Committer:
mbed714
Date:
Sat Sep 18 23:05:49 2010 +0000
Revision:
0:d616ece2d859

        

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mbed714 0:d616ece2d859 1 /**
mbed714 0:d616ece2d859 2 * @file
mbed714 0:d616ece2d859 3 * Dynamic memory manager
mbed714 0:d616ece2d859 4 *
mbed714 0:d616ece2d859 5 * This is a lightweight replacement for the standard C library malloc().
mbed714 0:d616ece2d859 6 *
mbed714 0:d616ece2d859 7 * If you want to use the standard C library malloc() instead, define
mbed714 0:d616ece2d859 8 * MEM_LIBC_MALLOC to 1 in your lwipopts.h
mbed714 0:d616ece2d859 9 *
mbed714 0:d616ece2d859 10 * To let mem_malloc() use pools (prevents fragmentation and is much faster than
mbed714 0:d616ece2d859 11 * a heap but might waste some memory), define MEM_USE_POOLS to 1, define
mbed714 0:d616ece2d859 12 * MEM_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list
mbed714 0:d616ece2d859 13 * of pools like this (more pools can be added between _START and _END):
mbed714 0:d616ece2d859 14 *
mbed714 0:d616ece2d859 15 * Define three pools with sizes 256, 512, and 1512 bytes
mbed714 0:d616ece2d859 16 * LWIP_MALLOC_MEMPOOL_START
mbed714 0:d616ece2d859 17 * LWIP_MALLOC_MEMPOOL(20, 256)
mbed714 0:d616ece2d859 18 * LWIP_MALLOC_MEMPOOL(10, 512)
mbed714 0:d616ece2d859 19 * LWIP_MALLOC_MEMPOOL(5, 1512)
mbed714 0:d616ece2d859 20 * LWIP_MALLOC_MEMPOOL_END
mbed714 0:d616ece2d859 21 */
mbed714 0:d616ece2d859 22
mbed714 0:d616ece2d859 23 /*
mbed714 0:d616ece2d859 24 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
mbed714 0:d616ece2d859 25 * All rights reserved.
mbed714 0:d616ece2d859 26 *
mbed714 0:d616ece2d859 27 * Redistribution and use in source and binary forms, with or without modification,
mbed714 0:d616ece2d859 28 * are permitted provided that the following conditions are met:
mbed714 0:d616ece2d859 29 *
mbed714 0:d616ece2d859 30 * 1. Redistributions of source code must retain the above copyright notice,
mbed714 0:d616ece2d859 31 * this list of conditions and the following disclaimer.
mbed714 0:d616ece2d859 32 * 2. Redistributions in binary form must reproduce the above copyright notice,
mbed714 0:d616ece2d859 33 * this list of conditions and the following disclaimer in the documentation
mbed714 0:d616ece2d859 34 * and/or other materials provided with the distribution.
mbed714 0:d616ece2d859 35 * 3. The name of the author may not be used to endorse or promote products
mbed714 0:d616ece2d859 36 * derived from this software without specific prior written permission.
mbed714 0:d616ece2d859 37 *
mbed714 0:d616ece2d859 38 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
mbed714 0:d616ece2d859 39 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
mbed714 0:d616ece2d859 40 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
mbed714 0:d616ece2d859 41 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
mbed714 0:d616ece2d859 42 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
mbed714 0:d616ece2d859 43 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
mbed714 0:d616ece2d859 44 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
mbed714 0:d616ece2d859 45 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
mbed714 0:d616ece2d859 46 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
mbed714 0:d616ece2d859 47 * OF SUCH DAMAGE.
mbed714 0:d616ece2d859 48 *
mbed714 0:d616ece2d859 49 * This file is part of the lwIP TCP/IP stack.
mbed714 0:d616ece2d859 50 *
mbed714 0:d616ece2d859 51 * Author: Adam Dunkels <adam@sics.se>
mbed714 0:d616ece2d859 52 * Simon Goldschmidt
mbed714 0:d616ece2d859 53 *
mbed714 0:d616ece2d859 54 */
mbed714 0:d616ece2d859 55
mbed714 0:d616ece2d859 56 #include "lwip/opt.h"
mbed714 0:d616ece2d859 57
mbed714 0:d616ece2d859 58 #if !MEM_LIBC_MALLOC /* don't build if not configured for use in lwipopts.h */
mbed714 0:d616ece2d859 59
mbed714 0:d616ece2d859 60 #include "lwip/def.h"
mbed714 0:d616ece2d859 61 #include "lwip/mem.h"
mbed714 0:d616ece2d859 62 #include "lwip/sys.h"
mbed714 0:d616ece2d859 63 #include "lwip/stats.h"
mbed714 0:d616ece2d859 64 #include "lwip/err.h"
mbed714 0:d616ece2d859 65
mbed714 0:d616ece2d859 66 #include <string.h>
mbed714 0:d616ece2d859 67
mbed714 0:d616ece2d859 68 #if MEM_USE_POOLS
mbed714 0:d616ece2d859 69 /* lwIP head implemented with different sized pools */
mbed714 0:d616ece2d859 70
mbed714 0:d616ece2d859 71 /**
mbed714 0:d616ece2d859 72 * Allocate memory: determine the smallest pool that is big enough
mbed714 0:d616ece2d859 73 * to contain an element of 'size' and get an element from that pool.
