mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

Committer:
AnnaBridge
Date:
Wed Oct 25 14:53:38 2017 +0100
Revision:
176:447f873cad2f
Parent:
172:7d866c31b3c5
Child:
186:707f6e361f3e
This updates the lib to the mbed lib v 154

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 149:156823d33999 1 /* mbed Microcontroller Library
<> 149:156823d33999 2 * Copyright (c) 2015-2016 Nuvoton
<> 149:156823d33999 3 *
<> 149:156823d33999 4 * Licensed under the Apache License, Version 2.0 (the "License");
<> 149:156823d33999 5 * you may not use this file except in compliance with the License.
<> 149:156823d33999 6 * You may obtain a copy of the License at
<> 149:156823d33999 7 *
<> 149:156823d33999 8 * http://www.apache.org/licenses/LICENSE-2.0
<> 149:156823d33999 9 *
<> 149:156823d33999 10 * Unless required by applicable law or agreed to in writing, software
<> 149:156823d33999 11 * distributed under the License is distributed on an "AS IS" BASIS,
<> 149:156823d33999 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
<> 149:156823d33999 13 * See the License for the specific language governing permissions and
<> 149:156823d33999 14 * limitations under the License.
<> 149:156823d33999 15 */
<> 149:156823d33999 16
<> 149:156823d33999 17 #include "spi_api.h"
<> 149:156823d33999 18
<> 149:156823d33999 19 #if DEVICE_SPI
<> 149:156823d33999 20
<> 149:156823d33999 21 #include "cmsis.h"
<> 149:156823d33999 22 #include "pinmap.h"
<> 149:156823d33999 23 #include "PeripheralPins.h"
<> 149:156823d33999 24 #include "nu_modutil.h"
<> 149:156823d33999 25 #include "nu_miscutil.h"
<> 149:156823d33999 26 #include "nu_bitutil.h"
<> 149:156823d33999 27
<> 149:156823d33999 28 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 29 #include "dma_api.h"
<> 149:156823d33999 30 #include "dma.h"
<> 149:156823d33999 31 #endif
<> 149:156823d33999 32
<> 149:156823d33999 33 #define NU_SPI_FRAME_MIN 8
<> 149:156823d33999 34 #define NU_SPI_FRAME_MAX 32
<> 149:156823d33999 35 #define NU_SPI_FIFO_DEPTH 8
<> 149:156823d33999 36
<> 149:156823d33999 37 struct nu_spi_var {
<> 149:156823d33999 38 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 39 uint8_t pdma_perp_tx;
<> 149:156823d33999 40 uint8_t pdma_perp_rx;
<> 149:156823d33999 41 #endif
<> 149:156823d33999 42 };
<> 149:156823d33999 43
<> 149:156823d33999 44 static struct nu_spi_var spi0_var = {
<> 149:156823d33999 45 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 46 .pdma_perp_tx = PDMA_SPI0_TX,
<> 149:156823d33999 47 .pdma_perp_rx = PDMA_SPI0_RX
<> 149:156823d33999 48 #endif
<> 149:156823d33999 49 };
<> 149:156823d33999 50 static struct nu_spi_var spi1_var = {
<> 149:156823d33999 51 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 52 .pdma_perp_tx = PDMA_SPI1_TX,
<> 149:156823d33999 53 .pdma_perp_rx = PDMA_SPI1_RX
<> 149:156823d33999 54 #endif
<> 149:156823d33999 55 };
<> 149:156823d33999 56 static struct nu_spi_var spi2_var = {
<> 149:156823d33999 57 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 58 .pdma_perp_tx = PDMA_SPI2_TX,
<> 149:156823d33999 59 .pdma_perp_rx = PDMA_SPI2_RX
<> 149:156823d33999 60 #endif
<> 149:156823d33999 61 };
<> 149:156823d33999 62
<> 149:156823d33999 63 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 64 static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable);
<> 149:156823d33999 65 static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable);
<> 149:156823d33999 66 static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit);
<> 149:156823d33999 67 static uint32_t spi_master_read_asynch(spi_t *obj);
<> 149:156823d33999 68 static uint32_t spi_event_check(spi_t *obj);
<> 149:156823d33999 69 static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable);
<> 149:156823d33999 70 static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length);
<> 149:156823d33999 71 static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx);
<> 149:156823d33999 72 static uint8_t spi_get_data_width(spi_t *obj);
<> 149:156823d33999 73 static int spi_is_tx_complete(spi_t *obj);
<> 149:156823d33999 74 static int spi_is_rx_complete(spi_t *obj);
<> 149:156823d33999 75 static int spi_writeable(spi_t * obj);
<> 149:156823d33999 76 static int spi_readable(spi_t * obj);
<> 149:156823d33999 77 static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma);
<> 149:156823d33999 78 static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma);
<> 149:156823d33999 79 #endif
<> 149:156823d33999 80
<> 149:156823d33999 81 static uint32_t spi_modinit_mask = 0;
<> 149:156823d33999 82
<> 149:156823d33999 83 static const struct nu_modinit_s spi_modinit_tab[] = {
<> 149:156823d33999 84 {SPI_0, SPI0_MODULE, CLK_CLKSEL2_SPI0SEL_PCLK0, MODULE_NoMsk, SPI0_RST, SPI0_IRQn, &spi0_var},
<> 149:156823d33999 85 {SPI_1, SPI1_MODULE, CLK_CLKSEL2_SPI1SEL_PCLK1, MODULE_NoMsk, SPI1_RST, SPI1_IRQn, &spi1_var},
<> 149:156823d33999 86 {SPI_2, SPI2_MODULE, CLK_CLKSEL2_SPI2SEL_PCLK0, MODULE_NoMsk, SPI2_RST, SPI2_IRQn, &spi2_var},
<> 149:156823d33999 87
<> 149:156823d33999 88 {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL}
<> 149:156823d33999 89 };
<> 149:156823d33999 90
<> 149:156823d33999 91 void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
