Code for our FYDP -only one IMU works right now -RTOS is working

Dependencies:   mbed

Committer:
majik
Date:
Wed Mar 18 22:23:48 2015 +0000
Revision:
0:964eb6a2ef00
This is our FYDP code, but only one IMU works with the RTOS.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
majik 0:964eb6a2ef00 1 //ported from arduino library: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
majik 0:964eb6a2ef00 2 //written by szymon gaertig (email: szymon@gaertig.com.pl)
majik 0:964eb6a2ef00 3 //
majik 0:964eb6a2ef00 4 //Changelog:
majik 0:964eb6a2ef00 5 //2013-01-08 - first beta release
majik 0:964eb6a2ef00 6
majik 0:964eb6a2ef00 7 // I2Cdev library collection - MPU6050 I2C device class
majik 0:964eb6a2ef00 8 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
majik 0:964eb6a2ef00 9 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
majik 0:964eb6a2ef00 10 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
majik 0:964eb6a2ef00 11 //
majik 0:964eb6a2ef00 12 // Changelog:
majik 0:964eb6a2ef00 13 // ... - ongoing debug release
majik 0:964eb6a2ef00 14
majik 0:964eb6a2ef00 15 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
majik 0:964eb6a2ef00 16 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
majik 0:964eb6a2ef00 17 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
majik 0:964eb6a2ef00 18
majik 0:964eb6a2ef00 19 /* ============================================
majik 0:964eb6a2ef00 20 I2Cdev device library code is placed under the MIT license
majik 0:964eb6a2ef00 21 Copyright (c) 2012 Jeff Rowberg
majik 0:964eb6a2ef00 22
majik 0:964eb6a2ef00 23 Permission is hereby granted, free of charge, to any person obtaining a copy
majik 0:964eb6a2ef00 24 of this software and associated documentation files (the "Software"), to deal
majik 0:964eb6a2ef00 25 in the Software without restriction, including without limitation the rights
majik 0:964eb6a2ef00 26 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
majik 0:964eb6a2ef00 27 copies of the Software, and to permit persons to whom the Software is
majik 0:964eb6a2ef00 28 furnished to do so, subject to the following conditions:
majik 0:964eb6a2ef00 29
majik 0:964eb6a2ef00 30 The above copyright notice and this permission notice shall be included in
majik 0:964eb6a2ef00 31 all copies or substantial portions of the Software.
majik 0:964eb6a2ef00 32
majik 0:964eb6a2ef00 33 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
majik 0:964eb6a2ef00 34 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
majik 0:964eb6a2ef00 35 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
majik 0:964eb6a2ef00 36 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
majik 0:964eb6a2ef00 37 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
majik 0:964eb6a2ef00 38 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
majik 0:964eb6a2ef00 39 THE SOFTWARE.
majik 0:964eb6a2ef00 40 ===============================================
majik 0:964eb6a2ef00 41 */
majik 0:964eb6a2ef00 42
majik 0:964eb6a2ef00 43 #include "MPU6051.h"
majik 0:964eb6a2ef00 44
majik 0:964eb6a2ef00 45 //#define useDebugSerial
majik 0:964eb6a2ef00 46
majik 0:964eb6a2ef00 47 //instead of using pgmspace.h
majik 0:964eb6a2ef00 48 typedef const unsigned char prog_uchar;
majik 0:964eb6a2ef00 49 #define pgm_read_byte_near(x) (*(prog_uchar*)(x))//<- I modified here
majik 0:964eb6a2ef00 50 #define pgm_read_byte(x) (*(prog_uchar*)(x))//<- I modified here
majik 0:964eb6a2ef00 51
majik 0:964eb6a2ef00 52 /** Default constructor, uses default I2C address.
majik 0:964eb6a2ef00 53 * @see MPU6050_DEFAULT_ADDRESS
majik 0:964eb6a2ef00 54 */
majik 0:964eb6a2ef00 55 MPU6051::MPU6051() //: debugSerial(USBTX, USBRX)
majik 0:964eb6a2ef00 56 {
majik 0:964eb6a2ef00 57 devAddr = MPU6050_DEFAULT_ADDRESS;
majik 0:964eb6a2ef00 58 }
majik 0:964eb6a2ef00 59
majik 0:964eb6a2ef00 60 /** Specific address constructor.
majik 0:964eb6a2ef00 61 * @param address I2C address
majik 0:964eb6a2ef00 62 * @see MPU6050_DEFAULT_ADDRESS
majik 0:964eb6a2ef00 63 * @see MPU6050_ADDRESS_AD0_LOW
majik 0:964eb6a2ef00 64 * @see MPU6050_ADDRESS_AD0_HIGH
majik 0:964eb6a2ef00 65 */
majik 0:964eb6a2ef00 66 MPU6051::MPU6051(uint8_t address) //: debugSerial(USBTX, USBRX)
majik 0:964eb6a2ef00 67 {
majik 0:964eb6a2ef00 68 devAddr = address;
majik 0:964eb6a2ef00 69 }
majik 0:964eb6a2ef00 70
majik 0:964eb6a2ef00 71 /** Power on and prepare for general usage.
majik 0:964eb6a2ef00 72 * This will activate the device and take it out of sleep mode (which must be done
majik 0:964eb6a2ef00 73 * after start-up). This function also sets both the accelerometer and the gyroscope
majik 0:964eb6a2ef00 74 * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
majik 0:964eb6a2ef00 75 * the clock source to use the X Gyro for reference, which is slightly better than
majik 0:964eb6a2ef00 76 * the default internal clock source.
majik 0:964eb6a2ef00 77 */
majik 0:964eb6a2ef00 78 void MPU6051::initialize()
majik 0:964eb6a2ef00 79 {
majik 0:964eb6a2ef00 80
majik 0:964eb6a2ef00 81 #ifdef useDebugSerial
majik 0:964eb6a2ef00 82 debugSerial.printf("MPU6050::initialize start\n");
majik 0:964eb6a2ef00 83 #endif
majik 0:964eb6a2ef00 84
majik 0:964eb6a2ef00 85 setClockSource(MPU6050_CLOCK_PLL_XGYRO);
majik 0:964eb6a2ef00 86 setFullScaleGyroRange(MPU6050_GYRO_FS_250);
majik 0:964eb6a2ef00 87 setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
majik 0:964eb6a2ef00 88 setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
majik 0:964eb6a2ef00 89
majik 0:964eb6a2ef00 90 #ifdef useDebugSerial
majik 0:964eb6a2ef00 91 debugSerial.printf("MPU6050::initialize end\n");
majik 0:964eb6a2ef00 92 #endif
majik 0:964eb6a2ef00 93 }
majik 0:964eb6a2ef00 94
majik 0:964eb6a2ef00 95 /** Verify the I2C connection.
majik 0:964eb6a2ef00 96 * Make sure the device is connected and responds as expected.
majik 0:964eb6a2ef00 97 * @return True if connection is valid, false otherwise
majik 0:964eb6a2ef00 98 */
majik 0:964eb6a2ef00 99 bool MPU6051::testConnection()
majik 0:964eb6a2ef00 100 {
majik 0:964eb6a2ef00 101 #ifdef useDebugSerial
majik 0:964eb6a2ef00 102 debugSerial.printf("MPU6050::testConnection start\n");
majik 0:964eb6a2ef00 103 #endif
majik 0:964eb6a2ef00 104 uint8_t deviceId = getDeviceID();
majik 0:964eb6a2ef00 105 #ifdef useDebugSerial
majik 0:964eb6a2ef00 106 debugSerial.printf("DeviceId = %d\n",deviceId);
majik 0:964eb6a2ef00 107 #endif
majik 0:964eb6a2ef00 108 return deviceId == 0x34;
majik 0:964eb6a2ef00 109 }
majik 0:964eb6a2ef00 110
majik 0:964eb6a2ef00 111 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
majik 0:964eb6a2ef00 112
majik 0:964eb6a2ef00 113 /** Get the auxiliary I2C supply voltage level.
majik 0:964eb6a2ef00 114 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
majik 0:964eb6a2ef00 115 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
majik 0:964eb6a2ef00 116 * the MPU-6000, which does not have a VLOGIC pin.
majik 0:964eb6a2ef00 117 * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
majik 0:964eb6a2ef00 118 */
majik 0:964eb6a2ef00 119 uint8_t MPU6051::getAuxVDDIOLevel()
majik 0:964eb6a2ef00 120 {
majik 0:964eb6a2ef00 121 i2Cdev.readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
majik 0:964eb6a2ef00 122 return buffer[0];
majik 0:964eb6a2ef00 123 }
majik 0:964eb6a2ef00 124 /** Set the auxiliary I2C supply voltage level.
majik 0:964eb6a2ef00 125 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
majik 0:964eb6a2ef00 126 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
majik 0:964eb6a2ef00 127 * the MPU-6000, which does not have a VLOGIC pin.
majik 0:964eb6a2ef00 128 * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
majik 0:964eb6a2ef00 129 */
majik 0:964eb6a2ef00 130 void MPU6051::setAuxVDDIOLevel(uint8_t level)
majik 0:964eb6a2ef00 131 {
majik 0:964eb6a2ef00 132 i2Cdev.writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
majik 0:964eb6a2ef00 133 }
majik 0:964eb6a2ef00 134
majik 0:964eb6a2ef00 135 // SMPLRT_DIV register
majik 0:964eb6a2ef00 136
majik 0:964eb6a2ef00 137 /** Get gyroscope output rate divider.
majik 0:964eb6a2ef00 138 * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
majik 0:964eb6a2ef00 139 * Motion detection, and Free Fall detection are all based on the Sample Rate.
majik 0:964eb6a2ef00 140 * The Sample Rate is generated by dividing the gyroscope output rate by
majik 0:964eb6a2ef00 141 * SMPLRT_DIV:
majik 0:964eb6a2ef00 142 *
majik 0:964eb6a2ef00 143 * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
majik 0:964eb6a2ef00 144 *
majik 0:964eb6a2ef00 145 * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
majik 0:964eb6a2ef00 146 * 7), and 1kHz when the DLPF is enabled (see Register 26).
majik 0:964eb6a2ef00 147 *
majik 0:964eb6a2ef00 148 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
majik 0:964eb6a2ef00 149 * Rate greater than 1kHz, the same accelerometer sample may be output to the
majik 0:964eb6a2ef00 150 * FIFO, DMP, and sensor registers more than once.
majik 0:964eb6a2ef00 151 *
majik 0:964eb6a2ef00 152 * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
majik 0:964eb6a2ef00 153 * of the MPU-6000/MPU-6050 Product Specification document.
majik 0:964eb6a2ef00 154 *
majik 0:964eb6a2ef00 155 * @return Current sample rate
majik 0:964eb6a2ef00 156 * @see MPU6050_RA_SMPLRT_DIV
majik 0:964eb6a2ef00 157 */
majik 0:964eb6a2ef00 158 uint8_t MPU6051::getRate()
majik 0:964eb6a2ef00 159 {
majik 0:964eb6a2ef00 160 i2Cdev.readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
majik 0:964eb6a2ef00 161 return buffer[0];
majik 0:964eb6a2ef00 162 }
majik 0:964eb6a2ef00 163 /** Set gyroscope sample rate divider.
majik 0:964eb6a2ef00 164 * @param rate New sample rate divider
majik 0:964eb6a2ef00 165 * @see getRate()
majik 0:964eb6a2ef00 166 * @see MPU6050_RA_SMPLRT_DIV
majik 0:964eb6a2ef00 167 */
majik 0:964eb6a2ef00 168 void MPU6051::setRate(uint8_t rate)
majik 0:964eb6a2ef00 169 {
majik 0:964eb6a2ef00 170 i2Cdev.writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
majik 0:964eb6a2ef00 171 }
majik 0:964eb6a2ef00 172
majik 0:964eb6a2ef00 173 // CONFIG register
majik 0:964eb6a2ef00 174
majik 0:964eb6a2ef00 175 /** Get external FSYNC configuration.
majik 0:964eb6a2ef00 176 * Configures the external Frame Synchronization (FSYNC) pin sampling. An
majik 0:964eb6a2ef00 177 * external signal connected to the FSYNC pin can be sampled by configuring
majik 0:964eb6a2ef00 178 * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
majik 0:964eb6a2ef00 179 * strobes may be captured. The latched FSYNC signal will be sampled at the
majik 0:964eb6a2ef00 180 * Sampling Rate, as defined in register 25. After sampling, the latch will
majik 0:964eb6a2ef00 181 * reset to the current FSYNC signal state.
majik 0:964eb6a2ef00 182 *
majik 0:964eb6a2ef00 183 * The sampled value will be reported in place of the least significant bit in
majik 0:964eb6a2ef00 184 * a sensor data register determined by the value of EXT_SYNC_SET according to
majik 0:964eb6a2ef00 185 * the following table.
majik 0:964eb6a2ef00 186 *
majik 0:964eb6a2ef00 187 * <pre>
majik 0:964eb6a2ef00 188 * EXT_SYNC_SET | FSYNC Bit Location
majik 0:964eb6a2ef00 189 * -------------+-------------------
majik 0:964eb6a2ef00 190 * 0 | Input disabled
majik 0:964eb6a2ef00 191 * 1 | TEMP_OUT_L[0]
majik 0:964eb6a2ef00 192 * 2 | GYRO_XOUT_L[0]
majik 0:964eb6a2ef00 193 * 3 | GYRO_YOUT_L[0]
majik 0:964eb6a2ef00 194 * 4 | GYRO_ZOUT_L[0]
majik 0:964eb6a2ef00 195 * 5 | ACCEL_XOUT_L[0]
majik 0:964eb6a2ef00 196 * 6 | ACCEL_YOUT_L[0]
majik 0:964eb6a2ef00 197 * 7 | ACCEL_ZOUT_L[0]
majik 0:964eb6a2ef00 198 * </pre>
majik 0:964eb6a2ef00 199 *
majik 0:964eb6a2ef00 200 * @return FSYNC configuration value
majik 0:964eb6a2ef00 201 */
majik 0:964eb6a2ef00 202 uint8_t MPU6051::getExternalFrameSync()
majik 0:964eb6a2ef00 203 {
majik 0:964eb6a2ef00 204 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
majik 0:964eb6a2ef00 205 return buffer[0];
majik 0:964eb6a2ef00 206 }
majik 0:964eb6a2ef00 207 /** Set external FSYNC configuration.
majik 0:964eb6a2ef00 208 * @see getExternalFrameSync()
majik 0:964eb6a2ef00 209 * @see MPU6050_RA_CONFIG
majik 0:964eb6a2ef00 210 * @param sync New FSYNC configuration value
majik 0:964eb6a2ef00 211 */
majik 0:964eb6a2ef00 212 void MPU6051::setExternalFrameSync(uint8_t sync)
majik 0:964eb6a2ef00 213 {
majik 0:964eb6a2ef00 214 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
majik 0:964eb6a2ef00 215 }
majik 0:964eb6a2ef00 216 /** Get digital low-pass filter configuration.
majik 0:964eb6a2ef00 217 * The DLPF_CFG parameter sets the digital low pass filter configuration. It
majik 0:964eb6a2ef00 218 * also determines the internal sampling rate used by the device as shown in
majik 0:964eb6a2ef00 219 * the table below.
majik 0:964eb6a2ef00 220 *
majik 0:964eb6a2ef00 221 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
majik 0:964eb6a2ef00 222 * Rate greater than 1kHz, the same accelerometer sample may be output to the
majik 0:964eb6a2ef00 223 * FIFO, DMP, and sensor registers more than once.
majik 0:964eb6a2ef00 224 *
majik 0:964eb6a2ef00 225 * <pre>
majik 0:964eb6a2ef00 226 * | ACCELEROMETER | GYROSCOPE
majik 0:964eb6a2ef00 227 * DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
majik 0:964eb6a2ef00 228 * ---------+-----------+--------+-----------+--------+-------------
majik 0:964eb6a2ef00 229 * 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
majik 0:964eb6a2ef00 230 * 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
majik 0:964eb6a2ef00 231 * 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
majik 0:964eb6a2ef00 232 * 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
majik 0:964eb6a2ef00 233 * 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
majik 0:964eb6a2ef00 234 * 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
majik 0:964eb6a2ef00 235 * 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
majik 0:964eb6a2ef00 236 * 7 | -- Reserved -- | -- Reserved -- | Reserved
majik 0:964eb6a2ef00 237 * </pre>
majik 0:964eb6a2ef00 238 *
majik 0:964eb6a2ef00 239 * @return DLFP configuration
majik 0:964eb6a2ef00 240 * @see MPU6050_RA_CONFIG
majik 0:964eb6a2ef00 241 * @see MPU6050_CFG_DLPF_CFG_BIT
majik 0:964eb6a2ef00 242 * @see MPU6050_CFG_DLPF_CFG_LENGTH
majik 0:964eb6a2ef00 243 */
majik 0:964eb6a2ef00 244 uint8_t MPU6051::getDLPFMode()
majik 0:964eb6a2ef00 245 {
majik 0:964eb6a2ef00 246 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
majik 0:964eb6a2ef00 247 return buffer[0];
majik 0:964eb6a2ef00 248 }
majik 0:964eb6a2ef00 249 /** Set digital low-pass filter configuration.
majik 0:964eb6a2ef00 250 * @param mode New DLFP configuration setting
majik 0:964eb6a2ef00 251 * @see getDLPFBandwidth()
majik 0:964eb6a2ef00 252 * @see MPU6050_DLPF_BW_256
majik 0:964eb6a2ef00 253 * @see MPU6050_RA_CONFIG
majik 0:964eb6a2ef00 254 * @see MPU6050_CFG_DLPF_CFG_BIT
majik 0:964eb6a2ef00 255 * @see MPU6050_CFG_DLPF_CFG_LENGTH
majik 0:964eb6a2ef00 256 */
majik 0:964eb6a2ef00 257 void MPU6051::setDLPFMode(uint8_t mode)
majik 0:964eb6a2ef00 258 {
majik 0:964eb6a2ef00 259 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
majik 0:964eb6a2ef00 260 }
majik 0:964eb6a2ef00 261
majik 0:964eb6a2ef00 262 // GYRO_CONFIG register
majik 0:964eb6a2ef00 263
majik 0:964eb6a2ef00 264 /** Get full-scale gyroscope range.
majik 0:964eb6a2ef00 265 * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
majik 0:964eb6a2ef00 266 * as described in the table below.
majik 0:964eb6a2ef00 267 *
majik 0:964eb6a2ef00 268 * <pre>
majik 0:964eb6a2ef00 269 * 0 = +/- 250 degrees/sec
majik 0:964eb6a2ef00 270 * 1 = +/- 500 degrees/sec
majik 0:964eb6a2ef00 271 * 2 = +/- 1000 degrees/sec
majik 0:964eb6a2ef00 272 * 3 = +/- 2000 degrees/sec
majik 0:964eb6a2ef00 273 * </pre>
majik 0:964eb6a2ef00 274 *
majik 0:964eb6a2ef00 275 * @return Current full-scale gyroscope range setting
majik 0:964eb6a2ef00 276 * @see MPU6050_GYRO_FS_250
majik 0:964eb6a2ef00 277 * @see MPU6050_RA_GYRO_CONFIG
majik 0:964eb6a2ef00 278 * @see MPU6050_GCONFIG_FS_SEL_BIT
majik 0:964eb6a2ef00 279 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
majik 0:964eb6a2ef00 280 */
majik 0:964eb6a2ef00 281 uint8_t MPU6051::getFullScaleGyroRange()
majik 0:964eb6a2ef00 282 {
majik 0:964eb6a2ef00 283 i2Cdev.readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
majik 0:964eb6a2ef00 284 return buffer[0];
majik 0:964eb6a2ef00 285 }
majik 0:964eb6a2ef00 286 /** Set full-scale gyroscope range.
majik 0:964eb6a2ef00 287 * @param range New full-scale gyroscope range value
majik 0:964eb6a2ef00 288 * @see getFullScaleRange()
majik 0:964eb6a2ef00 289 * @see MPU6050_GYRO_FS_250
majik 0:964eb6a2ef00 290 * @see MPU6050_RA_GYRO_CONFIG
majik 0:964eb6a2ef00 291 * @see MPU6050_GCONFIG_FS_SEL_BIT
majik 0:964eb6a2ef00 292 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
majik 0:964eb6a2ef00 293 */
majik 0:964eb6a2ef00 294 void MPU6051::setFullScaleGyroRange(uint8_t range)
majik 0:964eb6a2ef00 295 {
majik 0:964eb6a2ef00 296 i2Cdev.writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
majik 0:964eb6a2ef00 297 }
majik 0:964eb6a2ef00 298
majik 0:964eb6a2ef00 299 // ACCEL_CONFIG register
majik 0:964eb6a2ef00 300
majik 0:964eb6a2ef00 301 /** Get self-test enabled setting for accelerometer X axis.
majik 0:964eb6a2ef00 302 * @return Self-test enabled value
majik 0:964eb6a2ef00 303 * @see MPU6050_RA_ACCEL_CONFIG
majik 0:964eb6a2ef00 304 */
majik 0:964eb6a2ef00 305 bool MPU6051::getAccelXSelfTest()
majik 0:964eb6a2ef00 306 {
majik 0:964eb6a2ef00 307 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
majik 0:964eb6a2ef00 308 return buffer[0];
majik 0:964eb6a2ef00 309 }
majik 0:964eb6a2ef00 310 /** Get self-test enabled setting for accelerometer X axis.