mbed714 0:d616ece2d859 74 *
mbed714 0:d616ece2d859 75 * @param size the size in bytes of the memory needed
mbed714 0:d616ece2d859 76 * @return a pointer to the allocated memory or NULL if the pool is empty
mbed714 0:d616ece2d859 77 */
mbed714 0:d616ece2d859 78 void *
mbed714 0:d616ece2d859 79 mem_malloc(mem_size_t size)
mbed714 0:d616ece2d859 80 {
mbed714 0:d616ece2d859 81 struct memp_malloc_helper *element;
mbed714 0:d616ece2d859 82 memp_t poolnr;
mbed714 0:d616ece2d859 83 mem_size_t required_size = size + sizeof(struct memp_malloc_helper);
mbed714 0:d616ece2d859 84
mbed714 0:d616ece2d859 85 for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) {
mbed714 0:d616ece2d859 86 #if MEM_USE_POOLS_TRY_BIGGER_POOL
mbed714 0:d616ece2d859 87 again:
mbed714 0:d616ece2d859 88 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
mbed714 0:d616ece2d859 89 /* is this pool big enough to hold an element of the required size
mbed714 0:d616ece2d859 90 plus a struct memp_malloc_helper that saves the pool this element came from? */
mbed714 0:d616ece2d859 91 if (required_size <= memp_sizes[poolnr]) {
mbed714 0:d616ece2d859 92 break;
mbed714 0:d616ece2d859 93 }
mbed714 0:d616ece2d859 94 }
mbed714 0:d616ece2d859 95 if (poolnr > MEMP_POOL_LAST) {
mbed714 0:d616ece2d859 96 LWIP_ASSERT("mem_malloc(): no pool is that big!", 0);
mbed714 0:d616ece2d859 97 return NULL;
mbed714 0:d616ece2d859 98 }
mbed714 0:d616ece2d859 99 element = (struct memp_malloc_helper*)memp_malloc(poolnr);
mbed714 0:d616ece2d859 100 if (element == NULL) {
mbed714 0:d616ece2d859 101 /* No need to DEBUGF or ASSERT: This error is already
mbed714 0:d616ece2d859 102 taken care of in memp.c */
mbed714 0:d616ece2d859 103 #if MEM_USE_POOLS_TRY_BIGGER_POOL
mbed714 0:d616ece2d859 104 /** Try a bigger pool if this one is empty! */
mbed714 0:d616ece2d859 105 if (poolnr < MEMP_POOL_LAST) {
mbed714 0:d616ece2d859 106 poolnr++;
mbed714 0:d616ece2d859 107 goto again;
mbed714 0:d616ece2d859 108 }
mbed714 0:d616ece2d859 109 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
mbed714 0:d616ece2d859 110 return NULL;
mbed714 0:d616ece2d859 111 }
mbed714 0:d616ece2d859 112
mbed714 0:d616ece2d859 113 /* save the pool number this element came from */
mbed714 0:d616ece2d859 114 element->poolnr = poolnr;
mbed714 0:d616ece2d859 115 /* and return a pointer to the memory directly after the struct memp_malloc_helper */
mbed714 0:d616ece2d859 116 element++;
mbed714 0:d616ece2d859 117
mbed714 0:d616ece2d859 118 return element;
mbed714 0:d616ece2d859 119 }
mbed714 0:d616ece2d859 120
mbed714 0:d616ece2d859 121 /**
mbed714 0:d616ece2d859 122 * Free memory previously allocated by mem_malloc. Loads the pool number
mbed714 0:d616ece2d859 123 * and calls memp_free with that pool number to put the element back into
mbed714 0:d616ece2d859 124 * its pool
mbed714 0:d616ece2d859 125 *
mbed714 0:d616ece2d859 126 * @param rmem the memory element to free
mbed714 0:d616ece2d859 127 */
mbed714 0:d616ece2d859 128 void
mbed714 0:d616ece2d859 129 mem_free(void *rmem)
mbed714 0:d616ece2d859 130 {
mbed714 0:d616ece2d859 131 struct memp_malloc_helper *hmem = (struct memp_malloc_helper*)rmem;
mbed714 0:d616ece2d859 132
mbed714 0:d616ece2d859 133 LWIP_ASSERT("rmem != NULL", (rmem != NULL));
mbed714 0:d616ece2d859 134 LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
mbed714 0:d616ece2d859 135
mbed714 0:d616ece2d859 136 /* get the original struct memp_malloc_helper */
mbed714 0:d616ece2d859 137 hmem--;
mbed714 0:d616ece2d859 138
mbed714 0:d616ece2d859 139 LWIP_ASSERT("hmem != NULL", (hmem != NULL));
mbed714 0:d616ece2d859 140 LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem)));
mbed714 0:d616ece2d859 141 LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX));
mbed714 0:d616ece2d859 142
mbed714 0:d616ece2d859 143 /* and put it in the pool we saved earlier */
mbed714 0:d616ece2d859 144 memp_free(hmem->poolnr, hmem);
mbed714 0:d616ece2d859 145 }
mbed714 0:d616ece2d859 146
mbed714 0:d616ece2d859 147 #else /* MEM_USE_POOLS */
mbed714 0:d616ece2d859 148 /* lwIP replacement for your libc malloc() */
mbed714 0:d616ece2d859 149
mbed714 0:d616ece2d859 150 /**
mbed714 0:d616ece2d859 151 * The heap is made up as a list of structs of this type.
mbed714 0:d616ece2d859 152 * This does not have to be aligned since for getting its size,
mbed714 0:d616ece2d859 153 * we only use the macro SIZEOF_STRUCT_MEM, which automatically alignes.
