mbed library sources. Supersedes mbed-src. Fixed broken STM32F1xx RTC on rtc_api.c

Dependents:   Nucleo_F103RB_RTC_battery_bkup_pwr_off_okay

Fork of mbed-dev by mbed official

Revision:
149:156823d33999
Child:
153:fa9ff456f731
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_STM/stm_spi_api.c	Fri Oct 28 11:17:30 2016 +0100
@@ -0,0 +1,590 @@
+/* mbed Microcontroller Library
+ *******************************************************************************
+ * Copyright (c) 2015, STMicroelectronics
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ *    this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ *    this list of conditions and the following disclaimer in the documentation
+ *    and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ *    may be used to endorse or promote products derived from this software
+ *    without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *******************************************************************************
+ */
+#include "mbed_assert.h"
+#include "mbed_error.h"
+#include "spi_api.h"
+
+#if DEVICE_SPI
+#include <stdbool.h>
+#include <math.h>
+#include <string.h>
+#include "cmsis.h"
+#include "pinmap.h"
+#include "PeripheralPins.h"
+
+#if DEVICE_SPI_ASYNCH
+    #define SPI_INST(obj)    ((SPI_TypeDef *)(obj->spi.spi))
+#else
+    #define SPI_INST(obj)    ((SPI_TypeDef *)(obj->spi))
+#endif
+
+#if DEVICE_SPI_ASYNCH
+    #define SPI_S(obj)    (( struct spi_s *)(&(obj->spi)))
+#else
+    #define SPI_S(obj)    (( struct spi_s *)(obj))
+#endif
+
+#ifndef DEBUG_STDIO
+#   define DEBUG_STDIO 0
+#endif
+
+#if DEBUG_STDIO
+#   include <stdio.h>
+#   define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0)
+#else
+#   define DEBUG_PRINTF(...) {}
+#endif
+
+void init_spi(spi_t *obj)
+{
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    __HAL_SPI_DISABLE(handle);
+
+    DEBUG_PRINTF("init_spi: instance=0x%8X\r\n", (int)handle->Instance);
+    if (HAL_SPI_Init(handle) != HAL_OK) {
+        error("Cannot initialize SPI");
+    }
+
+    __HAL_SPI_ENABLE(handle);
+}
+
+void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
+{
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    // Determine the SPI to use
+    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
+    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
+    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
+    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
+
+    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
+    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
+
+    spiobj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
+    MBED_ASSERT(spiobj->spi != (SPIName)NC);
+
+#if defined SPI1_BASE
+    // Enable SPI clock
+    if (spiobj->spi == SPI_1) {
+        __HAL_RCC_SPI1_CLK_ENABLE();
+        spiobj->spiIRQ = SPI1_IRQn;
+    }
+#endif
+
+#if defined SPI2_BASE
+    if (spiobj->spi == SPI_2) {
+        __HAL_RCC_SPI2_CLK_ENABLE();
+        spiobj->spiIRQ = SPI2_IRQn;
+    }
+#endif
+
+#if defined SPI3_BASE
+    if (spiobj->spi == SPI_3) {
+        __HAL_RCC_SPI3_CLK_ENABLE();
+        spiobj->spiIRQ = SPI3_IRQn;
+    }
+#endif
+
+#if defined SPI4_BASE
+    if (spiobj->spi == SPI_4) {
+        __HAL_RCC_SPI4_CLK_ENABLE();
+        spiobj->spiIRQ = SPI4_IRQn;
+    }
+#endif
+
+#if defined SPI5_BASE
+    if (spiobj->spi == SPI_5) {
+        __HAL_RCC_SPI5_CLK_ENABLE();
+        spiobj->spiIRQ = SPI5_IRQn;
+    }
+#endif
