7eb2e8f9f7 1131 }
<> 144:ef7eb2e8f9f7 1132 else
<> 144:ef7eb2e8f9f7 1133 {
<> 144:ef7eb2e8f9f7 1134 /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
AnnaBridge 187:0387e8f68319 1135 pllclk = (uint32_t)((HSE_VALUE * pllmul) / prediv);
<> 144:ef7eb2e8f9f7 1136 }
AnnaBridge 187:0387e8f68319 1137
<> 144:ef7eb2e8f9f7 1138 /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
<> 144:ef7eb2e8f9f7 1139 /* In this case need to divide pllclk by 2 */
AnnaBridge 165:e614a9f1c9e2 1140 if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> RCC_CFGR_PLLMULL_Pos])
<> 144:ef7eb2e8f9f7 1141 {
<> 144:ef7eb2e8f9f7 1142 pllclk = pllclk / 2;
<> 144:ef7eb2e8f9f7 1143 }
<> 144:ef7eb2e8f9f7 1144 #else
<> 144:ef7eb2e8f9f7 1145 /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
AnnaBridge 187:0387e8f68319 1146 pllclk = (uint32_t)((HSE_VALUE * pllmul) / prediv);
<> 144:ef7eb2e8f9f7 1147 #endif /*RCC_CFGR2_PREDIV1SRC*/
<> 144:ef7eb2e8f9f7 1148 }
<> 144:ef7eb2e8f9f7 1149 else
<> 144:ef7eb2e8f9f7 1150 {
<> 144:ef7eb2e8f9f7 1151 /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
<> 144:ef7eb2e8f9f7 1152 pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
<> 144:ef7eb2e8f9f7 1153 }
<> 144:ef7eb2e8f9f7 1154 sysclockfreq = pllclk;
<> 144:ef7eb2e8f9f7 1155 break;
<> 144:ef7eb2e8f9f7 1156 }
<> 144:ef7eb2e8f9f7 1157 case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
<> 144:ef7eb2e8f9f7 1158 default: /* HSI used as system clock */
<> 144:ef7eb2e8f9f7 1159 {
<> 144:ef7eb2e8f9f7 1160 sysclockfreq = HSI_VALUE;
<> 144:ef7eb2e8f9f7 1161 break;
<> 144:ef7eb2e8f9f7 1162 }
<> 144:ef7eb2e8f9f7 1163 }
<> 144:ef7eb2e8f9f7 1164 return sysclockfreq;
<> 144:ef7eb2e8f9f7 1165 }
<> 144:ef7eb2e8f9f7 1166
<> 144:ef7eb2e8f9f7 1167 /**
<> 144:ef7eb2e8f9f7 1168 * @brief Returns the HCLK frequency
<> 144:ef7eb2e8f9f7 1169 * @note Each time HCLK changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 1170 * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 1171 *
<> 144:ef7eb2e8f9f7 1172 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
<> 144:ef7eb2e8f9f7 1173 * and updated within this function
<> 144:ef7eb2e8f9f7 1174 * @retval HCLK frequency
<> 144:ef7eb2e8f9f7 1175 */
<> 144:ef7eb2e8f9f7 1176 uint32_t HAL_RCC_GetHCLKFreq(void)
<> 144:ef7eb2e8f9f7 1177 {
<> 144:ef7eb2e8f9f7 1178 return SystemCoreClock;
<> 144:ef7eb2e8f9f7 1179 }
<> 144:ef7eb2e8f9f7 1180
<> 144:ef7eb2e8f9f7 1181 /**
<> 144:ef7eb2e8f9f7 1182 * @brief Returns the PCLK1 frequency
<> 144:ef7eb2e8f9f7 1183 * @note Each time PCLK1 changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 1184 * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 1185 * @retval PCLK1 frequency
<> 144:ef7eb2e8f9f7 1186 */
<> 144:ef7eb2e8f9f7 1187 uint32_t HAL_RCC_GetPCLK1Freq(void)
<> 144:ef7eb2e8f9f7 1188 {
<> 144:ef7eb2e8f9f7 1189 /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
AnnaBridge 165:e614a9f1c9e2 1190 return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_Pos]);
<> 144:ef7eb2e8f9f7 1191 }
<> 144:ef7eb2e8f9f7 1192
<> 144:ef7eb2e8f9f7 1193 /**
<> 144:ef7eb2e8f9f7 1194 * @brief Returns the PCLK2 frequency
<> 144:ef7eb2e8f9f7 1195 * @note Each time PCLK2 changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 1196 * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 1197 * @retval PCLK2 frequency
<> 144:ef7eb2e8f9f7 1198 */
<> 144:ef7eb2e8f9f7 1199 uint32_t HAL_RCC_GetPCLK2Freq(void)
<> 144:ef7eb2e8f9f7 1200 {
<> 144:ef7eb2e8f9f7 1201 /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
AnnaBridge 165:e614a9f1c9e2 1202 return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_Pos]);
<> 144:ef7eb2e8f9f7 1203 }
<> 144:ef7eb2e8f9f7 1204
<> 144:ef7eb2e8f9f7 1205 /**
<> 144:ef7eb2e8f9f7 1206 * @brief Configures the RCC_OscInitStruct according to the internal
<> 144:ef7eb2e8f9f7 1207 * RCC configuration registers.