mbed714 0:d616ece2d859 154 */
mbed714 0:d616ece2d859 155 struct mem {
mbed714 0:d616ece2d859 156 /** index (-> ram[next]) of the next struct */
mbed714 0:d616ece2d859 157 mem_size_t next;
mbed714 0:d616ece2d859 158 /** index (-> ram[prev]) of the previous struct */
mbed714 0:d616ece2d859 159 mem_size_t prev;
mbed714 0:d616ece2d859 160 /** 1: this area is used; 0: this area is unused */
mbed714 0:d616ece2d859 161 u8_t used;
mbed714 0:d616ece2d859 162 };
mbed714 0:d616ece2d859 163
mbed714 0:d616ece2d859 164 /** All allocated blocks will be MIN_SIZE bytes big, at least!
mbed714 0:d616ece2d859 165 * MIN_SIZE can be overridden to suit your needs. Smaller values save space,
mbed714 0:d616ece2d859 166 * larger values could prevent too small blocks to fragment the RAM too much. */
mbed714 0:d616ece2d859 167 #ifndef MIN_SIZE
mbed714 0:d616ece2d859 168 #define MIN_SIZE 12
mbed714 0:d616ece2d859 169 #endif /* MIN_SIZE */
mbed714 0:d616ece2d859 170 /* some alignment macros: we define them here for better source code layout */
mbed714 0:d616ece2d859 171 #define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE)
mbed714 0:d616ece2d859 172 #define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem))
mbed714 0:d616ece2d859 173 #define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE)
mbed714 0:d616ece2d859 174
mbed714 0:d616ece2d859 175 /** If you want to relocate the heap to external memory, simply define
mbed714 0:d616ece2d859 176 * LWIP_RAM_HEAP_POINTER as a void-pointer to that location.
mbed714 0:d616ece2d859 177 * If so, make sure the memory at that location is big enough (see below on
mbed714 0:d616ece2d859 178 * how that space is calculated). */
mbed714 0:d616ece2d859 179 #ifndef LWIP_RAM_HEAP_POINTER
mbed714 0:d616ece2d859 180 /** the heap. we need one struct mem at the end and some room for alignment */
mbed714 0:d616ece2d859 181 u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT] MEM_POSITION;
mbed714 0:d616ece2d859 182 #define LWIP_RAM_HEAP_POINTER ram_heap
mbed714 0:d616ece2d859 183 #endif /* LWIP_RAM_HEAP_POINTER */
mbed714 0:d616ece2d859 184
mbed714 0:d616ece2d859 185 /** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */
mbed714 0:d616ece2d859 186 static u8_t *ram;
mbed714 0:d616ece2d859 187 /** the last entry, always unused! */
mbed714 0:d616ece2d859 188 static struct mem *ram_end;
mbed714 0:d616ece2d859 189 /** pointer to the lowest free block, this is used for faster search */
mbed714 0:d616ece2d859 190 static struct mem *lfree;
mbed714 0:d616ece2d859 191
mbed714 0:d616ece2d859 192 /** concurrent access protection */
mbed714 0:d616ece2d859 193 static sys_mutex_t mem_mutex;
mbed714 0:d616ece2d859 194
mbed714 0:d616ece2d859 195 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mbed714 0:d616ece2d859 196
mbed714 0:d616ece2d859 197 static volatile u8_t mem_free_count;
mbed714 0:d616ece2d859 198
mbed714 0:d616ece2d859 199 /* Allow mem_free from other (e.g. interrupt) context */
mbed714 0:d616ece2d859 200 #define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free)
mbed714 0:d616ece2d859 201 #define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free)
mbed714 0:d616ece2d859 202 #define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free)
mbed714 0:d616ece2d859 203 #define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc)
mbed714 0:d616ece2d859 204 #define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc)
mbed714 0:d616ece2d859 205 #define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc)
mbed714 0:d616ece2d859 206
mbed714 0:d616ece2d859 207 #else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
mbed714 0:d616ece2d859 208
mbed714 0:d616ece2d859 209 /* Protect the heap only by using a semaphore */
mbed714 0:d616ece2d859 210 #define LWIP_MEM_FREE_DECL_PROTECT()
mbed714 0:d616ece2d859 211 #define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex)
mbed714 0:d616ece2d859 212 #define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex)
mbed714 0:d616ece2d859 213 /* mem_malloc is protected using semaphore AND LWIP_MEM_ALLOC_PROTECT */
mbed714 0:d616ece2d859 214 #define LWIP_MEM_ALLOC_DECL_PROTECT()
mbed714 0:d616ece2d859 215 #define LWIP_MEM_ALLOC_PROTECT()
mbed714 0:d616ece2d859 216 #define LWIP_MEM_ALLOC_UNPROTECT()
mbed714 0:d616ece2d859 217
mbed714 0:d616ece2d859 218 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
mbed714 0:d616ece2d859 219
mbed714 0:d616ece2d859 220
mbed714 0:d616ece2d859 221 /**
mbed714 0:d616ece2d859 222 * "Plug holes" by combining adjacent empty struct mems.
mbed714 0:d616ece2d859 223 * After this function is through, there should not exist
mbed714 0:d616ece2d859 224 * one empty struct mem pointing to another empty struct mem.
mbed714 0:d616ece2d859 225 *
mbed714 0:d616ece2d859 226 * @param mem this points to a struct mem which just has been freed
mbed714 0:d616ece2d859 227 * @internal this function is only called by mem_free() and mem_trim()
mbed714 0:d616ece2d859 228 *
mbed714 0:d616ece2d859 229 * This assumes access to the heap is protected by the calling function
mbed714 0:d616ece2d859 230 * already.
