Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: Nucleo_F103RB_RTC_battery_bkup_pwr_off_okay
Fork of mbed-dev by
Diff: targets/TARGET_NUVOTON/TARGET_NANO100/serial_api.c
- Revision:
- 174:b96e65c34a4d
- Child:
- 176:447f873cad2f
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_NUVOTON/TARGET_NANO100/serial_api.c Mon Oct 02 15:33:19 2017 +0100
@@ -0,0 +1,1012 @@
+/* mbed Microcontroller Library
+ * Copyright (c) 2015-2017 Nuvoton
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "serial_api.h"
+
+#if DEVICE_SERIAL
+
+#include <string.h>
+#include "cmsis.h"
+#include "mbed_error.h"
+#include "mbed_assert.h"
+#include "PeripheralPins.h"
+#include "nu_modutil.h"
+#include "nu_bitutil.h"
+
+#if DEVICE_SERIAL_ASYNCH
+#include "dma_api.h"
+#include "dma.h"
+#endif
+
+struct nu_uart_var {
+ uint32_t ref_cnt; // Reference count of the H/W module
+ serial_t * obj;
+ uint32_t fifo_size_tx;
+ uint32_t fifo_size_rx;
+ void (*vec)(void);
+#if DEVICE_SERIAL_ASYNCH
+ uint8_t pdma_perp_tx;
+ uint8_t pdma_perp_rx;
+#endif
+};
+
+void UART0_IRQHandler(void);
+void UART1_IRQHandler(void);
+static void uart_irq(serial_t *obj);
+
+#if DEVICE_SERIAL_ASYNCH
+static void uart_irq_async(serial_t *obj);
+
+static void uart_dma_handler_tx(uint32_t id, uint32_t event);
+static void uart_dma_handler_rx(uint32_t id, uint32_t event);
+
+static void serial_tx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
+static void serial_rx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
+static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable);
+static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq);
+static int serial_write_async(serial_t *obj);
+static int serial_read_async(serial_t *obj);
+
+static uint32_t serial_rx_event_check(serial_t *obj);
+static uint32_t serial_tx_event_check(serial_t *obj);
+
+static int serial_is_tx_complete(serial_t *obj);
+static void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable);
+
+static void serial_tx_buffer_set(serial_t *obj, const void *tx, size_t length, uint8_t width);
+static void serial_rx_buffer_set(serial_t *obj, void *rx, size_t length, uint8_t width);
+static void serial_rx_set_char_match(serial_t *obj, uint8_t char_match);
+static void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable);
+static int serial_is_rx_complete(serial_t *obj);
+
+static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch);
+static int serial_is_irq_en(serial_t *obj, SerialIrq irq);
+#endif
+
+static struct nu_uart_var uart0_var = {
+ .ref_cnt = 0,
+ .obj = NULL,
+ .fifo_size_tx = 16,
+ .fifo_size_rx = 16,
+ .vec = UART0_IRQHandler,
+#if DEVICE_SERIAL_ASYNCH
+ .pdma_perp_tx = PDMA_UART0_TX,
+ .pdma_perp_rx = PDMA_UART0_RX
+#endif
+};
+static struct nu_uart_var uart1_var = {
+ .ref_cnt = 0,
+ .obj = NULL,
+ .fifo_size_tx = 16,
+ .fifo_size_rx = 16,
+ .vec = UART1_IRQHandler,
+#if DEVICE_SERIAL_ASYNCH
+ .pdma_perp_tx = PDMA_UART1_TX,
+ .pdma_perp_rx = PDMA_UART1_RX
+#endif
+};
+
+
+int stdio_uart_inited = 0;
+serial_t stdio_uart;
+static uint32_t uart_modinit_mask = 0;
+
+static const struct nu_modinit_s uart_modinit_tab[] = {
+ {UART_0, UART0_MODULE, CLK_CLKSEL1_UART_S_HIRC, CLK_UART_CLK_DIVIDER(1), UART0_RST, UART0_IRQn, &uart0_var},
+ {UART_1, UART1_MODULE, CLK_CLKSEL1_UART_S_HIRC, CLK_UART_CLK_DIVIDER(1), UART1_RST, UART1_IRQn, &uart1_var},
+
+ {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL}
+};
+
+extern void mbed_sdk_init(void);
+
+void serial_init(serial_t *obj, PinName tx, PinName rx)
+{
+ // NOTE: With armcc, serial_init() gets called from _sys_open() timing of which is before main()/mbed_sdk_init().