<> 144:ef7eb2e8f9f7 1208 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
<> 144:ef7eb2e8f9f7 1209 * will be configured.
<> 144:ef7eb2e8f9f7 1210 * @retval None
<> 144:ef7eb2e8f9f7 1211 */
<> 144:ef7eb2e8f9f7 1212 void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
<> 144:ef7eb2e8f9f7 1213 {
<> 144:ef7eb2e8f9f7 1214 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1215 assert_param(RCC_OscInitStruct != NULL);
<> 144:ef7eb2e8f9f7 1216
<> 144:ef7eb2e8f9f7 1217 /* Set all possible values for the Oscillator type parameter ---------------*/
<> 144:ef7eb2e8f9f7 1218 RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \
<> 144:ef7eb2e8f9f7 1219 | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
<> 144:ef7eb2e8f9f7 1220
<> 144:ef7eb2e8f9f7 1221 #if defined(RCC_CFGR2_PREDIV1SRC)
<> 144:ef7eb2e8f9f7 1222 /* Get the Prediv1 source --------------------------------------------------*/
<> 144:ef7eb2e8f9f7 1223 RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC);
<> 144:ef7eb2e8f9f7 1224 #endif /* RCC_CFGR2_PREDIV1SRC */
<> 144:ef7eb2e8f9f7 1225
<> 144:ef7eb2e8f9f7 1226 /* Get the HSE configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1227 if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
<> 144:ef7eb2e8f9f7 1228 {
<> 144:ef7eb2e8f9f7 1229 RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
<> 144:ef7eb2e8f9f7 1230 }
<> 144:ef7eb2e8f9f7 1231 else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
<> 144:ef7eb2e8f9f7 1232 {
<> 144:ef7eb2e8f9f7 1233 RCC_OscInitStruct->HSEState = RCC_HSE_ON;
<> 144:ef7eb2e8f9f7 1234 }
<> 144:ef7eb2e8f9f7 1235 else
<> 144:ef7eb2e8f9f7 1236 {
<> 144:ef7eb2e8f9f7 1237 RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
<> 144:ef7eb2e8f9f7 1238 }
<> 144:ef7eb2e8f9f7 1239 RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV();
<> 144:ef7eb2e8f9f7 1240
<> 144:ef7eb2e8f9f7 1241 /* Get the HSI configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1242 if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
<> 144:ef7eb2e8f9f7 1243 {
<> 144:ef7eb2e8f9f7 1244 RCC_OscInitStruct->HSIState = RCC_HSI_ON;
<> 144:ef7eb2e8f9f7 1245 }
<> 144:ef7eb2e8f9f7 1246 else
<> 144:ef7eb2e8f9f7 1247 {
<> 144:ef7eb2e8f9f7 1248 RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
<> 144:ef7eb2e8f9f7 1249 }
<> 144:ef7eb2e8f9f7 1250
AnnaBridge 165:e614a9f1c9e2 1251 RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos);
<> 144:ef7eb2e8f9f7 1252
<> 144:ef7eb2e8f9f7 1253 /* Get the LSE configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1254 if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
<> 144:ef7eb2e8f9f7 1255 {
<> 144:ef7eb2e8f9f7 1256 RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
<> 144:ef7eb2e8f9f7 1257 }
<> 144:ef7eb2e8f9f7 1258 else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
<> 144:ef7eb2e8f9f7 1259 {
<> 144:ef7eb2e8f9f7 1260 RCC_OscInitStruct->LSEState = RCC_LSE_ON;
<> 144:ef7eb2e8f9f7 1261 }
<> 144:ef7eb2e8f9f7 1262 else
<> 144:ef7eb2e8f9f7 1263 {
<> 144:ef7eb2e8f9f7 1264 RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
<> 144:ef7eb2e8f9f7 1265 }
<> 144:ef7eb2e8f9f7 1266
<> 144:ef7eb2e8f9f7 1267 /* Get the LSI configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1268 if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
<> 144:ef7eb2e8f9f7 1269 {
<> 144:ef7eb2e8f9f7 1270 RCC_OscInitStruct->LSIState = RCC_LSI_ON;
<> 144:ef7eb2e8f9f7 1271 }
<> 144:ef7eb2e8f9f7 1272 else
<> 144:ef7eb2e8f9f7 1273 {
<> 144:ef7eb2e8f9f7 1274 RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
<> 144:ef7eb2e8f9f7 1275 }
<> 144:ef7eb2e8f9f7 1276
<> 144:ef7eb2e8f9f7 1277
<> 144:ef7eb2e8f9f7 1278 /* Get the PLL configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1279 if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