majik 0:964eb6a2ef00 311 * @param enabled Self-test enabled value
majik 0:964eb6a2ef00 312 * @see MPU6050_RA_ACCEL_CONFIG
majik 0:964eb6a2ef00 313 */
majik 0:964eb6a2ef00 314 void MPU6051::setAccelXSelfTest(bool enabled)
majik 0:964eb6a2ef00 315 {
majik 0:964eb6a2ef00 316 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
majik 0:964eb6a2ef00 317 }
majik 0:964eb6a2ef00 318 /** Get self-test enabled value for accelerometer Y axis.
majik 0:964eb6a2ef00 319 * @return Self-test enabled value
majik 0:964eb6a2ef00 320 * @see MPU6050_RA_ACCEL_CONFIG
majik 0:964eb6a2ef00 321 */
majik 0:964eb6a2ef00 322 bool MPU6051::getAccelYSelfTest()
majik 0:964eb6a2ef00 323 {
majik 0:964eb6a2ef00 324 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
majik 0:964eb6a2ef00 325 return buffer[0];
majik 0:964eb6a2ef00 326 }
majik 0:964eb6a2ef00 327 /** Get self-test enabled value for accelerometer Y axis.
majik 0:964eb6a2ef00 328 * @param enabled Self-test enabled value
majik 0:964eb6a2ef00 329 * @see MPU6050_RA_ACCEL_CONFIG
majik 0:964eb6a2ef00 330 */
majik 0:964eb6a2ef00 331 void MPU6051::setAccelYSelfTest(bool enabled)
majik 0:964eb6a2ef00 332 {
majik 0:964eb6a2ef00 333 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
majik 0:964eb6a2ef00 334 }
majik 0:964eb6a2ef00 335 /** Get self-test enabled value for accelerometer Z axis.
majik 0:964eb6a2ef00 336 * @return Self-test enabled value
majik 0:964eb6a2ef00 337 * @see MPU6050_RA_ACCEL_CONFIG
majik 0:964eb6a2ef00 338 */
majik 0:964eb6a2ef00 339 bool MPU6051::getAccelZSelfTest()
majik 0:964eb6a2ef00 340 {
majik 0:964eb6a2ef00 341 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
majik 0:964eb6a2ef00 342 return buffer[0];
majik 0:964eb6a2ef00 343 }
majik 0:964eb6a2ef00 344 /** Set self-test enabled value for accelerometer Z axis.
majik 0:964eb6a2ef00 345 * @param enabled Self-test enabled value
majik 0:964eb6a2ef00 346 * @see MPU6050_RA_ACCEL_CONFIG
majik 0:964eb6a2ef00 347 */
majik 0:964eb6a2ef00 348 void MPU6051::setAccelZSelfTest(bool enabled)
majik 0:964eb6a2ef00 349 {
majik 0:964eb6a2ef00 350 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
majik 0:964eb6a2ef00 351 }
majik 0:964eb6a2ef00 352 /** Get full-scale accelerometer range.
majik 0:964eb6a2ef00 353 * The FS_SEL parameter allows setting the full-scale range of the accelerometer
majik 0:964eb6a2ef00 354 * sensors, as described in the table below.
majik 0:964eb6a2ef00 355 *
majik 0:964eb6a2ef00 356 * <pre>
majik 0:964eb6a2ef00 357 * 0 = +/- 2g
majik 0:964eb6a2ef00 358 * 1 = +/- 4g
majik 0:964eb6a2ef00 359 * 2 = +/- 8g
majik 0:964eb6a2ef00 360 * 3 = +/- 16g
majik 0:964eb6a2ef00 361 * </pre>
majik 0:964eb6a2ef00 362 *
majik 0:964eb6a2ef00 363 * @return Current full-scale accelerometer range setting
majik 0:964eb6a2ef00 364 * @see MPU6050_ACCEL_FS_2
majik 0:964eb6a2ef00 365 * @see MPU6050_RA_ACCEL_CONFIG
majik 0:964eb6a2ef00 366 * @see MPU6050_ACONFIG_AFS_SEL_BIT
majik 0:964eb6a2ef00 367 * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
majik 0:964eb6a2ef00 368 */
majik 0:964eb6a2ef00 369 uint8_t MPU6051::getFullScaleAccelRange()
majik 0:964eb6a2ef00 370 {
majik 0:964eb6a2ef00 371 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
majik 0:964eb6a2ef00 372 return buffer[0];
majik 0:964eb6a2ef00 373 }
majik 0:964eb6a2ef00 374 /** Set full-scale accelerometer range.
majik 0:964eb6a2ef00 375 * @param range New full-scale accelerometer range setting
majik 0:964eb6a2ef00 376 * @see getFullScaleAccelRange()
majik 0:964eb6a2ef00 377 */
majik 0:964eb6a2ef00 378 void MPU6051::setFullScaleAccelRange(uint8_t range)
majik 0:964eb6a2ef00 379 {
majik 0:964eb6a2ef00 380 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
majik 0:964eb6a2ef00 381 }
majik 0:964eb6a2ef00 382 /** Get the high-pass filter configuration.
majik 0:964eb6a2ef00 383 * The DHPF is a filter module in the path leading to motion detectors (Free
majik 0:964eb6a2ef00 384 * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
majik 0:964eb6a2ef00 385 * available to the data registers (see Figure in Section 8 of the MPU-6000/
majik 0:964eb6a2ef00 386 * MPU-6050 Product Specification document).
majik 0:964eb6a2ef00 387 *
majik 0:964eb6a2ef00 388 * The high pass filter has three modes:
majik 0:964eb6a2ef00 389 *
majik 0:964eb6a2ef00 390 * <pre>
majik 0:964eb6a2ef00 391 * Reset: The filter output settles to zero within one sample. This
majik 0:964eb6a2ef00 392 * effectively disables the high pass filter. This mode may be toggled
majik 0:964eb6a2ef00 393 * to quickly settle the filter.
majik 0:964eb6a2ef00 394 *
majik 0:964eb6a2ef00 395 * On: The high pass filter will pass signals above the cut off frequency.
majik 0:964eb6a2ef00 396 *
majik 0:964eb6a2ef00 397 * Hold: When triggered, the filter holds the present sample. The filter
majik 0:964eb6a2ef00 398 * output will be the difference between the input sample and the held
majik 0:964eb6a2ef00 399 * sample.
majik 0:964eb6a2ef00 400 * </pre>
majik 0:964eb6a2ef00 401 *
majik 0:964eb6a2ef00 402 * <pre>
majik 0:964eb6a2ef00 403 * ACCEL_HPF | Filter Mode | Cut-off Frequency
majik 0:964eb6a2ef00 404 * ----------+-------------+------------------
majik 0:964eb6a2ef00 405 * 0 | Reset | None
majik 0:964eb6a2ef00 406 * 1 | On | 5Hz
majik 0:964eb6a2ef00 407 * 2 | On | 2.5Hz
majik 0:964eb6a2ef00 408 * 3 | On | 1.25Hz
majik 0:964eb6a2ef00 409 * 4 | On | 0.63Hz
majik 0:964eb6a2ef00 410 * 7 | Hold | None
majik 0:964eb6a2ef00 411 * </pre>
majik 0:964eb6a2ef00 412 *
majik 0:964eb6a2ef00 413 * @return Current high-pass filter configuration
majik 0:964eb6a2ef00 414 * @see MPU6050_DHPF_RESET
majik 0:964eb6a2ef00 415 * @see MPU6050_RA_ACCEL_CONFIG
majik 0:964eb6a2ef00 416 */
majik 0:964eb6a2ef00 417 uint8_t MPU6051::getDHPFMode()
majik 0:964eb6a2ef00 418 {
majik 0:964eb6a2ef00 419 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
majik 0:964eb6a2ef00 420 return buffer[0];
majik 0:964eb6a2ef00 421 }
majik 0:964eb6a2ef00 422 /** Set the high-pass filter configuration.
majik 0:964eb6a2ef00 423 * @param bandwidth New high-pass filter configuration
majik 0:964eb6a2ef00 424 * @see setDHPFMode()
majik 0:964eb6a2ef00 425 * @see MPU6050_DHPF_RESET
majik 0:964eb6a2ef00 426 * @see MPU6050_RA_ACCEL_CONFIG
majik 0:964eb6a2ef00 427 */
majik 0:964eb6a2ef00 428 void MPU6051::setDHPFMode(uint8_t bandwidth)
majik 0:964eb6a2ef00 429 {
majik 0:964eb6a2ef00 430 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
majik 0:964eb6a2ef00 431 }
majik 0:964eb6a2ef00 432
majik 0:964eb6a2ef00 433 // FF_THR register
majik 0:964eb6a2ef00 434
majik 0:964eb6a2ef00 435 /** Get free-fall event acceleration threshold.
majik 0:964eb6a2ef00 436 * This register configures the detection threshold for Free Fall event
majik 0:964eb6a2ef00 437 * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
majik 0:964eb6a2ef00 438 * absolute value of the accelerometer measurements for the three axes are each
majik 0:964eb6a2ef00 439 * less than the detection threshold. This condition increments the Free Fall
majik 0:964eb6a2ef00 440 * duration counter (Register 30). The Free Fall interrupt is triggered when the
majik 0:964eb6a2ef00 441 * Free Fall duration counter reaches the time specified in FF_DUR.
majik 0:964eb6a2ef00 442 *
majik 0:964eb6a2ef00 443 * For more details on the Free Fall detection interrupt, see Section 8.2 of the
majik 0:964eb6a2ef00 444 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
majik 0:964eb6a2ef00 445 * 58 of this document.
majik 0:964eb6a2ef00 446 *
majik 0:964eb6a2ef00 447 * @return Current free-fall acceleration threshold value (LSB = 2mg)
majik 0:964eb6a2ef00 448 * @see MPU6050_RA_FF_THR
majik 0:964eb6a2ef00 449 */
majik 0:964eb6a2ef00 450 uint8_t MPU6051::getFreefallDetectionThreshold()
majik 0:964eb6a2ef00 451 {
majik 0:964eb6a2ef00 452 i2Cdev.readByte(devAddr, MPU6050_RA_FF_THR, buffer);
majik 0:964eb6a2ef00 453 return buffer[0];
majik 0:964eb6a2ef00 454 }
majik 0:964eb6a2ef00 455 /** Get free-fall event acceleration threshold.
majik 0:964eb6a2ef00 456 * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
majik 0:964eb6a2ef00 457 * @see getFreefallDetectionThreshold()
majik 0:964eb6a2ef00 458 * @see MPU6050_RA_FF_THR
majik 0:964eb6a2ef00 459 */
majik 0:964eb6a2ef00 460 void MPU6051::setFreefallDetectionThreshold(uint8_t threshold)
majik 0:964eb6a2ef00 461 {
majik 0:964eb6a2ef00 462 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
majik 0:964eb6a2ef00 463 }
majik 0:964eb6a2ef00 464
majik 0:964eb6a2ef00 465 // FF_DUR register
majik 0:964eb6a2ef00 466
majik 0:964eb6a2ef00 467 /** Get free-fall event duration threshold.
majik 0:964eb6a2ef00 468 * This register configures the duration counter threshold for Free Fall event
majik 0:964eb6a2ef00 469 * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
majik 0:964eb6a2ef00 470 * of 1 LSB = 1 ms.
majik 0:964eb6a2ef00 471 *
majik 0:964eb6a2ef00 472 * The Free Fall duration counter increments while the absolute value of the
majik 0:964eb6a2ef00 473 * accelerometer measurements are each less than the detection threshold
majik 0:964eb6a2ef00 474 * (Register 29). The Free Fall interrupt is triggered when the Free Fall
majik 0:964eb6a2ef00 475 * duration counter reaches the time specified in this register.
majik 0:964eb6a2ef00 476 *
majik 0:964eb6a2ef00 477 * For more details on the Free Fall detection interrupt, see Section 8.2 of
majik 0:964eb6a2ef00 478 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
majik 0:964eb6a2ef00 479 * and 58 of this document.
majik 0:964eb6a2ef00 480 *
majik 0:964eb6a2ef00 481 * @return Current free-fall duration threshold value (LSB = 1ms)
majik 0:964eb6a2ef00 482 * @see MPU6050_RA_FF_DUR
majik 0:964eb6a2ef00 483 */
majik 0:964eb6a2ef00 484 uint8_t MPU6051::getFreefallDetectionDuration()
majik 0:964eb6a2ef00 485 {
majik 0:964eb6a2ef00 486 i2Cdev.readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
majik 0:964eb6a2ef00 487 return buffer[0];
majik 0:964eb6a2ef00 488 }
majik 0:964eb6a2ef00 489 /** Get free-fall event duration threshold.
majik 0:964eb6a2ef00 490 * @param duration New free-fall duration threshold value (LSB = 1ms)
majik 0:964eb6a2ef00 491 * @see getFreefallDetectionDuration()
majik 0:964eb6a2ef00 492 * @see MPU6050_RA_FF_DUR
majik 0:964eb6a2ef00 493 */
majik 0:964eb6a2ef00 494 void MPU6051::setFreefallDetectionDuration(uint8_t duration)
majik 0:964eb6a2ef00 495 {
majik 0:964eb6a2ef00 496 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
majik 0:964eb6a2ef00 497 }
majik 0:964eb6a2ef00 498
majik 0:964eb6a2ef00 499 // MOT_THR register
majik 0:964eb6a2ef00 500
majik 0:964eb6a2ef00 501 /** Get motion detection event acceleration threshold.
majik 0:964eb6a2ef00 502 * This register configures the detection threshold for Motion interrupt
majik 0:964eb6a2ef00 503 * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
majik 0:964eb6a2ef00 504 * absolute value of any of the accelerometer measurements exceeds this Motion
majik 0:964eb6a2ef00 505 * detection threshold. This condition increments the Motion detection duration
majik 0:964eb6a2ef00 506 * counter (Register 32). The Motion detection interrupt is triggered when the
majik 0:964eb6a2ef00 507 * Motion Detection counter reaches the time count specified in MOT_DUR
majik 0:964eb6a2ef00 508 * (Register 32).
majik 0:964eb6a2ef00 509 *
majik 0:964eb6a2ef00 510 * The Motion interrupt will indicate the axis and polarity of detected motion
majik 0:964eb6a2ef00 511 * in MOT_DETECT_STATUS (Register 97).
majik 0:964eb6a2ef00 512 *
majik 0:964eb6a2ef00 513 * For more details on the Motion detection interrupt, see Section 8.3 of the
majik 0:964eb6a2ef00 514 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
majik 0:964eb6a2ef00 515 * 58 of this document.
majik 0:964eb6a2ef00 516 *
majik 0:964eb6a2ef00 517 * @return Current motion detection acceleration threshold value (LSB = 2mg)
majik 0:964eb6a2ef00 518 * @see MPU6050_RA_MOT_THR
majik 0:964eb6a2ef00 519 */
majik 0:964eb6a2ef00 520 uint8_t MPU6051::getMotionDetectionThreshold()
majik 0:964eb6a2ef00 521 {
majik 0:964eb6a2ef00 522 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
majik 0:964eb6a2ef00 523 return buffer[0];
majik 0:964eb6a2ef00 524 }
majik 0:964eb6a2ef00 525 /** Set free-fall event acceleration threshold.
majik 0:964eb6a2ef00 526 * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
majik 0:964eb6a2ef00 527 * @see getMotionDetectionThreshold()
majik 0:964eb6a2ef00 528 * @see MPU6050_RA_MOT_THR
majik 0:964eb6a2ef00 529 */
majik 0:964eb6a2ef00 530 void MPU6051::setMotionDetectionThreshold(uint8_t threshold)
majik 0:964eb6a2ef00 531 {
majik 0:964eb6a2ef00 532 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
majik 0:964eb6a2ef00 533 }
majik 0:964eb6a2ef00 534
majik 0:964eb6a2ef00 535 // MOT_DUR register
majik 0:964eb6a2ef00 536
majik 0:964eb6a2ef00 537 /** Get motion detection event duration threshold.
majik 0:964eb6a2ef00 538 * This register configures the duration counter threshold for Motion interrupt
majik 0:964eb6a2ef00 539 * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
majik 0:964eb6a2ef00 540 * of 1LSB = 1ms. The Motion detection duration counter increments when the
majik 0:964eb6a2ef00 541 * absolute value of any of the accelerometer measurements exceeds the Motion
majik 0:964eb6a2ef00 542 * detection threshold (Register 31). The Motion detection interrupt is
majik 0:964eb6a2ef00 543 * triggered when the Motion detection counter reaches the time count specified
majik 0:964eb6a2ef00 544 * in this register.
majik 0:964eb6a2ef00 545 *
majik 0:964eb6a2ef00 546 * For more details on the Motion detection interrupt, see Section 8.3 of the
majik 0:964eb6a2ef00 547 * MPU-6000/MPU-6050 Product Specification document.
majik 0:964eb6a2ef00 548 *
majik 0:964eb6a2ef00 549 * @return Current motion detection duration threshold value (LSB = 1ms)
majik 0:964eb6a2ef00 550 * @see MPU6050_RA_MOT_DUR
majik 0:964eb6a2ef00 551 */
majik 0:964eb6a2ef00 552 uint8_t MPU6051::getMotionDetectionDuration()
majik 0:964eb6a2ef00 553 {
majik 0:964eb6a2ef00 554 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
majik 0:964eb6a2ef00 555 return buffer[0];
majik 0:964eb6a2ef00 556 }
majik 0:964eb6a2ef00 557 /** Set motion detection event duration threshold.
majik 0:964eb6a2ef00 558 * @param duration New motion detection duration threshold value (LSB = 1ms)
majik 0:964eb6a2ef00 559 * @see getMotionDetectionDuration()
majik 0:964eb6a2ef00 560 * @see MPU6050_RA_MOT_DUR
majik 0:964eb6a2ef00 561 */
majik 0:964eb6a2ef00 562 void MPU6051::setMotionDetectionDuration(uint8_t duration)
majik 0:964eb6a2ef00 563 {
majik 0:964eb6a2ef00 564 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
majik 0:964eb6a2ef00 565 }
majik 0:964eb6a2ef00 566
majik 0:964eb6a2ef00 567 // ZRMOT_THR register
majik 0:964eb6a2ef00 568
majik 0:964eb6a2ef00 569 /** Get zero motion detection event acceleration threshold.
majik 0:964eb6a2ef00 570 * This register configures the detection threshold for Zero Motion interrupt
majik 0:964eb6a2ef00 571 * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
majik 0:964eb6a2ef00 572 * the absolute value of the accelerometer measurements for the 3 axes are each
majik 0:964eb6a2ef00 573 * less than the detection threshold. This condition increments the Zero Motion
majik 0:964eb6a2ef00 574 * duration counter (Register 34). The Zero Motion interrupt is triggered when
majik 0:964eb6a2ef00 575 * the Zero Motion duration counter reaches the time count specified in
majik 0:964eb6a2ef00 576 * ZRMOT_DUR (Register 34).
majik 0:964eb6a2ef00 577 *
majik 0:964eb6a2ef00 578 * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
majik 0:964eb6a2ef00 579 * interrupt both when Zero Motion is first detected and when Zero Motion is no
majik 0:964eb6a2ef00 580 * longer detected.
majik 0:964eb6a2ef00 581 *
majik 0:964eb6a2ef00 582 * When a zero motion event is detected, a Zero Motion Status will be indicated
majik 0:964eb6a2ef00 583 * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
majik 0:964eb6a2ef00 584 * condition is detected, the status bit is set to 1. When a zero-motion-to-
majik 0:964eb6a2ef00 585 * motion condition is detected, the status bit is set to 0.
majik 0:964eb6a2ef00 586 *
majik 0:964eb6a2ef00 587 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
majik 0:964eb6a2ef00 588 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
majik 0:964eb6a2ef00 589 * and 58 of this document.
majik 0:964eb6a2ef00 590 *
majik 0:964eb6a2ef00 591 * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
majik 0:964eb6a2ef00 592 * @see MPU6050_RA_ZRMOT_THR
majik 0:964eb6a2ef00 593 */
majik 0:964eb6a2ef00 594 uint8_t MPU6051::getZeroMotionDetectionThreshold()
majik 0:964eb6a2ef00 595 {
majik 0:964eb6a2ef00 596 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
majik 0:964eb6a2ef00 597 return buffer[0];
majik 0:964eb6a2ef00 598 }
majik 0:964eb6a2ef00 599 /** Set zero motion detection event acceleration threshold.
majik 0:964eb6a2ef00 600 * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
majik 0:964eb6a2ef00 601 * @see getZeroMotionDetectionThreshold()
majik 0:964eb6a2ef00 602 * @see MPU6050_RA_ZRMOT_THR
majik 0:964eb6a2ef00 603 */
majik 0:964eb6a2ef00 604 void MPU6051::setZeroMotionDetectionThreshold(uint8_t threshold)
majik 0:964eb6a2ef00 605 {
majik 0:964eb6a2ef00 606 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
majik 0:964eb6a2ef00 607 }
majik 0:964eb6a2ef00 608
majik 0:964eb6a2ef00 609 // ZRMOT_DUR register
majik 0:964eb6a2ef00 610
majik 0:964eb6a2ef00 611 /** Get zero motion detection event duration threshold.
