mbed library sources. Supersedes mbed-src. Fixed broken STM32F1xx RTC on rtc_api.c
Dependents: Nucleo_F103RB_RTC_battery_bkup_pwr_off_okay
Fork of mbed-dev by
Diff: targets/TARGET_STM/i2c_api.c
- Revision:
- 153:fa9ff456f731
- Child:
- 154:37f96f9d4de2
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/targets/TARGET_STM/i2c_api.c Tue Dec 20 17:27:56 2016 +0000 @@ -0,0 +1,1053 @@ +/* mbed Microcontroller Library + ******************************************************************************* + * Copyright (c) 2015, STMicroelectronics + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + ******************************************************************************* + */ + + +#include "mbed_assert.h" +#include "i2c_api.h" +#include "platform/wait_api.h" + +#if DEVICE_I2C + +#include "cmsis.h" +#include "pinmap.h" +#include "PeripheralPins.h" +/* F1 HAL not ready to move to I2C common code - this is ongoing */ +#if !defined(__STM32F1xx_HAL_H) +#include "i2c_device.h" // family specific defines + +#ifndef DEBUG_STDIO +# define DEBUG_STDIO 0 +#endif + +#if DEBUG_STDIO +# include <stdio.h> +# define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0) +#else +# define DEBUG_PRINTF(...) {} +#endif + +#if DEVICE_I2C_ASYNCH + #define I2C_S(obj) (struct i2c_s *) (&((obj)->i2c)) +#else + #define I2C_S(obj) (struct i2c_s *) (obj) +#endif + +/* Family specific description for I2C */ +#define I2C_NUM (5) +static I2C_HandleTypeDef* i2c_handles[I2C_NUM]; + +/* Timeout values are based on core clock and I2C clock. + The BYTE_TIMEOUT is computed as twice the number of cycles it would + take to send 10 bits over I2C. Most Flags should take less than that. + This is for immediate FLAG or ACK check. +*/ +#define BYTE_TIMEOUT ((SystemCoreClock / obj_s->hz) * 2 * 10) +/* Timeout values based on I2C clock. + The BYTE_TIMEOUT_US is computed as 3x the time in us it would + take to send 10 bits over I2C. Most Flags should take less than that. + This is for complete transfers check. +*/ +#define BYTE_TIMEOUT_US ((SystemCoreClock / obj_s->hz) * 3 * 10) +/* Timeout values for flags and events waiting loops. These timeouts are + not based on accurate values, they just guarantee that the application will + not remain stuck if the I2C communication is corrupted. +*/ +#define FLAG_TIMEOUT ((int)0x1000) + +/* GENERIC INIT and HELPERS FUNCTIONS */ + +#if defined(I2C1_BASE) +static void i2c1_irq(void) +{ + I2C_HandleTypeDef * handle = i2c_handles[0]; + HAL_I2C_EV_IRQHandler(handle); + HAL_I2C_ER_IRQHandler(handle); +} +#endif +#if defined(I2C2_BASE) +static void i2c2_irq(void) +{ + I2C_HandleTypeDef * handle = i2c_handles[1]; + HAL_I2C_EV_IRQHandler(handle); + HAL_I2C_ER_IRQHandler(handle); +} +#endif +#if defined(I2C3_BASE) +static void i2c3_irq(void) +{ + I2C_HandleTypeDef * handle = i2c_handles[2]; + HAL_I2C_EV_IRQHandler(handle); + HAL_I2C_ER_IRQHandler(handle); +} +#endif +#if defined(I2C4_BASE) +static void i2c4_irq(void) +{ + I2C_HandleTypeDef * handle = i2c_handles[3]; + HAL_I2C_EV_IRQHandler(handle); + HAL_I2C_ER_IRQHandler(handle); +} +#endif +#if defined(FMPI2C1_BASE) +static void i2c5_irq(void) +{ + I2C_HandleTypeDef * handle = i2c_handles[4]; + HAL_I2C_EV_IRQHandler(handle); + HAL_I2C_ER_IRQHandler(handle); +} +#endif + +void i2c_ev_err_enable(i2c_t *obj, uint32_t handler) { + struct i2c_s *obj_s = I2C_S(obj); + IRQn_Type irq_event_n = obj_s->event_i2cIRQ; + IRQn_Type irq_error_n = obj_s->error_i2cIRQ; + /* default prio in master case is set to 2 */ + uint32_t prio = 2; + + /* Set up ITs using IRQ and handler tables */ + NVIC_SetVector(irq_event_n, handler); + NVIC_SetVector(irq_error_n, handler); + +#if DEVICE_I2CSLAVE + /* Set higher priority to slave device than master. + * In case a device makes use of both master and slave, the + * slave needs higher responsiveness. + */ + if (obj_s->slave) { + prio = 1; + } +#endif + + NVIC_SetPriority(irq_event_n, prio); + NVIC_SetPriority(irq_error_n, prio); + NVIC_EnableIRQ(irq_event_n); + NVIC_EnableIRQ(irq_error_n); +} + +void i2c_ev_err_disable(i2c_t *obj) { + struct i2c_s *obj_s = I2C_S(obj); + IRQn_Type irq_event_n = obj_s->event_i2cIRQ; + IRQn_Type irq_error_n = obj_s->error_i2cIRQ; + + HAL_NVIC_DisableIRQ(irq_event_n); + HAL_NVIC_DisableIRQ(irq_error_n); +} + +uint32_t i2c_get_irq_handler(i2c_t *obj) +{ + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + uint32_t handler = 0; + + switch (obj_s->index) { +#if defined(I2C1_BASE) + case 0: + handler = (uint32_t)&i2c1_irq; + break; +#endif +#if defined(I2C2_BASE) + case 1: + handler = (uint32_t)&i2c2_irq; + break; +#endif +#if defined(I2C3_BASE) + case 2: + handler = (uint32_t)&i2c3_irq; + break; +#endif +#if defined(I2C4_BASE) + case 3: + handler = (uint32_t)&i2c4_irq; + break; +#endif +#if defined(FMPI2C1_BASE) + case 4: + handler = (uint32_t)&i2c5_irq; + break; +#endif + } + + i2c_handles[obj_s->index] = handle; + return handler; +} + +void i2c_hw_reset(i2c_t *obj) { + int timeout; + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + handle->Instance = (I2C_TypeDef *)(obj_s->i2c); + + // wait before reset + timeout = BYTE_TIMEOUT; + while ((__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BUSY)) && (--timeout != 0)); +#if defined I2C1_BASE + if (obj_s->i2c == I2C_1) { + __HAL_RCC_I2C1_FORCE_RESET(); + __HAL_RCC_I2C1_RELEASE_RESET(); + } +#endif +#if defined I2C2_BASE + if (obj_s->i2c == I2C_2) { + __HAL_RCC_I2C2_FORCE_RESET(); + __HAL_RCC_I2C2_RELEASE_RESET(); + } +#endif +#if defined I2C3_BASE + if (obj_s->i2c == I2C_3) { + __HAL_RCC_I2C3_FORCE_RESET(); + __HAL_RCC_I2C3_RELEASE_RESET(); + } +#endif +#if defined I2C4_BASE + if (obj_s->i2c == I2C_4) { + __HAL_RCC_I2C4_FORCE_RESET(); + __HAL_RCC_I2C4_RELEASE_RESET(); + } +#endif +#if defined FMPI2C1_BASE + if (obj_s->i2c == FMPI2C_1) { + __HAL_RCC_FMPI2C1_FORCE_RESET(); + __HAL_RCC_FMPI2C1_RELEASE_RESET(); + } +#endif +} + +void i2c_init(i2c_t *obj, PinName sda, PinName scl) { + + struct i2c_s *obj_s = I2C_S(obj); + + // Determine the I2C to use + I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA); + I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL); + obj_s->sda = sda; + obj_s->scl = scl; + + obj_s->i2c = (I2CName)pinmap_merge(i2c_sda, i2c_scl); + MBED_ASSERT(obj_s->i2c != (I2CName)NC); + +#if defined I2C1_BASE + // Enable I2C1 clock and pinout if not done + if (obj_s->i2c == I2C_1) { + obj_s->index = 0; + __HAL_RCC_I2C1_CLK_ENABLE(); + // Configure I2C pins + pinmap_pinout(sda, PinMap_I2C_SDA); + pinmap_pinout(scl, PinMap_I2C_SCL); + pin_mode(sda, PullUp); + pin_mode(scl, PullUp); + obj_s->event_i2cIRQ = I2C1_EV_IRQn; + obj_s->error_i2cIRQ = I2C1_ER_IRQn; + } +#endif +#if defined I2C2_BASE + // Enable I2C2 clock and pinout if not done + if (obj_s->i2c == I2C_2) { + obj_s->index = 1; + __HAL_RCC_I2C2_CLK_ENABLE(); + // Configure I2C pins + pinmap_pinout(sda, PinMap_I2C_SDA); + pinmap_pinout(scl, PinMap_I2C_SCL); + pin_mode(sda, PullUp); + pin_mode(scl, PullUp); + obj_s->event_i2cIRQ = I2C2_EV_IRQn; + obj_s->error_i2cIRQ = I2C2_ER_IRQn; + } +#endif +#if defined I2C3_BASE + // Enable I2C3 clock and pinout if not done + if (obj_s->i2c == I2C_3) { + obj_s->index = 2; + __HAL_RCC_I2C3_CLK_ENABLE(); + // Configure I2C pins + pinmap_pinout(sda, PinMap_I2C_SDA); + pinmap_pinout(scl, PinMap_I2C_SCL); + pin_mode(sda, PullUp); + pin_mode(scl, PullUp); + obj_s->event_i2cIRQ = I2C3_EV_IRQn; + obj_s->error_i2cIRQ = I2C3_ER_IRQn; + } +#endif +#if defined I2C4_BASE + // Enable I2C3 clock and pinout if not done + if (obj_s->i2c == I2C_4) { + obj_s->index = 3; + __HAL_RCC_I2C4_CLK_ENABLE(); + // Configure I2C pins + pinmap_pinout(sda, PinMap_I2C_SDA); + pinmap_pinout(scl, PinMap_I2C_SCL); + pin_mode(sda, PullUp); + pin_mode(scl, PullUp); + obj_s->event_i2cIRQ = I2C4_EV_IRQn; + obj_s->error_i2cIRQ = I2C4_ER_IRQn; + } +#endif +#if defined FMPI2C1_BASE + // Enable I2C3 clock and pinout if not done + if (obj_s->i2c == FMPI2C_1) { + obj_s->index = 4; + __HAL_RCC_FMPI2C1_CLK_ENABLE(); + // Configure I2C pins + pinmap_pinout(sda, PinMap_I2C_SDA); + pinmap_pinout(scl, PinMap_I2C_SCL); + pin_mode(sda, PullUp); + pin_mode(scl, PullUp); + obj_s->event_i2cIRQ = FMPI2C1_EV_IRQn; + obj_s->error_i2cIRQ = FMPI2C1_ER_IRQn; + } +#endif + + // I2C configuration + // Default hz value used for timeout computation + if(!obj_s->hz) + obj_s->hz = 100000; // 100 kHz per default + + // Reset to clear pending flags if any + i2c_hw_reset(obj); + i2c_frequency(obj, obj_s->hz ); + +#if DEVICE_I2CSLAVE + // I2C master by default + obj_s->slave = 0; + obj_s->pending_slave_tx_master_rx = 0; + obj_s->pending_slave_rx_maxter_tx = 0; +#endif + + // I2C Xfer operation init + obj_s->event = 0; + obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME; +} + +void i2c_frequency(i2c_t *obj, int hz) +{ + int timeout; + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + // wait before init + timeout = BYTE_TIMEOUT; + while ((__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BUSY)) && (--timeout != 0)); + +#ifdef I2C_IP_VERSION_V1 + handle->Init.ClockSpeed = hz; + handle->Init.DutyCycle = I2C_DUTYCYCLE_2; +#endif +#ifdef I2C_IP_VERSION_V2 + /* Only predefined timing for below frequencies are supported */ + MBED_ASSERT((hz == 100000) || (hz == 400000) || (hz == 1000000)); + handle->Init.Timing = get_i2c_timing(hz); + + // Enable the Fast Mode Plus capability + if (hz == 1000000) { +#if defined(I2C1_BASE) && defined(__HAL_SYSCFG_FASTMODEPLUS_ENABLE) && defined (I2C_FASTMODEPLUS_I2C1) + if (obj_s->i2c == I2C_1) { + __HAL_SYSCFG_FASTMODEPLUS_ENABLE(I2C_FASTMODEPLUS_I2C1); + } +#endif +#if defined(I2C2_BASE) && defined(__HAL_SYSCFG_FASTMODEPLUS_ENABLE) && defined (I2C_FASTMODEPLUS_I2C2) + if (obj_s->i2c == I2C_2) { + __HAL_SYSCFG_FASTMODEPLUS_ENABLE(I2C_FASTMODEPLUS_I2C2); + } +#endif +#if defined(I2C3_BASE) && defined(__HAL_SYSCFG_FASTMODEPLUS_ENABLE) && defined (I2C_FASTMODEPLUS_I2C3) + if (obj_s->i2c == I2C_3) { + __HAL_SYSCFG_FASTMODEPLUS_ENABLE(I2C_FASTMODEPLUS_I2C3); + } +#endif +#if defined(I2C4_BASE) && defined(__HAL_SYSCFG_FASTMODEPLUS_ENABLE) && defined (I2C_FASTMODEPLUS_I2C4) + if (obj_s->i2c == I2C_4) { + __HAL_SYSCFG_FASTMODEPLUS_ENABLE(I2C_FASTMODEPLUS_I2C4); + } +#endif + } +#endif //I2C_IP_VERSION_V2 + + /*##-1- Configure the I2C clock source. The clock is derived from the SYSCLK #*/ +#if defined(I2C1_BASE) && defined (__HAL_RCC_I2C1_CONFIG) + if (obj_s->i2c == I2C_1) { + __HAL_RCC_I2C1_CONFIG(I2CAPI_I2C1_CLKSRC); + } +#endif +#if defined(I2C2_BASE) && defined(__HAL_RCC_I2C2_CONFIG) + if (obj_s->i2c == I2C_2) { + __HAL_RCC_I2C2_CONFIG(I2CAPI_I2C2_CLKSRC); + } +#endif +#if defined(I2C3_BASE) && defined(__HAL_RCC_I2C3_CONFIG) + if (obj_s->i2c == I2C_3) { + __HAL_RCC_I2C3_CONFIG(I2CAPI_I2C3_CLKSRC); + } +#endif +#if defined(I2C4_BASE) && defined(__HAL_RCC_I2C4_CONFIG) + if (obj_s->i2c == I2C_4) { + __HAL_RCC_I2C4_CONFIG(I2CAPI_I2C4_CLKSRC); + } +#endif + +#ifdef I2C_ANALOGFILTER_ENABLE + /* Enable the Analog I2C Filter */ + HAL_I2CEx_AnalogFilter_Config(handle,I2C_ANALOGFILTER_ENABLE); +#endif + + // I2C configuration + handle->Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; + handle->Init.DualAddressMode = I2C_DUALADDRESS_DISABLED; + handle->Init.GeneralCallMode = I2C_GENERALCALL_DISABLED; + handle->Init.NoStretchMode = I2C_NOSTRETCH_DISABLED; + handle->Init.OwnAddress1 = 0; + handle->Init.OwnAddress2 = 0; + HAL_I2C_Init(handle); + + /* store frequency for timeout computation */ + obj_s->hz = hz; +} + +i2c_t *get_i2c_obj(I2C_HandleTypeDef *hi2c){ + /* Aim of the function is to get i2c_s pointer using hi2c pointer */ + /* Highly inspired from magical linux kernel's "container_of" */ + /* (which was not directly used since not compatible with IAR toolchain) */ + struct i2c_s *obj_s; + i2c_t *obj; + + obj_s = (struct i2c_s *)( (char *)hi2c - offsetof(struct i2c_s,handle)); + obj = (i2c_t *)( (char *)obj_s - offsetof(i2c_t,i2c)); + + return (obj); +} + +/* SYNCHRONOUS API FUNCTIONS */ + +int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + int count = 0, ret = 0; + uint32_t timeout = 0; + + if ((obj_s->XferOperation == I2C_FIRST_AND_LAST_FRAME) || + (obj_s->XferOperation == I2C_LAST_FRAME)) { + if (stop) + obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME; + else + obj_s->XferOperation = I2C_FIRST_FRAME; + } else if ((obj_s->XferOperation == I2C_FIRST_FRAME) || + (obj_s->XferOperation == I2C_NEXT_FRAME)) { + if (stop) + obj_s->XferOperation = I2C_LAST_FRAME; + else + obj_s->XferOperation = I2C_NEXT_FRAME; + } + + obj_s->event = 0; + + /* Activate default IRQ handlers for sync mode + * which would be overwritten in async mode + */ + i2c_ev_err_enable(obj, i2c_get_irq_handler(obj)); + + ret = HAL_I2C_Master_Sequential_Receive_IT(handle, address, (uint8_t *) data, length, obj_s->XferOperation); + + if(ret == HAL_OK) { + timeout = BYTE_TIMEOUT_US * length; + /* transfer started : wait completion or timeout */ + while(!(obj_s->event & I2C_EVENT_ALL) && (--timeout != 0)) { + wait_us(1); + } + + i2c_ev_err_disable(obj); + + if((timeout == 0) || (obj_s->event != I2C_EVENT_TRANSFER_COMPLETE)) { + DEBUG_PRINTF(" TIMEOUT or error in i2c_read\r\n"); + /* re-init IP to try and get back in a working state */ + i2c_init(obj, obj_s->sda, obj_s->scl); + } else { + count = length; + } + } else { + DEBUG_PRINTF("ERROR in i2c_read\r\n"); + } + + return count; +} + +/* + * UNITARY APIS. + * For very basic operations, direct registers access is needed + * There are 2 different IPs version that need to be supported + */ +#ifdef I2C_IP_VERSION_V1 +int i2c_start(i2c_t *obj) { + + int timeout; + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + // Clear Acknowledge failure flag + __HAL_I2C_CLEAR_FLAG(handle, I2C_FLAG_AF); + + // Wait the STOP condition has been previously correctly sent + // This timeout can be avoid in some specific cases by simply clearing the STOP bit + timeout = FLAG_TIMEOUT; + while ((handle->Instance->CR1 & I2C_CR1_STOP) == I2C_CR1_STOP) { + if ((timeout--) == 0) { + return 1; + } + } + + // Generate the START condition + handle->Instance->CR1 |= I2C_CR1_START; + + // Wait the START condition has been correctly sent + timeout = FLAG_TIMEOUT; + while (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_SB) == RESET) { + if ((timeout--) == 0) { + return 1; + } + } + + return 0; +} + +int i2c_stop(i2c_t *obj) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_TypeDef *i2c = (I2C_TypeDef *)obj_s->i2c; + + // Generate the STOP condition + i2c->CR1 |= I2C_CR1_STOP; + + return 0; +} + +int i2c_byte_read(i2c_t *obj, int last) { + + int timeout; + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + if (last) { + // Don't acknowledge the last byte + handle->Instance->CR1 &= ~I2C_CR1_ACK; + } else { + // Acknowledge the byte + handle->Instance->CR1 |= I2C_CR1_ACK; + } + + // Wait until the byte is received + timeout = FLAG_TIMEOUT; + while (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_RXNE) == RESET) { + if ((timeout--) == 0) { + return -1; + } + } + + return (int)handle->Instance->DR; +} + +int i2c_byte_write(i2c_t *obj, int data) { + + int timeout; + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + handle->Instance->DR = (uint8_t)data; + + // Wait until the byte (might be the address) is transmitted + timeout = FLAG_TIMEOUT; + while ((__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TXE) == RESET) && + (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BTF) == RESET) && + (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_ADDR) == RESET)) { + if ((timeout--) == 0) { + return 0; + } + } + + if (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_ADDR) != RESET) + { + __HAL_I2C_CLEAR_ADDRFLAG(handle); + } + + return 1; +} +#endif //I2C_IP_VERSION_V1 +#ifdef I2C_IP_VERSION_V2 +int i2c_start(i2c_t *obj) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + I2C_TypeDef *i2c = (I2C_TypeDef *)obj_s->i2c; + int timeout; + + // Clear Acknowledge failure flag + __HAL_I2C_CLEAR_FLAG(handle, I2C_FLAG_AF); + + // Wait the STOP condition has been previously correctly sent + timeout = FLAG_TIMEOUT; + while ((i2c->CR2 & I2C_CR2_STOP) == I2C_CR2_STOP){ + if ((timeout--) == 0) { + return 1; + } + } + + // Generate the START condition + i2c->CR2 |= I2C_CR2_START; + + // Wait the START condition has been correctly sent + timeout = FLAG_TIMEOUT; + while (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BUSY) == RESET) { + if ((timeout--) == 0) { + return 1; + } + } + + return 0; +} + +int i2c_stop(i2c_t *obj) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_TypeDef *i2c = (I2C_TypeDef *)obj_s->i2c; + + // Generate the STOP condition + i2c->CR2 |= I2C_CR2_STOP; + + return 0; +} + +int i2c_byte_read(i2c_t *obj, int last) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_TypeDef *i2c = (I2C_TypeDef *)obj_s->i2c; + I2C_HandleTypeDef *handle = &(obj_s->handle); + int timeout; + + // Wait until the byte is received + timeout = FLAG_TIMEOUT; + while (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_RXNE) == RESET) { + if ((timeout--) == 0) { + return -1; + } + } + + return (int)i2c->RXDR; +} + +int i2c_byte_write(i2c_t *obj, int data) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_TypeDef *i2c = (I2C_TypeDef *)obj_s->i2c; + I2C_HandleTypeDef *handle = &(obj_s->handle); + int timeout; + + // Wait until the previous byte is transmitted + timeout = FLAG_TIMEOUT; + while (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TXIS) == RESET) { + if ((timeout--) == 0) { + return 0; + } + } + + i2c->TXDR = (uint8_t)data; + + return 1; +} +#endif //I2C_IP_VERSION_V2 + +void i2c_reset(i2c_t *obj) { + struct i2c_s *obj_s = I2C_S(obj); + /* As recommended in i2c_api.h, mainly send stop */ + i2c_stop(obj); + /* then re-init */ + i2c_init(obj, obj_s->sda, obj_s->scl); +} + +/* + * SYNC APIS + */ +int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + int count = 0, ret = 0; + uint32_t timeout = 0; + + if ((obj_s->XferOperation == I2C_FIRST_AND_LAST_FRAME) || + (obj_s->XferOperation == I2C_LAST_FRAME)) { + if (stop) + obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME; + else + obj_s->XferOperation = I2C_FIRST_FRAME; + } else if ((obj_s->XferOperation == I2C_FIRST_FRAME) || + (obj_s->XferOperation == I2C_NEXT_FRAME)) { + if (stop) + obj_s->XferOperation = I2C_LAST_FRAME; + else + obj_s->XferOperation = I2C_NEXT_FRAME; + } + + obj_s->event = 0; + + i2c_ev_err_enable(obj, i2c_get_irq_handler(obj)); + + ret = HAL_I2C_Master_Sequential_Transmit_IT(handle, address, (uint8_t *) data, length, obj_s->XferOperation); + + if(ret == HAL_OK) { + timeout = BYTE_TIMEOUT_US * length; + /* transfer started : wait completion or timeout */ + while(!(obj_s->event & I2C_EVENT_ALL) && (--timeout != 0)) { + wait_us(1); + } + + i2c_ev_err_disable(obj); + + if((timeout == 0) || (obj_s->event != I2C_EVENT_TRANSFER_COMPLETE)) { + DEBUG_PRINTF(" TIMEOUT or error in i2c_write\r\n"); + /* re-init IP to try and get back in a working state */ + i2c_init(obj, obj_s->sda, obj_s->scl); + } else { + count = length; + } + } else { + DEBUG_PRINTF("ERROR in i2c_read\r\n"); + } + + return count; +} + +void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c){ + /* Get object ptr based on handler ptr */ + i2c_t *obj = get_i2c_obj(hi2c); + struct i2c_s *obj_s = I2C_S(obj); + +#if DEVICE_I2C_ASYNCH + /* Handle potential Tx/Rx use case */ + if ((obj->tx_buff.length) && (obj->rx_buff.length)) { + if (obj_s->stop) { + obj_s->XferOperation = I2C_LAST_FRAME; + } else { + obj_s->XferOperation = I2C_NEXT_FRAME; + } + + HAL_I2C_Master_Sequential_Receive_IT(hi2c, obj_s->address, (uint8_t*)obj->rx_buff.buffer , obj->rx_buff.length, obj_s->XferOperation); + } + else +#endif + { + /* Set event flag */ + obj_s->event = I2C_EVENT_TRANSFER_COMPLETE; + } +} + +void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c){ + /* Get object ptr based on handler ptr */ + i2c_t *obj = get_i2c_obj(hi2c); + struct i2c_s *obj_s = I2C_S(obj); + + /* Set event flag */ + obj_s->event = I2C_EVENT_TRANSFER_COMPLETE; +} + +void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c){ + /* Get object ptr based on handler ptr */ + i2c_t *obj = get_i2c_obj(hi2c); + struct i2c_s *obj_s = I2C_S(obj); +#if DEVICE_I2CSLAVE + I2C_HandleTypeDef *handle = &(obj_s->handle); + uint32_t address = 0; + /* Store address to handle it after reset */ + if(obj_s->slave) + address = handle->Init.OwnAddress1; +#endif + + DEBUG_PRINTF("HAL_I2C_ErrorCallback:%d, index=%d\r\n", (int) hi2c->ErrorCode, obj_s->index); + + /* re-init IP to try and get back in a working state */ + i2c_init(obj, obj_s->sda, obj_s->scl); + +#if DEVICE_I2CSLAVE + /* restore slave address */ + i2c_slave_address(obj, 