MPU9250 test with polling or ISR

Dependencies:   mbed

Files at this revision

API Documentation at this revision

Comitter:
manitou
Date:
Mon Nov 19 11:58:46 2018 +0000
Parent:
0:31cc139b7d1e
Commit message:
format

Changed in this revision

MPU9250.h Show annotated file Show diff for this revision Revisions of this file
main.cpp Show annotated file Show diff for this revision Revisions of this file
diff -r 31cc139b7d1e -r 0158e4d78423 MPU9250.h
--- a/MPU9250.h	Sat Sep 10 14:15:19 2016 +0000
+++ b/MPU9250.h	Mon Nov 19 11:58:46 2018 +0000
@@ -4,7 +4,7 @@
 #include "mbed.h"
 #include "math.h"
 
-#define USE_ISR 1   // poll or data ready interrupt   
+#define USE_ISR 0   // poll or data ready interrupt   
 
 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in 
 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
diff -r 31cc139b7d1e -r 0158e4d78423 main.cpp
--- a/main.cpp	Sat Sep 10 14:15:19 2016 +0000
+++ b/main.cpp	Mon Nov 19 11:58:46 2018 +0000
@@ -1,17 +1,17 @@
 /* MPU9250 Basic Example Code
  by: Kris Winer
  date: April 1, 2014
- license: Beerware - Use this code however you'd like. If you 
+ license: Beerware - Use this code however you'd like. If you
  find it useful you can buy me a beer some time.
- 
- Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, 
- getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to 
- allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and 
+
+ Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor,
+ getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to
+ allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and
  Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
- 
+
  SDA and SCL should have external pull-up resistors (to 3.3V).
  10k resistors are on the EMSENSR-9250 breakout board.
- 
+
  Hardware setup:
  MPU9250 Breakout --------- Arduino
  VDD ---------------------- 3.3V
@@ -19,14 +19,14 @@
  SDA ----------------------- A4
  SCL ----------------------- A5
  GND ---------------------- GND
- 
- Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. 
+
+ Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library.
  Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
  We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
  We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file.
  */
- 
-//#include "ST_F401_84MHZ.h" 
+
+//#include "ST_F401_84MHZ.h"
 //F401_init84 myinit(0);
 #include "mbed.h"
 #include "MPU9250.h"
@@ -35,70 +35,69 @@
 float sum = 0;
 uint32_t sumCount = 0;
 
-   MPU9250 mpu9250;
-   
-   Timer t;
+MPU9250 mpu9250;
 
-   Serial pc(USBTX, USBRX); // tx, rx
+Timer t;
+
+Serial pc(USBTX, USBRX); // tx, rx
 
 volatile bool newData = false;
 
 InterruptIn isrPin(D12);   //k64 D12  dragon PD_0
 
-void mpuisr() {
+void mpuisr()
+{
     newData=true;
 }
-        
+
 int main()
 {
-  pc.baud(9600);  
+    pc.baud(9600);
+
+    //Set up I2C
+    i2c.frequency(400000);  // use fast (400 kHz) I2C
+
+    pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
+
+    t.start();
+    isrPin.rise(&mpuisr);
 
-  //Set up I2C
-  i2c.frequency(400000);  // use fast (400 kHz) I2C  
-  
-  pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);   
-  
-  t.start();  
-  isrPin.rise(&mpuisr);      
-    
-  // Read the WHO_AM_I register, this is a good test of communication
-  uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
-  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
-  
-  if (whoami == 0x71) // WHO_AM_I should always be 0x68
-  {  
-    pc.printf("MPU9250 is online...\n\r");
-    wait(1);
+    // Read the WHO_AM_I register, this is a good test of communication
+    uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
+    pc.printf("I AM 0x%x\n\r", whoami);
+    pc.printf("I SHOULD BE 0x71\n\r");
+
+    if (whoami == 0x71) { // WHO_AM_I should always be 0x68
+        pc.printf("MPU9250 is online...\n\r");
+        wait(1);
+
 
