a

RoboClaw/UARTserial_mio/UARTSerial_mio.cpp

Committer:
marcodesilva
Date:
2021-09-28
Revision:
0:6b67f1bb9c76

File content as of revision 0:6b67f1bb9c76:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2017 ARM Limited
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "UARTSerial_mio.h"

#if (DEVICE_SERIAL && DEVICE_INTERRUPTIN)

#include "platform/mbed_poll.h"

#if MBED_CONF_RTOS_PRESENT
#include "rtos/ThisThread.h"
#else
#include "platform/mbed_wait_api.h"
#endif

namespace mbed {

UARTSerial_mio::UARTSerial_mio(PinName tx, PinName rx, int baud) :
    SerialBase(tx, rx, baud),
    _blocking(true),
    _tx_irq_enabled(false),
    _rx_irq_enabled(false),
    _tx_enabled(true),
    _rx_enabled(true),
    _dcd_irq(NULL)
{
    /* Attatch IRQ routines to the serial device. */
    enable_rx_irq();
}

UARTSerial_mio::~UARTSerial_mio()
{
    delete _dcd_irq;
}

void UARTSerial_mio::dcd_irq()
{
    wake();
}

void UARTSerial_mio::set_baud(int baud)
{
    SerialBase::baud(baud);
}

void UARTSerial_mio::set_format(int bits, Parity parity, int stop_bits)
{
    api_lock();
    SerialBase::format(bits, parity, stop_bits);
    api_unlock();
}

#if DEVICE_SERIAL_FC
void UARTSerial_mio::set_flow_control(Flow type, PinName flow1, PinName flow2)
{
    api_lock();
    SerialBase::set_flow_control(type, flow1, flow2);
    api_unlock();
}
#endif

int UARTSerial_mio::close(){return 0;}

int UARTSerial_mio::isatty(){return 1;}


off_t UARTSerial_mio::seek(off_t offset, int whence)
{
    /*XXX lseek can be done theoratically, but is it sane to mark positions on a dynamically growing/shrinking
     * buffer system (from an interrupt context) */
    return -ESPIPE;
}

int UARTSerial_mio::sync()
{
    api_lock();
    while (!_txbuf.empty()) {
        api_unlock();
        // Doing better than wait would require TxIRQ to also do wake() when becoming empty. Worth it?
        wait_us(500);
        api_lock();
    }
    
    api_unlock();

    return 0;
}

int UARTSerial_mio::flush()
{
    api_lock();
    char c;

    while (!_rxbuf.empty()) {
        api_unlock();
        // Doing better than wait would require TxIRQ to also do wake() when becoming empty. Worth it?
        wait_us(500);
        _rxbuf.pop(c);
        api_lock();
    }

    api_unlock();

    return 0;
}

void UARTSerial_mio::sigio(Callback<void()> func)
{
    core_util_critical_section_enter();
    _sigio_cb = func;
    if (_sigio_cb) {
        short current_events = poll(0x7FFF);
        if (current_events) {
            _sigio_cb();
        }
    }
    core_util_critical_section_exit();
}

/* Special synchronous write designed to work from critical section, such
 * as in mbed_error_vprintf.
 */
ssize_t UARTSerial_mio::write_unbuffered(const char *buf_ptr, size_t length)
{
    while (!_txbuf.empty()) {
        tx_irq();
    }

    for (size_t data_written = 0; data_written < length; data_written++) {
        SerialBase::_base_putc(*buf_ptr++);
    }

    return length;
}

ssize_t UARTSerial_mio::write(const void *buffer, size_t length)
{
    size_t data_written = 0;
    const char *buf_ptr = static_cast<const char *>(buffer);

    if (length == 0) {
        return 0;
    }

    if (core_util_in_critical_section()) {
        return write_unbuffered(buf_ptr, length);
    }

    api_lock();