mbed714 0:d616ece2d859 231 */
mbed714 0:d616ece2d859 232 static void
mbed714 0:d616ece2d859 233 plug_holes(struct mem *mem)
mbed714 0:d616ece2d859 234 {
mbed714 0:d616ece2d859 235 struct mem *nmem;
mbed714 0:d616ece2d859 236 struct mem *pmem;
mbed714 0:d616ece2d859 237
mbed714 0:d616ece2d859 238 LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram);
mbed714 0:d616ece2d859 239 LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end);
mbed714 0:d616ece2d859 240 LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0);
mbed714 0:d616ece2d859 241
mbed714 0:d616ece2d859 242 /* plug hole forward */
mbed714 0:d616ece2d859 243 LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED);
mbed714 0:d616ece2d859 244
mbed714 0:d616ece2d859 245 nmem = (struct mem *)(void *)&ram[mem->next];
mbed714 0:d616ece2d859 246 if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) {
mbed714 0:d616ece2d859 247 /* if mem->next is unused and not end of ram, combine mem and mem->next */
mbed714 0:d616ece2d859 248 if (lfree == nmem) {
mbed714 0:d616ece2d859 249 lfree = mem;
mbed714 0:d616ece2d859 250 }
mbed714 0:d616ece2d859 251 mem->next = nmem->next;
mbed714 0:d616ece2d859 252 ((struct mem *)(void *)&ram[nmem->next])->prev = (mem_size_t)((u8_t *)mem - ram);
mbed714 0:d616ece2d859 253 }
mbed714 0:d616ece2d859 254
mbed714 0:d616ece2d859 255 /* plug hole backward */
mbed714 0:d616ece2d859 256 pmem = (struct mem *)(void *)&ram[mem->prev];
mbed714 0:d616ece2d859 257 if (pmem != mem && pmem->used == 0) {
mbed714 0:d616ece2d859 258 /* if mem->prev is unused, combine mem and mem->prev */
mbed714 0:d616ece2d859 259 if (lfree == mem) {
mbed714 0:d616ece2d859 260 lfree = pmem;
mbed714 0:d616ece2d859 261 }
mbed714 0:d616ece2d859 262 pmem->next = mem->next;
mbed714 0:d616ece2d859 263 ((struct mem *)(void *)&ram[mem->next])->prev = (mem_size_t)((u8_t *)pmem - ram);
mbed714 0:d616ece2d859 264 }
mbed714 0:d616ece2d859 265 }
mbed714 0:d616ece2d859 266
mbed714 0:d616ece2d859 267 /**
mbed714 0:d616ece2d859 268 * Zero the heap and initialize start, end and lowest-free
mbed714 0:d616ece2d859 269 */
mbed714 0:d616ece2d859 270 void
mbed714 0:d616ece2d859 271 mem_init(void)
mbed714 0:d616ece2d859 272 {
mbed714 0:d616ece2d859 273 struct mem *mem;
mbed714 0:d616ece2d859 274
mbed714 0:d616ece2d859 275 LWIP_ASSERT("Sanity check alignment",
mbed714 0:d616ece2d859 276 (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0);
mbed714 0:d616ece2d859 277
mbed714 0:d616ece2d859 278 /* align the heap */
mbed714 0:d616ece2d859 279 ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER);
mbed714 0:d616ece2d859 280 /* initialize the start of the heap */
mbed714 0:d616ece2d859 281 mem = (struct mem *)(void *)ram;
mbed714 0:d616ece2d859 282 mem->next = MEM_SIZE_ALIGNED;
mbed714 0:d616ece2d859 283 mem->prev = 0;
mbed714 0:d616ece2d859 284 mem->used = 0;
mbed714 0:d616ece2d859 285 /* initialize the end of the heap */
mbed714 0:d616ece2d859 286 ram_end = (struct mem *)(void *)&ram[MEM_SIZE_ALIGNED];
mbed714 0:d616ece2d859 287 ram_end->used = 1;
mbed714 0:d616ece2d859 288 ram_end->next = MEM_SIZE_ALIGNED;
mbed714 0:d616ece2d859 289 ram_end->prev = MEM_SIZE_ALIGNED;
mbed714 0:d616ece2d859 290
mbed714 0:d616ece2d859 291 /* initialize the lowest-free pointer to the start of the heap */
mbed714 0:d616ece2d859 292 lfree = (struct mem *)(void *)ram;
mbed714 0:d616ece2d859 293
mbed714 0:d616ece2d859 294 MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED);
mbed714 0:d616ece2d859 295
mbed714 0:d616ece2d859 296 if(sys_mutex_new(&mem_mutex) != ERR_OK) {
mbed714 0:d616ece2d859 297 LWIP_ASSERT("failed to create mem_mutex", 0);
mbed714 0:d616ece2d859 298 }
mbed714 0:d616ece2d859 299 }
mbed714 0:d616ece2d859 300
mbed714 0:d616ece2d859 301 /**
mbed714 0:d616ece2d859 302 * Put a struct mem back on the heap
mbed714 0:d616ece2d859 303 *
mbed714 0:d616ece2d859 304 * @param rmem is the data portion of a struct mem as returned by a previous
mbed714 0:d616ece2d859 305 * call to mem_malloc()
mbed714 0:d616ece2d859 306 */
mbed714 0:d616ece2d859 307 void
mbed714 0:d616ece2d859 308 mem_free(void *rmem)
mbed714 0:d616ece2d859 309 {
mbed714 0:d616ece2d859 310 struct mem *mem;
mbed714 0:d616ece2d859 311 LWIP_MEM_FREE_DECL_PROTECT();
mbed714 0:d616ece2d859 312
mbed714 0:d616ece2d859 313 if (rmem == NULL) {
mbed714 0:d616ece2d859 314 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n"));
mbed714 0:d616ece2d859 315 return;
mbed714 0:d616ece2d859 316 }
mbed714 0:d616ece2d859 317 LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0);
mbed714 0:d616ece2d859 318
mbed714 0:d616ece2d859 319 LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
mbed714 0:d616ece2d859 320 (u8_t *)rmem < (u8_t *)ram_end);