<> 149:156823d33999 92 // Determine which SPI_x the pins are used for
<> 149:156823d33999 93 uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
<> 149:156823d33999 94 uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
<> 149:156823d33999 95 uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
<> 149:156823d33999 96 uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
<> 149:156823d33999 97 uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
<> 149:156823d33999 98 uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
<> 149:156823d33999 99 obj->spi.spi = (SPIName) pinmap_merge(spi_data, spi_cntl);
<> 149:156823d33999 100 MBED_ASSERT((int)obj->spi.spi != NC);
<> 149:156823d33999 101
<> 149:156823d33999 102 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 103 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 104 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 105
<> 149:156823d33999 106 // Reset this module
<> 149:156823d33999 107 SYS_ResetModule(modinit->rsetidx);
<> 149:156823d33999 108
<> 149:156823d33999 109 // Select IP clock source
<> 149:156823d33999 110 CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv);
<> 149:156823d33999 111 // Enable IP clock
<> 149:156823d33999 112 CLK_EnableModuleClock(modinit->clkidx);
<> 149:156823d33999 113
<> 149:156823d33999 114 //SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 115
<> 149:156823d33999 116 pinmap_pinout(mosi, PinMap_SPI_MOSI);
<> 149:156823d33999 117 pinmap_pinout(miso, PinMap_SPI_MISO);
<> 149:156823d33999 118 pinmap_pinout(sclk, PinMap_SPI_SCLK);
<> 149:156823d33999 119 pinmap_pinout(ssel, PinMap_SPI_SSEL);
<> 149:156823d33999 120
<> 149:156823d33999 121 obj->spi.pin_mosi = mosi;
<> 149:156823d33999 122 obj->spi.pin_miso = miso;
<> 149:156823d33999 123 obj->spi.pin_sclk = sclk;
<> 149:156823d33999 124 obj->spi.pin_ssel = ssel;
<> 149:156823d33999 125
<> 149:156823d33999 126
<> 149:156823d33999 127 // Configure the SPI data format and frequency
<> 149:156823d33999 128 //spi_format(obj, 8, 0, SPI_MSB); // 8 bits, mode 0
<> 149:156823d33999 129 //spi_frequency(obj, 1000000);
<> 149:156823d33999 130
<> 149:156823d33999 131 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 132 obj->spi.dma_usage = DMA_USAGE_NEVER;
<> 149:156823d33999 133 obj->spi.event = 0;
<> 149:156823d33999 134 obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 135 obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 136 #endif
<> 149:156823d33999 137
<> 149:156823d33999 138 // Mark this module to be inited.
<> 149:156823d33999 139 int i = modinit - spi_modinit_tab;
<> 149:156823d33999 140 spi_modinit_mask |= 1 << i;
<> 149:156823d33999 141 }
<> 149:156823d33999 142
<> 149:156823d33999 143 void spi_free(spi_t *obj)
<> 149:156823d33999 144 {
<> 149:156823d33999 145 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 146 if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 147 dma_channel_free(obj->spi.dma_chn_id_tx);
<> 149:156823d33999 148 obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 149 }
<> 149:156823d33999 150 if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 151 dma_channel_free(obj->spi.dma_chn_id_rx);
<> 149:156823d33999 152 obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 153 }
<> 149:156823d33999 154 #endif
<> 149:156823d33999 155
<> 149:156823d33999 156 SPI_Close((SPI_T *) NU_MODBASE(obj->spi.spi));
<> 149:156823d33999 157
<> 149:156823d33999 158 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 159 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 160 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 161
<> 149:156823d33999 162 SPI_DisableInt(((SPI_T *) NU_MODBASE(obj->spi.spi)), (SPI_FIFO_RXOV_INT_MASK | SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK));
<> 149:156823d33999 163 NVIC_DisableIRQ(modinit->irq_n);
<> 149:156823d33999 164
<> 149:156823d33999 165 // Disable IP clock
<> 149:156823d33999 166 CLK_DisableModuleClock(modinit->clkidx);
<> 149:156823d33999 167
<> 149:156823d33999 168 //((struct nu_spi_var *) modinit->var)->obj = NULL;
<> 149:156823d33999 169
<> 149:156823d33999 170 // Mark this module to be deinited.
<> 149:156823d33999 171 int i = modinit - spi_modinit_tab;
<> 149:156823d33999 172 spi_modinit_mask &= ~(1 << i);
<> 149:156823d33999 173 }
<> 149:156823d33999 174 void spi_format(spi_t *obj, int bits, int mode, int slave)
<> 149:156823d33999 175 {
<> 149:156823d33999 176 MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX);
<> 149:156823d33999 177
<> 149:156823d33999 178 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 179
<> 149:156823d33999 180 // NOTE 1: All configurations should be ready before enabling SPI peripheral.
<> 149:156823d33999 181 // NOTE 2: Re-configuration is allowed only as SPI peripheral is idle.
<> 149:156823d33999 182 while (SPI_IS_BUSY(spi_base));
<> 149:156823d33999 183 SPI_DISABLE(spi_base);
<> 149:156823d33999 184
<> 149:156823d33999 185 SPI_Open(spi_base,
<> 149:156823d33999 186 slave ? SPI_SLAVE : SPI_MASTER,
<> 149:156823d33999 187 (mode == 0) ? SPI_MODE_0 : (mode == 1) ? SPI_MODE_1 : (mode == 2) ? SPI_MODE_2 : SPI_MODE_3,
<> 149:156823d33999 188 bits,
<> 149:156823d33999 189 SPI_GetBusClock(spi_base));
<> 149:156823d33999 190 // NOTE: Hardcode to be MSB first.
