mbed library sources. Supersedes mbed-src. Fixed broken STM32F1xx RTC on rtc_api.c
Dependents: Nucleo_F103RB_RTC_battery_bkup_pwr_off_okay
Fork of mbed-dev by
targets/TARGET_NORDIC/TARGET_NRF5/spi_api.c
- Committer:
- <>
- Date:
- 2016-10-28
- Revision:
- 149:156823d33999
- Parent:
- targets/hal/TARGET_NORDIC/TARGET_NRF5/spi_api.c@ 144:ef7eb2e8f9f7
- Child:
- 150:02e0a0aed4ec
File content as of revision 149:156823d33999:
/* * Copyright (c) 2013 Nordic Semiconductor ASA * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA * integrated circuit in a product or a software update for such product, must reproduce * the above copyright notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be * used to endorse or promote products derived from this software without specific prior * written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary or object form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "spi_api.h" #if DEVICE_SPI #include "cmsis.h" #include "pinmap.h" #include "mbed_assert.h" #include "mbed_error.h" #include "nrf_drv_spi.h" #include "nrf_drv_spis.h" #include "app_util_platform.h" #if DEVICE_SPI_ASYNCH #define SPI_IDX(obj) ((obj)->spi.spi_idx) #else #define SPI_IDX(obj) ((obj)->spi_idx) #endif #define SPI_INFO(obj) (&m_spi_info[SPI_IDX(obj)]) #define MASTER_INST(obj) (&m_instances[SPI_IDX(obj)].master) #define SLAVE_INST(obj) (&m_instances[SPI_IDX(obj)].slave) typedef struct { bool initialized; bool master; uint8_t sck_pin; uint8_t mosi_pin; uint8_t miso_pin; uint8_t ss_pin; uint8_t spi_mode; nrf_drv_spi_frequency_t frequency; volatile union { bool busy; // master bool readable; // slave } flag; volatile uint8_t tx_buf; volatile uint8_t rx_buf; #if DEVICE_SPI_ASYNCH uint32_t handler; uint32_t event; #endif } spi_info_t; static spi_info_t m_spi_info[SPI_COUNT]; typedef struct { nrf_drv_spi_t master; nrf_drv_spis_t slave; } sdk_driver_instances_t; static sdk_driver_instances_t m_instances[SPI_COUNT] = { #if SPI0_ENABLED { NRF_DRV_SPI_INSTANCE(0), NRF_DRV_SPIS_INSTANCE(0) }, #endif #if SPI1_ENABLED { NRF_DRV_SPI_INSTANCE(1), NRF_DRV_SPIS_INSTANCE(1) }, #endif #if SPI2_ENABLED { NRF_DRV_SPI_INSTANCE(2), NRF_DRV_SPIS_INSTANCE(2) }, #endif }; static void master_event_handler(uint8_t spi_idx, nrf_drv_spi_evt_t const *p_event) { spi_info_t *p_spi_info = &m_spi_info[spi_idx]; if (p_event->type == NRF_DRV_SPI_EVENT_DONE) { p_spi_info->flag.busy = false; if (p_spi_info->handler) { void (*handler)(void) = (void (*)(void))p_spi_info->handler; p_spi_info->handler = 0; handler(); } } } #define MASTER_EVENT_HANDLER(idx) \ static void master_event_handler_##idx(nrf_drv_spi_evt_t const *p_event) { \ master_event_handler(SPI##idx##_INSTANCE_INDEX, p_event); \ } #if SPI0_ENABLED MASTER_EVENT_HANDLER(0) #endif #if SPI1_ENABLED MASTER_EVENT_HANDLER(1) #endif #if SPI2_ENABLED MASTER_EVENT_HANDLER(2) #endif static nrf_drv_spi_handler_t const m_master_event_handlers[SPI_COUNT] = { #if SPI0_ENABLED master_event_handler_0, #endif #if SPI1_ENABLED master_event_handler_1, #endif #if