    // Unlike read, we should write the whole thing if blocking. POSIX only
    // allows partial as a side-effect of signal handling; it normally tries to
    // write everything if blocking. Without signals we can always write all.
    while (data_written < length) {

        if (_txbuf.full()) {
            if (!_blocking) {
                break;
            }
            do {
                api_unlock();
                wait_ms(1); // XXX todo - proper wait, WFE for non-rtos ?
                api_lock();
            } while (_txbuf.full());
        }

        while (data_written < length && !_txbuf.full()) {
            _txbuf.push(*buf_ptr++);
            data_written++;
        }

        core_util_critical_section_enter();
        if (_tx_enabled && !_tx_irq_enabled) {
            UARTSerial_mio::tx_irq();                // only write to hardware in one place
            if (!_txbuf.empty()) {
                enable_tx_irq();
            }
        }
        core_util_critical_section_exit();
    }

    api_unlock();

    return data_written != 0 ? (ssize_t) data_written : (ssize_t) - EAGAIN;
}

ssize_t UARTSerial_mio::read(void *buffer, size_t length)
{
    size_t data_read = 0;
    
    float timeout = 1.0; //ms
    float tm = 0.0;

    char *ptr = static_cast<char *>(buffer);

    if (length == 0) {
        return 0;
    }

    api_lock();

    while (_rxbuf.size()!=length && tm <= timeout) {
        if (!_blocking) {
            api_unlock();
            return -EAGAIN;
        }
        api_unlock();
        wait_us(10);  // XXX todo - proper wait, WFE for non-rtos ?
        api_lock();
        tm = tm + 0.01; //10/1000
    }

    while (data_read < length && !_rxbuf.empty()) {
        _rxbuf.pop(*ptr++);
        data_read++;
    }

    core_util_critical_section_enter();
    if (_rx_enabled && !_rx_irq_enabled) {
        UARTSerial_mio::rx_irq();               // only read from hardware in one place
        if (!_rxbuf.full()) {
            enable_rx_irq();
        }
    }
    core_util_critical_section_exit();

    api_unlock();

    return data_read;
}

ssize_t UARTSerial_mio::read_timeout(void *buffer, size_t length, double _timeOut)
{
    size_t data_read = 0;
    
    double timeout = _timeOut; //ms
    double tm = 0.0;

    char *ptr = static_cast<char *>(buffer);

    if (length == 0) {
        return 0;
    }

    api_lock();

    while (_rxbuf.size()!=length && tm<=timeout) {
        if (!_blocking) {
            api_unlock();
            return -EAGAIN;
        }
        api_unlock();
        wait_us(1);  // XXX todo - proper wait, WFE for non-rtos ?
        api_lock();
        tm = tm + 0.001; //10/1000
        
    }
    
    //printf("tm: %f\r\n",tm);
    tm = 0.0;
    while (data_read < length && !_rxbuf.empty()  && tm<=timeout) {
        _rxbuf.pop(*ptr++);
        data_read++;
        tm = tm + 0.001; //10/1000
    }

    core_util_critical_section_enter();
    if (_rx_enabled && !_rx_irq_enabled) {
        UARTSerial_mio::rx_irq();               // only read from hardware in one place
        if (!_rxbuf.full()) {
            enable_rx_irq();
        }
    }
    core_util_critical_section_exit();

    api_unlock();

    return data_read;
}

bool UARTSerial_mio::hup() const
{
    return _dcd_irq && _dcd_irq->read() != 0;
}

void UARTSerial_mio::wake()
{
    if (_sigio_cb) {
        _sigio_cb();
    }
}

short UARTSerial_mio::poll(short events) const
{

    short revents = 0;
    /* Check the Circular Buffer if space available for writing out */


    if (!_rxbuf.empty()) {
        revents |= POLLIN;
    }

    /* POLLHUP and POLLOUT are mutually exclusive */
    if (hup()) {
        revents |= POLLHUP;
    } else if (!_txbuf.full()) {
        revents |= POLLOUT;
    }

