mbed library sources. Supersedes mbed-src. Fixed broken STM32F1xx RTC on rtc_api.c
Dependents: Nucleo_F103RB_RTC_battery_bkup_pwr_off_okay
Fork of mbed-dev by
targets/TARGET_ONSEMI/TARGET_NCS36510/serial_api.c
- Committer:
- maxxir
- Date:
- 2017-11-07
- Revision:
- 177:619788de047e
- Parent:
- 150:02e0a0aed4ec
File content as of revision 177:619788de047e:
/** ****************************************************************************** * @file Serial.c * @brief Implementation of a 16C550 UART driver * @internal * @author ON Semiconductor * $Rev: 0.1 $ * $Date: 2015-11-04 05:30:00 +0530 (Wed, 04 Nov 2015) $ ****************************************************************************** * Copyright 2016 Semiconductor Components Industries LLC (d/b/a ON Semiconductor). * All rights reserved. This software and/or documentation is licensed by ON Semiconductor * under limited terms and conditions. The terms and conditions pertaining to the software * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf * (ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software) and * if applicable the software license agreement. Do not use this software and/or * documentation unless you have carefully read and you agree to the limited terms and * conditions. By using this software and/or documentation, you agree to the limited * terms and conditions. * * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. * @endinternal * * @ingroup uart_16c550 * */ #if DEVICE_SERIAL #include "serial_api.h" #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" #include "mbed_assert.h" #include <string.h> #include "uart_16c550.h" #include "cmsis_nvic.h" static IRQn_Type Irq; uint32_t stdio_uart_inited = 0; serial_t stdio_uart; static uint32_t serial_irq_ids[UART_NUM] = {0}; static uart_irq_handler irq_handler; static inline void uart_irq(uint8_t status, uint32_t index); /** Opens UART device. * @details * Sets the necessary registers. Set to default Baud rate 115200, 8 bit, parity None and stop bit 1. * The UART interrupt is enabled. * * @note The UART transmit interrupt is not enabled, because sending is controlled * by the task. * * @param UartNum A UART device instance. * @param options The options parameter containing the baud rate. * @return True if opening was successful. */ void serial_init(serial_t *obj, PinName tx, PinName rx) { uint16_t clockDivisor; CrossbReg_t *CbRegOffSet; PadReg_t *PadRegOffset; //find which peripheral is associated with the rx and tx pins uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX); uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX); //check if the peripherals for each pin are the same or not //returns the enum associated with the peripheral //in the case of this target, the enum is the base address of the peripheral obj->UARTREG = (Uart16C550Reg_pt) pinmap_merge(uart_tx, uart_rx); MBED_ASSERT(obj->UARTREG != (Uart16C550Reg_pt) NC); pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); /*TODO: Mac Lobdell - we should recommend using the instance method and not using base addresses as index */ if (obj->UARTREG == (Uart16C550Reg_pt)STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } /*TODO: determine if pullups are needed/recommended */ /* if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } */ /* Configure IOs to UART using cross bar, pad and GPIO settings */ if(obj->UARTREG == UART2REG) { /* UART 2 */ CLOCK_ENABLE(CLOCK_UART2); Irq = Uart2_IRQn; } else if(obj->UARTREG == UART1REG) { /* UART 1 */ CLOCK_ENABLE(CLOCK_UART1); Irq = Uart1_IRQn; } else { MBED_ASSERT(False); } CLOCK_ENABLE(CLOCK_GPIO); CLOCK_ENABLE(CLOCK_CROSSB); CLOCK_ENABLE(CLOCK_PAD); /*TODO: determine if tx and rx are