<> 149:156823d33999 191 SPI_SET_MSB_FIRST(spi_base);
<> 149:156823d33999 192
<> 149:156823d33999 193 if (! slave) {
<> 149:156823d33999 194 // Master
<> 149:156823d33999 195 if (obj->spi.pin_ssel != NC) {
<> 149:156823d33999 196 // Configure SS as low active.
<> 149:156823d33999 197 SPI_EnableAutoSS(spi_base, SPI_SS, SPI_SS_ACTIVE_LOW);
<> 149:156823d33999 198 }
<> 149:156823d33999 199 else {
<> 149:156823d33999 200 SPI_DisableAutoSS(spi_base);
<> 149:156823d33999 201 }
<> 149:156823d33999 202 }
<> 149:156823d33999 203 else {
<> 149:156823d33999 204 // Slave
<> 149:156823d33999 205 // Configure SS as low active.
<> 149:156823d33999 206 spi_base->SSCTL &= ~SPI_SSCTL_SSACTPOL_Msk;
<> 149:156823d33999 207 }
<> 149:156823d33999 208
<> 149:156823d33999 209 // NOTE: M451's SPI_Open() will enable SPI transfer (SPI_CTL_SPIEN_Msk). This will violate judgement of spi_active(). Disable it.
<> 149:156823d33999 210 SPI_DISABLE(spi_base);
<> 149:156823d33999 211 }
<> 149:156823d33999 212
<> 149:156823d33999 213 void spi_frequency(spi_t *obj, int hz)
<> 149:156823d33999 214 {
<> 149:156823d33999 215 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 216
<> 149:156823d33999 217 while (SPI_IS_BUSY(spi_base));
<> 149:156823d33999 218 SPI_DISABLE(spi_base);
<> 149:156823d33999 219
<> 149:156823d33999 220 SPI_SetBusClock((SPI_T *) NU_MODBASE(obj->spi.spi), hz);
<> 149:156823d33999 221 }
<> 149:156823d33999 222
<> 149:156823d33999 223
<> 149:156823d33999 224 int spi_master_write(spi_t *obj, int value)
<> 149:156823d33999 225 {
<> 149:156823d33999 226 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 227
<> 149:156823d33999 228 // NOTE: Data in receive FIFO can be read out via ICE.
<> 149:156823d33999 229 SPI_ENABLE(spi_base);
<> 149:156823d33999 230
<> 149:156823d33999 231 // Wait for tx buffer empty
<> 149:156823d33999 232 while(! spi_writeable(obj));
<> 149:156823d33999 233 SPI_WRITE_TX(spi_base, value);
<> 149:156823d33999 234
<> 149:156823d33999 235 // Wait for rx buffer full
<> 149:156823d33999 236 while (! spi_readable(obj));
<> 149:156823d33999 237 int value2 = SPI_READ_RX(spi_base);
<> 149:156823d33999 238
<> 149:156823d33999 239 SPI_DISABLE(spi_base);
<> 149:156823d33999 240
<> 149:156823d33999 241 return value2;
<> 149:156823d33999 242 }
<> 149:156823d33999 243
Kojto 170:19eb464bc2be 244 int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
Kojto 170:19eb464bc2be 245 char *rx_buffer, int rx_length, char write_fill) {
AnnaBridge 167:e84263d55307 246 int total = (tx_length > rx_length) ? tx_length : rx_length;
AnnaBridge 167:e84263d55307 247
AnnaBridge 167:e84263d55307 248 for (int i = 0; i < total; i++) {
Kojto 170:19eb464bc2be 249 char out = (i < tx_length) ? tx_buffer[i] : write_fill;
AnnaBridge 167:e84263d55307 250 char in = spi_master_write(obj, out);
AnnaBridge 167:e84263d55307 251 if (i < rx_length) {
AnnaBridge 167:e84263d55307 252 rx_buffer[i] = in;
AnnaBridge 167:e84263d55307 253 }
AnnaBridge 167:e84263d55307 254 }
AnnaBridge 167:e84263d55307 255
AnnaBridge 167:e84263d55307 256 return total;
AnnaBridge 167:e84263d55307 257 }
AnnaBridge 167:e84263d55307 258
<> 149:156823d33999 259 #if DEVICE_SPISLAVE
<> 149:156823d33999 260 int spi_slave_receive(spi_t *obj)
<> 149:156823d33999 261 {
<> 149:156823d33999 262 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 263
<> 149:156823d33999 264 SPI_ENABLE(spi_base);
<> 149:156823d33999 265
<> 149:156823d33999 266 return spi_readable(obj);
<> 149:156823d33999 267 };
<> 149:156823d33999 268
<> 149:156823d33999 269 int spi_slave_read(spi_t *obj)
<> 149:156823d33999 270 {
<> 149:156823d33999 271 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 272
<> 149:156823d33999 273 SPI_ENABLE(spi_base);
<> 149:156823d33999 274
<> 149:156823d33999 275 // Wait for rx buffer full
<> 149:156823d33999 276 while (! spi_readable(obj));
<> 149:156823d33999 277 int value = SPI_READ_RX(spi_base);
<> 149:156823d33999 278 return value;
<> 149:156823d33999 279 }
<> 149:156823d33999 280
<> 149:156823d33999 281 void spi_slave_write(spi_t *obj, int value)
<> 149:156823d33999 282 {
<> 149:156823d33999 283 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 284
<> 149:156823d33999 285 SPI_ENABLE(spi_base);
<> 149:156823d33999 286
<> 149:156823d33999 287 // Wait for tx buffer empty
<> 149:156823d33999 288 while(! spi_writeable(obj));
<> 149:156823d33999 289 SPI_WRITE_TX(spi_base, value);
<> 149:156823d33999 290 }
<> 149:156823d33999 291 #endif
<> 149:156823d33999 292
<> 149:156823d33999 293 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 294 void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
<> 149:156823d33999 295 {
<> 149:156823d33999 296 //MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX);
<> 149:156823d33999 297 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 298 SPI_SET_DATA_WIDTH(spi_base, bit_width);
<> 149:156823d33999 299
<> 149:156823d33999 300 obj->spi.dma_usage = hint;
<> 149:156823d33999 301 spi_check_dma_usage(&obj->spi.dma_usage, &obj->spi.dma_chn_id_tx, &obj->spi.dma_chn_id_rx);
<> 149:156823d33999 302 uint32_t data_width = spi_get_data_width(obj);
<> 149:156823d33999 303 // Conditions to go DMA way:
<> 149:156823d33999 304 // (1) No DMA support for non-8 multiple data width.