majik 0:964eb6a2ef00 612 * This register configures the duration counter threshold for Zero Motion
majik 0:964eb6a2ef00 613 * interrupt generation. The duration counter ticks at 16 Hz, therefore
majik 0:964eb6a2ef00 614 * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
majik 0:964eb6a2ef00 615 * increments while the absolute value of the accelerometer measurements are
majik 0:964eb6a2ef00 616 * each less than the detection threshold (Register 33). The Zero Motion
majik 0:964eb6a2ef00 617 * interrupt is triggered when the Zero Motion duration counter reaches the time
majik 0:964eb6a2ef00 618 * count specified in this register.
majik 0:964eb6a2ef00 619 *
majik 0:964eb6a2ef00 620 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
majik 0:964eb6a2ef00 621 * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
majik 0:964eb6a2ef00 622 * and 58 of this document.
majik 0:964eb6a2ef00 623 *
majik 0:964eb6a2ef00 624 * @return Current zero motion detection duration threshold value (LSB = 64ms)
majik 0:964eb6a2ef00 625 * @see MPU6050_RA_ZRMOT_DUR
majik 0:964eb6a2ef00 626 */
majik 0:964eb6a2ef00 627 uint8_t MPU6051::getZeroMotionDetectionDuration()
majik 0:964eb6a2ef00 628 {
majik 0:964eb6a2ef00 629 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
majik 0:964eb6a2ef00 630 return buffer[0];
majik 0:964eb6a2ef00 631 }
majik 0:964eb6a2ef00 632 /** Set zero motion detection event duration threshold.
majik 0:964eb6a2ef00 633 * @param duration New zero motion detection duration threshold value (LSB = 1ms)
majik 0:964eb6a2ef00 634 * @see getZeroMotionDetectionDuration()
majik 0:964eb6a2ef00 635 * @see MPU6050_RA_ZRMOT_DUR
majik 0:964eb6a2ef00 636 */
majik 0:964eb6a2ef00 637 void MPU6051::setZeroMotionDetectionDuration(uint8_t duration)
majik 0:964eb6a2ef00 638 {
majik 0:964eb6a2ef00 639 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
majik 0:964eb6a2ef00 640 }
majik 0:964eb6a2ef00 641
majik 0:964eb6a2ef00 642 // FIFO_EN register
majik 0:964eb6a2ef00 643
majik 0:964eb6a2ef00 644 /** Get temperature FIFO enabled value.
majik 0:964eb6a2ef00 645 * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
majik 0:964eb6a2ef00 646 * 66) to be written into the FIFO buffer.
majik 0:964eb6a2ef00 647 * @return Current temperature FIFO enabled value
majik 0:964eb6a2ef00 648 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 649 */
majik 0:964eb6a2ef00 650 bool MPU6051::getTempFIFOEnabled()
majik 0:964eb6a2ef00 651 {
majik 0:964eb6a2ef00 652 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 653 return buffer[0];
majik 0:964eb6a2ef00 654 }
majik 0:964eb6a2ef00 655 /** Set temperature FIFO enabled value.
majik 0:964eb6a2ef00 656 * @param enabled New temperature FIFO enabled value
majik 0:964eb6a2ef00 657 * @see getTempFIFOEnabled()
majik 0:964eb6a2ef00 658 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 659 */
majik 0:964eb6a2ef00 660 void MPU6051::setTempFIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 661 {
majik 0:964eb6a2ef00 662 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 663 }
majik 0:964eb6a2ef00 664 /** Get gyroscope X-axis FIFO enabled value.
majik 0:964eb6a2ef00 665 * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
majik 0:964eb6a2ef00 666 * 68) to be written into the FIFO buffer.
majik 0:964eb6a2ef00 667 * @return Current gyroscope X-axis FIFO enabled value
majik 0:964eb6a2ef00 668 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 669 */
majik 0:964eb6a2ef00 670 bool MPU6051::getXGyroFIFOEnabled()
majik 0:964eb6a2ef00 671 {
majik 0:964eb6a2ef00 672 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 673 return buffer[0];
majik 0:964eb6a2ef00 674 }
majik 0:964eb6a2ef00 675 /** Set gyroscope X-axis FIFO enabled value.
majik 0:964eb6a2ef00 676 * @param enabled New gyroscope X-axis FIFO enabled value
majik 0:964eb6a2ef00 677 * @see getXGyroFIFOEnabled()
majik 0:964eb6a2ef00 678 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 679 */
majik 0:964eb6a2ef00 680 void MPU6051::setXGyroFIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 681 {
majik 0:964eb6a2ef00 682 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 683 }
majik 0:964eb6a2ef00 684 /** Get gyroscope Y-axis FIFO enabled value.
majik 0:964eb6a2ef00 685 * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
majik 0:964eb6a2ef00 686 * 70) to be written into the FIFO buffer.
majik 0:964eb6a2ef00 687 * @return Current gyroscope Y-axis FIFO enabled value
majik 0:964eb6a2ef00 688 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 689 */
majik 0:964eb6a2ef00 690 bool MPU6051::getYGyroFIFOEnabled()
majik 0:964eb6a2ef00 691 {
majik 0:964eb6a2ef00 692 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 693 return buffer[0];
majik 0:964eb6a2ef00 694 }
majik 0:964eb6a2ef00 695 /** Set gyroscope Y-axis FIFO enabled value.
majik 0:964eb6a2ef00 696 * @param enabled New gyroscope Y-axis FIFO enabled value
majik 0:964eb6a2ef00 697 * @see getYGyroFIFOEnabled()
majik 0:964eb6a2ef00 698 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 699 */
majik 0:964eb6a2ef00 700 void MPU6051::setYGyroFIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 701 {
majik 0:964eb6a2ef00 702 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 703 }
majik 0:964eb6a2ef00 704 /** Get gyroscope Z-axis FIFO enabled value.
majik 0:964eb6a2ef00 705 * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
majik 0:964eb6a2ef00 706 * 72) to be written into the FIFO buffer.
majik 0:964eb6a2ef00 707 * @return Current gyroscope Z-axis FIFO enabled value
majik 0:964eb6a2ef00 708 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 709 */
majik 0:964eb6a2ef00 710 bool MPU6051::getZGyroFIFOEnabled()
majik 0:964eb6a2ef00 711 {
majik 0:964eb6a2ef00 712 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 713 return buffer[0];
majik 0:964eb6a2ef00 714 }
majik 0:964eb6a2ef00 715 /** Set gyroscope Z-axis FIFO enabled value.
majik 0:964eb6a2ef00 716 * @param enabled New gyroscope Z-axis FIFO enabled value
majik 0:964eb6a2ef00 717 * @see getZGyroFIFOEnabled()
majik 0:964eb6a2ef00 718 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 719 */
majik 0:964eb6a2ef00 720 void MPU6051::setZGyroFIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 721 {
majik 0:964eb6a2ef00 722 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 723 }
majik 0:964eb6a2ef00 724 /** Get accelerometer FIFO enabled value.
majik 0:964eb6a2ef00 725 * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
majik 0:964eb6a2ef00 726 * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
majik 0:964eb6a2ef00 727 * written into the FIFO buffer.
majik 0:964eb6a2ef00 728 * @return Current accelerometer FIFO enabled value
majik 0:964eb6a2ef00 729 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 730 */
majik 0:964eb6a2ef00 731 bool MPU6051::getAccelFIFOEnabled()
majik 0:964eb6a2ef00 732 {
majik 0:964eb6a2ef00 733 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 734 return buffer[0];
majik 0:964eb6a2ef00 735 }
majik 0:964eb6a2ef00 736 /** Set accelerometer FIFO enabled value.
majik 0:964eb6a2ef00 737 * @param enabled New accelerometer FIFO enabled value
majik 0:964eb6a2ef00 738 * @see getAccelFIFOEnabled()
majik 0:964eb6a2ef00 739 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 740 */
majik 0:964eb6a2ef00 741 void MPU6051::setAccelFIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 742 {
majik 0:964eb6a2ef00 743 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 744 }
majik 0:964eb6a2ef00 745 /** Get Slave 2 FIFO enabled value.
majik 0:964eb6a2ef00 746 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
majik 0:964eb6a2ef00 747 * associated with Slave 2 to be written into the FIFO buffer.
majik 0:964eb6a2ef00 748 * @return Current Slave 2 FIFO enabled value
majik 0:964eb6a2ef00 749 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 750 */
majik 0:964eb6a2ef00 751 bool MPU6051::getSlave2FIFOEnabled()
majik 0:964eb6a2ef00 752 {
majik 0:964eb6a2ef00 753 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 754 return buffer[0];
majik 0:964eb6a2ef00 755 }
majik 0:964eb6a2ef00 756 /** Set Slave 2 FIFO enabled value.
majik 0:964eb6a2ef00 757 * @param enabled New Slave 2 FIFO enabled value
majik 0:964eb6a2ef00 758 * @see getSlave2FIFOEnabled()
majik 0:964eb6a2ef00 759 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 760 */
majik 0:964eb6a2ef00 761 void MPU6051::setSlave2FIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 762 {
majik 0:964eb6a2ef00 763 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 764 }
majik 0:964eb6a2ef00 765 /** Get Slave 1 FIFO enabled value.
majik 0:964eb6a2ef00 766 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
majik 0:964eb6a2ef00 767 * associated with Slave 1 to be written into the FIFO buffer.
majik 0:964eb6a2ef00 768 * @return Current Slave 1 FIFO enabled value
majik 0:964eb6a2ef00 769 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 770 */
majik 0:964eb6a2ef00 771 bool MPU6051::getSlave1FIFOEnabled()
majik 0:964eb6a2ef00 772 {
majik 0:964eb6a2ef00 773 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 774 return buffer[0];
majik 0:964eb6a2ef00 775 }
majik 0:964eb6a2ef00 776 /** Set Slave 1 FIFO enabled value.
majik 0:964eb6a2ef00 777 * @param enabled New Slave 1 FIFO enabled value
majik 0:964eb6a2ef00 778 * @see getSlave1FIFOEnabled()
majik 0:964eb6a2ef00 779 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 780 */
majik 0:964eb6a2ef00 781 void MPU6051::setSlave1FIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 782 {
majik 0:964eb6a2ef00 783 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 784 }
majik 0:964eb6a2ef00 785 /** Get Slave 0 FIFO enabled value.
majik 0:964eb6a2ef00 786 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
majik 0:964eb6a2ef00 787 * associated with Slave 0 to be written into the FIFO buffer.
majik 0:964eb6a2ef00 788 * @return Current Slave 0 FIFO enabled value
majik 0:964eb6a2ef00 789 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 790 */
majik 0:964eb6a2ef00 791 bool MPU6051::getSlave0FIFOEnabled()
majik 0:964eb6a2ef00 792 {
majik 0:964eb6a2ef00 793 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 794 return buffer[0];
majik 0:964eb6a2ef00 795 }
majik 0:964eb6a2ef00 796 /** Set Slave 0 FIFO enabled value.
majik 0:964eb6a2ef00 797 * @param enabled New Slave 0 FIFO enabled value
majik 0:964eb6a2ef00 798 * @see getSlave0FIFOEnabled()
majik 0:964eb6a2ef00 799 * @see MPU6050_RA_FIFO_EN
majik 0:964eb6a2ef00 800 */
majik 0:964eb6a2ef00 801 void MPU6051::setSlave0FIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 802 {
majik 0:964eb6a2ef00 803 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 804 }
majik 0:964eb6a2ef00 805
majik 0:964eb6a2ef00 806 // I2C_MST_CTRL register
majik 0:964eb6a2ef00 807
majik 0:964eb6a2ef00 808 /** Get multi-master enabled value.
majik 0:964eb6a2ef00 809 * Multi-master capability allows multiple I2C masters to operate on the same
majik 0:964eb6a2ef00 810 * bus. In circuits where multi-master capability is required, set MULT_MST_EN
majik 0:964eb6a2ef00 811 * to 1. This will increase current drawn by approximately 30uA.
majik 0:964eb6a2ef00 812 *
majik 0:964eb6a2ef00 813 * In circuits where multi-master capability is required, the state of the I2C
majik 0:964eb6a2ef00 814 * bus must always be monitored by each separate I2C Master. Before an I2C
majik 0:964eb6a2ef00 815 * Master can assume arbitration of the bus, it must first confirm that no other
majik 0:964eb6a2ef00 816 * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
majik 0:964eb6a2ef00 817 * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
majik 0:964eb6a2ef00 818 * detect when the bus is available.
majik 0:964eb6a2ef00 819 *
majik 0:964eb6a2ef00 820 * @return Current multi-master enabled value
majik 0:964eb6a2ef00 821 * @see MPU6050_RA_I2C_MST_CTRL
majik 0:964eb6a2ef00 822 */
majik 0:964eb6a2ef00 823 bool MPU6051::getMultiMasterEnabled()
majik 0:964eb6a2ef00 824 {
majik 0:964eb6a2ef00 825 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
majik 0:964eb6a2ef00 826 return buffer[0];
majik 0:964eb6a2ef00 827 }
majik 0:964eb6a2ef00 828 /** Set multi-master enabled value.
majik 0:964eb6a2ef00 829 * @param enabled New multi-master enabled value
majik 0:964eb6a2ef00 830 * @see getMultiMasterEnabled()
majik 0:964eb6a2ef00 831 * @see MPU6050_RA_I2C_MST_CTRL
majik 0:964eb6a2ef00 832 */
majik 0:964eb6a2ef00 833 void MPU6051::setMultiMasterEnabled(bool enabled)
majik 0:964eb6a2ef00 834 {
majik 0:964eb6a2ef00 835 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
majik 0:964eb6a2ef00 836 }
majik 0:964eb6a2ef00 837 /** Get wait-for-external-sensor-data enabled value.
majik 0:964eb6a2ef00 838 * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
majik 0:964eb6a2ef00 839 * delayed until External Sensor data from the Slave Devices are loaded into the
majik 0:964eb6a2ef00 840 * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
majik 0:964eb6a2ef00 841 * data (i.e. from gyro and accel) and external sensor data have been loaded to
majik 0:964eb6a2ef00 842 * their respective data registers (i.e. the data is synced) when the Data Ready
majik 0:964eb6a2ef00 843 * interrupt is triggered.
majik 0:964eb6a2ef00 844 *
majik 0:964eb6a2ef00 845 * @return Current wait-for-external-sensor-data enabled value
majik 0:964eb6a2ef00 846 * @see MPU6050_RA_I2C_MST_CTRL
majik 0:964eb6a2ef00 847 */
majik 0:964eb6a2ef00 848 bool MPU6051::getWaitForExternalSensorEnabled()
majik 0:964eb6a2ef00 849 {
majik 0:964eb6a2ef00 850 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
majik 0:964eb6a2ef00 851 return buffer[0];
majik 0:964eb6a2ef00 852 }
majik 0:964eb6a2ef00 853 /** Set wait-for-external-sensor-data enabled value.
majik 0:964eb6a2ef00 854 * @param enabled New wait-for-external-sensor-data enabled value
majik 0:964eb6a2ef00 855 * @see getWaitForExternalSensorEnabled()
majik 0:964eb6a2ef00 856 * @see MPU6050_RA_I2C_MST_CTRL
majik 0:964eb6a2ef00 857 */
majik 0:964eb6a2ef00 858 void MPU6051::setWaitForExternalSensorEnabled(bool enabled)
majik 0:964eb6a2ef00 859 {
majik 0:964eb6a2ef00 860 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
majik 0:964eb6a2ef00 861 }
majik 0:964eb6a2ef00 862 /** Get Slave 3 FIFO enabled value.
majik 0:964eb6a2ef00 863 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
majik 0:964eb6a2ef00 864 * associated with Slave 3 to be written into the FIFO buffer.
majik 0:964eb6a2ef00 865 * @return Current Slave 3 FIFO enabled value
majik 0:964eb6a2ef00 866 * @see MPU6050_RA_MST_CTRL
majik 0:964eb6a2ef00 867 */
majik 0:964eb6a2ef00 868 bool MPU6051::getSlave3FIFOEnabled()
majik 0:964eb6a2ef00 869 {
majik 0:964eb6a2ef00 870 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 871 return buffer[0];
majik 0:964eb6a2ef00 872 }
majik 0:964eb6a2ef00 873 /** Set Slave 3 FIFO enabled value.
majik 0:964eb6a2ef00 874 * @param enabled New Slave 3 FIFO enabled value
majik 0:964eb6a2ef00 875 * @see getSlave3FIFOEnabled()
majik 0:964eb6a2ef00 876 * @see MPU6050_RA_MST_CTRL
majik 0:964eb6a2ef00 877 */
majik 0:964eb6a2ef00 878 void MPU6051::setSlave3FIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 879 {
majik 0:964eb6a2ef00 880 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 881 }
majik 0:964eb6a2ef00 882 /** Get slave read/write transition enabled value.
majik 0:964eb6a2ef00 883 * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
majik 0:964eb6a2ef00 884 * read to the next slave read. If the bit equals 0, there will be a restart
majik 0:964eb6a2ef00 885 * between reads. If the bit equals 1, there will be a stop followed by a start
majik 0:964eb6a2ef00 886 * of the following read. When a write transaction follows a read transaction,
majik 0:964eb6a2ef00 887 * the stop followed by a start of the successive write will be always used.
majik 0:964eb6a2ef00 888 *
majik 0:964eb6a2ef00 889 * @return Current slave read/write transition enabled value
majik 0:964eb6a2ef00 890 * @see MPU6050_RA_I2C_MST_CTRL
majik 0:964eb6a2ef00 891 */
majik 0:964eb6a2ef00 892 bool MPU6051::getSlaveReadWriteTransitionEnabled()
majik 0:964eb6a2ef00 893 {
majik 0:964eb6a2ef00 894 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
majik 0:964eb6a2ef00 895 return buffer[0];
majik 0:964eb6a2ef00 896 }
majik 0:964eb6a2ef00 897 /** Set slave read/write transition enabled value.
majik 0:964eb6a2ef00 898 * @param enabled New slave read/write transition enabled value
majik 0:964eb6a2ef00 899 * @see getSlaveReadWriteTransitionEnabled()
majik 0:964eb6a2ef00 900 * @see MPU6050_RA_I2C_MST_CTRL
majik 0:964eb6a2ef00 901 */
majik 0:964eb6a2ef00 902 void MPU6051::setSlaveReadWriteTransitionEnabled(bool enabled)
majik 0:964eb6a2ef00 903 {
majik 0:964eb6a2ef00 904 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
majik 0:964eb6a2ef00 905 }
majik 0:964eb6a2ef00 906 /** Get I2C master clock speed.
majik 0:964eb6a2ef00 907 * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
majik 0:964eb6a2ef00 908 * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
majik 0:964eb6a2ef00 909 * the following table:
majik 0:964eb6a2ef00 910 *
majik 0:964eb6a2ef00 911 * <pre>
majik 0:964eb6a2ef00 912 * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
majik 0:964eb6a2ef00 913 * ------------+------------------------+-------------------
majik 0:964eb6a2ef00 914 * 0 | 348kHz | 23
majik 0:964eb6a2ef00 915 * 1 | 333kHz | 24
majik 0:964eb6a2ef00 916 * 2 | 320kHz | 25
majik 0:964eb6a2ef00 917 * 3 | 308kHz | 26
majik 0:964eb6a2ef00 918 * 4 | 296kHz | 27
majik 0:964eb6a2ef00 919 * 5 | 286kHz | 28
majik 0:964eb6a2ef00 920 * 6 | 276kHz | 29
majik 0:964eb6a2ef00 921 * 7 | 267kHz | 30
majik 0:964eb6a2ef00 922 * 8 | 258kHz | 31
majik 0:964eb6a2ef00 923 * 9 | 500kHz | 16
majik 0:964eb6a2ef00 924 * 10 | 471kHz | 17
majik 0:964eb6a2ef00 925 * 11 | 444kHz | 18
majik 0:964eb6a2ef00 926 * 12 | 421kHz | 19
majik 0:964eb6a2ef00 927 * 13 | 400kHz | 20
majik 0:964eb6a2ef00 928 * 14 | 381kHz | 21
majik 0:964eb6a2ef00 929 * 15 | 364kHz | 22
majik 0:964eb6a2ef00 930 * </pre>
majik 0:964eb6a2ef00 931 *
majik 0:964eb6a2ef00 932 * @return Current I2C master clock speed
majik 0:964eb6a2ef00 933 * @see MPU6050_RA_I2C_MST_CTRL
majik 0:964eb6a2ef00 934 */
majik 0:964eb6a2ef00 935 uint8_t MPU6051::getMasterClockSpeed()
majik 0:964eb6a2ef00 936 {
majik 0:964eb6a2ef00 937 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
majik 0:964eb6a2ef00 938 return buffer[0];
majik 0:964eb6a2ef00 939 }
majik 0:964eb6a2ef00 940 /** Set I2C master clock speed.
majik 0:964eb6a2ef00 941 * @reparam speed Current I2C master clock speed
majik 0:964eb6a2ef00 942 * @see MPU6050_RA_I2C_MST_CTRL
majik 0:964eb6a2ef00 943 */
majik 0:964eb6a2ef00 944 void MPU6051::setMasterClockSpeed(uint8_t speed)
majik 0:964eb6a2ef00 945 {
majik 0:964eb6a2ef00 946 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
majik 0:964eb6a2ef00 947 }
majik 0:964eb6a2ef00 948
majik 0:964eb6a2ef00 949 // I2C_SLV* registers (Slave 0-3)
majik 0:964eb6a2ef00 950
majik 0:964eb6a2ef00 951 /** Get the I2C address of the specified slave (0-3).