SPI2_ENABLED master_event_handler_2, #endif }; static void slave_event_handler(uint8_t spi_idx, nrf_drv_spis_event_t event) { spi_info_t *p_spi_info = &m_spi_info[spi_idx]; if (event.evt_type == NRF_DRV_SPIS_XFER_DONE) { // Signal that there is some data received that could be read. p_spi_info->flag.readable = true; // And prepare for the next transfer. // Previous data set in 'spi_slave_write' (if any) has been transmitted, // now use the default one, until some new is set by 'spi_slave_write'. p_spi_info->tx_buf = NRF_DRV_SPIS_DEFAULT_ORC; nrf_drv_spis_buffers_set(&m_instances[spi_idx].slave, (uint8_t const *)&p_spi_info->tx_buf, 1, (uint8_t *)&p_spi_info->rx_buf, 1); } } #define SLAVE_EVENT_HANDLER(idx) \ static void slave_event_handler_##idx(nrf_drv_spis_event_t event) { \ slave_event_handler(SPIS##idx##_INSTANCE_INDEX, event); \ } #if SPIS0_ENABLED SLAVE_EVENT_HANDLER(0) #endif #if SPIS1_ENABLED SLAVE_EVENT_HANDLER(1) #endif #if SPIS2_ENABLED SLAVE_EVENT_HANDLER(2) #endif static nrf_drv_spis_event_handler_t const m_slave_event_handlers[SPIS_COUNT] = { #if SPIS0_ENABLED slave_event_handler_0, #endif #if SPIS1_ENABLED slave_event_handler_1, #endif #if SPIS2_ENABLED slave_event_handler_2, #endif }; static void prepare_master_config(nrf_drv_spi_config_t *p_config, spi_info_t const *p_spi_info) { p_config->sck_pin = p_spi_info->sck_pin; p_config->mosi_pin = p_spi_info->mosi_pin; p_config->miso_pin = p_spi_info->miso_pin; p_config->ss_pin = p_spi_info->ss_pin; p_config->frequency = p_spi_info->frequency; p_config->mode = (nrf_drv_spi_mode_t)p_spi_info->spi_mode; p_config->irq_priority = APP_IRQ_PRIORITY_LOW; p_config->orc = 0xFF; p_config->bit_order = NRF_DRV_SPI_BIT_ORDER_MSB_FIRST; } static void prepare_slave_config(nrf_drv_spis_config_t *p_config, spi_info_t const *p_spi_info) { p_config->sck_pin = p_spi_info->sck_pin; p_config->mosi_pin = p_spi_info->mosi_pin; p_config->miso_pin = p_spi_info->miso_pin; p_config->csn_pin = p_spi_info->ss_pin; p_config->mode = (nrf_drv_spis_mode_t)p_spi_info->spi_mode; p_config->irq_priority = APP_IRQ_PRIORITY_LOW; p_config->orc = NRF_DRV_SPIS_DEFAULT_ORC; p_config->def = NRF_DRV_SPIS_DEFAULT_DEF; p_config->bit_order = NRF_DRV_SPIS_BIT_ORDER_MSB_FIRST; p_config->csn_pullup = NRF_DRV_SPIS_DEFAULT_CSN_PULLUP; p_config->miso_drive = NRF_DRV_SPIS_DEFAULT_MISO_DRIVE; } void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { int i; for (i = 0; i < SPI_COUNT; ++i) { spi_info_t *p_spi_info = &m_spi_info[i]; if (!p_spi_info->initialized) { p_spi_info->sck_pin = (uint8_t)sclk; p_spi_info->mosi_pin = (mosi != NC) ? (uint8_t)mosi : NRF_DRV_SPI_PIN_NOT_USED; p_spi_info->miso_pin = (miso != NC) ? (uint8_t)miso : NRF_DRV_SPI_PIN_NOT_USED; p_spi_info->ss_pin = (ssel != NC) ? (uint8_t)ssel : NRF_DRV_SPI_PIN_NOT_USED; p_spi_info->spi_mode = (uint8_t)NRF_DRV_SPI_MODE_0; p_spi_info->frequency = NRF_DRV_SPI_FREQ_1M; // By default each SPI instance is initialized to work as a master. // Should the slave mode be used, the instance will be reconfigured // appropriately in 'spi_format'. nrf_drv_spi_config_t config; prepare_master_config(&config, p_spi_info); nrf_drv_spi_t const *p_spi = &m_instances[i].master; ret_code_t ret_code = nrf_drv_spi_init(p_spi, &config, m_master_event_handlers[i]); if (ret_code == NRF_SUCCESS) { p_spi_info->initialized = true; p_spi_info->master = true; p_spi_info->flag.busy = false; #if DEVICE_SPI_ASYNCH p_spi_info->handler = 0; #endif SPI_IDX(obj) = i; return; } } } // No available peripheral error("No available SPI peripheral\r\n"); } void spi_free(spi_t *obj) { spi_info_t *p_spi_info = SPI_INFO(obj); if (p_spi_info->master) { nrf_drv_spi_uninit(MASTER_INST(obj)); } else { nrf_drv_spis_uninit(SLAVE_INST(obj)); } p_spi_info->initialized = false; } int spi_busy(spi_t *obj) { return (int)(SPI_INFO(obj)->flag.busy); } void spi_format(spi_t *obj, int bits, int mode, int slave) { if (bits != 8) { error("Only 8-bits SPI is supported\r\n"); } if (mode > 3) { error("SPI format error\r\n"); } spi_info_t *p_spi_info = SPI_INFO(obj); if (slave) { nrf_drv_spis_mode_t spi_modes[4] = { NRF_DRV_SPIS_MODE_0, NRF_DRV_SPIS_MODE_1, NRF_DRV_SPIS_MODE_2, NRF_DRV_SPIS_MODE_3, }; nrf_drv_spis_mode_t new_mode = spi_modes[mode]; // If the peripheral is currently working as a master, the SDK driver // it uses needs to be switched from SPI to SPIS. if (p_spi_info->master) { nrf_drv_spi_uninit(MASTER_INST(obj)); } // I the SPI mode has to be changed, the SDK's SPIS driver needs to be // re-initialized (there is no other way to change its configuration). else if (p_spi_info->spi_mode != (uint8_t)new_mode) { nrf_drv_spis_uninit(SLAVE_INST(obj)); } else { return; } p_spi_info->spi_mode = (uint8_t)new_mode; p_spi_info->master = false; p_spi_info->flag.readable = false; // Initialize SDK's SPIS driver with the new configuration. nrf_drv_spis_config_t config; prepare_slave_config(&config, p_spi_info); (void)nrf_drv_spis_init(SLAVE_INST(obj), &config, m_slave_event_handlers[SPI_IDX(obj)]); // Prepare the slave for transfer. p_spi_info->tx_buf = NRF_DRV_SPIS_DEFAULT_ORC; nrf_drv_spis_buffers_set(SLAVE_INST(obj), (uint8_t const *)&p_spi_info->tx_buf, 1, (uint8_t *)&p_spi_info->rx_buf, 1); } else // master { nrf_drv_spi_mode_t spi_modes[4] = { NRF_DRV_SPI_MODE_0, NRF_DRV_SPI_MODE_1, NRF_DRV_SPI_MODE_2, NRF_DRV_SPI_MODE_3, }; nrf_drv_spi_mode_t new_mode = spi_modes[mode]; // If the peripheral is currently working as a slave, the SDK driver // it uses needs to be switched from SPIS to SPI. if (!p_spi_info->master) { nrf_drv_spis_uninit(SLAVE_INST(obj)); } // I the SPI mode has to be changed, the SDK's SPI driver needs to be // re-initialized (there is no other way to change its configuration). else if (p_spi_info->spi_mode != (uint8_t)new_mode) { nrf_drv_spi_uninit(MASTER_INST(obj)); } else { return; } p_spi_info->spi_mode = (uint8_t)new_mode; p_spi_info->master = true; p_spi_info->flag.busy = false; // Initialize SDK's SPI driver with the new configuration. nrf_drv_spi_config_t