<> 149:156823d33999 305 // (2) tx length >= rx length. Otherwise, as tx DMA is done, no bus activity for remaining rx.
<> 149:156823d33999 306 if ((data_width % 8) ||
<> 149:156823d33999 307 (tx_length < rx_length)) {
<> 149:156823d33999 308 obj->spi.dma_usage = DMA_USAGE_NEVER;
<> 149:156823d33999 309 dma_channel_free(obj->spi.dma_chn_id_tx);
<> 149:156823d33999 310 obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 311 dma_channel_free(obj->spi.dma_chn_id_rx);
<> 149:156823d33999 312 obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 313 }
<> 149:156823d33999 314
<> 149:156823d33999 315 // SPI IRQ is necessary for both interrupt way and DMA way
<> 149:156823d33999 316 spi_enable_event(obj, event, 1);
<> 149:156823d33999 317 spi_buffer_set(obj, tx, tx_length, rx, rx_length);
<> 149:156823d33999 318
<> 149:156823d33999 319 SPI_ENABLE(spi_base);
<> 149:156823d33999 320
<> 149:156823d33999 321 if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
<> 149:156823d33999 322 // Interrupt way
<> 149:156823d33999 323 spi_master_write_asynch(obj, NU_SPI_FIFO_DEPTH / 2);
<> 149:156823d33999 324 spi_enable_vector_interrupt(obj, handler, 1);
<> 149:156823d33999 325 spi_master_enable_interrupt(obj, 1);
<> 149:156823d33999 326 } else {
<> 149:156823d33999 327 // DMA way
<> 149:156823d33999 328 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 329 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 330 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 331
<> 161:2cc1468da177 332 PDMA_T *pdma_base = dma_modbase();
<> 161:2cc1468da177 333
<> 149:156823d33999 334 // Configure tx DMA
<> 161:2cc1468da177 335 pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel
<> 149:156823d33999 336 PDMA_SetTransferMode(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 337 ((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
<> 149:156823d33999 338 0, // Scatter-gather disabled
<> 149:156823d33999 339 0); // Scatter-gather descriptor address
<> 149:156823d33999 340 PDMA_SetTransferCnt(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 341 (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
<> 149:156823d33999 342 tx_length);
<> 149:156823d33999 343 PDMA_SetTransferAddr(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 344 (uint32_t) tx, // NOTE:
<> 149:156823d33999 345 // NUC472: End of source address
<> 149:156823d33999 346 // M451: Start of source address
<> 149:156823d33999 347 PDMA_SAR_INC, // Source address incremental
<> 149:156823d33999 348 (uint32_t) &spi_base->TX, // Destination address
<> 149:156823d33999 349 PDMA_DAR_FIX); // Destination address fixed
<> 149:156823d33999 350 PDMA_SetBurstType(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 351 PDMA_REQ_SINGLE, // Single mode
<> 149:156823d33999 352 0); // Burst size
<> 149:156823d33999 353 PDMA_EnableInt(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 354 PDMA_INT_TRANS_DONE); // Interrupt type
<> 149:156823d33999 355 // Register DMA event handler
<> 149:156823d33999 356 dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
<> 149:156823d33999 357
<> 149:156823d33999 358 // Configure rx DMA
<> 161:2cc1468da177 359 pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel
<> 149:156823d33999 360 PDMA_SetTransferMode(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 361 ((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
<> 149:156823d33999 362 0, // Scatter-gather disabled
<> 149:156823d33999 363 0); // Scatter-gather descriptor address
<> 149:156823d33999 364 PDMA_SetTransferCnt(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 365 (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
<> 149:156823d33999 366 rx_length);
<> 149:156823d33999 367 PDMA_SetTransferAddr(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 368 (uint32_t) &spi_base->RX, // Source address
<> 149:156823d33999 369 PDMA_SAR_FIX, // Source address fixed
<> 149:156823d33999 370 (uint32_t) rx, // NOTE:
<> 149:156823d33999 371 // NUC472: End of destination address
<> 149:156823d33999 372 // M451: Start of destination address
<> 149:156823d33999 373 PDMA_DAR_INC); // Destination address incremental
<> 149:156823d33999 374 PDMA_SetBurstType(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 375 PDMA_REQ_SINGLE, // Single mode
<> 149:156823d33999 376 0); // Burst size
<> 149:156823d33999 377 PDMA_EnableInt(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 378 PDMA_INT_TRANS_DONE); // Interrupt type
<> 149:156823d33999 379 // Register DMA event handler
<> 149:156823d33999 380 dma_set_handler(obj->spi.dma_chn_id_rx, (uint32_t) spi_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL);
<> 149:156823d33999 381
<> 149:156823d33999 382 // Start tx/rx DMA transfer
<> 149:156823d33999 383 spi_enable_vector_interrupt(obj, handler, 1);
<> 149:156823d33999 384 // NOTE: It is safer to start rx DMA first and then tx DMA. Otherwise, receive FIFO is subject to overflow by tx DMA.