+ mbed_sdk_init();
+
+ // Determine which UART_x the pins are used for
+ uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
+ uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
+ // Get the peripheral name (UART_x) from the pins and assign it to the object
+ obj->serial.uart = (UARTName) pinmap_merge(uart_tx, uart_rx);
+ MBED_ASSERT((int)obj->serial.uart != NC);
+
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
+
+ if (! var->ref_cnt) {
+ // Reset this module
+ SYS_ResetModule(modinit->rsetidx);
+
+ // Select IP clock source
+ CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv);
+ // Enable IP clock
+ CLK_EnableModuleClock(modinit->clkidx);
+
+ pinmap_pinout(tx, PinMap_UART_TX);
+ pinmap_pinout(rx, PinMap_UART_RX);
+
+ obj->serial.pin_tx = tx;
+ obj->serial.pin_rx = rx;
+ }
+ var->ref_cnt ++;
+
+ // Configure the UART module and set its baudrate
+ serial_baud(obj, 9600);
+ // Configure data bits, parity, and stop bits
+ serial_format(obj, 8, ParityNone, 1);
+
+ obj->serial.vec = var->vec;
+ obj->serial.irq_en = 0;
+
+#if DEVICE_SERIAL_ASYNCH
+ obj->serial.dma_usage_tx = DMA_USAGE_NEVER;
+ obj->serial.dma_usage_rx = DMA_USAGE_NEVER;
+ obj->serial.event = 0;
+ obj->serial.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
+ obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
+#endif
+
+ // For stdio management
+ if (obj->serial.uart == STDIO_UART) {
+ stdio_uart_inited = 1;
+ memcpy(&stdio_uart, obj, sizeof(serial_t));
+ }
+
+ if (var->ref_cnt) {
+ // Mark this module to be inited.
+ int i = modinit - uart_modinit_tab;
+ uart_modinit_mask |= 1 << i;
+ }
+}
+
+void serial_free(serial_t *obj)
+{
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
+
+ var->ref_cnt --;
+ if (! var->ref_cnt) {
+#if DEVICE_SERIAL_ASYNCH
+ if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
+ dma_channel_free(obj->serial.dma_chn_id_tx);
+ obj->serial.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
+ }
+ if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
+ dma_channel_free(obj->serial.dma_chn_id_rx);
+ obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
+ }
+#endif
+
+ UART_Close((UART_T *) NU_MODBASE(obj->serial.uart));
+
+ UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_THRE_IE_Msk | UART_IER_RTO_IE_Msk));
+ NVIC_DisableIRQ(modinit->irq_n);
+
+ // Disable IP clock
+ CLK_DisableModuleClock(modinit->clkidx);
+ }
+
+ if (var->obj == obj) {
+ var->obj = NULL;
+ }
+
+ if (obj->serial.uart == STDIO_UART) {
+ stdio_uart_inited = 0;
+ }
+
+ if (! var->ref_cnt) {
+ // Mark this module to be deinited.
+ int i = modinit - uart_modinit_tab;
+ uart_modinit_mask &= ~(1 << i);
+ }
+}
+
+void serial_baud(serial_t *obj, int baudrate) {
+ // Flush Tx FIFO. Otherwise, output data may get lost on this change.
+ while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
+
+ obj->serial.baudrate = baudrate;
+ UART_Open((UART_T *) NU_MODBASE(obj->serial.uart), baudrate);
+}
+
+void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
+ // Flush Tx FIFO. Otherwise, output data may get lost on this change.
+ while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
+
+ // TODO: Assert for not supported parity and data bits
+ obj->serial.databits = data_bits;
+ obj->serial.parity = parity;
+ obj->serial.stopbits = stop_bits;
+
+ uint32_t databits_intern = (data_bits == 5) ? UART_WORD_LEN_5 :
+ (data_bits == 6) ? UART_WORD_LEN_6 :
+ (data_bits == 7) ? UART_WORD_LEN_7 :
+ UART_WORD_LEN_8;
+ uint32_t parity_intern = (parity == ParityOdd || parity == ParityForced1) ? UART_PARITY_ODD :
+ (parity == ParityEven || parity == ParityForced0) ? UART_PARITY_EVEN :
+ UART_PARITY_NONE;
+ uint32_t stopbits_intern = (stop_bits == 2) ? UART_STOP_BIT_2 : UART_STOP_BIT_1;
+ UART_SetLine_Config((UART_T *) NU_MODBASE(obj->serial.uart),
+ 0, // Don't change baudrate
+ databits_intern,
+ parity_intern,
+ stopbits_intern);
+}
+
+#if DEVICE_SERIAL_FC
+
+void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
+{
+ UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
+
+ // First, disable flow control completely.