    /*TODO Handle other event types */

    return revents;
}

void UARTSerial_mio::lock()
{
    // This is the override for SerialBase.
    // No lock required as we only use SerialBase from interrupt or from
    // inside our own critical section.
}

void UARTSerial_mio::unlock()
{
    // This is the override for SerialBase.
}

void UARTSerial_mio::api_lock(void)
{
    //_mutex.lock();
}

void UARTSerial_mio::api_unlock(void)
{
    //_mutex.unlock();
}

void UARTSerial_mio::rx_irq(void)
{
    bool was_empty = _rxbuf.empty();

    /* Fill in the receive buffer if the peripheral is readable
     * and receive buffer is not full. */
    while (!_rxbuf.full() && SerialBase::readable()) {
        char data = SerialBase::_base_getc();
        _rxbuf.push(data);
    }

    if (_rx_irq_enabled && _rxbuf.full()) {
        disable_rx_irq();
    }

    /* Report the File handler that data is ready to be read from the buffer. */
    if (was_empty && !_rxbuf.empty()) {
        wake();
    }
}

// Also called from write to start transfer
void UARTSerial_mio::tx_irq(void)
{
    bool was_full = _txbuf.full();
    char data;

    /* Write to the peripheral if there is something to write
     * and if the peripheral is available to write. */
    while (SerialBase::writeable() && _txbuf.pop(data)) {
        SerialBase::_base_putc(data);
    }

    if (_tx_irq_enabled && _txbuf.empty()) {
        disable_tx_irq();
    }

    /* Report the File handler that data can be written to peripheral. */
    if (was_full && !_txbuf.full() && !hup()) {
        wake();
    }
}

/* These are all called from critical section */
void UARTSerial_mio::enable_rx_irq()
{
    SerialBase::attach(callback(this, &UARTSerial_mio::rx_irq), RxIrq);
    _rx_irq_enabled = true;
}

void UARTSerial_mio::disable_rx_irq()
{
    SerialBase::attach(NULL, RxIrq);
    _rx_irq_enabled = false;
}

void UARTSerial_mio::enable_tx_irq()
{
    SerialBase::attach(callback(this, &UARTSerial_mio::tx_irq), TxIrq);
    _tx_irq_enabled = true;
}

void UARTSerial_mio::disable_tx_irq()
{
    SerialBase::attach(NULL, TxIrq);
    _tx_irq_enabled = false;
}

int UARTSerial_mio::enable_input(bool enabled)
{
    core_util_critical_section_enter();
    if (_rx_enabled != enabled) {
        if (enabled) {
            UARTSerial_mio::rx_irq();
            if (!_rxbuf.full()) {
                enable_rx_irq();
            }
        } else {
            disable_rx_irq();
        }
        _rx_enabled = enabled;
    }
    core_util_critical_section_exit();

    return 0;
}

int UARTSerial_mio::enable_output(bool enabled)
{
    core_util_critical_section_enter();
    if (_tx_enabled != enabled) {
        if (enabled) {
            UARTSerial_mio::tx_irq();
            if (!_txbuf.empty()) {
                enable_tx_irq();
            }
        } else {
            disable_tx_irq();
        }
        _tx_enabled = enabled;
    }
    core_util_critical_section_exit();

    return 0;
}

void UARTSerial_mio::wait_ms(uint32_t millisec)
{
    /* wait_ms implementation for RTOS spins until exact microseconds - we
     * want to just sleep until next tick.
     */
#if MBED_CONF_RTOS_PRESENT
    rtos::ThisThread::sleep_for(millisec);
#else
    ::wait_ms(millisec);
#endif
}

void UARTSerial_mio::wait_us(uint32_t microseconds)
{
    /* wait_ms implementation for RTOS spins until exact microseconds - we
     * want to just sleep until next tick.
     */
#if MBED_CONF_RTOS_PRESENT
    rtos::ThisThread::sleep_for(microseconds/1000);
#else
    ::wait_us(microseconds);
#endif
}
} //namespace mbed

#endif //(DEVICE_SERIAL && DEVICE_INTERRUPTIN)