+
+#if defined SPI6_BASE
+    if (spiobj->spi == SPI_6) {
+        __HAL_RCC_SPI6_CLK_ENABLE();
+        spiobj->spiIRQ = SPI6_IRQn;
+    }
+#endif
+
+    // Configure the SPI pins
+    pinmap_pinout(mosi, PinMap_SPI_MOSI);
+    pinmap_pinout(miso, PinMap_SPI_MISO);
+    pinmap_pinout(sclk, PinMap_SPI_SCLK);
+    spiobj->pin_miso = miso;
+    spiobj->pin_mosi = mosi;
+    spiobj->pin_sclk = sclk;
+    spiobj->pin_ssel = ssel;
+    if (ssel != NC) {
+        pinmap_pinout(ssel, PinMap_SPI_SSEL);
+    } else {
+        handle->Init.NSS = SPI_NSS_SOFT;
+    }
+
+    /* Fill default value */
+    handle->Instance = SPI_INST(obj);
+    handle->Init.Mode              = SPI_MODE_MASTER;
+    handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
+    handle->Init.Direction         = SPI_DIRECTION_2LINES;
+    handle->Init.CLKPhase          = SPI_PHASE_1EDGE;
+    handle->Init.CLKPolarity       = SPI_POLARITY_LOW;
+    handle->Init.CRCCalculation    = SPI_CRCCALCULATION_DISABLED;
+    handle->Init.CRCPolynomial     = 7;
+    handle->Init.DataSize          = SPI_DATASIZE_8BIT;
+    handle->Init.FirstBit          = SPI_FIRSTBIT_MSB;
+    handle->Init.TIMode            = SPI_TIMODE_DISABLED;
+
+    init_spi(obj);
+}
+
+void spi_free(spi_t *obj)
+{
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    DEBUG_PRINTF("spi_free\r\n");
+
+    __HAL_SPI_DISABLE(handle);
+    HAL_SPI_DeInit(handle);
+
+#if defined SPI1_BASE
+    // Reset SPI and disable clock
+    if (spiobj->spi == SPI_1) {
+        __HAL_RCC_SPI1_FORCE_RESET();
+        __HAL_RCC_SPI1_RELEASE_RESET();
+        __HAL_RCC_SPI1_CLK_DISABLE();
+    }
+#endif
+#if defined SPI2_BASE
+    if (spiobj->spi == SPI_2) {
+        __HAL_RCC_SPI2_FORCE_RESET();
+        __HAL_RCC_SPI2_RELEASE_RESET();
+        __HAL_RCC_SPI2_CLK_DISABLE();
+    }
+#endif
+
+#if defined SPI3_BASE
+    if (spiobj->spi == SPI_3) {
+        __HAL_RCC_SPI3_FORCE_RESET();
+        __HAL_RCC_SPI3_RELEASE_RESET();
+        __HAL_RCC_SPI3_CLK_DISABLE();
+    }
+#endif
+
+#if defined SPI4_BASE
+    if (spiobj->spi == SPI_4) {
+        __HAL_RCC_SPI4_FORCE_RESET();
+        __HAL_RCC_SPI4_RELEASE_RESET();
+        __HAL_RCC_SPI4_CLK_DISABLE();
+    }
+#endif
+
+#if defined SPI5_BASE
+    if (spiobj->spi == SPI_5) {
+        __HAL_RCC_SPI5_FORCE_RESET();
+        __HAL_RCC_SPI5_RELEASE_RESET();
+        __HAL_RCC_SPI5_CLK_DISABLE();
+    }
+#endif
+
+#if defined SPI6_BASE
+    if (spiobj->spi == SPI_6) {
+        __HAL_RCC_SPI6_FORCE_RESET();
+        __HAL_RCC_SPI6_RELEASE_RESET();
+        __HAL_RCC_SPI6_CLK_DISABLE();
+    }
+#endif
+
+    // Configure GPIOs
+    pin_function(spiobj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+    pin_function(spiobj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+    pin_function(spiobj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+    if (handle->Init.NSS != SPI_NSS_SOFT) {
+        pin_function(spiobj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+    }
+}
+
+void spi_format(spi_t *obj, int bits, int mode, int slave)
+{
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    DEBUG_PRINTF("spi_format, bits:%d, mode:%d, slave?:%d\r\n", bits, mode, slave);
+
+    // Save new values
+    handle->Init.DataSize          = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;
+
+    switch (mode) {
+        case 0:
+            handle->Init.CLKPolarity = SPI_POLARITY_LOW;
+            handle->Init.CLKPhase = SPI_PHASE_1EDGE;