+ UART_DisableFlowCtrl(uart_base);
+
+ if ((type == FlowControlRTS || type == FlowControlRTSCTS) && rxflow != NC) {
+ // Check if RTS pin matches.
+ uint32_t uart_rts = pinmap_peripheral(rxflow, PinMap_UART_RTS);
+ MBED_ASSERT(uart_rts == obj->serial.uart);
+ // Enable the pin for RTS function
+ pinmap_pinout(rxflow, PinMap_UART_RTS);
+ // nRTS pin output is low level active
+ uart_base->MCSR |= UART_MCSR_LEV_RTS_Msk;
+ // Set RTS Trigger Level as 8 bytes
+ uart_base->TLCTL = (uart_base->TLCTL & ~UART_TLCTL_RTS_TRI_LEV_Msk) | UART_TLCTL_RTS_TRI_LEV_8BYTES;
+ // Set RX Trigger Level as 8 bytes
+ uart_base->TLCTL = (uart_base->TLCTL & ~UART_TLCTL_RFITL_Msk) | UART_TLCTL_RFITL_8BYTES;
+ // Enable RTS
+ uart_base->CTL |= UART_CTL_AUTO_RTS_EN_Msk;
+ }
+
+ if ((type == FlowControlCTS || type == FlowControlRTSCTS) && txflow != NC) {
+ // Check if CTS pin matches.
+ uint32_t uart_cts = pinmap_peripheral(txflow, PinMap_UART_CTS);
+ MBED_ASSERT(uart_cts == obj->serial.uart);
+ // Enable the pin for CTS function
+ pinmap_pinout(txflow, PinMap_UART_CTS);
+ // nCTS pin input is low level active
+ uart_base->MCSR |= UART_MCSR_LEV_CTS_Msk;
+ // Enable CTS
+ uart_base->CTL |= UART_CTL_AUTO_CTS_EN_Msk;
+ }
+}
+
+#endif //DEVICE_SERIAL_FC
+
+void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
+{
+ // Flush Tx FIFO. Otherwise, output data may get lost on this change.
+ while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
+
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ obj->serial.irq_handler = (uint32_t) handler;
+ obj->serial.irq_id = id;
+
+ // Restore sync-mode vector
+ obj->serial.async_en = 0;
+}
+
+void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
+{
+ obj->serial.irq_en = enable;
+ serial_enable_interrupt(obj, irq, enable);
+}
+
+int serial_getc(serial_t *obj)
+{
+ // TODO: Fix every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
+ while (! serial_readable(obj));
+ int c = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
+
+ // NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
+ // Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
+ if (obj->serial.ier_msk & (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk)) {
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
+ }
+
+ return c;
+}
+
+void serial_putc(serial_t *obj, int c)
+{
+ // TODO: Fix every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
+ while (! serial_writable(obj));
+ UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), c);
+
+ // NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
+ // Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
+ if (obj->serial.ier_msk & UART_IER_THRE_IE_Msk) {
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
+ }
+}
+
+int serial_readable(serial_t *obj)
+{
+ return ! UART_GET_RX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart)));
+}
+
+int serial_writable(serial_t *obj)
+{
+ return ! UART_IS_TX_FULL(((UART_T *) NU_MODBASE(obj->serial.uart)));
+}
+
+void serial_pinout_tx(PinName tx)
+{
+ pinmap_pinout(tx, PinMap_UART_TX);
+}
+
+void serial_break_set(serial_t *obj)
+{
+ ((UART_T *) NU_MODBASE(obj->serial.uart))->TLCTL |= UART_TLCTL_BCB_Msk;
+}
+
+void serial_break_clear(serial_t *obj)
+{
+ ((UART_T *) NU_MODBASE(obj->serial.uart))->TLCTL &= ~UART_TLCTL_BCB_Msk;
+}
+
+void UART0_IRQHandler(void)
+{
+#if DEVICE_SERIAL_ASYNCH
+ if (uart0_var.obj->serial.async_en)
+ uart_irq_async(uart0_var.obj);
+ else
+#endif
+ uart_irq(uart0_var.obj);
+}
+
+void UART1_IRQHandler(void)
+{
+#if DEVICE_SERIAL_ASYNCH
+ if (uart1_var.obj->serial.async_en)
+ uart_irq_async(uart1_var.obj);
+ else
+#endif
+ uart_irq(uart1_var.obj);
+}
+
+static void uart_irq(serial_t *obj)
+{
+ UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
+
+ if (uart_base->ISR & (UART_ISR_RDA_IS_Msk | UART_ISR_RTO_IS_Msk)) {
+ // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next read.