-    
-    mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
-    mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
-    pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
-    pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
-    pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
-    pc.printf("x accel bias = %f\n\r", accelBias[0]);
-    pc.printf("y accel bias = %f\n\r", accelBias[1]);
-    pc.printf("z accel bias = %f\n\r", accelBias[2]);
-    wait(2);
-    mpu9250.initMPU9250(); 
-    pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-    mpu9250.initAK8963(magCalibration);
-    pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
-    pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
-    pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
-    if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
-    if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
-    if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
-    if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
-    wait(2);
-   }
-   else
-   {
-    pc.printf("Could not connect to MPU9250: \n\r");
-    pc.printf("%#x \n",  whoami);
+        mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
+        mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+        pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
+        pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
+        pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
+        pc.printf("x accel bias = %f\n\r", accelBias[0]);
+        pc.printf("y accel bias = %f\n\r", accelBias[1]);
+        pc.printf("z accel bias = %f\n\r", accelBias[2]);
+        wait(2);
+        mpu9250.initMPU9250();
+        pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+        mpu9250.initAK8963(magCalibration);
+        pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
+        pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
+        pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
+        if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
+        if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
+        if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
+        if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
+        wait(2);
+    } else {
+        pc.printf("Could not connect to MPU9250: \n\r");
+        pc.printf("%#x \n",  whoami);
 
- 
-    while(1) ; // Loop forever if communication doesn't happen
+
+        while(1) ; // Loop forever if communication doesn't happen
     }
 
     mpu9250.getAres(); // Get accelerometer sensitivity
@@ -111,109 +110,109 @@
     magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
     magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
 
- while(1) {
-    static int readycnt=0;
-  // If intPin goes high, all data registers have new data
-  
+    while(1) {
+        static int readycnt=0;
+        // If intPin goes high, all data registers have new data
+
 #if USE_ISR
-  if(newData) {
-    newData=false;
-    mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS);  //? need this with ISR
+        if(newData) {
+            newData=false;
+            mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS);  //? need this with ISR
 #else
-    if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
+        if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
 #endif
-    readycnt++;
-    mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
-    // Now we'll calculate the accleration value into actual g's
-    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-    ay = (float)accelCount[1]*aRes - accelBias[1];   
-    az = (float)accelCount[2]*aRes - accelBias[2];  
-   
-    mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
-    // Calculate the gyro value into actual degrees per second
-    gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
-    gy = (float)gyroCount[1]*gRes - gyroBias[1];  
-    gz = (float)gyroCount[2]*gRes - gyroBias[2];   
-  
-    mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
-    // Calculate the magnetometer values in milliGauss
-    // Include factory calibration per data sheet and user environmental corrections
-    mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
-    my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
-    mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
-  }
-   
-    Now = t.read_us();
-    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-    lastUpdate = Now;
-    
-    sum += deltat;
-    sumCount++;
-    
+            readycnt++;
+            mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values
+            // Now we'll calculate the accleration value into actual g's
+            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+            ay = (float)accelCount[1]*aRes - accelBias[1];
+            az = (float)accelCount[2]*aRes - accelBias[2];
+
+            mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
+            // Calculate the gyro value into actual degrees per second
+            gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
+            gy = (float)gyroCount[1]*gRes - gyroBias[1];
+            gz = (float)gyroCount[2]*gRes - gyroBias[2];
+
+            mpu9250.readMagData(magCount);  // Read the x/y/z adc values
+            // Calculate the magnetometer values in milliGauss
+            // Include factory calibration per data sheet and user environmental corrections
+            mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
+            my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
+            mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
+        }
+
+        Now = t.read_us();
+        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+        lastUpdate = Now;
+
+        sum += deltat;
+        sumCount++;
+
 //    if(lastUpdate - firstUpdate > 10000000.0f) {
 //     beta = 0.04;  // decrease filter gain after stabilized
 //     zeta = 0.015; // increasey bias drift gain after stabilized
- //   }
-    
-   // Pass gyro rate as rad/s
-   uint32_t us = t.read_us();
-  mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
-   us = t.read_us()-us;
- // mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
+//   }
+
+        // Pass gyro rate as rad/s
+        uint32_t us = t.read_us();
+        mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
+        us = t.read_us()-us;
+// mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
 