<> 149:156823d33999 385 SPI_TRIGGER_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 386 SPI_TRIGGER_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 387 spi_master_enable_interrupt(obj, 1);
<> 149:156823d33999 388 }
<> 149:156823d33999 389 }
<> 149:156823d33999 390
<> 149:156823d33999 391 /**
<> 149:156823d33999 392 * Abort an SPI transfer
<> 149:156823d33999 393 * This is a helper function for event handling. When any of the events listed occurs, the HAL will abort any ongoing
<> 149:156823d33999 394 * transfers
<> 149:156823d33999 395 * @param[in] obj The SPI peripheral to stop
<> 149:156823d33999 396 */
<> 149:156823d33999 397 void spi_abort_asynch(spi_t *obj)
<> 149:156823d33999 398 {
<> 149:156823d33999 399 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 161:2cc1468da177 400 PDMA_T *pdma_base = dma_modbase();
<> 149:156823d33999 401
<> 149:156823d33999 402 if (obj->spi.dma_usage != DMA_USAGE_NEVER) {
<> 149:156823d33999 403 // Receive FIFO Overrun in case of tx length > rx length on DMA way
<> 149:156823d33999 404 if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
<> 149:156823d33999 405 spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
<> 149:156823d33999 406 }
<> 149:156823d33999 407
<> 149:156823d33999 408 if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
<> 161:2cc1468da177 409 PDMA_DisableInt(obj->spi.dma_chn_id_tx, PDMA_INT_TRANS_DONE);
<> 149:156823d33999 410 // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
<> 149:156823d33999 411 //PDMA_STOP(obj->spi.dma_chn_id_tx);
<> 161:2cc1468da177 412 pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx);
<> 149:156823d33999 413 }
<> 149:156823d33999 414 SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 415
<> 149:156823d33999 416 if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
<> 161:2cc1468da177 417 PDMA_DisableInt(obj->spi.dma_chn_id_rx, PDMA_INT_TRANS_DONE);
<> 149:156823d33999 418 // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
<> 149:156823d33999 419 //PDMA_STOP(obj->spi.dma_chn_id_rx);
<> 161:2cc1468da177 420 pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx);
<> 149:156823d33999 421 }
<> 149:156823d33999 422 SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 423 }
<> 149:156823d33999 424
<> 149:156823d33999 425 // Necessary for both interrupt way and DMA way
<> 149:156823d33999 426 spi_enable_vector_interrupt(obj, 0, 0);
<> 149:156823d33999 427 spi_master_enable_interrupt(obj, 0);
<> 149:156823d33999 428
<> 149:156823d33999 429 // FIXME: SPI H/W may get out of state without the busy check.
<> 149:156823d33999 430 while (SPI_IS_BUSY(spi_base));
<> 149:156823d33999 431 SPI_DISABLE(spi_base);
<> 149:156823d33999 432
<> 149:156823d33999 433 SPI_ClearRxFIFO(spi_base);
<> 149:156823d33999 434 SPI_ClearTxFIFO(spi_base);
<> 149:156823d33999 435 }
<> 149:156823d33999 436
<> 149:156823d33999 437 /**
<> 149:156823d33999 438 * Handle the SPI interrupt
<> 149:156823d33999 439 * Read frames until the RX FIFO is empty. Write at most as many frames as were read. This way,
<> 149:156823d33999 440 * it is unlikely that the RX FIFO will overflow.
<> 149:156823d33999 441 * @param[in] obj The SPI peripheral that generated the interrupt
<> 149:156823d33999 442 * @return
<> 149:156823d33999 443 */
<> 149:156823d33999 444 uint32_t spi_irq_handler_asynch(spi_t *obj)
<> 149:156823d33999 445 {
<> 149:156823d33999 446 // Check for SPI events
<> 149:156823d33999 447 uint32_t event = spi_event_check(obj);
<> 149:156823d33999 448 if (event) {
<> 149:156823d33999 449 spi_abort_asynch(obj);
<> 149:156823d33999 450 }
<> 149:156823d33999 451
<> 149:156823d33999 452 return (obj->spi.event & event) | ((event & SPI_EVENT_COMPLETE) ? SPI_EVENT_INTERNAL_TRANSFER_COMPLETE : 0);
<> 149:156823d33999 453 }
<> 149:156823d33999 454
<> 149:156823d33999 455 uint8_t spi_active(spi_t *obj)
<> 149:156823d33999 456 {
<> 149:156823d33999 457 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 458 // FIXME
<> 149:156823d33999 459 /*
<> 149:156823d33999 460 if ((obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length)
<> 149:156823d33999 461 || (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) ){
<> 149:156823d33999 462 return 1;
<> 149:156823d33999 463 } else {
<> 149:156823d33999 464 // interrupts are disabled, all transaction have been completed
<> 149:156823d33999 465 // TODO: checking rx fifo, it reports data eventhough RFDF is not set
<> 149:156823d33999 466 return DSPI_HAL_GetIntMode(obj->spi.address, kDspiRxFifoDrainRequest);
<> 149:156823d33999 467 }*/
<> 149:156823d33999 468
<> 149:156823d33999 469 //return SPI_IS_BUSY(spi_base);
<> 149:156823d33999 470 return (spi_base->CTL & SPI_CTL_SPIEN_Msk);
<> 149:156823d33999 471 }
<> 149:156823d33999 472
<> 149:156823d33999 473 static int spi_writeable(spi_t * obj)
<> 149:156823d33999 474 {
<> 149:156823d33999 475 // Receive FIFO must not be full to avoid receive FIFO overflow on next transmit/receive