mbed714 0:d616ece2d859 321
mbed714 0:d616ece2d859 322 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
mbed714 0:d616ece2d859 323 SYS_ARCH_DECL_PROTECT(lev);
mbed714 0:d616ece2d859 324 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n"));
mbed714 0:d616ece2d859 325 /* protect mem stats from concurrent access */
mbed714 0:d616ece2d859 326 SYS_ARCH_PROTECT(lev);
mbed714 0:d616ece2d859 327 MEM_STATS_INC(illegal);
mbed714 0:d616ece2d859 328 SYS_ARCH_UNPROTECT(lev);
mbed714 0:d616ece2d859 329 return;
mbed714 0:d616ece2d859 330 }
mbed714 0:d616ece2d859 331 /* protect the heap from concurrent access */
mbed714 0:d616ece2d859 332 LWIP_MEM_FREE_PROTECT();
mbed714 0:d616ece2d859 333 /* Get the corresponding struct mem ... */
mbed714 0:d616ece2d859 334 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
mbed714 0:d616ece2d859 335 /* ... which has to be in a used state ... */
mbed714 0:d616ece2d859 336 LWIP_ASSERT("mem_free: mem->used", mem->used);
mbed714 0:d616ece2d859 337 /* ... and is now unused. */
mbed714 0:d616ece2d859 338 mem->used = 0;
mbed714 0:d616ece2d859 339
mbed714 0:d616ece2d859 340 if (mem < lfree) {
mbed714 0:d616ece2d859 341 /* the newly freed struct is now the lowest */
mbed714 0:d616ece2d859 342 lfree = mem;
mbed714 0:d616ece2d859 343 }
mbed714 0:d616ece2d859 344
mbed714 0:d616ece2d859 345 MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram)));
mbed714 0:d616ece2d859 346
mbed714 0:d616ece2d859 347 /* finally, see if prev or next are free also */
mbed714 0:d616ece2d859 348 plug_holes(mem);
mbed714 0:d616ece2d859 349 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mbed714 0:d616ece2d859 350 mem_free_count = 1;
mbed714 0:d616ece2d859 351 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
mbed714 0:d616ece2d859 352 LWIP_MEM_FREE_UNPROTECT();
mbed714 0:d616ece2d859 353 }
mbed714 0:d616ece2d859 354
mbed714 0:d616ece2d859 355 /**
mbed714 0:d616ece2d859 356 * Shrink memory returned by mem_malloc().
mbed714 0:d616ece2d859 357 *
mbed714 0:d616ece2d859 358 * @param rmem pointer to memory allocated by mem_malloc the is to be shrinked
mbed714 0:d616ece2d859 359 * @param newsize required size after shrinking (needs to be smaller than or
mbed714 0:d616ece2d859 360 * equal to the previous size)
mbed714 0:d616ece2d859 361 * @return for compatibility reasons: is always == rmem, at the moment
mbed714 0:d616ece2d859 362 * or NULL if newsize is > old size, in which case rmem is NOT touched
mbed714 0:d616ece2d859 363 * or freed!
mbed714 0:d616ece2d859 364 */
mbed714 0:d616ece2d859 365 void *
mbed714 0:d616ece2d859 366 mem_trim(void *rmem, mem_size_t newsize)
mbed714 0:d616ece2d859 367 {
mbed714 0:d616ece2d859 368 mem_size_t size;
mbed714 0:d616ece2d859 369 mem_size_t ptr, ptr2;
mbed714 0:d616ece2d859 370 struct mem *mem, *mem2;
mbed714 0:d616ece2d859 371 /* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */
mbed714 0:d616ece2d859 372 LWIP_MEM_FREE_DECL_PROTECT();
mbed714 0:d616ece2d859 373
mbed714 0:d616ece2d859 374 /* Expand the size of the allocated memory region so that we can
mbed714 0:d616ece2d859 375 adjust for alignment. */
mbed714 0:d616ece2d859 376 newsize = LWIP_MEM_ALIGN_SIZE(newsize);
mbed714 0:d616ece2d859 377
mbed714 0:d616ece2d859 378 if(newsize < MIN_SIZE_ALIGNED) {
mbed714 0:d616ece2d859 379 /* every data block must be at least MIN_SIZE_ALIGNED long */
mbed714 0:d616ece2d859 380 newsize = MIN_SIZE_ALIGNED;
mbed714 0:d616ece2d859 381 }
mbed714 0:d616ece2d859 382
mbed714 0:d616ece2d859 383 if (newsize > MEM_SIZE_ALIGNED) {
mbed714 0:d616ece2d859 384 return NULL;
mbed714 0:d616ece2d859 385 }
mbed714 0:d616ece2d859 386
mbed714 0:d616ece2d859 387 LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
mbed714 0:d616ece2d859 388 (u8_t *)rmem < (u8_t *)ram_end);
mbed714 0:d616ece2d859 389
mbed714 0:d616ece2d859 390 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
mbed714 0:d616ece2d859 391 SYS_ARCH_DECL_PROTECT(lev);
mbed714 0:d616ece2d859 392 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n"));
mbed714 0:d616ece2d859 393 /* protect mem stats from concurrent access */
mbed714 0:d616ece2d859 394 SYS_ARCH_PROTECT(lev);
mbed714 0:d616ece2d859 395 MEM_STATS_INC(illegal);
mbed714 0:d616ece2d859 396 SYS_ARCH_UNPROTECT(lev);
mbed714 0:d616ece2d859 397 return rmem;
mbed714 0:d616ece2d859 398 }
mbed714 0:d616ece2d859 399 /* Get the corresponding struct mem ... */
mbed714 0:d616ece2d859 400 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
mbed714 0:d616ece2d859 401 /* ... and its offset pointer */
mbed714 0:d616ece2d859 402 ptr = (mem_size_t)((u8_t *)mem - ram);
mbed714 0:d616ece2d859 403
mbed714 0:d616ece2d859 404 size = mem->next - ptr - SIZEOF_STRUCT_MEM;
