mbed library sources. Supersedes mbed-src. Fixed broken STM32F1xx RTC on rtc_api.c
Dependents: Nucleo_F103RB_RTC_battery_bkup_pwr_off_okay
Fork of mbed-dev by
targets/TARGET_TOSHIBA/TARGET_TMPM066/pwmout_api.c
- Committer:
- maxxir
- Date:
- 2017-11-07
- Revision:
- 177:619788de047e
- Parent:
- 172:7d866c31b3c5
File content as of revision 177:619788de047e:
/* mbed Microcontroller Library * (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2017 All rights reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "pwmout_api.h" #include "PeripheralNames.h" #include "pinmap.h" #include "tmpm066_tmrb.h" #define CLOCK_FREQUENCY SystemCoreClock // input source clock #define MAX_COUNTER_16B 0xFFFF #define DEFAULT_CLOCK_DIVISION 32 #define DEFAULT_PERIOD 0.02f // 20ms static const PinMap PinMap_PWM[] = { {PD1, PWM_0, PIN_DATA(1, 1)}, {PD2, PWM_1, PIN_DATA(1, 1)}, {PD3, PWM_2, PIN_DATA(1, 1)}, {PF4, PWM_3, PIN_DATA(1, 1)}, {PF5, PWM_4, PIN_DATA(1, 1)}, {PJ0, PWM_5, PIN_DATA(1, 1)}, {PJ1, PWM_6, PIN_DATA(1, 1)}, {NC, NC, 0} }; static const uint32_t prescale_tbl[] = { 2, 8, 32, 64, 128, 256, 512 }; void pwmout_init(pwmout_t *obj, PinName pin) { uint16_t counter = 0; TMRB_FFOutputTypeDef FFStruct; TMRB_InitTypeDef m_tmrb; // Determine the pwm channel PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM); //Assert input is valid MBED_ASSERT(pwm != (PWMName)NC); // Enable clock supply to TB0 CG_SetFcPeriphA(CG_FC_PERIPH_TMRB0_3, ENABLE); CG_SetFcPeriphA(CG_FC_PERIPH_TMRB4_6, ENABLE); switch (pwm) { case PWM_0: obj->channel = TSB_TB0; break; case PWM_1: obj->channel = TSB_TB1; break; case PWM_2: obj->channel = TSB_TB2; break; case PWM_3: obj->channel = TSB_TB3; break; case PWM_4: obj->channel = TSB_TB4; break; case PWM_5: obj->channel = TSB_TB5; CG_SetFcPeriphA(CG_FC_PERIPH_PORTJ, ENABLE); break; case PWM_6: obj->channel = TSB_TB6; CG_SetFcPeriphA(CG_FC_PERIPH_PORTJ, ENABLE); break; default: obj->channel = NULL; return; } // Set pin function as PWM pinmap_pinout(pin, PinMap_PWM); obj->pin = pin; obj->period = DEFAULT_PERIOD; // Enable channel TMRB_Enable(obj->channel); // Stops and clear count operation TMRB_SetRunState(obj->channel, TMRB_STOP); // Disables double buffering TMRB_SetDoubleBuf(obj->channel, DISABLE); // Set default period = 20ms, duty cycle = 0 obj->divisor = DEFAULT_CLOCK_DIVISION; counter = (uint16_t)((DEFAULT_PERIOD * CLOCK_FREQUENCY) / obj->divisor); // Init timer variable for using PPG mode m_tmrb.Mode = TMRB_INTERVAL_TIMER; m_tmrb.ClkDiv = TMRB_CLK_DIV_32; m_tmrb.UpCntCtrl = TMRB_AUTO_CLEAR; // clear UC when matching value m_tmrb.TrailingTiming = counter; // period = 20ms m_tmrb.LeadingTiming = counter; // duty cycle = 0% // Init timer function TMRB_Init(obj->channel, &m_tmrb); obj->trailing_timing = counter; obj->leading_timing = counter; // Enable double buffering TMRB_SetDoubleBuf(obj->channel, ENABLE); // Setting to TBxFF0 reverse trigger FFStruct.FlipflopCtrl = TMRB_FLIPFLOP_CLEAR; FFStruct.FlipflopReverseTrg = TMRB_FLIPFLOP_MATCH_TRAILINGTIMING | TMRB_FLIPFLOP_MATCH_LEADINGTIMING; TMRB_SetFlipFlop(obj->channel, &FFStruct); // Start count operation TMRB_SetRunState(obj->channel, TMRB_RUN); } void pwmout_free(pwmout_t *obj) { // Stops and clear count