<> 144:ef7eb2e8f9f7 1280 {
<> 144:ef7eb2e8f9f7 1281 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
<> 144:ef7eb2e8f9f7 1282 }
<> 144:ef7eb2e8f9f7 1283 else
<> 144:ef7eb2e8f9f7 1284 {
<> 144:ef7eb2e8f9f7 1285 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
<> 144:ef7eb2e8f9f7 1286 }
<> 144:ef7eb2e8f9f7 1287 RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
<> 144:ef7eb2e8f9f7 1288 RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL);
<> 144:ef7eb2e8f9f7 1289 #if defined(RCC_CR_PLL2ON)
<> 144:ef7eb2e8f9f7 1290 /* Get the PLL2 configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1291 if((RCC->CR &RCC_CR_PLL2ON) == RCC_CR_PLL2ON)
<> 144:ef7eb2e8f9f7 1292 {
<> 144:ef7eb2e8f9f7 1293 RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON;
<> 144:ef7eb2e8f9f7 1294 }
<> 144:ef7eb2e8f9f7 1295 else
<> 144:ef7eb2e8f9f7 1296 {
<> 144:ef7eb2e8f9f7 1297 RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF;
<> 144:ef7eb2e8f9f7 1298 }
<> 144:ef7eb2e8f9f7 1299 RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2();
<> 144:ef7eb2e8f9f7 1300 RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL);
<> 144:ef7eb2e8f9f7 1301 #endif /* RCC_CR_PLL2ON */
<> 144:ef7eb2e8f9f7 1302 }
<> 144:ef7eb2e8f9f7 1303
<> 144:ef7eb2e8f9f7 1304 /**
<> 144:ef7eb2e8f9f7 1305 * @brief Get the RCC_ClkInitStruct according to the internal
<> 144:ef7eb2e8f9f7 1306 * RCC configuration registers.
<> 144:ef7eb2e8f9f7 1307 * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
<> 144:ef7eb2e8f9f7 1308 * contains the current clock configuration.
<> 144:ef7eb2e8f9f7 1309 * @param pFLatency Pointer on the Flash Latency.
<> 144:ef7eb2e8f9f7 1310 * @retval None
<> 144:ef7eb2e8f9f7 1311 */
<> 144:ef7eb2e8f9f7 1312 void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
<> 144:ef7eb2e8f9f7 1313 {
<> 144:ef7eb2e8f9f7 1314 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1315 assert_param(RCC_ClkInitStruct != NULL);
<> 144:ef7eb2e8f9f7 1316 assert_param(pFLatency != NULL);
<> 144:ef7eb2e8f9f7 1317
<> 144:ef7eb2e8f9f7 1318 /* Set all possible values for the Clock type parameter --------------------*/
<> 144:ef7eb2e8f9f7 1319 RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
<> 144:ef7eb2e8f9f7 1320
<> 144:ef7eb2e8f9f7 1321 /* Get the SYSCLK configuration --------------------------------------------*/
<> 144:ef7eb2e8f9f7 1322 RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
<> 144:ef7eb2e8f9f7 1323
<> 144:ef7eb2e8f9f7 1324 /* Get the HCLK configuration ----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1325 RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
<> 144:ef7eb2e8f9f7 1326
<> 144:ef7eb2e8f9f7 1327 /* Get the APB1 configuration ----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1328 RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
<> 144:ef7eb2e8f9f7 1329
<> 144:ef7eb2e8f9f7 1330 /* Get the APB2 configuration ----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1331 RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
<> 144:ef7eb2e8f9f7 1332
<> 144:ef7eb2e8f9f7 1333 #if defined(FLASH_ACR_LATENCY)
<> 144:ef7eb2e8f9f7 1334 /* Get the Flash Wait State (Latency) configuration ------------------------*/
<> 144:ef7eb2e8f9f7 1335 *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
<> 144:ef7eb2e8f9f7 1336 #else
<> 144:ef7eb2e8f9f7 1337 /* For VALUE lines devices, only LATENCY_0 can be set*/
<> 144:ef7eb2e8f9f7 1338 *pFLatency = (uint32_t)FLASH_LATENCY_0;
<> 144:ef7eb2e8f9f7 1339 #endif
<> 144:ef7eb2e8f9f7 1340 }
<> 144:ef7eb2e8f9f7 1341
<> 144:ef7eb2e8f9f7 1342 /**
<> 144:ef7eb2e8f9f7 1343 * @brief This function handles the RCC CSS interrupt request.