-    // Serial print and/or display at 0.5 s rate independent of data rates
-    delt_t = t.read_ms() - count;
-    if (delt_t > 500) { // update LCD once per half-second independent of read rate
-        pc.printf("readycnt %d us %d\n",readycnt,us);
-        readycnt=0;
-    pc.printf("ax = %f", 1000*ax); 
-    pc.printf(" ay = %f", 1000*ay); 
-    pc.printf(" az = %f  mg\n\r", 1000*az); 
+        // Serial print and/or display at 0.5 s rate independent of data rates
+        delt_t = t.read_ms() - count;
+        if (delt_t > 500) { // update LCD once per half-second independent of read rate
+            pc.printf("readycnt %d us %d\n",readycnt,us);
+            readycnt=0;
+            pc.printf("ax = %f", 1000*ax);
+            pc.printf(" ay = %f", 1000*ay);
+            pc.printf(" az = %f  mg\n\r", 1000*az);
+
+            pc.printf("gx = %f", gx);
+            pc.printf(" gy = %f", gy);
+            pc.printf(" gz = %f  deg/s\n\r", gz);
+
+            pc.printf("gx = %f", mx);
+            pc.printf(" gy = %f", my);
+            pc.printf(" gz = %f  mG\n\r", mz);
+
+            tempCount = mpu9250.readTempData();  // Read the adc values
+            temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
+            pc.printf("temperature = %f  C\n\r", temperature);
 
-    pc.printf("gx = %f", gx); 
-    pc.printf(" gy = %f", gy); 
-    pc.printf(" gz = %f  deg/s\n\r", gz); 
-    
-    pc.printf("gx = %f", mx); 
-    pc.printf(" gy = %f", my); 
-    pc.printf(" gz = %f  mG\n\r", mz); 
-    
-    tempCount = mpu9250.readTempData();  // Read the adc values
-    temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
-    pc.printf("temperature = %f  C\n\r", temperature); 
-    
-    pc.printf("q0 = %f\n\r", q[0]);
-    pc.printf("q1 = %f\n\r", q[1]);
-    pc.printf("q2 = %f\n\r", q[2]);
-    pc.printf("q3 = %f\n\r", q[3]);      
+            pc.printf("q0 = %f\n\r", q[0]);
+            pc.printf("q1 = %f\n\r", q[1]);
+            pc.printf("q2 = %f\n\r", q[2]);
+            pc.printf("q3 = %f\n\r", q[3]);
+
+
 
-    
-    
-  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-  // In this coordinate system, the positive z-axis is down toward Earth. 
-  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
-    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-    pitch *= 180.0f / PI;
-    yaw   *= 180.0f / PI; 
-    yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
-    roll  *= 180.0f / PI;
+            // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+            // In this coordinate system, the positive z-axis is down toward Earth.
+            // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+            // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+            // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+            // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+            // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+            // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+            // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+            pitch *= 180.0f / PI;
+            yaw   *= 180.0f / PI;
+            yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
+            roll  *= 180.0f / PI;
 
-    pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
-    pc.printf("average rate = %f\n\r", (float) sumCount/sum);
- 
-    myled= !myled;
-    count = t.read_ms(); 
-    sum = 0;
-    sumCount = 0; 
-}
-}
- 
- }
\ No newline at end of file
+            pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+            pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+
+            myled= !myled;
+            count = t.read_ms();
+            sum = 0;
+            sumCount = 0;
+        }
+    }
+
+}
\ No newline at end of file