mbed714 0:d616ece2d859 405 LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size);
mbed714 0:d616ece2d859 406 if (newsize > size) {
mbed714 0:d616ece2d859 407 /* not supported */
mbed714 0:d616ece2d859 408 return NULL;
mbed714 0:d616ece2d859 409 }
mbed714 0:d616ece2d859 410 if (newsize == size) {
mbed714 0:d616ece2d859 411 /* No change in size, simply return */
mbed714 0:d616ece2d859 412 return rmem;
mbed714 0:d616ece2d859 413 }
mbed714 0:d616ece2d859 414
mbed714 0:d616ece2d859 415 /* protect the heap from concurrent access */
mbed714 0:d616ece2d859 416 LWIP_MEM_FREE_PROTECT();
mbed714 0:d616ece2d859 417
mbed714 0:d616ece2d859 418 mem2 = (struct mem *)(void *)&ram[mem->next];
mbed714 0:d616ece2d859 419 if(mem2->used == 0) {
mbed714 0:d616ece2d859 420 /* The next struct is unused, we can simply move it at little */
mbed714 0:d616ece2d859 421 mem_size_t next;
mbed714 0:d616ece2d859 422 /* remember the old next pointer */
mbed714 0:d616ece2d859 423 next = mem2->next;
mbed714 0:d616ece2d859 424 /* create new struct mem which is moved directly after the shrinked mem */
mbed714 0:d616ece2d859 425 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
mbed714 0:d616ece2d859 426 if (lfree == mem2) {
mbed714 0:d616ece2d859 427 lfree = (struct mem *)(void *)&ram[ptr2];
mbed714 0:d616ece2d859 428 }
mbed714 0:d616ece2d859 429 mem2 = (struct mem *)(void *)&ram[ptr2];
mbed714 0:d616ece2d859 430 mem2->used = 0;
mbed714 0:d616ece2d859 431 /* restore the next pointer */
mbed714 0:d616ece2d859 432 mem2->next = next;
mbed714 0:d616ece2d859 433 /* link it back to mem */
mbed714 0:d616ece2d859 434 mem2->prev = ptr;
mbed714 0:d616ece2d859 435 /* link mem to it */
mbed714 0:d616ece2d859 436 mem->next = ptr2;
mbed714 0:d616ece2d859 437 /* last thing to restore linked list: as we have moved mem2,
mbed714 0:d616ece2d859 438 * let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not
mbed714 0:d616ece2d859 439 * the end of the heap */
mbed714 0:d616ece2d859 440 if (mem2->next != MEM_SIZE_ALIGNED) {
mbed714 0:d616ece2d859 441 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
mbed714 0:d616ece2d859 442 }
mbed714 0:d616ece2d859 443 MEM_STATS_DEC_USED(used, (size - newsize));
mbed714 0:d616ece2d859 444 /* no need to plug holes, we've already done that */
mbed714 0:d616ece2d859 445 } else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) {
mbed714 0:d616ece2d859 446 /* Next struct is used but there's room for another struct mem with
mbed714 0:d616ece2d859 447 * at least MIN_SIZE_ALIGNED of data.
mbed714 0:d616ece2d859 448 * Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem
mbed714 0:d616ece2d859 449 * ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED').
mbed714 0:d616ece2d859 450 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
mbed714 0:d616ece2d859 451 * region that couldn't hold data, but when mem->next gets freed,
mbed714 0:d616ece2d859 452 * the 2 regions would be combined, resulting in more free memory */
mbed714 0:d616ece2d859 453 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
mbed714 0:d616ece2d859 454 mem2 = (struct mem *)(void *)&ram[ptr2];
mbed714 0:d616ece2d859 455 if (mem2 < lfree) {
mbed714 0:d616ece2d859 456 lfree = mem2;
mbed714 0:d616ece2d859 457 }
mbed714 0:d616ece2d859 458 mem2->used = 0;
mbed714 0:d616ece2d859 459 mem2->next = mem->next;
mbed714 0:d616ece2d859 460 mem2->prev = ptr;
mbed714 0:d616ece2d859 461 mem->next = ptr2;
mbed714 0:d616ece2d859 462 if (mem2->next != MEM_SIZE_ALIGNED) {
mbed714 0:d616ece2d859 463 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
mbed714 0:d616ece2d859 464 }
mbed714 0:d616ece2d859 465 MEM_STATS_DEC_USED(used, (size - newsize));
mbed714 0:d616ece2d859 466 /* the original mem->next is used, so no need to plug holes! */
mbed714 0:d616ece2d859 467 }
mbed714 0:d616ece2d859 468 /* else {
mbed714 0:d616ece2d859 469 next struct mem is used but size between mem and mem2 is not big enough
mbed714 0:d616ece2d859 470 to create another struct mem
mbed714 0:d616ece2d859 471 -> don't do anyhting.
mbed714 0:d616ece2d859 472 -> the remaining space stays unused since it is too small
mbed714 0:d616ece2d859 473 } */
mbed714 0:d616ece2d859 474 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mbed714 0:d616ece2d859 475 mem_free_count = 1;
mbed714 0:d616ece2d859 476 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
mbed714 0:d616ece2d859 477 LWIP_MEM_FREE_UNPROTECT();
mbed714 0:d616ece2d859 478 return rmem;
mbed714 0:d616ece2d859 479 }
mbed714 0:d616ece2d859 480
mbed714 0:d616ece2d859 481 /**
mbed714 0:d616ece2d859 482 * Adam's mem_malloc() plus solution for bug #17922
mbed714 0:d616ece2d859 483 * Allocate a block of memory with a minimum of 'size' bytes.