majik 0:964eb6a2ef00 952 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
majik 0:964eb6a2ef00 953 * operation, and if it is cleared, then it's a write operation. The remaining
majik 0:964eb6a2ef00 954 * bits (6-0) are the 7-bit device address of the slave device.
majik 0:964eb6a2ef00 955 *
majik 0:964eb6a2ef00 956 * In read mode, the result of the read is placed in the lowest available
majik 0:964eb6a2ef00 957 * EXT_SENS_DATA register. For further information regarding the allocation of
majik 0:964eb6a2ef00 958 * read results, please refer to the EXT_SENS_DATA register description
majik 0:964eb6a2ef00 959 * (Registers 73 - 96).
majik 0:964eb6a2ef00 960 *
majik 0:964eb6a2ef00 961 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
majik 0:964eb6a2ef00 962 * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
majik 0:964eb6a2ef00 963 *
majik 0:964eb6a2ef00 964 * I2C data transactions are performed at the Sample Rate, as defined in
majik 0:964eb6a2ef00 965 * Register 25. The user is responsible for ensuring that I2C data transactions
majik 0:964eb6a2ef00 966 * to and from each enabled Slave can be completed within a single period of the
majik 0:964eb6a2ef00 967 * Sample Rate.
majik 0:964eb6a2ef00 968 *
majik 0:964eb6a2ef00 969 * The I2C slave access rate can be reduced relative to the Sample Rate. This
majik 0:964eb6a2ef00 970 * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
majik 0:964eb6a2ef00 971 * slave's access rate is reduced relative to the Sample Rate is determined by
majik 0:964eb6a2ef00 972 * I2C_MST_DELAY_CTRL (Register 103).
majik 0:964eb6a2ef00 973 *
majik 0:964eb6a2ef00 974 * The processing order for the slaves is fixed. The sequence followed for
majik 0:964eb6a2ef00 975 * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
majik 0:964eb6a2ef00 976 * particular Slave is disabled it will be skipped.
majik 0:964eb6a2ef00 977 *
majik 0:964eb6a2ef00 978 * Each slave can either be accessed at the sample rate or at a reduced sample
majik 0:964eb6a2ef00 979 * rate. In a case where some slaves are accessed at the Sample Rate and some
majik 0:964eb6a2ef00 980 * slaves are accessed at the reduced rate, the sequence of accessing the slaves
majik 0:964eb6a2ef00 981 * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
majik 0:964eb6a2ef00 982 * be skipped if their access rate dictates that they should not be accessed
majik 0:964eb6a2ef00 983 * during that particular cycle. For further information regarding the reduced
majik 0:964eb6a2ef00 984 * access rate, please refer to Register 52. Whether a slave is accessed at the
majik 0:964eb6a2ef00 985 * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
majik 0:964eb6a2ef00 986 * Register 103.
majik 0:964eb6a2ef00 987 *
majik 0:964eb6a2ef00 988 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 989 * @return Current address for specified slave
majik 0:964eb6a2ef00 990 * @see MPU6050_RA_I2C_SLV0_ADDR
majik 0:964eb6a2ef00 991 */
majik 0:964eb6a2ef00 992 uint8_t MPU6051::getSlaveAddress(uint8_t num)
majik 0:964eb6a2ef00 993 {
majik 0:964eb6a2ef00 994 if (num > 3) return 0;
majik 0:964eb6a2ef00 995 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
majik 0:964eb6a2ef00 996 return buffer[0];
majik 0:964eb6a2ef00 997 }
majik 0:964eb6a2ef00 998 /** Set the I2C address of the specified slave (0-3).
majik 0:964eb6a2ef00 999 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1000 * @param address New address for specified slave
majik 0:964eb6a2ef00 1001 * @see getSlaveAddress()
majik 0:964eb6a2ef00 1002 * @see MPU6050_RA_I2C_SLV0_ADDR
majik 0:964eb6a2ef00 1003 */
majik 0:964eb6a2ef00 1004 void MPU6051::setSlaveAddress(uint8_t num, uint8_t address)
majik 0:964eb6a2ef00 1005 {
majik 0:964eb6a2ef00 1006 if (num > 3) return;
majik 0:964eb6a2ef00 1007 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
majik 0:964eb6a2ef00 1008 }
majik 0:964eb6a2ef00 1009 /** Get the active internal register for the specified slave (0-3).
majik 0:964eb6a2ef00 1010 * Read/write operations for this slave will be done to whatever internal
majik 0:964eb6a2ef00 1011 * register address is stored in this MPU register.
majik 0:964eb6a2ef00 1012 *
majik 0:964eb6a2ef00 1013 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
majik 0:964eb6a2ef00 1014 * characteristics, and so it has its own functions.
majik 0:964eb6a2ef00 1015 *
majik 0:964eb6a2ef00 1016 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1017 * @return Current active register for specified slave
majik 0:964eb6a2ef00 1018 * @see MPU6050_RA_I2C_SLV0_REG
majik 0:964eb6a2ef00 1019 */
majik 0:964eb6a2ef00 1020 uint8_t MPU6051::getSlaveRegister(uint8_t num)
majik 0:964eb6a2ef00 1021 {
majik 0:964eb6a2ef00 1022 if (num > 3) return 0;
majik 0:964eb6a2ef00 1023 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
majik 0:964eb6a2ef00 1024 return buffer[0];
majik 0:964eb6a2ef00 1025 }
majik 0:964eb6a2ef00 1026 /** Set the active internal register for the specified slave (0-3).
majik 0:964eb6a2ef00 1027 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1028 * @param reg New active register for specified slave
majik 0:964eb6a2ef00 1029 * @see getSlaveRegister()
majik 0:964eb6a2ef00 1030 * @see MPU6050_RA_I2C_SLV0_REG
majik 0:964eb6a2ef00 1031 */
majik 0:964eb6a2ef00 1032 void MPU6051::setSlaveRegister(uint8_t num, uint8_t reg)
majik 0:964eb6a2ef00 1033 {
majik 0:964eb6a2ef00 1034 if (num > 3) return;
majik 0:964eb6a2ef00 1035 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
majik 0:964eb6a2ef00 1036 }
majik 0:964eb6a2ef00 1037 /** Get the enabled value for the specified slave (0-3).
majik 0:964eb6a2ef00 1038 * When set to 1, this bit enables Slave 0 for data transfer operations. When
majik 0:964eb6a2ef00 1039 * cleared to 0, this bit disables Slave 0 from data transfer operations.
majik 0:964eb6a2ef00 1040 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1041 * @return Current enabled value for specified slave
majik 0:964eb6a2ef00 1042 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1043 */
majik 0:964eb6a2ef00 1044 bool MPU6051::getSlaveEnabled(uint8_t num)
majik 0:964eb6a2ef00 1045 {
majik 0:964eb6a2ef00 1046 if (num > 3) return 0;
majik 0:964eb6a2ef00 1047 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
majik 0:964eb6a2ef00 1048 return buffer[0];
majik 0:964eb6a2ef00 1049 }
majik 0:964eb6a2ef00 1050 /** Set the enabled value for the specified slave (0-3).
majik 0:964eb6a2ef00 1051 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1052 * @param enabled New enabled value for specified slave
majik 0:964eb6a2ef00 1053 * @see getSlaveEnabled()
majik 0:964eb6a2ef00 1054 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1055 */
majik 0:964eb6a2ef00 1056 void MPU6051::setSlaveEnabled(uint8_t num, bool enabled)
majik 0:964eb6a2ef00 1057 {
majik 0:964eb6a2ef00 1058 if (num > 3) return;
majik 0:964eb6a2ef00 1059 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
majik 0:964eb6a2ef00 1060 }
majik 0:964eb6a2ef00 1061 /** Get word pair byte-swapping enabled for the specified slave (0-3).
majik 0:964eb6a2ef00 1062 * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
majik 0:964eb6a2ef00 1063 * the high and low bytes of a word pair are swapped. Please refer to
majik 0:964eb6a2ef00 1064 * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
majik 0:964eb6a2ef00 1065 * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
majik 0:964eb6a2ef00 1066 * registers in the order they were transferred.
majik 0:964eb6a2ef00 1067 *
majik 0:964eb6a2ef00 1068 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1069 * @return Current word pair byte-swapping enabled value for specified slave
majik 0:964eb6a2ef00 1070 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1071 */
majik 0:964eb6a2ef00 1072 bool MPU6051::getSlaveWordByteSwap(uint8_t num)
majik 0:964eb6a2ef00 1073 {
majik 0:964eb6a2ef00 1074 if (num > 3) return 0;
majik 0:964eb6a2ef00 1075 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
majik 0:964eb6a2ef00 1076 return buffer[0];
majik 0:964eb6a2ef00 1077 }
majik 0:964eb6a2ef00 1078 /** Set word pair byte-swapping enabled for the specified slave (0-3).
majik 0:964eb6a2ef00 1079 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1080 * @param enabled New word pair byte-swapping enabled value for specified slave
majik 0:964eb6a2ef00 1081 * @see getSlaveWordByteSwap()
majik 0:964eb6a2ef00 1082 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1083 */
majik 0:964eb6a2ef00 1084 void MPU6051::setSlaveWordByteSwap(uint8_t num, bool enabled)
majik 0:964eb6a2ef00 1085 {
majik 0:964eb6a2ef00 1086 if (num > 3) return;
majik 0:964eb6a2ef00 1087 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
majik 0:964eb6a2ef00 1088 }
majik 0:964eb6a2ef00 1089 /** Get write mode for the specified slave (0-3).
majik 0:964eb6a2ef00 1090 * When set to 1, the transaction will read or write data only. When cleared to
majik 0:964eb6a2ef00 1091 * 0, the transaction will write a register address prior to reading or writing
majik 0:964eb6a2ef00 1092 * data. This should equal 0 when specifying the register address within the
majik 0:964eb6a2ef00 1093 * Slave device to/from which the ensuing data transaction will take place.
majik 0:964eb6a2ef00 1094 *
majik 0:964eb6a2ef00 1095 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1096 * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
majik 0:964eb6a2ef00 1097 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1098 */
majik 0:964eb6a2ef00 1099 bool MPU6051::getSlaveWriteMode(uint8_t num)
majik 0:964eb6a2ef00 1100 {
majik 0:964eb6a2ef00 1101 if (num > 3) return 0;
majik 0:964eb6a2ef00 1102 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
majik 0:964eb6a2ef00 1103 return buffer[0];
majik 0:964eb6a2ef00 1104 }
majik 0:964eb6a2ef00 1105 /** Set write mode for the specified slave (0-3).
majik 0:964eb6a2ef00 1106 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1107 * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
majik 0:964eb6a2ef00 1108 * @see getSlaveWriteMode()
majik 0:964eb6a2ef00 1109 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1110 */
majik 0:964eb6a2ef00 1111 void MPU6051::setSlaveWriteMode(uint8_t num, bool mode)
majik 0:964eb6a2ef00 1112 {
majik 0:964eb6a2ef00 1113 if (num > 3) return;
majik 0:964eb6a2ef00 1114 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
majik 0:964eb6a2ef00 1115 }
majik 0:964eb6a2ef00 1116 /** Get word pair grouping order offset for the specified slave (0-3).
majik 0:964eb6a2ef00 1117 * This sets specifies the grouping order of word pairs received from registers.
majik 0:964eb6a2ef00 1118 * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
majik 0:964eb6a2ef00 1119 * then odd register addresses) are paired to form a word. When set to 1, bytes
majik 0:964eb6a2ef00 1120 * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
majik 0:964eb6a2ef00 1121 * register addresses) are paired to form a word.
majik 0:964eb6a2ef00 1122 *
majik 0:964eb6a2ef00 1123 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1124 * @return Current word pair grouping order offset for specified slave
majik 0:964eb6a2ef00 1125 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1126 */
majik 0:964eb6a2ef00 1127 bool MPU6051::getSlaveWordGroupOffset(uint8_t num)
majik 0:964eb6a2ef00 1128 {
majik 0:964eb6a2ef00 1129 if (num > 3) return 0;
majik 0:964eb6a2ef00 1130 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
majik 0:964eb6a2ef00 1131 return buffer[0];
majik 0:964eb6a2ef00 1132 }
majik 0:964eb6a2ef00 1133 /** Set word pair grouping order offset for the specified slave (0-3).
majik 0:964eb6a2ef00 1134 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1135 * @param enabled New word pair grouping order offset for specified slave
majik 0:964eb6a2ef00 1136 * @see getSlaveWordGroupOffset()
majik 0:964eb6a2ef00 1137 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1138 */
majik 0:964eb6a2ef00 1139 void MPU6051::setSlaveWordGroupOffset(uint8_t num, bool enabled)
majik 0:964eb6a2ef00 1140 {
majik 0:964eb6a2ef00 1141 if (num > 3) return;
majik 0:964eb6a2ef00 1142 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
majik 0:964eb6a2ef00 1143 }
majik 0:964eb6a2ef00 1144 /** Get number of bytes to read for the specified slave (0-3).
majik 0:964eb6a2ef00 1145 * Specifies the number of bytes transferred to and from Slave 0. Clearing this
majik 0:964eb6a2ef00 1146 * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
majik 0:964eb6a2ef00 1147 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1148 * @return Number of bytes to read for specified slave
majik 0:964eb6a2ef00 1149 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1150 */
majik 0:964eb6a2ef00 1151 uint8_t MPU6051::getSlaveDataLength(uint8_t num)
majik 0:964eb6a2ef00 1152 {
majik 0:964eb6a2ef00 1153 if (num > 3) return 0;
majik 0:964eb6a2ef00 1154 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
majik 0:964eb6a2ef00 1155 return buffer[0];
majik 0:964eb6a2ef00 1156 }
majik 0:964eb6a2ef00 1157 /** Set number of bytes to read for the specified slave (0-3).
majik 0:964eb6a2ef00 1158 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 1159 * @param length Number of bytes to read for specified slave
majik 0:964eb6a2ef00 1160 * @see getSlaveDataLength()
majik 0:964eb6a2ef00 1161 * @see MPU6050_RA_I2C_SLV0_CTRL
majik 0:964eb6a2ef00 1162 */
majik 0:964eb6a2ef00 1163 void MPU6051::setSlaveDataLength(uint8_t num, uint8_t length)
majik 0:964eb6a2ef00 1164 {
majik 0:964eb6a2ef00 1165 if (num > 3) return;
majik 0:964eb6a2ef00 1166 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
majik 0:964eb6a2ef00 1167 }
majik 0:964eb6a2ef00 1168
majik 0:964eb6a2ef00 1169 // I2C_SLV* registers (Slave 4)
majik 0:964eb6a2ef00 1170
majik 0:964eb6a2ef00 1171 /** Get the I2C address of Slave 4.
majik 0:964eb6a2ef00 1172 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
majik 0:964eb6a2ef00 1173 * operation, and if it is cleared, then it's a write operation. The remaining
majik 0:964eb6a2ef00 1174 * bits (6-0) are the 7-bit device address of the slave device.
majik 0:964eb6a2ef00 1175 *
majik 0:964eb6a2ef00 1176 * @return Current address for Slave 4
majik 0:964eb6a2ef00 1177 * @see getSlaveAddress()
majik 0:964eb6a2ef00 1178 * @see MPU6050_RA_I2C_SLV4_ADDR
majik 0:964eb6a2ef00 1179 */
majik 0:964eb6a2ef00 1180 uint8_t MPU6051::getSlave4Address()
majik 0:964eb6a2ef00 1181 {
majik 0:964eb6a2ef00 1182 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
majik 0:964eb6a2ef00 1183 return buffer[0];
majik 0:964eb6a2ef00 1184 }
majik 0:964eb6a2ef00 1185 /** Set the I2C address of Slave 4.
majik 0:964eb6a2ef00 1186 * @param address New address for Slave 4
majik 0:964eb6a2ef00 1187 * @see getSlave4Address()
majik 0:964eb6a2ef00 1188 * @see MPU6050_RA_I2C_SLV4_ADDR
majik 0:964eb6a2ef00 1189 */
majik 0:964eb6a2ef00 1190 void MPU6051::setSlave4Address(uint8_t address)
majik 0:964eb6a2ef00 1191 {
majik 0:964eb6a2ef00 1192 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
majik 0:964eb6a2ef00 1193 }
majik 0:964eb6a2ef00 1194 /** Get the active internal register for the Slave 4.
majik 0:964eb6a2ef00 1195 * Read/write operations for this slave will be done to whatever internal
majik 0:964eb6a2ef00 1196 * register address is stored in this MPU register.
majik 0:964eb6a2ef00 1197 *
majik 0:964eb6a2ef00 1198 * @return Current active register for Slave 4
majik 0:964eb6a2ef00 1199 * @see MPU6050_RA_I2C_SLV4_REG
majik 0:964eb6a2ef00 1200 */
majik 0:964eb6a2ef00 1201 uint8_t MPU6051::getSlave4Register()
majik 0:964eb6a2ef00 1202 {
majik 0:964eb6a2ef00 1203 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
majik 0:964eb6a2ef00 1204 return buffer[0];
majik 0:964eb6a2ef00 1205 }
majik 0:964eb6a2ef00 1206 /** Set the active internal register for Slave 4.
majik 0:964eb6a2ef00 1207 * @param reg New active register for Slave 4
majik 0:964eb6a2ef00 1208 * @see getSlave4Register()
majik 0:964eb6a2ef00 1209 * @see MPU6050_RA_I2C_SLV4_REG
majik 0:964eb6a2ef00 1210 */
majik 0:964eb6a2ef00 1211 void MPU6051::setSlave4Register(uint8_t reg)
majik 0:964eb6a2ef00 1212 {
majik 0:964eb6a2ef00 1213 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
majik 0:964eb6a2ef00 1214 }
majik 0:964eb6a2ef00 1215 /** Set new byte to write to Slave 4.
majik 0:964eb6a2ef00 1216 * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
majik 0:964eb6a2ef00 1217 * is set 1 (set to read), this register has no effect.
majik 0:964eb6a2ef00 1218 * @param data New byte to write to Slave 4
majik 0:964eb6a2ef00 1219 * @see MPU6050_RA_I2C_SLV4_DO
majik 0:964eb6a2ef00 1220 */
majik 0:964eb6a2ef00 1221 void MPU6051::setSlave4OutputByte(uint8_t data)
majik 0:964eb6a2ef00 1222 {
majik 0:964eb6a2ef00 1223 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
majik 0:964eb6a2ef00 1224 }
majik 0:964eb6a2ef00 1225 /** Get the enabled value for the Slave 4.
majik 0:964eb6a2ef00 1226 * When set to 1, this bit enables Slave 4 for data transfer operations. When
majik 0:964eb6a2ef00 1227 * cleared to 0, this bit disables Slave 4 from data transfer operations.
majik 0:964eb6a2ef00 1228 * @return Current enabled value for Slave 4
majik 0:964eb6a2ef00 1229 * @see MPU6050_RA_I2C_SLV4_CTRL
majik 0:964eb6a2ef00 1230 */
majik 0:964eb6a2ef00 1231 bool MPU6051::getSlave4Enabled()
majik 0:964eb6a2ef00 1232 {
majik 0:964eb6a2ef00 1233 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
majik 0:964eb6a2ef00 1234 return buffer[0];
majik 0:964eb6a2ef00 1235 }
majik 0:964eb6a2ef00 1236 /** Set the enabled value for Slave 4.
majik 0:964eb6a2ef00 1237 * @param enabled New enabled value for Slave 4
majik 0:964eb6a2ef00 1238 * @see getSlave4Enabled()
majik 0:964eb6a2ef00 1239 * @see MPU6050_RA_I2C_SLV4_CTRL
majik 0:964eb6a2ef00 1240 */
majik 0:964eb6a2ef00 1241 void MPU6051::setSlave4Enabled(bool enabled)
majik 0:964eb6a2ef00 1242 {
majik 0:964eb6a2ef00 1243 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
majik 0:964eb6a2ef00 1244 }
majik 0:964eb6a2ef00 1245 /** Get the enabled value for Slave 4 transaction interrupts.
majik 0:964eb6a2ef00 1246 * When set to 1, this bit enables the generation of an interrupt signal upon
majik 0:964eb6a2ef00 1247 * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
majik 0:964eb6a2ef00 1248 * generation of an interrupt signal upon completion of a Slave 4 transaction.
majik 0:964eb6a2ef00 1249 * The interrupt status can be observed in Register 54.
majik 0:964eb6a2ef00 1250 *
majik 0:964eb6a2ef00 1251 * @return Current enabled value for Slave 4 transaction interrupts.
majik 0:964eb6a2ef00 1252 * @see MPU6050_RA_I2C_SLV4_CTRL
majik 0:964eb6a2ef00 1253 */
majik 0:964eb6a2ef00 1254 bool MPU6051::getSlave4InterruptEnabled()
majik 0:964eb6a2ef00 1255 {
majik 0:964eb6a2ef00 1256 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
majik 0:964eb6a2ef00 1257 return buffer[0];
majik 0:964eb6a2ef00 1258 }
majik 0:964eb6a2ef00 1259 /** Set the enabled value for Slave 4 transaction interrupts.
majik 0:964eb6a2ef00 1260 * @param enabled New enabled value for Slave 4 transaction interrupts.