+            break;
+        case 1:
+            handle->Init.CLKPolarity = SPI_POLARITY_LOW;
+            handle->Init.CLKPhase = SPI_PHASE_2EDGE;
+            break;
+        case 2:
+            handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
+            handle->Init.CLKPhase = SPI_PHASE_1EDGE;
+            break;
+        default:
+            handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
+            handle->Init.CLKPhase = SPI_PHASE_2EDGE;
+            break;
+    }
+
+    if (handle->Init.NSS != SPI_NSS_SOFT) {
+        handle->Init.NSS = (slave) ? SPI_NSS_HARD_INPUT : SPI_NSS_HARD_OUTPUT;
+    }
+
+    handle->Init.Mode = (slave) ? SPI_MODE_SLAVE : SPI_MODE_MASTER;
+
+    init_spi(obj);
+}
+
+/*
+ * Only the IP clock input is family dependant so it computed
+ * separately in spi_get_clock_freq
+ */
+extern int spi_get_clock_freq(spi_t *obj);
+
+static const uint16_t baudrate_prescaler_table[] =	{SPI_BAUDRATEPRESCALER_2,
+                                                    SPI_BAUDRATEPRESCALER_4,
+                                                    SPI_BAUDRATEPRESCALER_8,
+                                                    SPI_BAUDRATEPRESCALER_16,
+                                                    SPI_BAUDRATEPRESCALER_32,
+                                                    SPI_BAUDRATEPRESCALER_64,
+                                                    SPI_BAUDRATEPRESCALER_128,
+                                                    SPI_BAUDRATEPRESCALER_256};
+
+void spi_frequency(spi_t *obj, int hz) {
+    struct spi_s *spiobj = SPI_S(obj);
+    int spi_hz = 0;
+    uint8_t prescaler_rank = 0;
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    /* Get the clock of the peripheral */
+    spi_hz = spi_get_clock_freq(obj);
+
+    /* Define pre-scaler in order to get highest available frequency below requested frequency */
+    while ((spi_hz > hz) && (prescaler_rank < sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0]))){
+        spi_hz = spi_hz / 2;
+        prescaler_rank++;
+    }
+
+    if (prescaler_rank <= sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0])) {
+        handle->Init.BaudRatePrescaler = baudrate_prescaler_table[prescaler_rank-1];
+    } else {
+        error("Couldn't setup requested SPI frequency");
+    }
+
+    init_spi(obj);
+}
+
+static inline int ssp_readable(spi_t *obj)
+{
+    int status;
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    // Check if data is received
+    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXNE) != RESET) ? 1 : 0);
+    return status;
+}
+
+static inline int ssp_writeable(spi_t *obj)
+{
+    int status;
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    // Check if data is transmitted
+    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXE) != RESET) ? 1 : 0);
+    return status;
+}
+
+static inline int ssp_busy(spi_t *obj)
+{
+    int status;
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+    status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
+    return status;
+}
+
+int spi_master_write(spi_t *obj, int value)
+{
+    uint16_t size, Rx, ret;
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    size = (handle->Init.DataSize == SPI_DATASIZE_16BIT) ? 2 : 1;
+
+    /*  Use 10ms timeout */
+    ret = HAL_SPI_TransmitReceive(handle,(uint8_t*)&value,(uint8_t*)&Rx,size,10);
+
+    if(ret == HAL_OK) {
+        return Rx;