mbed714 0:d616ece2d859 484 *
mbed714 0:d616ece2d859 485 * @param size is the minimum size of the requested block in bytes.
mbed714 0:d616ece2d859 486 * @return pointer to allocated memory or NULL if no free memory was found.
mbed714 0:d616ece2d859 487 *
mbed714 0:d616ece2d859 488 * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
mbed714 0:d616ece2d859 489 */
mbed714 0:d616ece2d859 490 void *
mbed714 0:d616ece2d859 491 mem_malloc(mem_size_t size)
mbed714 0:d616ece2d859 492 {
mbed714 0:d616ece2d859 493 mem_size_t ptr, ptr2;
mbed714 0:d616ece2d859 494 struct mem *mem, *mem2;
mbed714 0:d616ece2d859 495 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mbed714 0:d616ece2d859 496 u8_t local_mem_free_count = 0;
mbed714 0:d616ece2d859 497 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
mbed714 0:d616ece2d859 498 LWIP_MEM_ALLOC_DECL_PROTECT();
mbed714 0:d616ece2d859 499
mbed714 0:d616ece2d859 500 if (size == 0) {
mbed714 0:d616ece2d859 501 return NULL;
mbed714 0:d616ece2d859 502 }
mbed714 0:d616ece2d859 503
mbed714 0:d616ece2d859 504 /* Expand the size of the allocated memory region so that we can
mbed714 0:d616ece2d859 505 adjust for alignment. */
mbed714 0:d616ece2d859 506 size = LWIP_MEM_ALIGN_SIZE(size);
mbed714 0:d616ece2d859 507
mbed714 0:d616ece2d859 508 if(size < MIN_SIZE_ALIGNED) {
mbed714 0:d616ece2d859 509 /* every data block must be at least MIN_SIZE_ALIGNED long */
mbed714 0:d616ece2d859 510 size = MIN_SIZE_ALIGNED;
mbed714 0:d616ece2d859 511 }
mbed714 0:d616ece2d859 512
mbed714 0:d616ece2d859 513 if (size > MEM_SIZE_ALIGNED) {
mbed714 0:d616ece2d859 514 return NULL;
mbed714 0:d616ece2d859 515 }
mbed714 0:d616ece2d859 516
mbed714 0:d616ece2d859 517 /* protect the heap from concurrent access */
mbed714 0:d616ece2d859 518 sys_mutex_lock(&mem_mutex);
mbed714 0:d616ece2d859 519 LWIP_MEM_ALLOC_PROTECT();
mbed714 0:d616ece2d859 520 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mbed714 0:d616ece2d859 521 /* run as long as a mem_free disturbed mem_malloc */
mbed714 0:d616ece2d859 522 do {
mbed714 0:d616ece2d859 523 local_mem_free_count = 0;
mbed714 0:d616ece2d859 524 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
mbed714 0:d616ece2d859 525
mbed714 0:d616ece2d859 526 /* Scan through the heap searching for a free block that is big enough,
mbed714 0:d616ece2d859 527 * beginning with the lowest free block.
mbed714 0:d616ece2d859 528 */
mbed714 0:d616ece2d859 529 for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size;
mbed714 0:d616ece2d859 530 ptr = ((struct mem *)(void *)&ram[ptr])->next) {
mbed714 0:d616ece2d859 531 mem = (struct mem *)(void *)&ram[ptr];
mbed714 0:d616ece2d859 532 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mbed714 0:d616ece2d859 533 mem_free_count = 0;
mbed714 0:d616ece2d859 534 LWIP_MEM_ALLOC_UNPROTECT();
mbed714 0:d616ece2d859 535 /* allow mem_free to run */
mbed714 0:d616ece2d859 536 LWIP_MEM_ALLOC_PROTECT();
mbed714 0:d616ece2d859 537 if (mem_free_count != 0) {
mbed714 0:d616ece2d859 538 local_mem_free_count = mem_free_count;
mbed714 0:d616ece2d859 539 }
mbed714 0:d616ece2d859 540 mem_free_count = 0;
mbed714 0:d616ece2d859 541 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
mbed714 0:d616ece2d859 542
mbed714 0:d616ece2d859 543 if ((!mem->used) &&
mbed714 0:d616ece2d859 544 (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
mbed714 0:d616ece2d859 545 /* mem is not used and at least perfect fit is possible:
mbed714 0:d616ece2d859 546 * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
mbed714 0:d616ece2d859 547
mbed714 0:d616ece2d859 548 if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
mbed714 0:d616ece2d859 549 /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
mbed714 0:d616ece2d859 550 * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
mbed714 0:d616ece2d859 551 * -> split large block, create empty remainder,
mbed714 0:d616ece2d859 552 * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
mbed714 0:d616ece2d859 553 * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
mbed714 0:d616ece2d859 554 * struct mem would fit in but no data between mem2 and mem2->next
mbed714 0:d616ece2d859 555 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
mbed714 0:d616ece2d859 556 * region that couldn't hold data, but when mem->next gets freed,
mbed714 0:d616ece2d859 557 * the 2 regions would be combined, resulting in more free memory
mbed714 0:d616ece2d859 558 */
mbed714 0:d616ece2d859 559 ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
mbed714 0:d616ece2d859 560 /* create mem2 struct */
mbed714 0:d616ece2d859 561 mem2 = (struct mem *)(void *)&ram[ptr2];
mbed714 0:d616ece2d859 562 mem2->used = 0;
mbed714 0:d616ece2d859 563 mem2->next = mem->next;
mbed714 0:d616ece2d859 564 mem2->prev = ptr;
mbed714 0:d616ece2d859 565 /* and insert it between mem and mem->next */
mbed714 0:d616ece2d859 566 mem->next = ptr2;
mbed714 0:d616ece2d859 567 mem->used = 1;
mbed714 0:d616ece2d859 568
mbed714 0:d616ece2d859 569 if (mem2->next != MEM_SIZE_ALIGNED) {
mbed714 0:d616ece2d859 570 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
mbed714 0:d616ece2d859 571 }
mbed714 0:d616ece2d859 572 MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM));
mbed714 0:d616ece2d859 573 } else {
mbed714 0:d616ece2d859 574 /* (a mem2 struct does no fit into the user data space of mem and mem->next will always
mbed714 0:d616ece2d859 575 * be used at this point: if not we have 2 unused structs in a row, plug_holes should have
mbed714 0:d616ece2d859 576 * take care of this).