<> 149:156823d33999 476 //return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))) && (SPI_GET_RX_FIFO_COUNT(((SPI_T *) NU_MODBASE(obj->spi.spi))) < NU_SPI_FIFO_DEPTH);
<> 149:156823d33999 477 return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))));
<> 149:156823d33999 478 }
<> 149:156823d33999 479
<> 149:156823d33999 480 static int spi_readable(spi_t * obj)
<> 149:156823d33999 481 {
<> 149:156823d33999 482 return ! SPI_GET_RX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 483 }
<> 149:156823d33999 484
<> 149:156823d33999 485 static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable)
<> 149:156823d33999 486 {
<> 149:156823d33999 487 obj->spi.event &= ~SPI_EVENT_ALL;
<> 149:156823d33999 488 obj->spi.event |= (event & SPI_EVENT_ALL);
<> 149:156823d33999 489 if (event & SPI_EVENT_RX_OVERFLOW) {
<> 149:156823d33999 490 SPI_EnableInt((SPI_T *) NU_MODBASE(obj->spi.spi), SPI_FIFO_RXOV_INT_MASK);
<> 149:156823d33999 491 }
<> 149:156823d33999 492 }
<> 149:156823d33999 493
<> 149:156823d33999 494 static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable)
<> 149:156823d33999 495 {
<> 149:156823d33999 496 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 497 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 498 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 499
<> 149:156823d33999 500 if (enable) {
<> 149:156823d33999 501 NVIC_SetVector(modinit->irq_n, handler);
<> 149:156823d33999 502 NVIC_EnableIRQ(modinit->irq_n);
<> 149:156823d33999 503 }
<> 149:156823d33999 504 else {
<> 149:156823d33999 505 //NVIC_SetVector(modinit->irq_n, handler);
<> 149:156823d33999 506 NVIC_DisableIRQ(modinit->irq_n);
<> 149:156823d33999 507 }
<> 149:156823d33999 508 }
<> 149:156823d33999 509
<> 149:156823d33999 510 static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable)
<> 149:156823d33999 511 {
<> 149:156823d33999 512 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 513
<> 149:156823d33999 514 if (enable) {
<> 149:156823d33999 515 // For SPI0, it could be 0 ~ 7. For SPI1 and SPI2, it could be 0 ~ 3.
<> 149:156823d33999 516 if (spi_base == (SPI_T *) SPI0_BASE) {
<> 149:156823d33999 517 SPI_SetFIFO(spi_base, 4, 4);
<> 149:156823d33999 518 }
<> 149:156823d33999 519 else {
<> 149:156823d33999 520 SPI_SetFIFO(spi_base, 2, 2);
<> 149:156823d33999 521 }
<> 149:156823d33999 522 //SPI_SET_SUSPEND_CYCLE(spi_base, 4);
<> 149:156823d33999 523 // Enable tx/rx FIFO threshold interrupt
<> 149:156823d33999 524 SPI_EnableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK);
<> 149:156823d33999 525 }
<> 149:156823d33999 526 else {
<> 149:156823d33999 527 SPI_DisableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK);
<> 149:156823d33999 528 }
<> 149:156823d33999 529 }
<> 149:156823d33999 530
<> 149:156823d33999 531 static uint32_t spi_event_check(spi_t *obj)
<> 149:156823d33999 532 {
<> 149:156823d33999 533 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 534 uint32_t event = 0;
<> 149:156823d33999 535
<> 149:156823d33999 536 if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
<> 149:156823d33999 537 uint32_t n_rec = spi_master_read_asynch(obj);
<> 149:156823d33999 538 spi_master_write_asynch(obj, n_rec);
<> 149:156823d33999 539 }
<> 149:156823d33999 540
<> 149:156823d33999 541 if (spi_is_tx_complete(obj) && spi_is_rx_complete(obj)) {
<> 149:156823d33999 542 event |= SPI_EVENT_COMPLETE;
<> 149:156823d33999 543 }
<> 149:156823d33999 544
<> 149:156823d33999 545 // Receive FIFO Overrun
<> 149:156823d33999 546 if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
<> 149:156823d33999 547 spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
<> 149:156823d33999 548 // In case of tx length > rx length on DMA way
<> 149:156823d33999 549 if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
<> 149:156823d33999 550 event |= SPI_EVENT_RX_OVERFLOW;
<> 149:156823d33999 551 }
<> 149:156823d33999 552 }
<> 149:156823d33999 553
<> 149:156823d33999 554 // Receive Time-Out
<> 149:156823d33999 555 if (spi_base->STATUS & SPI_STATUS_RXTOIF_Msk) {
<> 149:156823d33999 556 spi_base->STATUS = SPI_STATUS_RXTOIF_Msk;
AnnaBridge 172:7d866c31b3c5 557 // Not using this IF. Just clear it.
<> 149:156823d33999 558 }
<> 149:156823d33999 559 // Transmit FIFO Under-Run
<> 149:156823d33999 560 if (spi_base->STATUS & SPI_STATUS_TXUFIF_Msk) {
<> 149:156823d33999 561 spi_base->STATUS = SPI_STATUS_TXUFIF_Msk;
<> 149:156823d33999 562 event |= SPI_EVENT_ERROR;
<> 149:156823d33999 563 }
<> 149:156823d33999 564
<> 149:156823d33999 565 return event;
<> 149:156823d33999 566 }
<> 149:156823d33999 567
<> 149:156823d33999 568 /**
<> 149:156823d33999 569 * Send words from the SPI TX buffer until the send limit is reached or the TX FIFO is full
<> 149:156823d33999 570 * tx_limit is provided to ensure that the number of SPI frames (words) in flight can be managed.