config; prepare_master_config(&config, p_spi_info); (void)nrf_drv_spi_init(MASTER_INST(obj), &config, m_master_event_handlers[SPI_IDX(obj)]); } } static nrf_drv_spi_frequency_t freq_translate(int hz) { nrf_drv_spi_frequency_t frequency; if (hz<250000) { //125Kbps frequency = NRF_DRV_SPI_FREQ_125K; } else if (hz<500000) { //250Kbps frequency = NRF_DRV_SPI_FREQ_250K; } else if (hz<1000000) { //500Kbps frequency = NRF_DRV_SPI_FREQ_500K; } else if (hz<2000000) { //1Mbps frequency = NRF_DRV_SPI_FREQ_1M; } else if (hz<4000000) { //2Mbps frequency = NRF_DRV_SPI_FREQ_2M; } else if (hz<8000000) { //4Mbps frequency = NRF_DRV_SPI_FREQ_4M; } else { //8Mbps frequency = NRF_DRV_SPI_FREQ_8M; } return frequency; } void spi_frequency(spi_t *obj, int hz) { spi_info_t *p_spi_info = SPI_INFO(obj); nrf_drv_spi_frequency_t new_frequency = freq_translate(hz); if (p_spi_info->master) { if (p_spi_info->frequency != new_frequency) { p_spi_info->frequency = new_frequency; nrf_drv_spi_config_t config; prepare_master_config(&config, p_spi_info); nrf_drv_spi_t const *p_spi = MASTER_INST(obj); nrf_drv_spi_uninit(p_spi); (void)nrf_drv_spi_init(p_spi, &config, m_master_event_handlers[SPI_IDX(obj)]); } } // There is no need to set anything in slaves when it comes to frequency, // since slaves just synchronize with the clock provided by a master. } int spi_master_write(spi_t *obj, int value) { spi_info_t *p_spi_info = SPI_INFO(obj); #if DEVICE_SPI_ASYNCH while (p_spi_info->flag.busy) { } #endif p_spi_info->tx_buf = value; p_spi_info->flag.busy = true; (void)nrf_drv_spi_transfer(MASTER_INST(obj), (uint8_t const *)&p_spi_info->tx_buf, 1, (uint8_t *)&p_spi_info->rx_buf, 1); while (p_spi_info->flag.busy) { } return p_spi_info->rx_buf; } int spi_slave_receive(spi_t *obj) { spi_info_t *p_spi_info = SPI_INFO(obj); MBED_ASSERT(!p_spi_info->master); return p_spi_info->flag.readable; ; } int spi_slave_read(spi_t *obj) { spi_info_t *p_spi_info = SPI_INFO(obj); MBED_ASSERT(!p_spi_info->master); while (!p_spi_info->flag.readable) { } p_spi_info->flag.readable = false; return p_spi_info->rx_buf; } void spi_slave_write(spi_t *obj, int value) { spi_info_t *p_spi_info = SPI_INFO(obj); MBED_ASSERT(!p_spi_info->master); p_spi_info->tx_buf = (uint8_t)value; } #if DEVICE_SPI_ASYNCH void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint) { spi_info_t *p_spi_info = SPI_INFO(obj); MBED_ASSERT(p_spi_info->master); (void)hint; (void)bit_width; p_spi_info->handler = handler; p_spi_info->event = event; p_spi_info->flag.busy = true; (void)nrf_drv_spi_transfer(MASTER_INST(obj), (uint8_t const *)tx, tx_length, (uint8_t *)rx, rx_length); } uint32_t spi_irq_handler_asynch(spi_t *obj) { spi_info_t *p_spi_info = SPI_INFO(obj); MBED_ASSERT(p_spi_info->master); return p_spi_info->event & SPI_EVENT_COMPLETE; } uint8_t spi_active(spi_t *obj) { spi_info_t *p_spi_info = SPI_INFO(obj); MBED_ASSERT(p_spi_info->master); return p_spi_info->flag.busy; } void spi_abort_asynch(spi_t *obj) { MBED_ASSERT(SPI_INFO(obj)->master); nrf_drv_spi_abort(MASTER_INST(obj)); } #endif // DEVICE_SPI_ASYNCH #endif // DEVICE_SPI