mbed714 0:d616ece2d859 577 * -> near fit or excact fit: do not split, no mem2 creation
mbed714 0:d616ece2d859 578 * also can't move mem->next directly behind mem, since mem->next
mbed714 0:d616ece2d859 579 * will always be used at this point!
mbed714 0:d616ece2d859 580 */
mbed714 0:d616ece2d859 581 mem->used = 1;
mbed714 0:d616ece2d859 582 MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram));
mbed714 0:d616ece2d859 583 }
mbed714 0:d616ece2d859 584
mbed714 0:d616ece2d859 585 if (mem == lfree) {
mbed714 0:d616ece2d859 586 /* Find next free block after mem and update lowest free pointer */
mbed714 0:d616ece2d859 587 while (lfree->used && lfree != ram_end) {
mbed714 0:d616ece2d859 588 LWIP_MEM_ALLOC_UNPROTECT();
mbed714 0:d616ece2d859 589 /* prevent high interrupt latency... */
mbed714 0:d616ece2d859 590 LWIP_MEM_ALLOC_PROTECT();
mbed714 0:d616ece2d859 591 lfree = (struct mem *)(void *)&ram[lfree->next];
mbed714 0:d616ece2d859 592 }
mbed714 0:d616ece2d859 593 LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
mbed714 0:d616ece2d859 594 }
mbed714 0:d616ece2d859 595 LWIP_MEM_ALLOC_UNPROTECT();
mbed714 0:d616ece2d859 596 sys_mutex_unlock(&mem_mutex);
mbed714 0:d616ece2d859 597 LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
mbed714 0:d616ece2d859 598 (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
mbed714 0:d616ece2d859 599 LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
mbed714 0:d616ece2d859 600 ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
mbed714 0:d616ece2d859 601 LWIP_ASSERT("mem_malloc: sanity check alignment",
mbed714 0:d616ece2d859 602 (((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0);
mbed714 0:d616ece2d859 603
mbed714 0:d616ece2d859 604 return (u8_t *)mem + SIZEOF_STRUCT_MEM;
mbed714 0:d616ece2d859 605 }
mbed714 0:d616ece2d859 606 }
mbed714 0:d616ece2d859 607 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
mbed714 0:d616ece2d859 608 /* if we got interrupted by a mem_free, try again */
mbed714 0:d616ece2d859 609 } while(local_mem_free_count != 0);
mbed714 0:d616ece2d859 610 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
mbed714 0:d616ece2d859 611 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
mbed714 0:d616ece2d859 612 MEM_STATS_INC(err);
mbed714 0:d616ece2d859 613 LWIP_MEM_ALLOC_UNPROTECT();
mbed714 0:d616ece2d859 614 sys_mutex_unlock(&mem_mutex);
mbed714 0:d616ece2d859 615 return NULL;
mbed714 0:d616ece2d859 616 }
mbed714 0:d616ece2d859 617
mbed714 0:d616ece2d859 618 #endif /* MEM_USE_POOLS */
mbed714 0:d616ece2d859 619 /**
mbed714 0:d616ece2d859 620 * Contiguously allocates enough space for count objects that are size bytes
mbed714 0:d616ece2d859 621 * of memory each and returns a pointer to the allocated memory.
mbed714 0:d616ece2d859 622 *
mbed714 0:d616ece2d859 623 * The allocated memory is filled with bytes of value zero.
mbed714 0:d616ece2d859 624 *
mbed714 0:d616ece2d859 625 * @param count number of objects to allocate
mbed714 0:d616ece2d859 626 * @param size size of the objects to allocate
mbed714 0:d616ece2d859 627 * @return pointer to allocated memory / NULL pointer if there is an error
mbed714 0:d616ece2d859 628 */
mbed714 0:d616ece2d859 629 void *mem_calloc(mem_size_t count, mem_size_t size)
mbed714 0:d616ece2d859 630 {
mbed714 0:d616ece2d859 631 void *p;
mbed714 0:d616ece2d859 632
mbed714 0:d616ece2d859 633 /* allocate 'count' objects of size 'size' */
mbed714 0:d616ece2d859 634 p = mem_malloc(count * size);
mbed714 0:d616ece2d859 635 if (p) {
mbed714 0:d616ece2d859 636 /* zero the memory */
mbed714 0:d616ece2d859 637 memset(p, 0, count * size);
mbed714 0:d616ece2d859 638 }
mbed714 0:d616ece2d859 639 return p;
mbed714 0:d616ece2d859 640 }
mbed714 0:d616ece2d859 641
mbed714 0:d616ece2d859 642 #endif /* !MEM_LIBC_MALLOC */