+    } else {
+        DEBUG_PRINTF("SPI inst=0x%8X ERROR in write\r\n", (int)handle->Instance);
+        return -1;
+    }
+}
+
+int spi_slave_receive(spi_t *obj)
+{
+    return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
+};
+
+int spi_slave_read(spi_t *obj)
+{
+    SPI_TypeDef *spi = SPI_INST(obj);
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+    while (!ssp_readable(obj));
+    if (handle->Init.DataSize == SPI_DATASIZE_8BIT) {
+        // Force 8-bit access to the data register
+        uint8_t *p_spi_dr = 0;
+        p_spi_dr = (uint8_t *) & (spi->DR);
+        return (int)(*p_spi_dr);
+    } else {
+        return (int)spi->DR;
+    }
+}
+
+void spi_slave_write(spi_t *obj, int value)
+{
+    SPI_TypeDef *spi = SPI_INST(obj);
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+    while (!ssp_writeable(obj));
+    if (handle->Init.DataSize == SPI_DATASIZE_8BIT) {
+        // Force 8-bit access to the data register
+        uint8_t *p_spi_dr = 0;
+        p_spi_dr = (uint8_t *) & (spi->DR);
+        *p_spi_dr = (uint8_t)value;
+    } else { // SPI_DATASIZE_16BIT
+        spi->DR = (uint16_t)value;
+    }
+}
+
+int spi_busy(spi_t *obj)
+{
+    return ssp_busy(obj);
+}
+
+#ifdef DEVICE_SPI_ASYNCH
+typedef enum {
+    SPI_TRANSFER_TYPE_NONE = 0,
+    SPI_TRANSFER_TYPE_TX = 1,
+    SPI_TRANSFER_TYPE_RX = 2,
+    SPI_TRANSFER_TYPE_TXRX = 3,
+} transfer_type_t;
+
+
+/// @returns the number of bytes transferred, or `0` if nothing transferred
+static int spi_master_start_asynch_transfer(spi_t *obj, transfer_type_t transfer_type, const void *tx, void *rx, size_t length)
+{
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+    bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
+    // the HAL expects number of transfers instead of number of bytes
+    // so for 16 bit transfer width the count needs to be halved
+    size_t words;
+
+    DEBUG_PRINTF("SPI inst=0x%8X Start: %u, %u\r\n", (int)handle->Instance, transfer_type, length);
+
+    obj->spi.transfer_type = transfer_type;
+
+    if (is16bit) {
+        words = length / 2;
+    } else {
+        words = length;
+    }
+
+    // enable the interrupt
+    IRQn_Type irq_n = spiobj->spiIRQ;
+    NVIC_ClearPendingIRQ(irq_n);
+    NVIC_DisableIRQ(irq_n);
+    NVIC_SetPriority(irq_n, 1);
+    NVIC_EnableIRQ(irq_n);
+
+    // enable the right hal transfer
+    int rc = 0;
+    switch(transfer_type) {
+        case SPI_TRANSFER_TYPE_TXRX:
+            rc = HAL_SPI_TransmitReceive_IT(handle, (uint8_t*)tx, (uint8_t*)rx, words);
+            break;
+        case SPI_TRANSFER_TYPE_TX:
+            rc = HAL_SPI_Transmit_IT(handle, (uint8_t*)tx, words);
+            break;
+        case SPI_TRANSFER_TYPE_RX:
+            // the receive function also "transmits" the receive buffer so in order
+            // to guarantee that 0xff is on the line, we explicitly memset it here
+            memset(rx, SPI_FILL_WORD, length);
+            rc = HAL_SPI_Receive_IT(handle, (uint8_t*)rx, words);
+            break;
+        default:
+            length = 0;
+    }
+
+    if (rc) {
+        DEBUG_PRINTF("SPI: RC=%u\n", rc);
+        length = 0;
+    }
+
+    return length;
+}
+
+// asynchronous API
+void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
+{
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    // TODO: DMA usage is currently ignored
+    (void) hint;
+
+    // check which use-case we have
+    bool use_tx = (tx != NULL && tx_length > 0);