<> 144:ef7eb2e8f9f7 1344 * @note This API should be called under the NMI_Handler().
<> 144:ef7eb2e8f9f7 1345 * @retval None
<> 144:ef7eb2e8f9f7 1346 */
<> 144:ef7eb2e8f9f7 1347 void HAL_RCC_NMI_IRQHandler(void)
<> 144:ef7eb2e8f9f7 1348 {
<> 144:ef7eb2e8f9f7 1349 /* Check RCC CSSF flag */
<> 144:ef7eb2e8f9f7 1350 if(__HAL_RCC_GET_IT(RCC_IT_CSS))
<> 144:ef7eb2e8f9f7 1351 {
<> 144:ef7eb2e8f9f7 1352 /* RCC Clock Security System interrupt user callback */
<> 144:ef7eb2e8f9f7 1353 HAL_RCC_CSSCallback();
<> 144:ef7eb2e8f9f7 1354
<> 144:ef7eb2e8f9f7 1355 /* Clear RCC CSS pending bit */
<> 144:ef7eb2e8f9f7 1356 __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
<> 144:ef7eb2e8f9f7 1357 }
<> 144:ef7eb2e8f9f7 1358 }
<> 144:ef7eb2e8f9f7 1359
<> 144:ef7eb2e8f9f7 1360 /**
AnnaBridge 165:e614a9f1c9e2 1361 * @brief This function provides delay (in milliseconds) based on CPU cycles method.
AnnaBridge 165:e614a9f1c9e2 1362 * @param mdelay: specifies the delay time length, in milliseconds.
AnnaBridge 165:e614a9f1c9e2 1363 * @retval None
AnnaBridge 165:e614a9f1c9e2 1364 */
AnnaBridge 165:e614a9f1c9e2 1365 static void RCC_Delay(uint32_t mdelay)
AnnaBridge 165:e614a9f1c9e2 1366 {
AnnaBridge 165:e614a9f1c9e2 1367 __IO uint32_t Delay = mdelay * (SystemCoreClock / 8U / 1000U);
AnnaBridge 165:e614a9f1c9e2 1368 do
AnnaBridge 165:e614a9f1c9e2 1369 {
AnnaBridge 165:e614a9f1c9e2 1370 __NOP();
AnnaBridge 165:e614a9f1c9e2 1371 }
AnnaBridge 165:e614a9f1c9e2 1372 while (Delay --);
AnnaBridge 165:e614a9f1c9e2 1373 }
AnnaBridge 165:e614a9f1c9e2 1374
AnnaBridge 165:e614a9f1c9e2 1375 /**
<> 144:ef7eb2e8f9f7 1376 * @brief RCC Clock Security System interrupt callback
<> 144:ef7eb2e8f9f7 1377 * @retval none
<> 144:ef7eb2e8f9f7 1378 */
<> 144:ef7eb2e8f9f7 1379 __weak void HAL_RCC_CSSCallback(void)
<> 144:ef7eb2e8f9f7 1380 {
<> 144:ef7eb2e8f9f7 1381 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 1382 the HAL_RCC_CSSCallback could be implemented in the user file
<> 144:ef7eb2e8f9f7 1383 */
<> 144:ef7eb2e8f9f7 1384 }
<> 144:ef7eb2e8f9f7 1385
<> 144:ef7eb2e8f9f7 1386 /**
<> 144:ef7eb2e8f9f7 1387 * @}
<> 144:ef7eb2e8f9f7 1388 */
<> 144:ef7eb2e8f9f7 1389
<> 144:ef7eb2e8f9f7 1390 /**
<> 144:ef7eb2e8f9f7 1391 * @}
<> 144:ef7eb2e8f9f7 1392 */
<> 144:ef7eb2e8f9f7 1393
<> 144:ef7eb2e8f9f7 1394 #endif /* HAL_RCC_MODULE_ENABLED */
<> 144:ef7eb2e8f9f7 1395 /**
<> 144:ef7eb2e8f9f7 1396 * @}
<> 144:ef7eb2e8f9f7 1397 */
<> 144:ef7eb2e8f9f7 1398
<> 144:ef7eb2e8f9f7 1399 /**
<> 144:ef7eb2e8f9f7 1400 * @}
<> 144:ef7eb2e8f9f7 1401 */
<> 144:ef7eb2e8f9f7 1402
<> 144:ef7eb2e8f9f7 1403 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/