+ UART_DISABLE_INT(uart_base, (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
+ if (obj->serial.irq_handler) {
+ ((uart_irq_handler) obj->serial.irq_handler)(obj->serial.irq_id, RxIrq);
+ }
+ }
+
+ if (uart_base->ISR & UART_ISR_THRE_IS_Msk) {
+ // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next write.
+ UART_DISABLE_INT(uart_base, UART_IER_THRE_IE_Msk);
+ if (obj->serial.irq_handler) {
+ ((uart_irq_handler) obj->serial.irq_handler)(obj->serial.irq_id, TxIrq);
+ }
+ }
+
+ // NOTE: Ignore all other interrupt flags. Clear them. Otherwise, program will get stuck in interrupt.
+ uart_base->ISR = uart_base->ISR;
+ uart_base->FSR = uart_base->FSR;
+}
+
+
+#if DEVICE_SERIAL_ASYNCH
+int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint)
+{
+ MBED_ASSERT(tx_width == 8 || tx_width == 16 || tx_width == 32);
+
+ obj->serial.dma_usage_tx = hint;
+ serial_check_dma_usage(&obj->serial.dma_usage_tx, &obj->serial.dma_chn_id_tx);
+
+ // UART IRQ is necessary for both interrupt way and DMA way
+ serial_tx_enable_event(obj, event, 1);
+ serial_tx_buffer_set(obj, tx, tx_length, tx_width);
+
+ int n_word = 0;
+ if (obj->serial.dma_usage_tx == DMA_USAGE_NEVER) {
+ // Interrupt way
+ n_word = serial_write_async(obj);
+ serial_tx_enable_interrupt(obj, handler, 1);
+ } else {
+ // DMA way
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ dma_enable(obj->serial.dma_chn_id_tx, 1); // Enable this DMA channel
+ PDMA_SetTransferMode(obj->serial.dma_chn_id_tx,
+ ((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
+ 0, // Scatter-gather disabled
+ 0); // Scatter-gather descriptor address
+ PDMA_SetTransferCnt(obj->serial.dma_chn_id_tx,
+ (tx_width == 8) ? PDMA_WIDTH_8 : (tx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
+ tx_length);
+ PDMA_SetTransferAddr(obj->serial.dma_chn_id_tx,
+ (uint32_t) tx, // NOTE:
+ // NUC472: End of source address
+ // M451: Start of source address
+ PDMA_SAR_INC, // Source address incremental
+ (uint32_t) NU_MODBASE(obj->serial.uart), // Destination address
+ PDMA_DAR_FIX); // Destination address fixed
+ PDMA_EnableInt(obj->serial.dma_chn_id_tx,
+ PDMA_IER_TD_IE_Msk); // Interrupt type
+ // Register DMA event handler
+ dma_set_handler(obj->serial.dma_chn_id_tx, (uint32_t) uart_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
+ serial_tx_enable_interrupt(obj, handler, 1);
+ PDMA_Trigger(obj->serial.dma_chn_id_tx);
+ ((UART_T *) NU_MODBASE(obj->serial.uart))->CTL |= UART_CTL_DMA_TX_EN_Msk; // Start DMA transfer
+ }
+
+ return n_word;
+}
+
+void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint)
+{
+ MBED_ASSERT(rx_width == 8 || rx_width == 16 || rx_width == 32);
+
+ obj->serial.dma_usage_rx = hint;
+ serial_check_dma_usage(&obj->serial.dma_usage_rx, &obj->serial.dma_chn_id_rx);
+ // DMA doesn't support char match, so fall back to IRQ if it is requested.