+    bool use_rx = (rx != NULL && rx_length > 0);
+    bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
+
+    // don't do anything, if the buffers aren't valid
+    if (!use_tx && !use_rx)
+        return;
+
+    // copy the buffers to the SPI object
+    obj->tx_buff.buffer = (void *) tx;
+    obj->tx_buff.length = tx_length;
+    obj->tx_buff.pos = 0;
+    obj->tx_buff.width = is16bit ? 16 : 8;
+
+    obj->rx_buff.buffer = rx;
+    obj->rx_buff.length = rx_length;
+    obj->rx_buff.pos = 0;
+    obj->rx_buff.width = obj->tx_buff.width;
+
+    obj->spi.event = event;
+
+    DEBUG_PRINTF("SPI: Transfer: %u, %u\n", tx_length, rx_length);
+
+    // register the thunking handler
+    IRQn_Type irq_n = spiobj->spiIRQ;
+    NVIC_SetVector(irq_n, (uint32_t)handler);
+
+    // enable the right hal transfer
+    if (use_tx && use_rx) {
+        // we cannot manage different rx / tx sizes, let's use smaller one
+        size_t size = (tx_length < rx_length)? tx_length : rx_length;
+        if(tx_length != rx_length) {
+            DEBUG_PRINTF("SPI: Full duplex transfer only 1 size: %d\n", size);
+            obj->tx_buff.length = size;
+            obj->rx_buff.length = size;
+        }
+        spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TXRX, tx, rx, size);
+    } else if (use_tx) {
+        spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TX, tx, NULL, tx_length);
+    } else if (use_rx) {
+        spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_RX, NULL, rx, rx_length);
+    }
+}
+
+uint32_t spi_irq_handler_asynch(spi_t *obj)
+{
+    // use the right instance
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &spiobj->handle;
+    int event = 0;
+
+    // call the CubeF4 handler, this will update the handle
+    HAL_SPI_IRQHandler(handle);
+
+    if (HAL_SPI_GetState(handle) == HAL_SPI_STATE_READY) {
+        // When HAL SPI is back to READY state, check if there was an error
+        int error = HAL_SPI_GetError(handle);
+        if(error != HAL_SPI_ERROR_NONE) {
+            // something went wrong and the transfer has definitely completed
+            event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
+
+            if (error & HAL_SPI_ERROR_OVR) {
+                // buffer overrun
+                event |= SPI_EVENT_RX_OVERFLOW;
+            }
+        } else {
+            // else we're done
+            event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
+       }
+    }
+
+    if (event) DEBUG_PRINTF("SPI: Event: 0x%x\n", event);
+
+    return (event & (obj->spi.event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE));
+}
+
+uint8_t spi_active(spi_t *obj)
+{
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+    HAL_SPI_StateTypeDef state = HAL_SPI_GetState(handle);
+
+    switch(state) {
+        case HAL_SPI_STATE_RESET:
+        case HAL_SPI_STATE_READY:
+        case HAL_SPI_STATE_ERROR:
+            return 0;
+        default:
+            return 1;
+    }
+}
+
+void spi_abort_asynch(spi_t *obj)
+{
+    struct spi_s *spiobj = SPI_S(obj);
+    SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+    // disable interrupt
+    IRQn_Type irq_n = spiobj->spiIRQ;
+    NVIC_ClearPendingIRQ(irq_n);
+    NVIC_DisableIRQ(irq_n);
+
+    // clean-up
+    __HAL_SPI_DISABLE(handle);
+    HAL_SPI_DeInit(handle);
+    HAL_SPI_Init(handle);
+    __HAL_SPI_ENABLE(handle);
+}
+
+#endif //DEVICE_SPI_ASYNCH
+
+#endif