0, address, 0); +#endif + + /* Keep Set event flag */ + obj_s->event = I2C_EVENT_ERROR; +} + +#if DEVICE_I2CSLAVE +/* SLAVE API FUNCTIONS */ +void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + // I2C configuration + handle->Init.OwnAddress1 = address; + HAL_I2C_Init(handle); + + i2c_ev_err_enable(obj, i2c_get_irq_handler(obj)); + + HAL_I2C_EnableListen_IT(handle); +} + +void i2c_slave_mode(i2c_t *obj, int enable_slave) { + + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + if (enable_slave) { + obj_s->slave = 1; + HAL_I2C_EnableListen_IT(handle); + } else { + obj_s->slave = 0; + HAL_I2C_DisableListen_IT(handle); + } +} + +// See I2CSlave.h +#define NoData 0 // the slave has not been addressed +#define ReadAddressed 1 // the master has requested a read from this slave (slave = transmitter) +#define WriteGeneral 2 // the master is writing to all slave +#define WriteAddressed 3 // the master is writing to this slave (slave = receiver) + + +void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) { + /* Get object ptr based on handler ptr */ + i2c_t *obj = get_i2c_obj(hi2c); + struct i2c_s *obj_s = I2C_S(obj); + + /* Transfer direction in HAL is from Master point of view */ + if(TransferDirection == I2C_DIRECTION_RECEIVE) { + obj_s->pending_slave_tx_master_rx = 1; + } + + if(TransferDirection == I2C_DIRECTION_TRANSMIT) { + obj_s->pending_slave_rx_maxter_tx = 1; + } +} + +void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *I2cHandle){ + /* Get object ptr based on handler ptr */ + i2c_t *obj = get_i2c_obj(I2cHandle); + struct i2c_s *obj_s = I2C_S(obj); + obj_s->pending_slave_tx_master_rx = 0; +} + +void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *I2cHandle){ + /* Get object ptr based on handler ptr */ + i2c_t *obj = get_i2c_obj(I2cHandle); + struct i2c_s *obj_s = I2C_S(obj); + obj_s->pending_slave_rx_maxter_tx = 0; +} + +void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* restart listening for master requests */ + HAL_I2C_EnableListen_IT(hi2c); +} + +int i2c_slave_receive(i2c_t *obj) { + + struct i2c_s *obj_s = I2C_S(obj); + int retValue = NoData; + + if(obj_s->pending_slave_rx_maxter_tx) { + retValue = WriteAddressed; + } + + if(obj_s->pending_slave_tx_master_rx) { + retValue = ReadAddressed; + } + + return (retValue); +} + +int i2c_slave_read(i2c_t *obj, char *data, int length) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + int count = 0; + int ret = 0; + uint32_t timeout = 0; + + /* Always use I2C_NEXT_FRAME as slave will just adapt to master requests */ + ret = HAL_I2C_Slave_Sequential_Receive_IT(handle, (uint8_t *) data, length, I2C_NEXT_FRAME); + + if(ret == HAL_OK) { + timeout = BYTE_TIMEOUT_US * length; + while(obj_s->pending_slave_rx_maxter_tx && (--timeout != 0)) { + wait_us(1); + } + + if(timeout != 0) { + count = length; + } else { + DEBUG_PRINTF("TIMEOUT or error in i2c_slave_read\r\n"); + } + } + return count; +} + +int i2c_slave_write(i2c_t *obj, const char *data, int length) { + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + int count = 0; + int ret = 0; + uint32_t timeout = 0; + + /* Always use I2C_NEXT_FRAME as slave will just adapt to master requests */ + ret = HAL_I2C_Slave_Sequential_Transmit_IT(handle, (uint8_t *) data, length, I2C_NEXT_FRAME); + + if(ret == HAL_OK) { + timeout = BYTE_TIMEOUT_US * length; + while(obj_s->pending_slave_tx_master_rx && (--timeout != 0)) { + wait_us(1); + } + + if(timeout != 0) { + count = length; + } else { + DEBUG_PRINTF("TIMEOUT or error in i2c_slave_write\r\n"); + } + } + + return count; +} +#endif // DEVICE_I2CSLAVE + +#if DEVICE_I2C_ASYNCH +/* ASYNCH MASTER API FUNCTIONS */ +void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c){ + /* Get object ptr based on handler ptr */ + i2c_t *obj = get_i2c_obj(hi2c); + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + /* Disable IT. Not always done before calling macro */ + __HAL_I2C_DISABLE_IT(handle, I2C_IT_ALL); + i2c_ev_err_disable(obj); + + /* Set event flag */ + obj_s->event = I2C_EVENT_ERROR; +} + +void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address, uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint) { + + // TODO: DMA usage is currently ignored by this way + (void) hint; + + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + /* Update object */ + obj->tx_buff.buffer = (void *)tx; + obj->tx_buff.length = tx_length; + obj->tx_buff.pos = 0; + obj->tx_buff.width = 8; + + obj->rx_buff.buffer = (void *)rx; + obj->rx_buff.length = rx_length; + obj->rx_buff.pos = SIZE_MAX; + obj->rx_buff.width = 8; + + obj_s->available_events = event; + obj_s->event = 0; + obj_s->address = address; + obj_s->stop = stop; + + i2c_ev_err_enable(obj, handler); + + /* Set operation step depending if stop sending required or not */ + if ((tx_length && !rx_length) || (!tx_length && rx_length)) { + if ((obj_s->XferOperation == I2C_FIRST_AND_LAST_FRAME) || + (obj_s->XferOperation == I2C_LAST_FRAME)) { + if (stop) + obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME; + else + obj_s->XferOperation = I2C_FIRST_FRAME; + } else if ((obj_s->XferOperation == I2C_FIRST_FRAME) || + (obj_s->XferOperation == I2C_NEXT_FRAME)) { + if (stop) + obj_s->XferOperation = I2C_LAST_FRAME; + else + obj_s->XferOperation = I2C_NEXT_FRAME; + } + + if (tx_length > 0) { + HAL_I2C_Master_Sequential_Transmit_IT(handle, address, (uint8_t*)tx, tx_length, obj_s->XferOperation); + } + if (rx_length > 0) { + HAL_I2C_Master_Sequential_Receive_IT(handle, address, (uint8_t*)rx, rx_length, obj_s->XferOperation); + } + } + else if (tx_length && rx_length) { + /* Two steps operation, don't modify XferOperation, keep it for next step */ + if ((obj_s->XferOperation == I2C_FIRST_AND_LAST_FRAME) || + (obj_s->XferOperation == I2C_LAST_FRAME)) { + HAL_I2C_Master_Sequential_Transmit_IT(handle, address, (uint8_t*)tx, tx_length, I2C_FIRST_FRAME); + } else if ((obj_s->XferOperation == I2C_FIRST_FRAME) || + (obj_s->XferOperation == I2C_NEXT_FRAME)) { + HAL_I2C_Master_Sequential_Transmit_IT(handle, address, (uint8_t*)tx, tx_length, I2C_NEXT_FRAME); + } + } +} + + +uint32_t i2c_irq_handler_asynch(i2c_t *obj) { + + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + HAL_I2C_EV_IRQHandler(handle); + HAL_I2C_ER_IRQHandler(handle); + + /* Return I2C event status */ + return (obj_s->event & obj_s->available_events); +} + +uint8_t i2c_active(i2c_t *obj) { + + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + if (handle->State == HAL_I2C_STATE_READY) { + return 0; + } + else { + return 1; + } +} + +void i2c_abort_asynch(i2c_t *obj) { + + struct i2c_s *obj_s = I2C_S(obj); + I2C_HandleTypeDef *handle = &(obj_s->handle); + + /* Abort HAL requires DevAddress, but is not used. Use Dummy */ + uint16_t Dummy_DevAddress = 0x00; + + HAL_I2C_Master_Abort_IT(handle, Dummy_DevAddress); +} + +#endif // DEVICE_I2C_ASYNCH + +#endif // STM32F1 + +#endif // DEVICE_I2C