operation TMRB_SetRunState(obj->channel, TMRB_STOP); pwmout_write(obj,0); obj->pin = NC; obj->channel = NULL; obj->trailing_timing = 0; obj->leading_timing = 0; obj->divisor = 0; } void pwmout_write(pwmout_t *obj, float value) { TMRB_FFOutputTypeDef FFStruct; // Stop timer for setting clock again TMRB_SetRunState(obj->channel, TMRB_STOP); // values outside this range will be saturated to 0.0f or 1.0f // Disable flip-flop reverse trigger when leading_timing and trailing_timing are duplicated if (value <= 0.0f) { value = 0; FFStruct.FlipflopCtrl = TMRB_FLIPFLOP_CLEAR; FFStruct.FlipflopReverseTrg = TMRB_DISABLE_FLIPFLOP; TMRB_SetFlipFlop(obj->channel, &FFStruct); } else if (value >= 1.0f) { value = 1; FFStruct.FlipflopCtrl = TMRB_FLIPFLOP_SET; FFStruct.FlipflopReverseTrg = TMRB_DISABLE_FLIPFLOP; TMRB_SetFlipFlop(obj->channel, &FFStruct); } else { FFStruct.FlipflopCtrl = TMRB_FLIPFLOP_CLEAR; FFStruct.FlipflopReverseTrg = TMRB_FLIPFLOP_MATCH_TRAILINGTIMING | TMRB_FLIPFLOP_MATCH_LEADINGTIMING; TMRB_SetFlipFlop(obj->channel, &FFStruct); } // Store the new leading_timing value obj->leading_timing = obj->trailing_timing - (uint16_t)(obj->trailing_timing * value); // Setting TBxRG0 register TMRB_ChangeLeadingTiming(obj->channel, obj->leading_timing); TMRB_SetRunState(obj->channel, TMRB_RUN); } float pwmout_read(pwmout_t *obj) { float duty_cycle = (float)(obj->trailing_timing - obj->leading_timing) / obj->trailing_timing; return duty_cycle; } void pwmout_period(pwmout_t *obj, float seconds) { pwmout_period_us(obj, (int)(seconds * 1000000.0f)); } void pwmout_period_ms(pwmout_t *obj, int ms) { pwmout_period_us(obj, ms * 1000); } // Set the PWM period, keeping the duty cycle the same. void pwmout_period_us(pwmout_t *obj, int us) { float seconds = 0; int cycles = 0; uint32_t clkdiv = 0; float duty_cycle = 0; TMRB_InitTypeDef m_tmrb; seconds = (float)((us) / 1000000.0f); obj->period = seconds; MBED_ASSERT(obj->channel != NULL); // Select highest timer resolution for (int i = 0; i < 7; ++i) { cycles = (int)((CLOCK_FREQUENCY / prescale_tbl[i]) * seconds); if (cycles <= MAX_COUNTER_16B) { clkdiv = i + 1; // range 1:7 break; } } // Stop timer for setting clock again TMRB_SetRunState(obj->channel, TMRB_STOP); // Restore the duty-cycle duty_cycle = (float)(obj->trailing_timing - obj->leading_timing) / obj->trailing_timing; obj->trailing_timing = cycles; obj->leading_timing = (cycles - (uint16_t)(cycles * duty_cycle)); // Change the source clock division and period m_tmrb.Mode = TMRB_INTERVAL_TIMER; m_tmrb.ClkDiv = clkdiv; m_tmrb.UpCntCtrl = TMRB_AUTO_CLEAR; m_tmrb.TrailingTiming = obj->trailing_timing; m_tmrb.LeadingTiming = obj->leading_timing; //Init timer function TMRB_Init(obj->channel, &m_tmrb); //Start timer function TMRB_SetRunState(obj->channel, TMRB_RUN); } void pwmout_pulsewidth(pwmout_t *obj, float seconds) { pwmout_pulsewidth_us(obj, seconds * 1000000.0f); } void pwmout_pulsewidth_ms(pwmout_t *obj, int ms) { pwmout_pulsewidth_us(obj, ms * 1000); } void pwmout_pulsewidth_us(pwmout_t *obj, int us) { float seconds = 0; float value = 0; MBED_ASSERT(obj->channel != NULL); seconds = (float)(us / 1000000.0f); value = (((seconds / obj->period) * 100.0f) / 100.0f); pwmout_write(obj, value); }