+ if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER &&
+ (event & SERIAL_EVENT_RX_CHARACTER_MATCH) &&
+ char_match != SERIAL_RESERVED_CHAR_MATCH) {
+ obj->serial.dma_usage_rx = DMA_USAGE_NEVER;
+ dma_channel_free(obj->serial.dma_chn_id_rx);
+ obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
+ }
+
+ // UART IRQ is necessary for both interrupt way and DMA way
+ serial_rx_enable_event(obj, event, 1);
+ serial_rx_buffer_set(obj, rx, rx_length, rx_width);
+ serial_rx_set_char_match(obj, char_match);
+
+ if (obj->serial.dma_usage_rx == DMA_USAGE_NEVER) {
+ // Interrupt way
+ serial_rx_enable_interrupt(obj, handler, 1);
+ } else {
+ // DMA way
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ dma_enable(obj->serial.dma_chn_id_rx, 1); // Enable this DMA channel
+ PDMA_SetTransferMode(obj->serial.dma_chn_id_rx,
+ ((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
+ 0, // Scatter-gather disabled
+ 0); // Scatter-gather descriptor address
+ PDMA_SetTransferCnt(obj->serial.dma_chn_id_rx,
+ (rx_width == 8) ? PDMA_WIDTH_8 : (rx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
+ rx_length);
+ PDMA_SetTransferAddr(obj->serial.dma_chn_id_rx,
+ (uint32_t) NU_MODBASE(obj->serial.uart), // Source address
+ PDMA_SAR_FIX, // Source address fixed
+ (uint32_t) rx, // NOTE:
+ // NUC472: End of destination address
+ // M451: Start of destination address
+ PDMA_DAR_INC); // Destination address incremental
+ PDMA_EnableInt(obj->serial.dma_chn_id_rx,
+ PDMA_IER_TD_IE_Msk); // Interrupt type
+ // Register DMA event handler
+ dma_set_handler(obj->serial.dma_chn_id_rx, (uint32_t) uart_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL);
+ serial_rx_enable_interrupt(obj, handler, 1);
+ PDMA_Trigger(obj->serial.dma_chn_id_rx);
+ ((UART_T *) NU_MODBASE(obj->serial.uart))->CTL |= UART_CTL_DMA_RX_EN_Msk; // Start DMA transfer
+ }
+}
+
+void serial_tx_abort_asynch(serial_t *obj)
+{
+ // Flush Tx FIFO. Otherwise, output data may get lost on this change.
+ while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
+
+ if (obj->serial.dma_usage_tx != DMA_USAGE_NEVER) {
+ if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
+ PDMA_DisableInt(obj->serial.dma_chn_id_tx, PDMA_IER_TD_IE_Msk);
+ // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called.
+ dma_enable(obj->serial.dma_chn_id_tx, 0);
+ }
+ ((UART_T *) NU_MODBASE(obj->serial.uart))->CTL &= ~UART_CTL_DMA_TX_EN_Msk;
+ }
+
+ // Necessary for both interrupt way and DMA way
+ serial_enable_interrupt(obj, TxIrq, 0);
+ serial_rollback_interrupt(obj, TxIrq);
+}
+
+void serial_rx_abort_asynch(serial_t *obj)
+{
+ if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER) {
+ if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
+ PDMA_DisableInt(obj->serial.dma_chn_id_rx, PDMA_IER_TD_IE_Msk);
+ // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called.
+ dma_enable(obj->serial.dma_chn_id_rx, 0);
+ }
+ ((UART_T *) NU_MODBASE(obj->serial.uart))->CTL &= ~UART_CTL_DMA_RX_EN_Msk;
+ }
+
+ // Necessary for both interrupt way and DMA way
+ serial_enable_interrupt(obj, RxIrq, 0);
+ serial_rollback_interrupt(obj, RxIrq);
+}
+
+uint8_t serial_tx_active(serial_t *obj)
+{
+ // NOTE: Judge by serial_is_irq_en(obj, TxIrq) doesn't work with sync/async modes interleaved. Change with TX FIFO empty flag.
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ return (obj->serial.async_en);
+}
+
+uint8_t serial_rx_active(serial_t *obj)
+{
+ // NOTE: Judge by serial_is_irq_en(obj, RxIrq) doesn't work with sync/async modes interleaved. Change with RX FIFO empty flag.