majik 0:964eb6a2ef00 1261 * @see getSlave4InterruptEnabled()
majik 0:964eb6a2ef00 1262 * @see MPU6050_RA_I2C_SLV4_CTRL
majik 0:964eb6a2ef00 1263 */
majik 0:964eb6a2ef00 1264 void MPU6051::setSlave4InterruptEnabled(bool enabled)
majik 0:964eb6a2ef00 1265 {
majik 0:964eb6a2ef00 1266 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
majik 0:964eb6a2ef00 1267 }
majik 0:964eb6a2ef00 1268 /** Get write mode for Slave 4.
majik 0:964eb6a2ef00 1269 * When set to 1, the transaction will read or write data only. When cleared to
majik 0:964eb6a2ef00 1270 * 0, the transaction will write a register address prior to reading or writing
majik 0:964eb6a2ef00 1271 * data. This should equal 0 when specifying the register address within the
majik 0:964eb6a2ef00 1272 * Slave device to/from which the ensuing data transaction will take place.
majik 0:964eb6a2ef00 1273 *
majik 0:964eb6a2ef00 1274 * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
majik 0:964eb6a2ef00 1275 * @see MPU6050_RA_I2C_SLV4_CTRL
majik 0:964eb6a2ef00 1276 */
majik 0:964eb6a2ef00 1277 bool MPU6051::getSlave4WriteMode()
majik 0:964eb6a2ef00 1278 {
majik 0:964eb6a2ef00 1279 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
majik 0:964eb6a2ef00 1280 return buffer[0];
majik 0:964eb6a2ef00 1281 }
majik 0:964eb6a2ef00 1282 /** Set write mode for the Slave 4.
majik 0:964eb6a2ef00 1283 * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
majik 0:964eb6a2ef00 1284 * @see getSlave4WriteMode()
majik 0:964eb6a2ef00 1285 * @see MPU6050_RA_I2C_SLV4_CTRL
majik 0:964eb6a2ef00 1286 */
majik 0:964eb6a2ef00 1287 void MPU6051::setSlave4WriteMode(bool mode)
majik 0:964eb6a2ef00 1288 {
majik 0:964eb6a2ef00 1289 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
majik 0:964eb6a2ef00 1290 }
majik 0:964eb6a2ef00 1291 /** Get Slave 4 master delay value.
majik 0:964eb6a2ef00 1292 * This configures the reduced access rate of I2C slaves relative to the Sample
majik 0:964eb6a2ef00 1293 * Rate. When a slave's access rate is decreased relative to the Sample Rate,
majik 0:964eb6a2ef00 1294 * the slave is accessed every:
majik 0:964eb6a2ef00 1295 *
majik 0:964eb6a2ef00 1296 * 1 / (1 + I2C_MST_DLY) samples
majik 0:964eb6a2ef00 1297 *
majik 0:964eb6a2ef00 1298 * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
majik 0:964eb6a2ef00 1299 * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
majik 0:964eb6a2ef00 1300 * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
majik 0:964eb6a2ef00 1301 * further information regarding the Sample Rate, please refer to register 25.
majik 0:964eb6a2ef00 1302 *
majik 0:964eb6a2ef00 1303 * @return Current Slave 4 master delay value
majik 0:964eb6a2ef00 1304 * @see MPU6050_RA_I2C_SLV4_CTRL
majik 0:964eb6a2ef00 1305 */
majik 0:964eb6a2ef00 1306 uint8_t MPU6051::getSlave4MasterDelay()
majik 0:964eb6a2ef00 1307 {
majik 0:964eb6a2ef00 1308 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
majik 0:964eb6a2ef00 1309 return buffer[0];
majik 0:964eb6a2ef00 1310 }
majik 0:964eb6a2ef00 1311 /** Set Slave 4 master delay value.
majik 0:964eb6a2ef00 1312 * @param delay New Slave 4 master delay value
majik 0:964eb6a2ef00 1313 * @see getSlave4MasterDelay()
majik 0:964eb6a2ef00 1314 * @see MPU6050_RA_I2C_SLV4_CTRL
majik 0:964eb6a2ef00 1315 */
majik 0:964eb6a2ef00 1316 void MPU6051::setSlave4MasterDelay(uint8_t delay)
majik 0:964eb6a2ef00 1317 {
majik 0:964eb6a2ef00 1318 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
majik 0:964eb6a2ef00 1319 }
majik 0:964eb6a2ef00 1320 /** Get last available byte read from Slave 4.
majik 0:964eb6a2ef00 1321 * This register stores the data read from Slave 4. This field is populated
majik 0:964eb6a2ef00 1322 * after a read transaction.
majik 0:964eb6a2ef00 1323 * @return Last available byte read from to Slave 4
majik 0:964eb6a2ef00 1324 * @see MPU6050_RA_I2C_SLV4_DI
majik 0:964eb6a2ef00 1325 */
majik 0:964eb6a2ef00 1326 uint8_t MPU6051::getSlate4InputByte()
majik 0:964eb6a2ef00 1327 {
majik 0:964eb6a2ef00 1328 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
majik 0:964eb6a2ef00 1329 return buffer[0];
majik 0:964eb6a2ef00 1330 }
majik 0:964eb6a2ef00 1331
majik 0:964eb6a2ef00 1332 // I2C_MST_STATUS register
majik 0:964eb6a2ef00 1333
majik 0:964eb6a2ef00 1334 /** Get FSYNC interrupt status.
majik 0:964eb6a2ef00 1335 * This bit reflects the status of the FSYNC interrupt from an external device
majik 0:964eb6a2ef00 1336 * into the MPU-60X0. This is used as a way to pass an external interrupt
majik 0:964eb6a2ef00 1337 * through the MPU-60X0 to the host application processor. When set to 1, this
majik 0:964eb6a2ef00 1338 * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
majik 0:964eb6a2ef00 1339 * (Register 55).
majik 0:964eb6a2ef00 1340 * @return FSYNC interrupt status
majik 0:964eb6a2ef00 1341 * @see MPU6050_RA_I2C_MST_STATUS
majik 0:964eb6a2ef00 1342 */
majik 0:964eb6a2ef00 1343 bool MPU6051::getPassthroughStatus()
majik 0:964eb6a2ef00 1344 {
majik 0:964eb6a2ef00 1345 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
majik 0:964eb6a2ef00 1346 return buffer[0];
majik 0:964eb6a2ef00 1347 }
majik 0:964eb6a2ef00 1348 /** Get Slave 4 transaction done status.
majik 0:964eb6a2ef00 1349 * Automatically sets to 1 when a Slave 4 transaction has completed. This
majik 0:964eb6a2ef00 1350 * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
majik 0:964eb6a2ef00 1351 * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
majik 0:964eb6a2ef00 1352 * I2C_SLV4_CTRL register (Register 52).
majik 0:964eb6a2ef00 1353 * @return Slave 4 transaction done status
majik 0:964eb6a2ef00 1354 * @see MPU6050_RA_I2C_MST_STATUS
majik 0:964eb6a2ef00 1355 */
majik 0:964eb6a2ef00 1356 bool MPU6051::getSlave4IsDone()
majik 0:964eb6a2ef00 1357 {
majik 0:964eb6a2ef00 1358 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
majik 0:964eb6a2ef00 1359 return buffer[0];
majik 0:964eb6a2ef00 1360 }
majik 0:964eb6a2ef00 1361 /** Get master arbitration lost status.
majik 0:964eb6a2ef00 1362 * This bit automatically sets to 1 when the I2C Master has lost arbitration of
majik 0:964eb6a2ef00 1363 * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
majik 0:964eb6a2ef00 1364 * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
majik 0:964eb6a2ef00 1365 * @return Master arbitration lost status
majik 0:964eb6a2ef00 1366 * @see MPU6050_RA_I2C_MST_STATUS
majik 0:964eb6a2ef00 1367 */
majik 0:964eb6a2ef00 1368 bool MPU6051::getLostArbitration()
majik 0:964eb6a2ef00 1369 {
majik 0:964eb6a2ef00 1370 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
majik 0:964eb6a2ef00 1371 return buffer[0];
majik 0:964eb6a2ef00 1372 }
majik 0:964eb6a2ef00 1373 /** Get Slave 4 NACK status.
majik 0:964eb6a2ef00 1374 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
majik 0:964eb6a2ef00 1375 * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
majik 0:964eb6a2ef00 1376 * bit in the INT_ENABLE register (Register 56) is asserted.
majik 0:964eb6a2ef00 1377 * @return Slave 4 NACK interrupt status
majik 0:964eb6a2ef00 1378 * @see MPU6050_RA_I2C_MST_STATUS
majik 0:964eb6a2ef00 1379 */
majik 0:964eb6a2ef00 1380 bool MPU6051::getSlave4Nack()
majik 0:964eb6a2ef00 1381 {
majik 0:964eb6a2ef00 1382 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
majik 0:964eb6a2ef00 1383 return buffer[0];
majik 0:964eb6a2ef00 1384 }
majik 0:964eb6a2ef00 1385 /** Get Slave 3 NACK status.
majik 0:964eb6a2ef00 1386 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
majik 0:964eb6a2ef00 1387 * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
majik 0:964eb6a2ef00 1388 * bit in the INT_ENABLE register (Register 56) is asserted.
majik 0:964eb6a2ef00 1389 * @return Slave 3 NACK interrupt status
majik 0:964eb6a2ef00 1390 * @see MPU6050_RA_I2C_MST_STATUS
majik 0:964eb6a2ef00 1391 */
majik 0:964eb6a2ef00 1392 bool MPU6051::getSlave3Nack()
majik 0:964eb6a2ef00 1393 {
majik 0:964eb6a2ef00 1394 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
majik 0:964eb6a2ef00 1395 return buffer[0];
majik 0:964eb6a2ef00 1396 }
majik 0:964eb6a2ef00 1397 /** Get Slave 2 NACK status.
majik 0:964eb6a2ef00 1398 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
majik 0:964eb6a2ef00 1399 * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
majik 0:964eb6a2ef00 1400 * bit in the INT_ENABLE register (Register 56) is asserted.
majik 0:964eb6a2ef00 1401 * @return Slave 2 NACK interrupt status
majik 0:964eb6a2ef00 1402 * @see MPU6050_RA_I2C_MST_STATUS
majik 0:964eb6a2ef00 1403 */
majik 0:964eb6a2ef00 1404 bool MPU6051::getSlave2Nack()
majik 0:964eb6a2ef00 1405 {
majik 0:964eb6a2ef00 1406 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
majik 0:964eb6a2ef00 1407 return buffer[0];
majik 0:964eb6a2ef00 1408 }
majik 0:964eb6a2ef00 1409 /** Get Slave 1 NACK status.
majik 0:964eb6a2ef00 1410 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
majik 0:964eb6a2ef00 1411 * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
majik 0:964eb6a2ef00 1412 * bit in the INT_ENABLE register (Register 56) is asserted.
majik 0:964eb6a2ef00 1413 * @return Slave 1 NACK interrupt status
majik 0:964eb6a2ef00 1414 * @see MPU6050_RA_I2C_MST_STATUS
majik 0:964eb6a2ef00 1415 */
majik 0:964eb6a2ef00 1416 bool MPU6051::getSlave1Nack()
majik 0:964eb6a2ef00 1417 {
majik 0:964eb6a2ef00 1418 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
majik 0:964eb6a2ef00 1419 return buffer[0];
majik 0:964eb6a2ef00 1420 }
majik 0:964eb6a2ef00 1421 /** Get Slave 0 NACK status.
majik 0:964eb6a2ef00 1422 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
majik 0:964eb6a2ef00 1423 * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
majik 0:964eb6a2ef00 1424 * bit in the INT_ENABLE register (Register 56) is asserted.
majik 0:964eb6a2ef00 1425 * @return Slave 0 NACK interrupt status
majik 0:964eb6a2ef00 1426 * @see MPU6050_RA_I2C_MST_STATUS
majik 0:964eb6a2ef00 1427 */
majik 0:964eb6a2ef00 1428 bool MPU6051::getSlave0Nack()
majik 0:964eb6a2ef00 1429 {
majik 0:964eb6a2ef00 1430 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
majik 0:964eb6a2ef00 1431 return buffer[0];
majik 0:964eb6a2ef00 1432 }
majik 0:964eb6a2ef00 1433
majik 0:964eb6a2ef00 1434 // INT_PIN_CFG register
majik 0:964eb6a2ef00 1435
majik 0:964eb6a2ef00 1436 /** Get interrupt logic level mode.
majik 0:964eb6a2ef00 1437 * Will be set 0 for active-high, 1 for active-low.
majik 0:964eb6a2ef00 1438 * @return Current interrupt mode (0=active-high, 1=active-low)
majik 0:964eb6a2ef00 1439 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1440 * @see MPU6050_INTCFG_INT_LEVEL_BIT
majik 0:964eb6a2ef00 1441 */
majik 0:964eb6a2ef00 1442 bool MPU6051::getInterruptMode()
majik 0:964eb6a2ef00 1443 {
majik 0:964eb6a2ef00 1444 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
majik 0:964eb6a2ef00 1445 return buffer[0];
majik 0:964eb6a2ef00 1446 }
majik 0:964eb6a2ef00 1447 /** Set interrupt logic level mode.
majik 0:964eb6a2ef00 1448 * @param mode New interrupt mode (0=active-high, 1=active-low)
majik 0:964eb6a2ef00 1449 * @see getInterruptMode()
majik 0:964eb6a2ef00 1450 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1451 * @see MPU6050_INTCFG_INT_LEVEL_BIT
majik 0:964eb6a2ef00 1452 */
majik 0:964eb6a2ef00 1453 void MPU6051::setInterruptMode(bool mode)
majik 0:964eb6a2ef00 1454 {
majik 0:964eb6a2ef00 1455 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
majik 0:964eb6a2ef00 1456 }
majik 0:964eb6a2ef00 1457 /** Get interrupt drive mode.
majik 0:964eb6a2ef00 1458 * Will be set 0 for push-pull, 1 for open-drain.
majik 0:964eb6a2ef00 1459 * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
majik 0:964eb6a2ef00 1460 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1461 * @see MPU6050_INTCFG_INT_OPEN_BIT
majik 0:964eb6a2ef00 1462 */
majik 0:964eb6a2ef00 1463 bool MPU6051::getInterruptDrive()
majik 0:964eb6a2ef00 1464 {
majik 0:964eb6a2ef00 1465 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
majik 0:964eb6a2ef00 1466 return buffer[0];
majik 0:964eb6a2ef00 1467 }
majik 0:964eb6a2ef00 1468 /** Set interrupt drive mode.
majik 0:964eb6a2ef00 1469 * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
majik 0:964eb6a2ef00 1470 * @see getInterruptDrive()
majik 0:964eb6a2ef00 1471 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1472 * @see MPU6050_INTCFG_INT_OPEN_BIT
majik 0:964eb6a2ef00 1473 */
majik 0:964eb6a2ef00 1474 void MPU6051::setInterruptDrive(bool drive)
majik 0:964eb6a2ef00 1475 {
majik 0:964eb6a2ef00 1476 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
majik 0:964eb6a2ef00 1477 }
majik 0:964eb6a2ef00 1478 /** Get interrupt latch mode.
majik 0:964eb6a2ef00 1479 * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
majik 0:964eb6a2ef00 1480 * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
majik 0:964eb6a2ef00 1481 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1482 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
majik 0:964eb6a2ef00 1483 */
majik 0:964eb6a2ef00 1484 bool MPU6051::getInterruptLatch()
majik 0:964eb6a2ef00 1485 {
majik 0:964eb6a2ef00 1486 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
majik 0:964eb6a2ef00 1487 return buffer[0];
majik 0:964eb6a2ef00 1488 }
majik 0:964eb6a2ef00 1489 /** Set interrupt latch mode.
majik 0:964eb6a2ef00 1490 * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
majik 0:964eb6a2ef00 1491 * @see getInterruptLatch()
majik 0:964eb6a2ef00 1492 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1493 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
majik 0:964eb6a2ef00 1494 */
majik 0:964eb6a2ef00 1495 void MPU6051::setInterruptLatch(bool latch)
majik 0:964eb6a2ef00 1496 {
majik 0:964eb6a2ef00 1497 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
majik 0:964eb6a2ef00 1498 }
majik 0:964eb6a2ef00 1499 /** Get interrupt latch clear mode.
majik 0:964eb6a2ef00 1500 * Will be set 0 for status-read-only, 1 for any-register-read.
majik 0:964eb6a2ef00 1501 * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
majik 0:964eb6a2ef00 1502 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1503 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
majik 0:964eb6a2ef00 1504 */
majik 0:964eb6a2ef00 1505 bool MPU6051::getInterruptLatchClear()
majik 0:964eb6a2ef00 1506 {
majik 0:964eb6a2ef00 1507 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
majik 0:964eb6a2ef00 1508 return buffer[0];
majik 0:964eb6a2ef00 1509 }
majik 0:964eb6a2ef00 1510 /** Set interrupt latch clear mode.
majik 0:964eb6a2ef00 1511 * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
majik 0:964eb6a2ef00 1512 * @see getInterruptLatchClear()
majik 0:964eb6a2ef00 1513 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1514 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
majik 0:964eb6a2ef00 1515 */
majik 0:964eb6a2ef00 1516 void MPU6051::setInterruptLatchClear(bool clear)
majik 0:964eb6a2ef00 1517 {
majik 0:964eb6a2ef00 1518 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
majik 0:964eb6a2ef00 1519 }
majik 0:964eb6a2ef00 1520 /** Get FSYNC interrupt logic level mode.
majik 0:964eb6a2ef00 1521 * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
majik 0:964eb6a2ef00 1522 * @see getFSyncInterruptMode()
majik 0:964eb6a2ef00 1523 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1524 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
majik 0:964eb6a2ef00 1525 */
majik 0:964eb6a2ef00 1526 bool MPU6051::getFSyncInterruptLevel()
majik 0:964eb6a2ef00 1527 {
majik 0:964eb6a2ef00 1528 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
majik 0:964eb6a2ef00 1529 return buffer[0];
majik 0:964eb6a2ef00 1530 }
majik 0:964eb6a2ef00 1531 /** Set FSYNC interrupt logic level mode.
majik 0:964eb6a2ef00 1532 * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
majik 0:964eb6a2ef00 1533 * @see getFSyncInterruptMode()
majik 0:964eb6a2ef00 1534 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1535 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
majik 0:964eb6a2ef00 1536 */
majik 0:964eb6a2ef00 1537 void MPU6051::setFSyncInterruptLevel(bool level)
majik 0:964eb6a2ef00 1538 {
majik 0:964eb6a2ef00 1539 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
majik 0:964eb6a2ef00 1540 }
majik 0:964eb6a2ef00 1541 /** Get FSYNC pin interrupt enabled setting.
majik 0:964eb6a2ef00 1542 * Will be set 0 for disabled, 1 for enabled.
majik 0:964eb6a2ef00 1543 * @return Current interrupt enabled setting
majik 0:964eb6a2ef00 1544 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1545 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
majik 0:964eb6a2ef00 1546 */
majik 0:964eb6a2ef00 1547 bool MPU6051::getFSyncInterruptEnabled()
majik 0:964eb6a2ef00 1548 {
majik 0:964eb6a2ef00 1549 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
majik 0:964eb6a2ef00 1550 return buffer[0];
majik 0:964eb6a2ef00 1551 }
majik 0:964eb6a2ef00 1552 /** Set FSYNC pin interrupt enabled setting.
majik 0:964eb6a2ef00 1553 * @param enabled New FSYNC pin interrupt enabled setting
majik 0:964eb6a2ef00 1554 * @see getFSyncInterruptEnabled()
majik 0:964eb6a2ef00 1555 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1556 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
majik 0:964eb6a2ef00 1557 */
majik 0:964eb6a2ef00 1558 void MPU6051::setFSyncInterruptEnabled(bool enabled)
majik 0:964eb6a2ef00 1559 {
majik 0:964eb6a2ef00 1560 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
majik 0:964eb6a2ef00 1561 }
majik 0:964eb6a2ef00 1562 /** Get I2C bypass enabled status.
majik 0:964eb6a2ef00 1563 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
majik 0:964eb6a2ef00 1564 * 0, the host application processor will be able to directly access the
majik 0:964eb6a2ef00 1565 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
majik 0:964eb6a2ef00 1566 * application processor will not be able to directly access the auxiliary I2C
majik 0:964eb6a2ef00 1567 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
majik 0:964eb6a2ef00 1568 * bit[5]).
majik 0:964eb6a2ef00 1569 * @return Current I2C bypass enabled status
majik 0:964eb6a2ef00 1570 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1571 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
majik 0:964eb6a2ef00 1572 */
majik 0:964eb6a2ef00 1573 bool MPU6051::getI2CBypassEnabled()
majik 0:964eb6a2ef00 1574 {
majik 0:964eb6a2ef00 1575 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
majik 0:964eb6a2ef00 1576 return buffer[0];
majik 0:964eb6a2ef00 1577 }
majik 0:964eb6a2ef00 1578 /** Set I2C bypass enabled status.
majik 0:964eb6a2ef00 1579 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
majik 0:964eb6a2ef00 1580 * 0, the host application processor will be able to directly access the
majik 0:964eb6a2ef00 1581 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
majik 0:964eb6a2ef00 1582 * application processor will not be able to directly access the auxiliary I2C
majik 0:964eb6a2ef00 1583 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
majik 0:964eb6a2ef00 1584 * bit[5]).