<> 149:156823d33999 571 * @param[in] obj The SPI object on which to operate
<> 149:156823d33999 572 * @param[in] tx_limit The maximum number of words to send
<> 149:156823d33999 573 * @return The number of SPI words that have been transfered
<> 149:156823d33999 574 */
<> 149:156823d33999 575 static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit)
<> 149:156823d33999 576 {
<> 149:156823d33999 577 uint32_t n_words = 0;
<> 149:156823d33999 578 uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
<> 149:156823d33999 579 uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
<> 149:156823d33999 580 uint32_t max_tx = NU_MAX(tx_rmn, rx_rmn);
<> 149:156823d33999 581 max_tx = NU_MIN(max_tx, tx_limit);
<> 149:156823d33999 582 uint8_t data_width = spi_get_data_width(obj);
<> 149:156823d33999 583 uint8_t bytes_per_word = (data_width + 7) / 8;
<> 149:156823d33999 584 uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos;
<> 149:156823d33999 585 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 586
<> 149:156823d33999 587 while ((n_words < max_tx) && spi_writeable(obj)) {
<> 149:156823d33999 588 if (spi_is_tx_complete(obj)) {
<> 149:156823d33999 589 // Transmit dummy as transmit buffer is empty
<> 149:156823d33999 590 SPI_WRITE_TX(spi_base, 0);
<> 149:156823d33999 591 }
<> 149:156823d33999 592 else {
<> 149:156823d33999 593 switch (bytes_per_word) {
<> 149:156823d33999 594 case 4:
<> 149:156823d33999 595 SPI_WRITE_TX(spi_base, nu_get32_le(tx));
<> 149:156823d33999 596 tx += 4;
<> 149:156823d33999 597 break;
<> 149:156823d33999 598 case 2:
<> 149:156823d33999 599 SPI_WRITE_TX(spi_base, nu_get16_le(tx));
<> 149:156823d33999 600 tx += 2;
<> 149:156823d33999 601 break;
<> 149:156823d33999 602 case 1:
<> 149:156823d33999 603 SPI_WRITE_TX(spi_base, *((uint8_t *) tx));
<> 149:156823d33999 604 tx += 1;
<> 149:156823d33999 605 break;
<> 149:156823d33999 606 }
<> 149:156823d33999 607
<> 149:156823d33999 608 obj->tx_buff.pos ++;
<> 149:156823d33999 609 }
<> 149:156823d33999 610 n_words ++;
<> 149:156823d33999 611 }
<> 149:156823d33999 612
<> 149:156823d33999 613 //Return the number of words that have been sent
<> 149:156823d33999 614 return n_words;
<> 149:156823d33999 615 }
<> 149:156823d33999 616
<> 149:156823d33999 617 /**
<> 149:156823d33999 618 * Read SPI words out of the RX FIFO
<> 149:156823d33999 619 * Continues reading words out of the RX FIFO until the following condition is met:
<> 149:156823d33999 620 * o There are no more words in the FIFO
<> 149:156823d33999 621 * OR BOTH OF:
<> 149:156823d33999 622 * o At least as many words as the TX buffer have been received
<> 149:156823d33999 623 * o At least as many words as the RX buffer have been received
<> 149:156823d33999 624 * This way, RX overflows are not generated when the TX buffer size exceeds the RX buffer size
<> 149:156823d33999 625 * @param[in] obj The SPI object on which to operate
<> 149:156823d33999 626 * @return Returns the number of words extracted from the RX FIFO
<> 149:156823d33999 627 */
<> 149:156823d33999 628 static uint32_t spi_master_read_asynch(spi_t *obj)
<> 149:156823d33999 629 {
<> 149:156823d33999 630 uint32_t n_words = 0;
<> 149:156823d33999 631 uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
<> 149:156823d33999 632 uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
<> 149:156823d33999 633 uint32_t max_rx = NU_MAX(tx_rmn, rx_rmn);
<> 149:156823d33999 634 uint8_t data_width = spi_get_data_width(obj);
<> 149:156823d33999 635 uint8_t bytes_per_word = (data_width + 7) / 8;
<> 149:156823d33999 636 uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos;
<> 149:156823d33999 637 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 638
<> 149:156823d33999 639 while ((n_words < max_rx) && spi_readable(obj)) {
<> 149:156823d33999 640 if (spi_is_rx_complete(obj)) {
<> 149:156823d33999 641 // Disregard as receive buffer is full
<> 149:156823d33999 642 SPI_READ_RX(spi_base);
<> 149:156823d33999 643 }
<> 149:156823d33999 644 else {
<> 149:156823d33999 645 switch (bytes_per_word) {
<> 149:156823d33999 646 case 4: {
<> 149:156823d33999 647 uint32_t val = SPI_READ_RX(spi_base);
<> 149:156823d33999 648 nu_set32_le(rx, val);
<> 149:156823d33999 649 rx += 4;
<> 149:156823d33999 650 break;
<> 149:156823d33999 651 }
<> 149:156823d33999 652 case 2: {
<> 149:156823d33999 653 uint16_t val = SPI_READ_RX(spi_base);
<> 149:156823d33999 654 nu_set16_le(rx, val);
<> 149:156823d33999 655 rx += 2;
<> 149:156823d33999 656 break;
<> 149:156823d33999 657 }
<> 149:156823d33999 658 case 1:
<> 149:156823d33999 659 *rx ++ = SPI_READ_RX(spi_base);
<> 149:156823d33999 660 break;
<> 149:156823d33999 661 }
<> 149:156823d33999 662
<> 149:156823d33999 663 obj->rx_buff.pos ++;
<> 149:156823d33999 664 }
<> 149:156823d33999 665 n_words ++;
<> 149:156823d33999 666 }
<> 149:156823d33999 667
<> 149:156823d33999 668 // Return the number of words received
<> 149:156823d33999 669 return n_words;
<> 149:156823d33999 670 }
<> 149:156823d33999 671
<> 149:156823d33999 672 static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length)
<> 149:156823d33999 673 {