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ return (obj->serial.async_en);
+}
+
+int serial_irq_handler_asynch(serial_t *obj)
+{
+ int event_rx = 0;
+ int event_tx = 0;
+
+ // Necessary for both interrupt way and DMA way
+ if (serial_is_irq_en(obj, RxIrq)) {
+ event_rx = serial_rx_event_check(obj);
+ if (event_rx) {
+ serial_rx_abort_asynch(obj);
+ }
+ }
+
+ if (serial_is_irq_en(obj, TxIrq)) {
+ event_tx = serial_tx_event_check(obj);
+ if (event_tx) {
+ serial_tx_abort_asynch(obj);
+ }
+ }
+
+ return (obj->serial.event & (event_rx | event_tx));
+}
+
+int serial_allow_powerdown(void)
+{
+ uint32_t modinit_mask = uart_modinit_mask;
+ while (modinit_mask) {
+ int uart_idx = nu_ctz(modinit_mask);
+ const struct nu_modinit_s *modinit = uart_modinit_tab + uart_idx;
+ if (modinit->modname != NC) {
+ UART_T *uart_base = (UART_T *) NU_MODBASE(modinit->modname);
+ // Disallow entering power-down mode if Tx FIFO has data to flush
+ if (! UART_IS_TX_EMPTY((uart_base))) {
+ return 0;
+ }
+ // Disallow entering power-down mode if async Rx transfer (not PDMA) is on-going
+ if (uart_base->IER & (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk)) {
+ return 0;
+ }
+ // Disallow entering power-down mode if async Rx transfer (PDMA) is on-going
+ if (uart_base->CTL & UART_CTL_DMA_RX_EN_Msk) {
+ return 0;
+ }
+ }
+ modinit_mask &= ~(1 << uart_idx);
+ }
+
+ return 1;
+}
+
+static void uart_irq_async(serial_t *obj)
+{
+ if (serial_is_irq_en(obj, RxIrq)) {
+ (*obj->serial.irq_handler_rx_async)();
+ }
+ if (serial_is_irq_en(obj, TxIrq)) {
+ (*obj->serial.irq_handler_tx_async)();
+ }
+}
+
+static void serial_rx_set_char_match(serial_t *obj, uint8_t char_match)
+{
+ obj->char_match = char_match;
+ obj->char_found = 0;
+}
+
+static void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable)
+{
+ obj->serial.event &= ~SERIAL_EVENT_TX_MASK;
+ obj->serial.event |= (event & SERIAL_EVENT_TX_MASK);
+
+}
+
+static void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable)
+{
+ obj->serial.event &= ~SERIAL_EVENT_RX_MASK;
+ obj->serial.event |= (event & SERIAL_EVENT_RX_MASK);
+
+ if (event & SERIAL_EVENT_RX_FRAMING_ERROR) {
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_RLS_IE_Msk);
+ }
+ if (event & SERIAL_EVENT_RX_PARITY_ERROR) {
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_RLS_IE_Msk);
+ }
+ if (event & SERIAL_EVENT_RX_OVERFLOW) {
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_BUF_ERR_IE_Msk);
+ }
+}
+
+static int serial_is_tx_complete(serial_t *obj)
+{
+ // NOTE: Exclude tx fifo empty check due to no such interrupt on DMA way
+ return (obj->tx_buff.pos == obj->tx_buff.length);
+}
+
+static int serial_is_rx_complete(serial_t *obj)
+{
+ return (obj->rx_buff.pos == obj->rx_buff.length);
+}
+
+static uint32_t serial_tx_event_check(serial_t *obj)
+{
+ UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
+
+ if (uart_base->ISR & UART_ISR_THRE_IS_Msk) {
+ // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next write.
+ UART_DISABLE_INT(uart_base, UART_IER_THRE_IE_Msk);
+ }
+
+ uint32_t event = 0;
+
+ if (obj->serial.dma_usage_tx == DMA_USAGE_NEVER) {
+ serial_write_async(obj);
+ }
+
+ if (serial_is_tx_complete(obj)) {
+ event |= SERIAL_EVENT_TX_COMPLETE;
+ }
+
+ return event;
+}
+
+static uint32_t serial_rx_event_check(serial_t *obj)
+{
+ UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
+
+ if (uart_base->ISR & (UART_ISR_RDA_IS_Msk | UART_ISR_RTO_IS_Msk)) {
+ // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next read.
+ UART_DISABLE_INT(uart_base, (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
+ }
+
+ uint32_t event = 0;
+
+ if (uart_base->FSR & UART_FSR_BI_F_Msk) {
+ uart_base->FSR = UART_FSR_BI_F_Msk;
+ }
+ if (uart_base->FSR & UART_FSR_FE_F_Msk) {
+ uart_base->FSR = UART_FSR_FE_F_Msk;
+ event |= SERIAL_EVENT_RX_FRAMING_ERROR;
+ }
+ if (uart_base->FSR & UART_FSR_PE_F_Msk) {
+ uart_base->FSR = UART_FSR_PE_F_Msk;
+ event |= SERIAL_EVENT_RX_PARITY_ERROR;
+ }
+
+ if (uart_base->FSR & UART_FSR_RX_OVER_F_Msk) {
+ uart_base->FSR = UART_FSR_RX_OVER_F_Msk;
+ event |= SERIAL_EVENT_RX_OVERFLOW;
+ }
+
+ if (obj->serial.dma_usage_rx == DMA_USAGE_NEVER) {
+ serial_read_async(obj);
+ }
+
+ if (serial_is_rx_complete(obj)) {
+ event |= SERIAL_EVENT_RX_COMPLETE;
+ }
+ if ((obj->char_match != SERIAL_RESERVED_CHAR_MATCH) && obj->char_found) {
+ event |= SERIAL_EVENT_RX_CHARACTER_MATCH;
+ // NOTE: Timing to reset char_found?