used correctly in this case - this depends on the pin enum matching the position in the crossbar*/ /* Configure tx pin as UART */ CbRegOffSet = (CrossbReg_t*)(CROSSBREG_BASE + (tx * CROSS_REG_ADRS_BYTE_SIZE)); CbRegOffSet->DIOCTRL0 = CONFIGURE_AS_UART; /* tx pin as UART */ /* Configure rx pin as UART */ CbRegOffSet = (CrossbReg_t*)(CROSSBREG_BASE + (rx * CROSS_REG_ADRS_BYTE_SIZE)); CbRegOffSet->DIOCTRL0 = CONFIGURE_AS_UART; /* rx pin as UART */ /** - Set pad parameters, output drive strength, pull piece control, output drive type */ PadRegOffset = (PadReg_t*)(PADREG_BASE + (tx * PAD_REG_ADRS_BYTE_SIZE)); PadRegOffset->PADIO0.WORD = PAD_UART_TX; /* Pad setting for UART Tx */ PadRegOffset = (PadReg_t*)(PADREG_BASE + (rx * PAD_REG_ADRS_BYTE_SIZE)); PadRegOffset->PADIO0.WORD = PAD_UART_RX; /* Pad settings for UART Rx */ GPIOREG->W_OUT = (0x1 << tx); /* tx as OUT direction */ GPIOREG->W_IN = (0x1 << rx); /* rx as IN directon */ CLOCK_DISABLE(CLOCK_PAD); CLOCK_DISABLE(CLOCK_CROSSB); CLOCK_DISABLE(CLOCK_GPIO); /* Set the divisor value. To do so, LCR[7] needs to be set to 1 in order to access the divisor registers. * The right-shift of 4 is a division of 16, representing the oversampling rate. */ clockDivisor = (fClockGetPeriphClockfrequency() / UART_DEFAULT_BAUD) >> 4; obj->UARTREG->LCR.WORD = 0x80; obj->UARTREG->DLL = clockDivisor & 0xFF; obj->UARTREG->DLM = clockDivisor >> 8; /* Set the character width to 8 data bits, no parity, 1 stop bit. Write the entire line control register, * effectively disabling the divisor latch. */ obj->UARTREG->LCR.WORD = 0x03; /* Enable the FIFOs, reset the Tx and Rx FIFOs, set the Rx FIFO trigger level to 8 bytes, and set DMA Mode to 1. */ obj->UARTREG->FCR.WORD = (FCR_RXFIFOTRIGGERLEVEL_8 | FCR_DMA_MODE_1 | FCR_TXFIFO_RESET | FCR_RXFIFO_RESET | FCR_FIFO_ENABLE); /* Make a copy of the current MSR to the SCR register. This is used from task space to determine the * flow control state. */ obj->UARTREG->SCR = obj->UARTREG->MSR.WORD; if((int)obj->UARTREG == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } NVIC_ClearPendingIRQ(Irq); return; } /** Closes a UART device. * @details * Disables the UART interrupt. * * @param device The UART device to close. */ void serial_free(serial_t *obj) { NVIC_DisableIRQ(obj->IRQType); } void serial_baud(serial_t *obj, int baudrate) { /* Set the divisor value. To do so, LCR[7] needs to be set to 1 in order to access the divisor registers. * The right-shift of 4 is a division of 16, representing the oversampling rate. */ uint16_t clockDivisor = (fClockGetPeriphClockfrequency() / baudrate) >> 4; obj->UARTREG->LCR.BITS.DLAB = True; obj->UARTREG->DLL = clockDivisor & 0xFF; obj->UARTREG->DLM = clockDivisor >> 8; obj->UARTREG->LCR.BITS.DLAB = False; } /* Parity XX0 â Parity disabled; 001 â Odd Parity; 011 â Even Parity; 101 â Stick Parity, checked as 1; 111 â Stick Parity, checked as 0. StopBit 0 â 1 stop bit; 1 â 2 stop bits. DataLen 00 â 5 bits; 01 â 6 bits; 10 â 7 bits; 11 â 8 bits */ void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { if(data_bits >= 5 && data_bits <= 8 && parity <= 7 && stop_bits >= 1 && stop_bits <= 2) { if(parity == (SerialParity)0) { parity = (SerialParity)0; } else { parity = (SerialParity)(parity + parity - 1) ; } obj->UARTREG->LCR.WORD |= ((((data_bits - 5) << UART_LCR_DATALEN_BIT_POS) | (parity << UART_LCR_PARITY_BIT_POS) | ((stop_bits - 1) << UART_LCR_STPBIT_BIT_POS)) & 0x3F); } else { MBED_ASSERT(False); } } void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } /****************************************************** ************* Internal IRQ functions ****************** *******************************************************/ void Uart1_Irq() { uint8_t active_irq = (uint8_t)(UART1REG->LSR.WORD) & 0xFF; uint8_t irq_mask = 0; if(UART1REG->IER.WORD & UART_IER_TX_EMPTY_MASK) { /*check if TX interrupt is enabled*/ irq_mask |= active_irq & UART_LSR_TX_EMPTY_MASK; } if(UART1REG->IER.WORD & UART_IER_RX_DATA_READY_MASK) { /*check if RX interrupt is enabled*/ irq_mask |= active_irq & UART_LSR_RX_DATA_READY_MASK; } //uart_irq((uint8_t)(UART1REG->LSR.WORD & 0xFF), 0); uart_irq(active_irq & irq_mask, 0); } void Uart2_Irq() { uint8_t active_irq = (uint8_t)(UART2REG->LSR.WORD) & 0xFF; uint8_t irq_mask = 0; if(UART2REG->IER.WORD & UART_IER_TX_EMPTY_MASK) { /*check if TX interrupt is enabled*/ irq_mask |= active_irq & UART_LSR_TX_EMPTY_MASK; } if(UART2REG->IER.WORD & UART_IER_RX_DATA_READY_MASK) { /*check if RX interrupt is enabled*/ irq_mask |= active_irq & UART_LSR_RX_DATA_READY_MASK; } //uart_irq((uint8_t)(UART2REG->LSR.WORD & 0xFF), 1); uart_irq(active_irq & irq_mask, 1); } static inline void uart_irq(uint8_t status, uint32_t index) { if (serial_irq_ids[index] != 0) { if (status & UART_LSR_TX_EMPTY_MASK) { irq_handler(serial_irq_ids[index], TxIrq); } if (status & UART_LSR_RX_DATA_READY_MASK) { irq_handler(serial_irq_ids[index], RxIrq); } } } /******************************************************/ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t Vector = 0; /* Check UART number & assign irq handler */ if(obj->UARTREG == UART1REG) { /* UART 2 */ Vector = (uint32_t)&Uart1_Irq; irq_n = Uart1_IRQn; } else if(obj->UARTREG == UART2REG) { /* UART 1 */ Vector = (uint32_t)&Uart2_Irq; irq_n = Uart2_IRQn; } else { MBED_ASSERT(False); } /* Check IRQ type & enable/disable accordingly */ if(enable) { /* Enable */ if(irq == RxIrq) { /* Rx IRQ */ obj->UARTREG->FCR.BITS.RX_FIFO_TRIG = 0x0; obj->UARTREG->IER.BITS.RX_DATA_INT = True; } else if(irq == TxIrq) { /* Tx IRQ */ obj->UARTREG->IER.BITS.TX_HOLD_INT = True; } else { MBED_ASSERT(False); } NVIC_SetVector(irq_n, Vector); NVIC_EnableIRQ(irq_n); } else { /* Disable */ NVIC_DisableIRQ(irq_n); if(irq == RxIrq) { /* Rx IRQ */ obj->UARTREG->IER.BITS.RX_DATA_INT = False; } else if(irq == TxIrq) { /* Tx IRQ */ obj->UARTREG->IER.BITS.TX_HOLD_INT = False; } else { MBED_ASSERT(False); } } } int serial_getc(serial_t *obj) { uint8_t c; while(!obj->UARTREG->LSR.BITS.READY); /* Wait for received data is ready */ c = obj->UARTREG->RBR & 0xFF; /* Get received character */ return c; } void serial_putc(serial_t *obj, int c) { while(!obj->UARTREG->LSR.BITS.TX_HOLD_EMPTY);/* Wait till THR is empty */ obj->UARTREG->THR = c; /* Transmit byte */ } int serial_readable(serial_t *obj) { return obj->UARTREG->LSR.BITS.READY; } int serial_writable(serial_t *obj) { return obj->UARTREG->LSR.BITS.TX_HOLD_EMPTY; } void serial_clear(serial_t *obj) { /* Reset TX & RX FIFO */ obj->UARTREG->FCR.WORD |= ((True << UART_FCS_TX_FIFO_RST_BIT_POS) | (True << UART_FCS_RX_FIFO_RST_BIT_POS)); } void serial_break_set(serial_t *obj) { obj->UARTREG->LCR.BITS.BREAK = True; } void serial_break_clear(serial_t *obj) { obj->UARTREG->LCR.BITS.BREAK = False; } void serial_pinout_tx(PinName tx) { /* COnfigure PinNo to drive strength of 1, Push pull and pull none */ fPadIOCtrl(tx, 1, 0, 1); } /** Configure the serial for the flow control. It sets flow control in the hardware * if a serial peripheral supports it, otherwise software emulation is used. * * @param obj The serial object * @param type The type of the flow control. Look at the available FlowControl types. * @param rxflow The TX pin name * @param txflow The RX pin name */ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { /* TODO: This is an empty implementation for now.*/ } #endif /* DEVICE_SERIAL */