majik 0:964eb6a2ef00 1585 * @param enabled New I2C bypass enabled status
majik 0:964eb6a2ef00 1586 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1587 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
majik 0:964eb6a2ef00 1588 */
majik 0:964eb6a2ef00 1589 void MPU6051::setI2CBypassEnabled(bool enabled)
majik 0:964eb6a2ef00 1590 {
majik 0:964eb6a2ef00 1591 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
majik 0:964eb6a2ef00 1592 }
majik 0:964eb6a2ef00 1593 /** Get reference clock output enabled status.
majik 0:964eb6a2ef00 1594 * When this bit is equal to 1, a reference clock output is provided at the
majik 0:964eb6a2ef00 1595 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
majik 0:964eb6a2ef00 1596 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
majik 0:964eb6a2ef00 1597 * Specification document.
majik 0:964eb6a2ef00 1598 * @return Current reference clock output enabled status
majik 0:964eb6a2ef00 1599 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1600 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
majik 0:964eb6a2ef00 1601 */
majik 0:964eb6a2ef00 1602 bool MPU6051::getClockOutputEnabled()
majik 0:964eb6a2ef00 1603 {
majik 0:964eb6a2ef00 1604 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
majik 0:964eb6a2ef00 1605 return buffer[0];
majik 0:964eb6a2ef00 1606 }
majik 0:964eb6a2ef00 1607 /** Set reference clock output enabled status.
majik 0:964eb6a2ef00 1608 * When this bit is equal to 1, a reference clock output is provided at the
majik 0:964eb6a2ef00 1609 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
majik 0:964eb6a2ef00 1610 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
majik 0:964eb6a2ef00 1611 * Specification document.
majik 0:964eb6a2ef00 1612 * @param enabled New reference clock output enabled status
majik 0:964eb6a2ef00 1613 * @see MPU6050_RA_INT_PIN_CFG
majik 0:964eb6a2ef00 1614 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
majik 0:964eb6a2ef00 1615 */
majik 0:964eb6a2ef00 1616 void MPU6051::setClockOutputEnabled(bool enabled)
majik 0:964eb6a2ef00 1617 {
majik 0:964eb6a2ef00 1618 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
majik 0:964eb6a2ef00 1619 }
majik 0:964eb6a2ef00 1620
majik 0:964eb6a2ef00 1621 // INT_ENABLE register
majik 0:964eb6a2ef00 1622
majik 0:964eb6a2ef00 1623 /** Get full interrupt enabled status.
majik 0:964eb6a2ef00 1624 * Full register byte for all interrupts, for quick reading. Each bit will be
majik 0:964eb6a2ef00 1625 * set 0 for disabled, 1 for enabled.
majik 0:964eb6a2ef00 1626 * @return Current interrupt enabled status
majik 0:964eb6a2ef00 1627 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1628 * @see MPU6050_INTERRUPT_FF_BIT
majik 0:964eb6a2ef00 1629 **/
majik 0:964eb6a2ef00 1630 uint8_t MPU6051::getIntEnabled()
majik 0:964eb6a2ef00 1631 {
majik 0:964eb6a2ef00 1632 i2Cdev.readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
majik 0:964eb6a2ef00 1633 return buffer[0];
majik 0:964eb6a2ef00 1634 }
majik 0:964eb6a2ef00 1635 /** Set full interrupt enabled status.
majik 0:964eb6a2ef00 1636 * Full register byte for all interrupts, for quick reading. Each bit should be
majik 0:964eb6a2ef00 1637 * set 0 for disabled, 1 for enabled.
majik 0:964eb6a2ef00 1638 * @param enabled New interrupt enabled status
majik 0:964eb6a2ef00 1639 * @see getIntFreefallEnabled()
majik 0:964eb6a2ef00 1640 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1641 * @see MPU6050_INTERRUPT_FF_BIT
majik 0:964eb6a2ef00 1642 **/
majik 0:964eb6a2ef00 1643 void MPU6051::setIntEnabled(uint8_t enabled)
majik 0:964eb6a2ef00 1644 {
majik 0:964eb6a2ef00 1645 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
majik 0:964eb6a2ef00 1646 }
majik 0:964eb6a2ef00 1647 /** Get Free Fall interrupt enabled status.
majik 0:964eb6a2ef00 1648 * Will be set 0 for disabled, 1 for enabled.
majik 0:964eb6a2ef00 1649 * @return Current interrupt enabled status
majik 0:964eb6a2ef00 1650 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1651 * @see MPU6050_INTERRUPT_FF_BIT
majik 0:964eb6a2ef00 1652 **/
majik 0:964eb6a2ef00 1653 bool MPU6051::getIntFreefallEnabled()
majik 0:964eb6a2ef00 1654 {
majik 0:964eb6a2ef00 1655 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
majik 0:964eb6a2ef00 1656 return buffer[0];
majik 0:964eb6a2ef00 1657 }
majik 0:964eb6a2ef00 1658 /** Set Free Fall interrupt enabled status.
majik 0:964eb6a2ef00 1659 * @param enabled New interrupt enabled status
majik 0:964eb6a2ef00 1660 * @see getIntFreefallEnabled()
majik 0:964eb6a2ef00 1661 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1662 * @see MPU6050_INTERRUPT_FF_BIT
majik 0:964eb6a2ef00 1663 **/
majik 0:964eb6a2ef00 1664 void MPU6051::setIntFreefallEnabled(bool enabled)
majik 0:964eb6a2ef00 1665 {
majik 0:964eb6a2ef00 1666 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
majik 0:964eb6a2ef00 1667 }
majik 0:964eb6a2ef00 1668 /** Get Motion Detection interrupt enabled status.
majik 0:964eb6a2ef00 1669 * Will be set 0 for disabled, 1 for enabled.
majik 0:964eb6a2ef00 1670 * @return Current interrupt enabled status
majik 0:964eb6a2ef00 1671 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1672 * @see MPU6050_INTERRUPT_MOT_BIT
majik 0:964eb6a2ef00 1673 **/
majik 0:964eb6a2ef00 1674 bool MPU6051::getIntMotionEnabled()
majik 0:964eb6a2ef00 1675 {
majik 0:964eb6a2ef00 1676 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
majik 0:964eb6a2ef00 1677 return buffer[0];
majik 0:964eb6a2ef00 1678 }
majik 0:964eb6a2ef00 1679 /** Set Motion Detection interrupt enabled status.
majik 0:964eb6a2ef00 1680 * @param enabled New interrupt enabled status
majik 0:964eb6a2ef00 1681 * @see getIntMotionEnabled()
majik 0:964eb6a2ef00 1682 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1683 * @see MPU6050_INTERRUPT_MOT_BIT
majik 0:964eb6a2ef00 1684 **/
majik 0:964eb6a2ef00 1685 void MPU6051::setIntMotionEnabled(bool enabled)
majik 0:964eb6a2ef00 1686 {
majik 0:964eb6a2ef00 1687 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
majik 0:964eb6a2ef00 1688 }
majik 0:964eb6a2ef00 1689 /** Get Zero Motion Detection interrupt enabled status.
majik 0:964eb6a2ef00 1690 * Will be set 0 for disabled, 1 for enabled.
majik 0:964eb6a2ef00 1691 * @return Current interrupt enabled status
majik 0:964eb6a2ef00 1692 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1693 * @see MPU6050_INTERRUPT_ZMOT_BIT
majik 0:964eb6a2ef00 1694 **/
majik 0:964eb6a2ef00 1695 bool MPU6051::getIntZeroMotionEnabled()
majik 0:964eb6a2ef00 1696 {
majik 0:964eb6a2ef00 1697 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
majik 0:964eb6a2ef00 1698 return buffer[0];
majik 0:964eb6a2ef00 1699 }
majik 0:964eb6a2ef00 1700 /** Set Zero Motion Detection interrupt enabled status.
majik 0:964eb6a2ef00 1701 * @param enabled New interrupt enabled status
majik 0:964eb6a2ef00 1702 * @see getIntZeroMotionEnabled()
majik 0:964eb6a2ef00 1703 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1704 * @see MPU6050_INTERRUPT_ZMOT_BIT
majik 0:964eb6a2ef00 1705 **/
majik 0:964eb6a2ef00 1706 void MPU6051::setIntZeroMotionEnabled(bool enabled)
majik 0:964eb6a2ef00 1707 {
majik 0:964eb6a2ef00 1708 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
majik 0:964eb6a2ef00 1709 }
majik 0:964eb6a2ef00 1710 /** Get FIFO Buffer Overflow interrupt enabled status.
majik 0:964eb6a2ef00 1711 * Will be set 0 for disabled, 1 for enabled.
majik 0:964eb6a2ef00 1712 * @return Current interrupt enabled status
majik 0:964eb6a2ef00 1713 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1714 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
majik 0:964eb6a2ef00 1715 **/
majik 0:964eb6a2ef00 1716 bool MPU6051::getIntFIFOBufferOverflowEnabled()
majik 0:964eb6a2ef00 1717 {
majik 0:964eb6a2ef00 1718 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
majik 0:964eb6a2ef00 1719 return buffer[0];
majik 0:964eb6a2ef00 1720 }
majik 0:964eb6a2ef00 1721 /** Set FIFO Buffer Overflow interrupt enabled status.
majik 0:964eb6a2ef00 1722 * @param enabled New interrupt enabled status
majik 0:964eb6a2ef00 1723 * @see getIntFIFOBufferOverflowEnabled()
majik 0:964eb6a2ef00 1724 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1725 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
majik 0:964eb6a2ef00 1726 **/
majik 0:964eb6a2ef00 1727 void MPU6051::setIntFIFOBufferOverflowEnabled(bool enabled)
majik 0:964eb6a2ef00 1728 {
majik 0:964eb6a2ef00 1729 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
majik 0:964eb6a2ef00 1730 }
majik 0:964eb6a2ef00 1731 /** Get I2C Master interrupt enabled status.
majik 0:964eb6a2ef00 1732 * This enables any of the I2C Master interrupt sources to generate an
majik 0:964eb6a2ef00 1733 * interrupt. Will be set 0 for disabled, 1 for enabled.
majik 0:964eb6a2ef00 1734 * @return Current interrupt enabled status
majik 0:964eb6a2ef00 1735 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1736 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
majik 0:964eb6a2ef00 1737 **/
majik 0:964eb6a2ef00 1738 bool MPU6051::getIntI2CMasterEnabled()
majik 0:964eb6a2ef00 1739 {
majik 0:964eb6a2ef00 1740 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
majik 0:964eb6a2ef00 1741 return buffer[0];
majik 0:964eb6a2ef00 1742 }
majik 0:964eb6a2ef00 1743 /** Set I2C Master interrupt enabled status.
majik 0:964eb6a2ef00 1744 * @param enabled New interrupt enabled status
majik 0:964eb6a2ef00 1745 * @see getIntI2CMasterEnabled()
majik 0:964eb6a2ef00 1746 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1747 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
majik 0:964eb6a2ef00 1748 **/
majik 0:964eb6a2ef00 1749 void MPU6051::setIntI2CMasterEnabled(bool enabled)
majik 0:964eb6a2ef00 1750 {
majik 0:964eb6a2ef00 1751 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
majik 0:964eb6a2ef00 1752 }
majik 0:964eb6a2ef00 1753 /** Get Data Ready interrupt enabled setting.
majik 0:964eb6a2ef00 1754 * This event occurs each time a write operation to all of the sensor registers
majik 0:964eb6a2ef00 1755 * has been completed. Will be set 0 for disabled, 1 for enabled.
majik 0:964eb6a2ef00 1756 * @return Current interrupt enabled status
majik 0:964eb6a2ef00 1757 * @see MPU6050_RA_INT_ENABLE
majik 0:964eb6a2ef00 1758 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
majik 0:964eb6a2ef00 1759 */
majik 0:964eb6a2ef00 1760 bool MPU6051::getIntDataReadyEnabled()
majik 0:964eb6a2ef00 1761 {
majik 0:964eb6a2ef00 1762 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
majik 0:964eb6a2ef00 1763 return buffer[0];
majik 0:964eb6a2ef00 1764 }
majik 0:964eb6a2ef00 1765 /** Set Data Ready interrupt enabled status.
majik 0:964eb6a2ef00 1766 * @param enabled New interrupt enabled status
majik 0:964eb6a2ef00 1767 * @see getIntDataReadyEnabled()
majik 0:964eb6a2ef00 1768 * @see MPU6050_RA_INT_CFG
majik 0:964eb6a2ef00 1769 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
majik 0:964eb6a2ef00 1770 */
majik 0:964eb6a2ef00 1771 void MPU6051::setIntDataReadyEnabled(bool enabled)
majik 0:964eb6a2ef00 1772 {
majik 0:964eb6a2ef00 1773 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
majik 0:964eb6a2ef00 1774 }
majik 0:964eb6a2ef00 1775
majik 0:964eb6a2ef00 1776 // INT_STATUS register
majik 0:964eb6a2ef00 1777
majik 0:964eb6a2ef00 1778 /** Get full set of interrupt status bits.
majik 0:964eb6a2ef00 1779 * These bits clear to 0 after the register has been read. Very useful
majik 0:964eb6a2ef00 1780 * for getting multiple INT statuses, since each single bit read clears
majik 0:964eb6a2ef00 1781 * all of them because it has to read the whole byte.
majik 0:964eb6a2ef00 1782 * @return Current interrupt status
majik 0:964eb6a2ef00 1783 * @see MPU6050_RA_INT_STATUS
majik 0:964eb6a2ef00 1784 */
majik 0:964eb6a2ef00 1785 uint8_t MPU6051::getIntStatus()
majik 0:964eb6a2ef00 1786 {
majik 0:964eb6a2ef00 1787 i2Cdev.readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
majik 0:964eb6a2ef00 1788 return buffer[0];
majik 0:964eb6a2ef00 1789 }
majik 0:964eb6a2ef00 1790 /** Get Free Fall interrupt status.
majik 0:964eb6a2ef00 1791 * This bit automatically sets to 1 when a Free Fall interrupt has been
majik 0:964eb6a2ef00 1792 * generated. The bit clears to 0 after the register has been read.
majik 0:964eb6a2ef00 1793 * @return Current interrupt status
majik 0:964eb6a2ef00 1794 * @see MPU6050_RA_INT_STATUS
majik 0:964eb6a2ef00 1795 * @see MPU6050_INTERRUPT_FF_BIT
majik 0:964eb6a2ef00 1796 */
majik 0:964eb6a2ef00 1797 bool MPU6051::getIntFreefallStatus()
majik 0:964eb6a2ef00 1798 {
majik 0:964eb6a2ef00 1799 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
majik 0:964eb6a2ef00 1800 return buffer[0];
majik 0:964eb6a2ef00 1801 }
majik 0:964eb6a2ef00 1802 /** Get Motion Detection interrupt status.
majik 0:964eb6a2ef00 1803 * This bit automatically sets to 1 when a Motion Detection interrupt has been
majik 0:964eb6a2ef00 1804 * generated. The bit clears to 0 after the register has been read.
majik 0:964eb6a2ef00 1805 * @return Current interrupt status
majik 0:964eb6a2ef00 1806 * @see MPU6050_RA_INT_STATUS
majik 0:964eb6a2ef00 1807 * @see MPU6050_INTERRUPT_MOT_BIT
majik 0:964eb6a2ef00 1808 */
majik 0:964eb6a2ef00 1809 bool MPU6051::getIntMotionStatus()
majik 0:964eb6a2ef00 1810 {
majik 0:964eb6a2ef00 1811 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
majik 0:964eb6a2ef00 1812 return buffer[0];
majik 0:964eb6a2ef00 1813 }
majik 0:964eb6a2ef00 1814 /** Get Zero Motion Detection interrupt status.
majik 0:964eb6a2ef00 1815 * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
majik 0:964eb6a2ef00 1816 * been generated. The bit clears to 0 after the register has been read.
majik 0:964eb6a2ef00 1817 * @return Current interrupt status
majik 0:964eb6a2ef00 1818 * @see MPU6050_RA_INT_STATUS
majik 0:964eb6a2ef00 1819 * @see MPU6050_INTERRUPT_ZMOT_BIT
majik 0:964eb6a2ef00 1820 */
majik 0:964eb6a2ef00 1821 bool MPU6051::getIntZeroMotionStatus()
majik 0:964eb6a2ef00 1822 {
majik 0:964eb6a2ef00 1823 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
majik 0:964eb6a2ef00 1824 return buffer[0];
majik 0:964eb6a2ef00 1825 }
majik 0:964eb6a2ef00 1826 /** Get FIFO Buffer Overflow interrupt status.
majik 0:964eb6a2ef00 1827 * This bit automatically sets to 1 when a Free Fall interrupt has been
majik 0:964eb6a2ef00 1828 * generated. The bit clears to 0 after the register has been read.
majik 0:964eb6a2ef00 1829 * @return Current interrupt status
majik 0:964eb6a2ef00 1830 * @see MPU6050_RA_INT_STATUS
majik 0:964eb6a2ef00 1831 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
majik 0:964eb6a2ef00 1832 */
majik 0:964eb6a2ef00 1833 bool MPU6051::getIntFIFOBufferOverflowStatus()
majik 0:964eb6a2ef00 1834 {
majik 0:964eb6a2ef00 1835 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
majik 0:964eb6a2ef00 1836 return buffer[0];
majik 0:964eb6a2ef00 1837 }
majik 0:964eb6a2ef00 1838 /** Get I2C Master interrupt status.
majik 0:964eb6a2ef00 1839 * This bit automatically sets to 1 when an I2C Master interrupt has been
majik 0:964eb6a2ef00 1840 * generated. For a list of I2C Master interrupts, please refer to Register 54.
majik 0:964eb6a2ef00 1841 * The bit clears to 0 after the register has been read.
majik 0:964eb6a2ef00 1842 * @return Current interrupt status
majik 0:964eb6a2ef00 1843 * @see MPU6050_RA_INT_STATUS
majik 0:964eb6a2ef00 1844 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
majik 0:964eb6a2ef00 1845 */
majik 0:964eb6a2ef00 1846 bool MPU6051::getIntI2CMasterStatus()
majik 0:964eb6a2ef00 1847 {
majik 0:964eb6a2ef00 1848 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
majik 0:964eb6a2ef00 1849 return buffer[0];
majik 0:964eb6a2ef00 1850 }
majik 0:964eb6a2ef00 1851 /** Get Data Ready interrupt status.
majik 0:964eb6a2ef00 1852 * This bit automatically sets to 1 when a Data Ready interrupt has been
majik 0:964eb6a2ef00 1853 * generated. The bit clears to 0 after the register has been read.
majik 0:964eb6a2ef00 1854 * @return Current interrupt status
majik 0:964eb6a2ef00 1855 * @see MPU6050_RA_INT_STATUS
majik 0:964eb6a2ef00 1856 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
majik 0:964eb6a2ef00 1857 */
majik 0:964eb6a2ef00 1858 bool MPU6051::getIntDataReadyStatus()
majik 0:964eb6a2ef00 1859 {
majik 0:964eb6a2ef00 1860 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
majik 0:964eb6a2ef00 1861 return buffer[0];
majik 0:964eb6a2ef00 1862 }
majik 0:964eb6a2ef00 1863
majik 0:964eb6a2ef00 1864 // ACCEL_*OUT_* registers
majik 0:964eb6a2ef00 1865
majik 0:964eb6a2ef00 1866 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
majik 0:964eb6a2ef00 1867 * FUNCTION NOT FULLY IMPLEMENTED YET.
majik 0:964eb6a2ef00 1868 * @param ax 16-bit signed integer container for accelerometer X-axis value
majik 0:964eb6a2ef00 1869 * @param ay 16-bit signed integer container for accelerometer Y-axis value
majik 0:964eb6a2ef00 1870 * @param az 16-bit signed integer container for accelerometer Z-axis value
majik 0:964eb6a2ef00 1871 * @param gx 16-bit signed integer container for gyroscope X-axis value
majik 0:964eb6a2ef00 1872 * @param gy 16-bit signed integer container for gyroscope Y-axis value
majik 0:964eb6a2ef00 1873 * @param gz 16-bit signed integer container for gyroscope Z-axis value
majik 0:964eb6a2ef00 1874 * @param mx 16-bit signed integer container for magnetometer X-axis value
majik 0:964eb6a2ef00 1875 * @param my 16-bit signed integer container for magnetometer Y-axis value
majik 0:964eb6a2ef00 1876 * @param mz 16-bit signed integer container for magnetometer Z-axis value
majik 0:964eb6a2ef00 1877 * @see getMotion6()
majik 0:964eb6a2ef00 1878 * @see getAcceleration()
majik 0:964eb6a2ef00 1879 * @see getRotation()
majik 0:964eb6a2ef00 1880 * @see MPU6050_RA_ACCEL_XOUT_H
majik 0:964eb6a2ef00 1881 */
majik 0:964eb6a2ef00 1882 void MPU6051::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz)
majik 0:964eb6a2ef00 1883 {
majik 0:964eb6a2ef00 1884 getMotion6(ax, ay, az, gx, gy, gz);
majik 0:964eb6a2ef00 1885
majik 0:964eb6a2ef00 1886 // magnetometer reading
majik 0:964eb6a2ef00 1887 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_PIN_CFG, 0x02); //set i2c bypass enable pin to true to access magnetometer
majik 0:964eb6a2ef00 1888 wait_ms(10); // necessary wait >=6ms
majik 0:964eb6a2ef00 1889 i2Cdev.writeByte(MPU9150_RA_MAG_ADDRESS, 0x0A, 0x01); // enable the magnetometer
majik 0:964eb6a2ef00 1890 wait_ms(10); // necessary wait >=6ms
majik 0:964eb6a2ef00 1891 i2Cdev.readBytes(MPU9150_RA_MAG_ADDRESS, MPU9150_RA_MAG_XOUT_L, 6, buffer);
majik 0:964eb6a2ef00 1892 *mx = (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 1893 *my = (((int16_t)buffer[2]) << 8) | buffer[3];
majik 0:964eb6a2ef00 1894 *mz = (((int16_t)buffer[4]) << 8) | buffer[5];
majik 0:964eb6a2ef00 1895 }
majik 0:964eb6a2ef00 1896 /** Get raw 6-axis motion sensor readings (accel/gyro).