+ // by obj->char_found = 0;
+ }
+
+ return event;
+}
+
+static void uart_dma_handler_tx(uint32_t id, uint32_t event_dma)
+{
+ serial_t *obj = (serial_t *) id;
+
+ // TODO: Pass this error to caller
+ if (event_dma & DMA_EVENT_ABORT) {
+ }
+ // Expect UART IRQ will catch this transfer done event
+ if (event_dma & DMA_EVENT_TRANSFER_DONE) {
+ obj->tx_buff.pos = obj->tx_buff.length;
+ }
+ // TODO: Pass this error to caller
+ if (event_dma & DMA_EVENT_TIMEOUT) {
+ }
+
+ uart_irq_async(obj);
+}
+
+static void uart_dma_handler_rx(uint32_t id, uint32_t event_dma)
+{
+ serial_t *obj = (serial_t *) id;
+
+ // TODO: Pass this error to caller
+ if (event_dma & DMA_EVENT_ABORT) {
+ }
+ // Expect UART IRQ will catch this transfer done event
+ if (event_dma & DMA_EVENT_TRANSFER_DONE) {
+ obj->rx_buff.pos = obj->rx_buff.length;
+ }
+ // TODO: Pass this error to caller
+ if (event_dma & DMA_EVENT_TIMEOUT) {
+ }
+
+ uart_irq_async(obj);
+}
+
+static int serial_write_async(serial_t *obj)
+{
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
+
+ uint32_t tx_fifo_max = ((struct nu_uart_var *) modinit->var)->fifo_size_tx;
+ uint32_t tx_fifo_busy = (uart_base->FSR & UART_FSR_TX_POINTER_F_Msk) >> UART_FSR_TX_POINTER_F_Pos;
+ if (uart_base->FSR & UART_FSR_TX_FULL_F_Msk) {
+ tx_fifo_busy = tx_fifo_max;
+ }
+ uint32_t tx_fifo_free = tx_fifo_max - tx_fifo_busy;
+ if (tx_fifo_free == 0) {
+ // Simulate clear of the interrupt flag
+ if (obj->serial.ier_msk & UART_IER_THRE_IE_Msk) {
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
+ }
+ return 0;
+ }
+
+ uint32_t bytes_per_word = obj->tx_buff.width / 8;
+
+ uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos;
+ int n_words = 0;
+ while (obj->tx_buff.pos < obj->tx_buff.length && tx_fifo_free >= bytes_per_word) {
+ switch (bytes_per_word) {
+ case 4:
+ UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++);
+ UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++);
+ case 2:
+ UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++);
+ case 1:
+ UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++);
+ }
+
+ n_words ++;
+ tx_fifo_free -= bytes_per_word;
+ obj->tx_buff.pos ++;
+ }
+
+ if (n_words) {
+ // Simulate clear of the interrupt flag
+ if (obj->serial.ier_msk & UART_IER_THRE_IE_Msk) {
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
+ }
+ }
+
+ return n_words;
+}
+
+static int serial_read_async(serial_t *obj)
+{
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ uint32_t rx_fifo_busy = (((UART_T *) NU_MODBASE(obj->serial.uart))->FSR & UART_FSR_RX_POINTER_F_Msk) >> UART_FSR_RX_POINTER_F_Pos;
+
+ uint32_t bytes_per_word = obj->rx_buff.width / 8;
+
+ uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos;
+ int n_words = 0;
+ while (obj->rx_buff.pos < obj->rx_buff.length && rx_fifo_busy >= bytes_per_word) {
+ switch (bytes_per_word) {
+ case 4:
+ *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
+ *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
+ case 2:
+ *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
+ case 1:
+ *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
+ }
+
+ n_words ++;
+ rx_fifo_busy -= bytes_per_word;
+ obj->rx_buff.pos ++;
+
+ if ((obj->serial.event & SERIAL_EVENT_RX_CHARACTER_MATCH) &&
+ obj->char_match != SERIAL_RESERVED_CHAR_MATCH) {
+ uint8_t *rx_cmp = rx;
+ switch (bytes_per_word) {
+ case 4:
+ rx_cmp -= 2;
+ case 2:
+ rx_cmp --;
+ case 1:
+ rx_cmp --;
+ }
+ if (*rx_cmp == obj->char_match) {
+ obj->char_found = 1;
+ break;
+ }
+ }
+ }
+
+ if (n_words) {
+ // Simulate clear of the interrupt flag
+ if (obj->serial.ier_msk & (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk)) {