<> 149:156823d33999 674 obj->tx_buff.buffer = (void *) tx;
<> 149:156823d33999 675 obj->tx_buff.length = tx_length;
<> 149:156823d33999 676 obj->tx_buff.pos = 0;
<> 149:156823d33999 677 obj->tx_buff.width = spi_get_data_width(obj);
<> 149:156823d33999 678 obj->rx_buff.buffer = rx;
<> 149:156823d33999 679 obj->rx_buff.length = rx_length;
<> 149:156823d33999 680 obj->rx_buff.pos = 0;
<> 149:156823d33999 681 obj->rx_buff.width = spi_get_data_width(obj);
<> 149:156823d33999 682 }
<> 149:156823d33999 683
<> 149:156823d33999 684 static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx)
<> 149:156823d33999 685 {
<> 149:156823d33999 686 if (*dma_usage != DMA_USAGE_NEVER) {
<> 149:156823d33999 687 if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 688 *dma_ch_tx = dma_channel_allocate(DMA_CAP_NONE);
<> 149:156823d33999 689 }
<> 149:156823d33999 690 if (*dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 691 *dma_ch_rx = dma_channel_allocate(DMA_CAP_NONE);
<> 149:156823d33999 692 }
<> 149:156823d33999 693
<> 149:156823d33999 694 if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS || *dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 695 *dma_usage = DMA_USAGE_NEVER;
<> 149:156823d33999 696 }
<> 149:156823d33999 697 }
<> 149:156823d33999 698
<> 149:156823d33999 699 if (*dma_usage == DMA_USAGE_NEVER) {
<> 149:156823d33999 700 dma_channel_free(*dma_ch_tx);
<> 149:156823d33999 701 *dma_ch_tx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 702 dma_channel_free(*dma_ch_rx);
<> 149:156823d33999 703 *dma_ch_rx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 704 }
<> 149:156823d33999 705 }
<> 149:156823d33999 706
<> 149:156823d33999 707 static uint8_t spi_get_data_width(spi_t *obj)
<> 149:156823d33999 708 {
<> 149:156823d33999 709 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 710
<> 153:fa9ff456f731 711 uint32_t data_width = ((spi_base->CTL & SPI_CTL_DWIDTH_Msk) >> SPI_CTL_DWIDTH_Pos);
<> 153:fa9ff456f731 712 if (data_width == 0) {
<> 153:fa9ff456f731 713 data_width = 32;
<> 153:fa9ff456f731 714 }
<> 153:fa9ff456f731 715
<> 153:fa9ff456f731 716 return data_width;
<> 149:156823d33999 717 }
<> 149:156823d33999 718
<> 149:156823d33999 719 static int spi_is_tx_complete(spi_t *obj)
<> 149:156823d33999 720 {
<> 149:156823d33999 721 // ???: Exclude tx fifo empty check due to no such interrupt on DMA way
<> 149:156823d33999 722 return (obj->tx_buff.pos == obj->tx_buff.length);
<> 149:156823d33999 723 //return (obj->tx_buff.pos == obj->tx_buff.length && SPI_GET_TX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))));
<> 149:156823d33999 724 }
<> 149:156823d33999 725
<> 149:156823d33999 726 static int spi_is_rx_complete(spi_t *obj)
<> 149:156823d33999 727 {
<> 149:156823d33999 728 return (obj->rx_buff.pos == obj->rx_buff.length);
<> 149:156823d33999 729 }
<> 149:156823d33999 730
<> 149:156823d33999 731 static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma)
<> 149:156823d33999 732 {
<> 149:156823d33999 733 spi_t *obj = (spi_t *) id;
<> 149:156823d33999 734
<> 149:156823d33999 735 // FIXME: Pass this error to caller
<> 149:156823d33999 736 if (event_dma & DMA_EVENT_ABORT) {
<> 149:156823d33999 737 }
<> 149:156823d33999 738 // Expect SPI IRQ will catch this transfer done event
<> 149:156823d33999 739 if (event_dma & DMA_EVENT_TRANSFER_DONE) {
<> 149:156823d33999 740 obj->tx_buff.pos = obj->tx_buff.length;
<> 149:156823d33999 741 }
<> 149:156823d33999 742 // FIXME: Pass this error to caller
<> 149:156823d33999 743 if (event_dma & DMA_EVENT_TIMEOUT) {
<> 149:156823d33999 744 }
<> 149:156823d33999 745
<> 149:156823d33999 746 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 747 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 748 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 749
<> 149:156823d33999 750 void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
<> 149:156823d33999 751 vec();
<> 149:156823d33999 752 }
<> 149:156823d33999 753
<> 149:156823d33999 754 static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma)
<> 149:156823d33999 755 {
<> 149:156823d33999 756 spi_t *obj = (spi_t *) id;
<> 149:156823d33999 757
<> 149:156823d33999 758 // FIXME: Pass this error to caller
<> 149:156823d33999 759 if (event_dma & DMA_EVENT_ABORT) {
<> 149:156823d33999 760 }
<> 149:156823d33999 761 // Expect SPI IRQ will catch this transfer done event
<> 149:156823d33999 762 if (event_dma & DMA_EVENT_TRANSFER_DONE) {
<> 149:156823d33999 763 obj->rx_buff.pos = obj->rx_buff.length;
<> 149:156823d33999 764 }
<> 149:156823d33999 765 // FIXME: Pass this error to caller
<> 149:156823d33999 766 if (event_dma & DMA_EVENT_TIMEOUT) {
<> 149:156823d33999 767 }
<> 149:156823d33999 768
<> 149:156823d33999 769 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 770 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 771 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 772
<> 149:156823d33999 773 void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
<> 149:156823d33999 774 vec();
<> 149:156823d33999 775 }
<> 149:156823d33999 776
<> 149:156823d33999 777 #endif
<> 149:156823d33999 778
<> 149:156823d33999 779 #endif