majik 0:964eb6a2ef00 1897 * Retrieves all currently available motion sensor values.
majik 0:964eb6a2ef00 1898 * @param ax 16-bit signed integer container for accelerometer X-axis value
majik 0:964eb6a2ef00 1899 * @param ay 16-bit signed integer container for accelerometer Y-axis value
majik 0:964eb6a2ef00 1900 * @param az 16-bit signed integer container for accelerometer Z-axis value
majik 0:964eb6a2ef00 1901 * @param gx 16-bit signed integer container for gyroscope X-axis value
majik 0:964eb6a2ef00 1902 * @param gy 16-bit signed integer container for gyroscope Y-axis value
majik 0:964eb6a2ef00 1903 * @param gz 16-bit signed integer container for gyroscope Z-axis value
majik 0:964eb6a2ef00 1904 * @see getAcceleration()
majik 0:964eb6a2ef00 1905 * @see getRotation()
majik 0:964eb6a2ef00 1906 * @see MPU6050_RA_ACCEL_XOUT_H
majik 0:964eb6a2ef00 1907 */
majik 0:964eb6a2ef00 1908 void MPU6051::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz)
majik 0:964eb6a2ef00 1909 {
majik 0:964eb6a2ef00 1910 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
majik 0:964eb6a2ef00 1911 *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 1912 *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
majik 0:964eb6a2ef00 1913 *az = (((int16_t)buffer[4]) << 8) | buffer[5];
majik 0:964eb6a2ef00 1914 *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
majik 0:964eb6a2ef00 1915 *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
majik 0:964eb6a2ef00 1916 *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
majik 0:964eb6a2ef00 1917 }
majik 0:964eb6a2ef00 1918 /** Get 3-axis accelerometer readings.
majik 0:964eb6a2ef00 1919 * These registers store the most recent accelerometer measurements.
majik 0:964eb6a2ef00 1920 * Accelerometer measurements are written to these registers at the Sample Rate
majik 0:964eb6a2ef00 1921 * as defined in Register 25.
majik 0:964eb6a2ef00 1922 *
majik 0:964eb6a2ef00 1923 * The accelerometer measurement registers, along with the temperature
majik 0:964eb6a2ef00 1924 * measurement registers, gyroscope measurement registers, and external sensor
majik 0:964eb6a2ef00 1925 * data registers, are composed of two sets of registers: an internal register
majik 0:964eb6a2ef00 1926 * set and a user-facing read register set.
majik 0:964eb6a2ef00 1927 *
majik 0:964eb6a2ef00 1928 * The data within the accelerometer sensors' internal register set is always
majik 0:964eb6a2ef00 1929 * updated at the Sample Rate. Meanwhile, the user-facing read register set
majik 0:964eb6a2ef00 1930 * duplicates the internal register set's data values whenever the serial
majik 0:964eb6a2ef00 1931 * interface is idle. This guarantees that a burst read of sensor registers will
majik 0:964eb6a2ef00 1932 * read measurements from the same sampling instant. Note that if burst reads
majik 0:964eb6a2ef00 1933 * are not used, the user is responsible for ensuring a set of single byte reads
majik 0:964eb6a2ef00 1934 * correspond to a single sampling instant by checking the Data Ready interrupt.
majik 0:964eb6a2ef00 1935 *
majik 0:964eb6a2ef00 1936 * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
majik 0:964eb6a2ef00 1937 * (Register 28). For each full scale setting, the accelerometers' sensitivity
majik 0:964eb6a2ef00 1938 * per LSB in ACCEL_xOUT is shown in the table below:
majik 0:964eb6a2ef00 1939 *
majik 0:964eb6a2ef00 1940 * <pre>
majik 0:964eb6a2ef00 1941 * AFS_SEL | Full Scale Range | LSB Sensitivity
majik 0:964eb6a2ef00 1942 * --------+------------------+----------------
majik 0:964eb6a2ef00 1943 * 0 | +/- 2g | 8192 LSB/mg
majik 0:964eb6a2ef00 1944 * 1 | +/- 4g | 4096 LSB/mg
majik 0:964eb6a2ef00 1945 * 2 | +/- 8g | 2048 LSB/mg
majik 0:964eb6a2ef00 1946 * 3 | +/- 16g | 1024 LSB/mg
majik 0:964eb6a2ef00 1947 * </pre>
majik 0:964eb6a2ef00 1948 *
majik 0:964eb6a2ef00 1949 * @param x 16-bit signed integer container for X-axis acceleration
majik 0:964eb6a2ef00 1950 * @param y 16-bit signed integer container for Y-axis acceleration
majik 0:964eb6a2ef00 1951 * @param z 16-bit signed integer container for Z-axis acceleration
majik 0:964eb6a2ef00 1952 * @see MPU6050_RA_GYRO_XOUT_H
majik 0:964eb6a2ef00 1953 */
majik 0:964eb6a2ef00 1954 void MPU6051::getAcceleration(int16_t* x, int16_t* y, int16_t* z)
majik 0:964eb6a2ef00 1955 {
majik 0:964eb6a2ef00 1956 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
majik 0:964eb6a2ef00 1957 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 1958 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
majik 0:964eb6a2ef00 1959 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
majik 0:964eb6a2ef00 1960 }
majik 0:964eb6a2ef00 1961 /** Get X-axis accelerometer reading.
majik 0:964eb6a2ef00 1962 * @return X-axis acceleration measurement in 16-bit 2's complement format
majik 0:964eb6a2ef00 1963 * @see getMotion6()
majik 0:964eb6a2ef00 1964 * @see MPU6050_RA_ACCEL_XOUT_H
majik 0:964eb6a2ef00 1965 */
majik 0:964eb6a2ef00 1966 int16_t MPU6051::getAccelerationX()
majik 0:964eb6a2ef00 1967 {
majik 0:964eb6a2ef00 1968 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
majik 0:964eb6a2ef00 1969 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 1970 }
majik 0:964eb6a2ef00 1971 /** Get Y-axis accelerometer reading.
majik 0:964eb6a2ef00 1972 * @return Y-axis acceleration measurement in 16-bit 2's complement format
majik 0:964eb6a2ef00 1973 * @see getMotion6()
majik 0:964eb6a2ef00 1974 * @see MPU6050_RA_ACCEL_YOUT_H
majik 0:964eb6a2ef00 1975 */
majik 0:964eb6a2ef00 1976 int16_t MPU6051::getAccelerationY()
majik 0:964eb6a2ef00 1977 {
majik 0:964eb6a2ef00 1978 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
majik 0:964eb6a2ef00 1979 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 1980 }
majik 0:964eb6a2ef00 1981 /** Get Z-axis accelerometer reading.
majik 0:964eb6a2ef00 1982 * @return Z-axis acceleration measurement in 16-bit 2's complement format
majik 0:964eb6a2ef00 1983 * @see getMotion6()
majik 0:964eb6a2ef00 1984 * @see MPU6050_RA_ACCEL_ZOUT_H
majik 0:964eb6a2ef00 1985 */
majik 0:964eb6a2ef00 1986 int16_t MPU6051::getAccelerationZ()
majik 0:964eb6a2ef00 1987 {
majik 0:964eb6a2ef00 1988 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
majik 0:964eb6a2ef00 1989 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 1990 }
majik 0:964eb6a2ef00 1991
majik 0:964eb6a2ef00 1992 // TEMP_OUT_* registers
majik 0:964eb6a2ef00 1993
majik 0:964eb6a2ef00 1994 /** Get current internal temperature.
majik 0:964eb6a2ef00 1995 * @return Temperature reading in 16-bit 2's complement format
majik 0:964eb6a2ef00 1996 * @see MPU6050_RA_TEMP_OUT_H
majik 0:964eb6a2ef00 1997 */
majik 0:964eb6a2ef00 1998 int16_t MPU6051::getTemperature()
majik 0:964eb6a2ef00 1999 {
majik 0:964eb6a2ef00 2000 i2Cdev.readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
majik 0:964eb6a2ef00 2001 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 2002 }
majik 0:964eb6a2ef00 2003
majik 0:964eb6a2ef00 2004 // GYRO_*OUT_* registers
majik 0:964eb6a2ef00 2005
majik 0:964eb6a2ef00 2006 /** Get 3-axis gyroscope readings.
majik 0:964eb6a2ef00 2007 * These gyroscope measurement registers, along with the accelerometer
majik 0:964eb6a2ef00 2008 * measurement registers, temperature measurement registers, and external sensor
majik 0:964eb6a2ef00 2009 * data registers, are composed of two sets of registers: an internal register
majik 0:964eb6a2ef00 2010 * set and a user-facing read register set.
majik 0:964eb6a2ef00 2011 * The data within the gyroscope sensors' internal register set is always
majik 0:964eb6a2ef00 2012 * updated at the Sample Rate. Meanwhile, the user-facing read register set
majik 0:964eb6a2ef00 2013 * duplicates the internal register set's data values whenever the serial
majik 0:964eb6a2ef00 2014 * interface is idle. This guarantees that a burst read of sensor registers will
majik 0:964eb6a2ef00 2015 * read measurements from the same sampling instant. Note that if burst reads
majik 0:964eb6a2ef00 2016 * are not used, the user is responsible for ensuring a set of single byte reads
majik 0:964eb6a2ef00 2017 * correspond to a single sampling instant by checking the Data Ready interrupt.
majik 0:964eb6a2ef00 2018 *
majik 0:964eb6a2ef00 2019 * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
majik 0:964eb6a2ef00 2020 * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
majik 0:964eb6a2ef00 2021 * LSB in GYRO_xOUT is shown in the table below:
majik 0:964eb6a2ef00 2022 *
majik 0:964eb6a2ef00 2023 * <pre>
majik 0:964eb6a2ef00 2024 * FS_SEL | Full Scale Range | LSB Sensitivity
majik 0:964eb6a2ef00 2025 * -------+--------------------+----------------
majik 0:964eb6a2ef00 2026 * 0 | +/- 250 degrees/s | 131 LSB/deg/s
majik 0:964eb6a2ef00 2027 * 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
majik 0:964eb6a2ef00 2028 * 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
majik 0:964eb6a2ef00 2029 * 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
majik 0:964eb6a2ef00 2030 * </pre>
majik 0:964eb6a2ef00 2031 *
majik 0:964eb6a2ef00 2032 * @param x 16-bit signed integer container for X-axis rotation
majik 0:964eb6a2ef00 2033 * @param y 16-bit signed integer container for Y-axis rotation
majik 0:964eb6a2ef00 2034 * @param z 16-bit signed integer container for Z-axis rotation
majik 0:964eb6a2ef00 2035 * @see getMotion6()
majik 0:964eb6a2ef00 2036 * @see MPU6050_RA_GYRO_XOUT_H
majik 0:964eb6a2ef00 2037 */
majik 0:964eb6a2ef00 2038 void MPU6051::getRotation(int16_t* x, int16_t* y, int16_t* z)
majik 0:964eb6a2ef00 2039 {
majik 0:964eb6a2ef00 2040 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
majik 0:964eb6a2ef00 2041 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 2042 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
majik 0:964eb6a2ef00 2043 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
majik 0:964eb6a2ef00 2044 }
majik 0:964eb6a2ef00 2045 /** Get X-axis gyroscope reading.
majik 0:964eb6a2ef00 2046 * @return X-axis rotation measurement in 16-bit 2's complement format
majik 0:964eb6a2ef00 2047 * @see getMotion6()
majik 0:964eb6a2ef00 2048 * @see MPU6050_RA_GYRO_XOUT_H
majik 0:964eb6a2ef00 2049 */
majik 0:964eb6a2ef00 2050 int16_t MPU6051::getRotationX()
majik 0:964eb6a2ef00 2051 {
majik 0:964eb6a2ef00 2052 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
majik 0:964eb6a2ef00 2053 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 2054 }
majik 0:964eb6a2ef00 2055 /** Get Y-axis gyroscope reading.
majik 0:964eb6a2ef00 2056 * @return Y-axis rotation measurement in 16-bit 2's complement format
majik 0:964eb6a2ef00 2057 * @see getMotion6()
majik 0:964eb6a2ef00 2058 * @see MPU6050_RA_GYRO_YOUT_H
majik 0:964eb6a2ef00 2059 */
majik 0:964eb6a2ef00 2060 int16_t MPU6051::getRotationY()
majik 0:964eb6a2ef00 2061 {
majik 0:964eb6a2ef00 2062 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
majik 0:964eb6a2ef00 2063 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 2064 }
majik 0:964eb6a2ef00 2065 /** Get Z-axis gyroscope reading.
majik 0:964eb6a2ef00 2066 * @return Z-axis rotation measurement in 16-bit 2's complement format
majik 0:964eb6a2ef00 2067 * @see getMotion6()
majik 0:964eb6a2ef00 2068 * @see MPU6050_RA_GYRO_ZOUT_H
majik 0:964eb6a2ef00 2069 */
majik 0:964eb6a2ef00 2070 int16_t MPU6051::getRotationZ()
majik 0:964eb6a2ef00 2071 {
majik 0:964eb6a2ef00 2072 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
majik 0:964eb6a2ef00 2073 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 2074 }
majik 0:964eb6a2ef00 2075
majik 0:964eb6a2ef00 2076 // EXT_SENS_DATA_* registers
majik 0:964eb6a2ef00 2077
majik 0:964eb6a2ef00 2078 /** Read single byte from external sensor data register.
majik 0:964eb6a2ef00 2079 * These registers store data read from external sensors by the Slave 0, 1, 2,
majik 0:964eb6a2ef00 2080 * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
majik 0:964eb6a2ef00 2081 * I2C_SLV4_DI (Register 53).
majik 0:964eb6a2ef00 2082 *
majik 0:964eb6a2ef00 2083 * External sensor data is written to these registers at the Sample Rate as
majik 0:964eb6a2ef00 2084 * defined in Register 25. This access rate can be reduced by using the Slave
majik 0:964eb6a2ef00 2085 * Delay Enable registers (Register 103).
majik 0:964eb6a2ef00 2086 *
majik 0:964eb6a2ef00 2087 * External sensor data registers, along with the gyroscope measurement
majik 0:964eb6a2ef00 2088 * registers, accelerometer measurement registers, and temperature measurement
majik 0:964eb6a2ef00 2089 * registers, are composed of two sets of registers: an internal register set
majik 0:964eb6a2ef00 2090 * and a user-facing read register set.
majik 0:964eb6a2ef00 2091 *
majik 0:964eb6a2ef00 2092 * The data within the external sensors' internal register set is always updated
majik 0:964eb6a2ef00 2093 * at the Sample Rate (or the reduced access rate) whenever the serial interface
majik 0:964eb6a2ef00 2094 * is idle. This guarantees that a burst read of sensor registers will read
majik 0:964eb6a2ef00 2095 * measurements from the same sampling instant. Note that if burst reads are not
majik 0:964eb6a2ef00 2096 * used, the user is responsible for ensuring a set of single byte reads
majik 0:964eb6a2ef00 2097 * correspond to a single sampling instant by checking the Data Ready interrupt.
majik 0:964eb6a2ef00 2098 *
majik 0:964eb6a2ef00 2099 * Data is placed in these external sensor data registers according to
majik 0:964eb6a2ef00 2100 * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
majik 0:964eb6a2ef00 2101 * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
majik 0:964eb6a2ef00 2102 * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
majik 0:964eb6a2ef00 2103 * defined in Register 25) or delayed rate (if specified in Register 52 and
majik 0:964eb6a2ef00 2104 * 103). During each Sample cycle, slave reads are performed in order of Slave
majik 0:964eb6a2ef00 2105 * number. If all slaves are enabled with more than zero bytes to be read, the
majik 0:964eb6a2ef00 2106 * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
majik 0:964eb6a2ef00 2107 *
majik 0:964eb6a2ef00 2108 * Each enabled slave will have EXT_SENS_DATA registers associated with it by
majik 0:964eb6a2ef00 2109 * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
majik 0:964eb6a2ef00 2110 * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
majik 0:964eb6a2ef00 2111 * change the higher numbered slaves' associated registers. Furthermore, if
majik 0:964eb6a2ef00 2112 * fewer total bytes are being read from the external sensors as a result of
majik 0:964eb6a2ef00 2113 * such a change, then the data remaining in the registers which no longer have
majik 0:964eb6a2ef00 2114 * an associated slave device (i.e. high numbered registers) will remain in
majik 0:964eb6a2ef00 2115 * these previously allocated registers unless reset.
majik 0:964eb6a2ef00 2116 *
majik 0:964eb6a2ef00 2117 * If the sum of the read lengths of all SLVx transactions exceed the number of
majik 0:964eb6a2ef00 2118 * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
majik 0:964eb6a2ef00 2119 * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
majik 0:964eb6a2ef00 2120 * the slaves cannot be greater than 24 or some bytes will be lost.
majik 0:964eb6a2ef00 2121 *
majik 0:964eb6a2ef00 2122 * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
majik 0:964eb6a2ef00 2123 * information regarding the characteristics of Slave 4, please refer to
majik 0:964eb6a2ef00 2124 * Registers 49 to 53.
majik 0:964eb6a2ef00 2125 *
majik 0:964eb6a2ef00 2126 * EXAMPLE:
majik 0:964eb6a2ef00 2127 * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
majik 0:964eb6a2ef00 2128 * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
majik 0:964eb6a2ef00 2129 * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
majik 0:964eb6a2ef00 2130 * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
majik 0:964eb6a2ef00 2131 * will be associated with Slave 1. If Slave 2 is enabled as well, registers
majik 0:964eb6a2ef00 2132 * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
majik 0:964eb6a2ef00 2133 *
majik 0:964eb6a2ef00 2134 * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
majik 0:964eb6a2ef00 2135 * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
majik 0:964eb6a2ef00 2136 * instead.
majik 0:964eb6a2ef00 2137 *
majik 0:964eb6a2ef00 2138 * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
majik 0:964eb6a2ef00 2139 * If a slave is disabled at any time, the space initially allocated to the
majik 0:964eb6a2ef00 2140 * slave in the EXT_SENS_DATA register, will remain associated with that slave.
majik 0:964eb6a2ef00 2141 * This is to avoid dynamic adjustment of the register allocation.
majik 0:964eb6a2ef00 2142 *
majik 0:964eb6a2ef00 2143 * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
majik 0:964eb6a2ef00 2144 * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
majik 0:964eb6a2ef00 2145 *
majik 0:964eb6a2ef00 2146 * This above is also true if one of the slaves gets NACKed and stops
majik 0:964eb6a2ef00 2147 * functioning.
majik 0:964eb6a2ef00 2148 *
majik 0:964eb6a2ef00 2149 * @param position Starting position (0-23)
majik 0:964eb6a2ef00 2150 * @return Byte read from register
majik 0:964eb6a2ef00 2151 */
majik 0:964eb6a2ef00 2152 uint8_t MPU6051::getExternalSensorByte(int position)
majik 0:964eb6a2ef00 2153 {
majik 0:964eb6a2ef00 2154 i2Cdev.readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
majik 0:964eb6a2ef00 2155 return buffer[0];
majik 0:964eb6a2ef00 2156 }
majik 0:964eb6a2ef00 2157 /** Read word (2 bytes) from external sensor data registers.
majik 0:964eb6a2ef00 2158 * @param position Starting position (0-21)
majik 0:964eb6a2ef00 2159 * @return Word read from register
majik 0:964eb6a2ef00 2160 * @see getExternalSensorByte()
majik 0:964eb6a2ef00 2161 */
majik 0:964eb6a2ef00 2162 uint16_t MPU6051::getExternalSensorWord(int position)
majik 0:964eb6a2ef00 2163 {
majik 0:964eb6a2ef00 2164 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
majik 0:964eb6a2ef00 2165 return (((uint16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 2166 }
majik 0:964eb6a2ef00 2167 /** Read double word (4 bytes) from external sensor data registers.
majik 0:964eb6a2ef00 2168 * @param position Starting position (0-20)
majik 0:964eb6a2ef00 2169 * @return Double word read from registers
majik 0:964eb6a2ef00 2170 * @see getExternalSensorByte()
majik 0:964eb6a2ef00 2171 */
majik 0:964eb6a2ef00 2172 uint32_t MPU6051::getExternalSensorDWord(int position)
majik 0:964eb6a2ef00 2173 {
majik 0:964eb6a2ef00 2174 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
majik 0:964eb6a2ef00 2175 return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
majik 0:964eb6a2ef00 2176 }
majik 0:964eb6a2ef00 2177
majik 0:964eb6a2ef00 2178 // MOT_DETECT_STATUS register
majik 0:964eb6a2ef00 2179
majik 0:964eb6a2ef00 2180 /** Get X-axis negative motion detection interrupt status.