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
+ }
+ }
+
+ return n_words;
+}
+
+static void serial_tx_buffer_set(serial_t *obj, const void *tx, size_t length, uint8_t width)
+{
+ obj->tx_buff.buffer = (void *) tx;
+ obj->tx_buff.length = length;
+ obj->tx_buff.pos = 0;
+ obj->tx_buff.width = width;
+}
+
+static void serial_rx_buffer_set(serial_t *obj, void *rx, size_t length, uint8_t width)
+{
+ obj->rx_buff.buffer = rx;
+ obj->rx_buff.length = length;
+ obj->rx_buff.pos = 0;
+ obj->rx_buff.width = width;
+}
+
+static void serial_tx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t enable)
+{
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ // Necessary for both interrupt way and DMA way
+ // A flag to indicate async mode, and tx/rx handlers can be different.
+ obj->serial.async_en = 1;
+ obj->serial.irq_handler_tx_async = (void (*)(void)) handler;
+ serial_enable_interrupt(obj, TxIrq, enable);
+}
+
+static void serial_rx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t enable)
+{
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ // Necessary for both interrupt way and DMA way
+ // A flag to indicate async mode, and tx/rx handlers can be different.
+ obj->serial.async_en = 1;
+ obj->serial.irq_handler_rx_async = (void (*) (void)) handler;
+ serial_enable_interrupt(obj, RxIrq, enable);
+}
+
+static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable)
+{
+ if (enable) {
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec);
+ NVIC_EnableIRQ(modinit->irq_n);
+
+ struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
+ // Multiple serial S/W objects for single UART H/W module possibly.
+ // Bind serial S/W object to UART H/W module as interrupt is enabled.
+ var->obj = obj;
+
+ switch (irq) {
+ // NOTE: Setting ier_msk first to avoid race condition
+ case RxIrq:
+ obj->serial.ier_msk = obj->serial.ier_msk | (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk);
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
+ break;
+ case TxIrq:
+ obj->serial.ier_msk = obj->serial.ier_msk | UART_IER_THRE_IE_Msk;
+ UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
+ break;
+ }
+ }
+ else { // disable
+ switch (irq) {
+ case RxIrq:
+ UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
+ obj->serial.ier_msk = obj->serial.ier_msk & ~(UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk);
+ break;
+ case TxIrq:
+ UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
+ obj->serial.ier_msk = obj->serial.ier_msk & ~UART_IER_THRE_IE_Msk;
+ break;
+ }
+ }
+}
+
+static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq)
+{
+ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
+ MBED_ASSERT(modinit != NULL);
+ MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
+
+ obj->serial.async_en = 0;
+ serial_enable_interrupt(obj, irq, obj->serial.irq_en);
+}
+
+static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch)
+{
+ if (*dma_usage != DMA_USAGE_NEVER) {
+ if (*dma_ch == DMA_ERROR_OUT_OF_CHANNELS) {
+ *dma_ch = dma_channel_allocate(DMA_CAP_NONE);
+ }
+ if (*dma_ch == DMA_ERROR_OUT_OF_CHANNELS) {
+ *dma_usage = DMA_USAGE_NEVER;
+ }
+ }
+ else {
+ dma_channel_free(*dma_ch);
+ *dma_ch = DMA_ERROR_OUT_OF_CHANNELS;
+ }
+}
+
+static int serial_is_irq_en(serial_t *obj, SerialIrq irq)
+{
+ int ier_msk = 0;
+
+ switch (irq) {
+ case RxIrq:
+ ier_msk = obj->serial.ier_msk & (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk);
+ break;
+ case TxIrq:
+ ier_msk = obj->serial.ier_msk & UART_IER_THRE_IE_Msk;
+ break;
+ }
+
+ return !! ier_msk;
+}
+
+#endif // #if DEVICE_SERIAL_ASYNCH
+#endif // #if DEVICE_SERIAL