majik 0:964eb6a2ef00 2181 * @return Motion detection status
majik 0:964eb6a2ef00 2182 * @see MPU6050_RA_MOT_DETECT_STATUS
majik 0:964eb6a2ef00 2183 * @see MPU6050_MOTION_MOT_XNEG_BIT
majik 0:964eb6a2ef00 2184 */
majik 0:964eb6a2ef00 2185 bool MPU6051::getXNegMotionDetected()
majik 0:964eb6a2ef00 2186 {
majik 0:964eb6a2ef00 2187 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
majik 0:964eb6a2ef00 2188 return buffer[0];
majik 0:964eb6a2ef00 2189 }
majik 0:964eb6a2ef00 2190 /** Get X-axis positive motion detection interrupt status.
majik 0:964eb6a2ef00 2191 * @return Motion detection status
majik 0:964eb6a2ef00 2192 * @see MPU6050_RA_MOT_DETECT_STATUS
majik 0:964eb6a2ef00 2193 * @see MPU6050_MOTION_MOT_XPOS_BIT
majik 0:964eb6a2ef00 2194 */
majik 0:964eb6a2ef00 2195 bool MPU6051::getXPosMotionDetected()
majik 0:964eb6a2ef00 2196 {
majik 0:964eb6a2ef00 2197 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
majik 0:964eb6a2ef00 2198 return buffer[0];
majik 0:964eb6a2ef00 2199 }
majik 0:964eb6a2ef00 2200 /** Get Y-axis negative motion detection interrupt status.
majik 0:964eb6a2ef00 2201 * @return Motion detection status
majik 0:964eb6a2ef00 2202 * @see MPU6050_RA_MOT_DETECT_STATUS
majik 0:964eb6a2ef00 2203 * @see MPU6050_MOTION_MOT_YNEG_BIT
majik 0:964eb6a2ef00 2204 */
majik 0:964eb6a2ef00 2205 bool MPU6051::getYNegMotionDetected()
majik 0:964eb6a2ef00 2206 {
majik 0:964eb6a2ef00 2207 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
majik 0:964eb6a2ef00 2208 return buffer[0];
majik 0:964eb6a2ef00 2209 }
majik 0:964eb6a2ef00 2210 /** Get Y-axis positive motion detection interrupt status.
majik 0:964eb6a2ef00 2211 * @return Motion detection status
majik 0:964eb6a2ef00 2212 * @see MPU6050_RA_MOT_DETECT_STATUS
majik 0:964eb6a2ef00 2213 * @see MPU6050_MOTION_MOT_YPOS_BIT
majik 0:964eb6a2ef00 2214 */
majik 0:964eb6a2ef00 2215 bool MPU6051::getYPosMotionDetected()
majik 0:964eb6a2ef00 2216 {
majik 0:964eb6a2ef00 2217 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
majik 0:964eb6a2ef00 2218 return buffer[0];
majik 0:964eb6a2ef00 2219 }
majik 0:964eb6a2ef00 2220 /** Get Z-axis negative motion detection interrupt status.
majik 0:964eb6a2ef00 2221 * @return Motion detection status
majik 0:964eb6a2ef00 2222 * @see MPU6050_RA_MOT_DETECT_STATUS
majik 0:964eb6a2ef00 2223 * @see MPU6050_MOTION_MOT_ZNEG_BIT
majik 0:964eb6a2ef00 2224 */
majik 0:964eb6a2ef00 2225 bool MPU6051::getZNegMotionDetected()
majik 0:964eb6a2ef00 2226 {
majik 0:964eb6a2ef00 2227 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
majik 0:964eb6a2ef00 2228 return buffer[0];
majik 0:964eb6a2ef00 2229 }
majik 0:964eb6a2ef00 2230 /** Get Z-axis positive motion detection interrupt status.
majik 0:964eb6a2ef00 2231 * @return Motion detection status
majik 0:964eb6a2ef00 2232 * @see MPU6050_RA_MOT_DETECT_STATUS
majik 0:964eb6a2ef00 2233 * @see MPU6050_MOTION_MOT_ZPOS_BIT
majik 0:964eb6a2ef00 2234 */
majik 0:964eb6a2ef00 2235 bool MPU6051::getZPosMotionDetected()
majik 0:964eb6a2ef00 2236 {
majik 0:964eb6a2ef00 2237 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
majik 0:964eb6a2ef00 2238 return buffer[0];
majik 0:964eb6a2ef00 2239 }
majik 0:964eb6a2ef00 2240 /** Get zero motion detection interrupt status.
majik 0:964eb6a2ef00 2241 * @return Motion detection status
majik 0:964eb6a2ef00 2242 * @see MPU6050_RA_MOT_DETECT_STATUS
majik 0:964eb6a2ef00 2243 * @see MPU6050_MOTION_MOT_ZRMOT_BIT
majik 0:964eb6a2ef00 2244 */
majik 0:964eb6a2ef00 2245 bool MPU6051::getZeroMotionDetected()
majik 0:964eb6a2ef00 2246 {
majik 0:964eb6a2ef00 2247 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
majik 0:964eb6a2ef00 2248 return buffer[0];
majik 0:964eb6a2ef00 2249 }
majik 0:964eb6a2ef00 2250
majik 0:964eb6a2ef00 2251 // I2C_SLV*_DO register
majik 0:964eb6a2ef00 2252
majik 0:964eb6a2ef00 2253 /** Write byte to Data Output container for specified slave.
majik 0:964eb6a2ef00 2254 * This register holds the output data written into Slave when Slave is set to
majik 0:964eb6a2ef00 2255 * write mode. For further information regarding Slave control, please
majik 0:964eb6a2ef00 2256 * refer to Registers 37 to 39 and immediately following.
majik 0:964eb6a2ef00 2257 * @param num Slave number (0-3)
majik 0:964eb6a2ef00 2258 * @param data Byte to write
majik 0:964eb6a2ef00 2259 * @see MPU6050_RA_I2C_SLV0_DO
majik 0:964eb6a2ef00 2260 */
majik 0:964eb6a2ef00 2261 void MPU6051::setSlaveOutputByte(uint8_t num, uint8_t data)
majik 0:964eb6a2ef00 2262 {
majik 0:964eb6a2ef00 2263 if (num > 3) return;
majik 0:964eb6a2ef00 2264 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
majik 0:964eb6a2ef00 2265 }
majik 0:964eb6a2ef00 2266
majik 0:964eb6a2ef00 2267 // I2C_MST_DELAY_CTRL register
majik 0:964eb6a2ef00 2268
majik 0:964eb6a2ef00 2269 /** Get external data shadow delay enabled status.
majik 0:964eb6a2ef00 2270 * This register is used to specify the timing of external sensor data
majik 0:964eb6a2ef00 2271 * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
majik 0:964eb6a2ef00 2272 * sensor data is delayed until all data has been received.
majik 0:964eb6a2ef00 2273 * @return Current external data shadow delay enabled status.
majik 0:964eb6a2ef00 2274 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
majik 0:964eb6a2ef00 2275 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
majik 0:964eb6a2ef00 2276 */
majik 0:964eb6a2ef00 2277 bool MPU6051::getExternalShadowDelayEnabled()
majik 0:964eb6a2ef00 2278 {
majik 0:964eb6a2ef00 2279 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
majik 0:964eb6a2ef00 2280 return buffer[0];
majik 0:964eb6a2ef00 2281 }
majik 0:964eb6a2ef00 2282 /** Set external data shadow delay enabled status.
majik 0:964eb6a2ef00 2283 * @param enabled New external data shadow delay enabled status.
majik 0:964eb6a2ef00 2284 * @see getExternalShadowDelayEnabled()
majik 0:964eb6a2ef00 2285 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
majik 0:964eb6a2ef00 2286 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
majik 0:964eb6a2ef00 2287 */
majik 0:964eb6a2ef00 2288 void MPU6051::setExternalShadowDelayEnabled(bool enabled)
majik 0:964eb6a2ef00 2289 {
majik 0:964eb6a2ef00 2290 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
majik 0:964eb6a2ef00 2291 }
majik 0:964eb6a2ef00 2292 /** Get slave delay enabled status.
majik 0:964eb6a2ef00 2293 * When a particular slave delay is enabled, the rate of access for the that
majik 0:964eb6a2ef00 2294 * slave device is reduced. When a slave's access rate is decreased relative to
majik 0:964eb6a2ef00 2295 * the Sample Rate, the slave is accessed every:
majik 0:964eb6a2ef00 2296 *
majik 0:964eb6a2ef00 2297 * 1 / (1 + I2C_MST_DLY) Samples
majik 0:964eb6a2ef00 2298 *
majik 0:964eb6a2ef00 2299 * This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
majik 0:964eb6a2ef00 2300 * and DLPF_CFG (register 26).
majik 0:964eb6a2ef00 2301 *
majik 0:964eb6a2ef00 2302 * For further information regarding I2C_MST_DLY, please refer to register 52.
majik 0:964eb6a2ef00 2303 * For further information regarding the Sample Rate, please refer to register 25.
majik 0:964eb6a2ef00 2304 *
majik 0:964eb6a2ef00 2305 * @param num Slave number (0-4)
majik 0:964eb6a2ef00 2306 * @return Current slave delay enabled status.
majik 0:964eb6a2ef00 2307 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
majik 0:964eb6a2ef00 2308 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
majik 0:964eb6a2ef00 2309 */
majik 0:964eb6a2ef00 2310 bool MPU6051::getSlaveDelayEnabled(uint8_t num)
majik 0:964eb6a2ef00 2311 {
majik 0:964eb6a2ef00 2312 // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
majik 0:964eb6a2ef00 2313 if (num > 4) return 0;
majik 0:964eb6a2ef00 2314 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
majik 0:964eb6a2ef00 2315 return buffer[0];
majik 0:964eb6a2ef00 2316 }
majik 0:964eb6a2ef00 2317 /** Set slave delay enabled status.
majik 0:964eb6a2ef00 2318 * @param num Slave number (0-4)
majik 0:964eb6a2ef00 2319 * @param enabled New slave delay enabled status.
majik 0:964eb6a2ef00 2320 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
majik 0:964eb6a2ef00 2321 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
majik 0:964eb6a2ef00 2322 */
majik 0:964eb6a2ef00 2323 void MPU6051::setSlaveDelayEnabled(uint8_t num, bool enabled)
majik 0:964eb6a2ef00 2324 {
majik 0:964eb6a2ef00 2325 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
majik 0:964eb6a2ef00 2326 }
majik 0:964eb6a2ef00 2327
majik 0:964eb6a2ef00 2328 // SIGNAL_PATH_RESET register
majik 0:964eb6a2ef00 2329
majik 0:964eb6a2ef00 2330 /** Reset gyroscope signal path.
majik 0:964eb6a2ef00 2331 * The reset will revert the signal path analog to digital converters and
majik 0:964eb6a2ef00 2332 * filters to their power up configurations.
majik 0:964eb6a2ef00 2333 * @see MPU6050_RA_SIGNAL_PATH_RESET
majik 0:964eb6a2ef00 2334 * @see MPU6050_PATHRESET_GYRO_RESET_BIT
majik 0:964eb6a2ef00 2335 */
majik 0:964eb6a2ef00 2336 void MPU6051::resetGyroscopePath()
majik 0:964eb6a2ef00 2337 {
majik 0:964eb6a2ef00 2338 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
majik 0:964eb6a2ef00 2339 }
majik 0:964eb6a2ef00 2340 /** Reset accelerometer signal path.
majik 0:964eb6a2ef00 2341 * The reset will revert the signal path analog to digital converters and
majik 0:964eb6a2ef00 2342 * filters to their power up configurations.
majik 0:964eb6a2ef00 2343 * @see MPU6050_RA_SIGNAL_PATH_RESET
majik 0:964eb6a2ef00 2344 * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
majik 0:964eb6a2ef00 2345 */
majik 0:964eb6a2ef00 2346 void MPU6051::resetAccelerometerPath()
majik 0:964eb6a2ef00 2347 {
majik 0:964eb6a2ef00 2348 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
majik 0:964eb6a2ef00 2349 }
majik 0:964eb6a2ef00 2350 /** Reset temperature sensor signal path.
majik 0:964eb6a2ef00 2351 * The reset will revert the signal path analog to digital converters and
majik 0:964eb6a2ef00 2352 * filters to their power up configurations.
majik 0:964eb6a2ef00 2353 * @see MPU6050_RA_SIGNAL_PATH_RESET
majik 0:964eb6a2ef00 2354 * @see MPU6050_PATHRESET_TEMP_RESET_BIT
majik 0:964eb6a2ef00 2355 */
majik 0:964eb6a2ef00 2356 void MPU6051::resetTemperaturePath()
majik 0:964eb6a2ef00 2357 {
majik 0:964eb6a2ef00 2358 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
majik 0:964eb6a2ef00 2359 }
majik 0:964eb6a2ef00 2360
majik 0:964eb6a2ef00 2361 // MOT_DETECT_CTRL register
majik 0:964eb6a2ef00 2362
majik 0:964eb6a2ef00 2363 /** Get accelerometer power-on delay.
majik 0:964eb6a2ef00 2364 * The accelerometer data path provides samples to the sensor registers, Motion
majik 0:964eb6a2ef00 2365 * detection, Zero Motion detection, and Free Fall detection modules. The
majik 0:964eb6a2ef00 2366 * signal path contains filters which must be flushed on wake-up with new
majik 0:964eb6a2ef00 2367 * samples before the detection modules begin operations. The default wake-up
majik 0:964eb6a2ef00 2368 * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
majik 0:964eb6a2ef00 2369 * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
majik 0:964eb6a2ef00 2370 * any value above zero unless instructed otherwise by InvenSense. Please refer
majik 0:964eb6a2ef00 2371 * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
majik 0:964eb6a2ef00 2372 * further information regarding the detection modules.
majik 0:964eb6a2ef00 2373 * @return Current accelerometer power-on delay
majik 0:964eb6a2ef00 2374 * @see MPU6050_RA_MOT_DETECT_CTRL
majik 0:964eb6a2ef00 2375 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
majik 0:964eb6a2ef00 2376 */
majik 0:964eb6a2ef00 2377 uint8_t MPU6051::getAccelerometerPowerOnDelay()
majik 0:964eb6a2ef00 2378 {
majik 0:964eb6a2ef00 2379 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
majik 0:964eb6a2ef00 2380 return buffer[0];
majik 0:964eb6a2ef00 2381 }
majik 0:964eb6a2ef00 2382 /** Set accelerometer power-on delay.
majik 0:964eb6a2ef00 2383 * @param delay New accelerometer power-on delay (0-3)
majik 0:964eb6a2ef00 2384 * @see getAccelerometerPowerOnDelay()
majik 0:964eb6a2ef00 2385 * @see MPU6050_RA_MOT_DETECT_CTRL
majik 0:964eb6a2ef00 2386 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
majik 0:964eb6a2ef00 2387 */
majik 0:964eb6a2ef00 2388 void MPU6051::setAccelerometerPowerOnDelay(uint8_t delay)
majik 0:964eb6a2ef00 2389 {
majik 0:964eb6a2ef00 2390 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
majik 0:964eb6a2ef00 2391 }
majik 0:964eb6a2ef00 2392 /** Get Free Fall detection counter decrement configuration.
majik 0:964eb6a2ef00 2393 * Detection is registered by the Free Fall detection module after accelerometer
majik 0:964eb6a2ef00 2394 * measurements meet their respective threshold conditions over a specified
majik 0:964eb6a2ef00 2395 * number of samples. When the threshold conditions are met, the corresponding
majik 0:964eb6a2ef00 2396 * detection counter increments by 1. The user may control the rate at which the
majik 0:964eb6a2ef00 2397 * detection counter decrements when the threshold condition is not met by
majik 0:964eb6a2ef00 2398 * configuring FF_COUNT. The decrement rate can be set according to the
majik 0:964eb6a2ef00 2399 * following table:
majik 0:964eb6a2ef00 2400 *
majik 0:964eb6a2ef00 2401 * <pre>
majik 0:964eb6a2ef00 2402 * FF_COUNT | Counter Decrement
majik 0:964eb6a2ef00 2403 * ---------+------------------
majik 0:964eb6a2ef00 2404 * 0 | Reset
majik 0:964eb6a2ef00 2405 * 1 | 1
majik 0:964eb6a2ef00 2406 * 2 | 2
majik 0:964eb6a2ef00 2407 * 3 | 4
majik 0:964eb6a2ef00 2408 * </pre>
majik 0:964eb6a2ef00 2409 *
majik 0:964eb6a2ef00 2410 * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
majik 0:964eb6a2ef00 2411 * reset the counter to 0. For further information on Free Fall detection,
majik 0:964eb6a2ef00 2412 * please refer to Registers 29 to 32.
majik 0:964eb6a2ef00 2413 *
majik 0:964eb6a2ef00 2414 * @return Current decrement configuration
majik 0:964eb6a2ef00 2415 * @see MPU6050_RA_MOT_DETECT_CTRL
majik 0:964eb6a2ef00 2416 * @see MPU6050_DETECT_FF_COUNT_BIT
majik 0:964eb6a2ef00 2417 */
majik 0:964eb6a2ef00 2418 uint8_t MPU6051::getFreefallDetectionCounterDecrement()
majik 0:964eb6a2ef00 2419 {
majik 0:964eb6a2ef00 2420 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
majik 0:964eb6a2ef00 2421 return buffer[0];
majik 0:964eb6a2ef00 2422 }
majik 0:964eb6a2ef00 2423 /** Set Free Fall detection counter decrement configuration.
majik 0:964eb6a2ef00 2424 * @param decrement New decrement configuration value
majik 0:964eb6a2ef00 2425 * @see getFreefallDetectionCounterDecrement()
majik 0:964eb6a2ef00 2426 * @see MPU6050_RA_MOT_DETECT_CTRL
majik 0:964eb6a2ef00 2427 * @see MPU6050_DETECT_FF_COUNT_BIT
majik 0:964eb6a2ef00 2428 */
majik 0:964eb6a2ef00 2429 void MPU6051::setFreefallDetectionCounterDecrement(uint8_t decrement)
majik 0:964eb6a2ef00 2430 {
majik 0:964eb6a2ef00 2431 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
majik 0:964eb6a2ef00 2432 }
majik 0:964eb6a2ef00 2433 /** Get Motion detection counter decrement configuration.
majik 0:964eb6a2ef00 2434 * Detection is registered by the Motion detection module after accelerometer
majik 0:964eb6a2ef00 2435 * measurements meet their respective threshold conditions over a specified
majik 0:964eb6a2ef00 2436 * number of samples. When the threshold conditions are met, the corresponding
majik 0:964eb6a2ef00 2437 * detection counter increments by 1. The user may control the rate at which the
majik 0:964eb6a2ef00 2438 * detection counter decrements when the threshold condition is not met by
majik 0:964eb6a2ef00 2439 * configuring MOT_COUNT. The decrement rate can be set according to the
majik 0:964eb6a2ef00 2440 * following table:
majik 0:964eb6a2ef00 2441 *
majik 0:964eb6a2ef00 2442 * <pre>
majik 0:964eb6a2ef00 2443 * MOT_COUNT | Counter Decrement
majik 0:964eb6a2ef00 2444 * ----------+------------------
majik 0:964eb6a2ef00 2445 * 0 | Reset
majik 0:964eb6a2ef00 2446 * 1 | 1
majik 0:964eb6a2ef00 2447 * 2 | 2
majik 0:964eb6a2ef00 2448 * 3 | 4
majik 0:964eb6a2ef00 2449 * </pre>
majik 0:964eb6a2ef00 2450 *
majik 0:964eb6a2ef00 2451 * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
majik 0:964eb6a2ef00 2452 * reset the counter to 0. For further information on Motion detection,
majik 0:964eb6a2ef00 2453 * please refer to Registers 29 to 32.
majik 0:964eb6a2ef00 2454 *
majik 0:964eb6a2ef00 2455 */
majik 0:964eb6a2ef00 2456 uint8_t MPU6051::getMotionDetectionCounterDecrement()
majik 0:964eb6a2ef00 2457 {
majik 0:964eb6a2ef00 2458 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
majik 0:964eb6a2ef00 2459 return buffer[0];
majik 0:964eb6a2ef00 2460 }
majik 0:964eb6a2ef00 2461 /** Set Motion detection counter decrement configuration.
majik 0:964eb6a2ef00 2462 * @param decrement New decrement configuration value
majik 0:964eb6a2ef00 2463 * @see getMotionDetectionCounterDecrement()
majik 0:964eb6a2ef00 2464 * @see MPU6050_RA_MOT_DETECT_CTRL
majik 0:964eb6a2ef00 2465 * @see MPU6050_DETECT_MOT_COUNT_BIT
majik 0:964eb6a2ef00 2466 */
majik 0:964eb6a2ef00 2467 void MPU6051::setMotionDetectionCounterDecrement(uint8_t decrement)
majik 0:964eb6a2ef00 2468 {
majik 0:964eb6a2ef00 2469 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
majik 0:964eb6a2ef00 2470 }
majik 0:964eb6a2ef00 2471
majik 0:964eb6a2ef00 2472 // USER_CTRL register
majik 0:964eb6a2ef00 2473
majik 0:964eb6a2ef00 2474 /** Get FIFO enabled status.
majik 0:964eb6a2ef00 2475 * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
majik 0:964eb6a2ef00 2476 * cannot be written to or read from while disabled. The FIFO buffer's state
majik 0:964eb6a2ef00 2477 * does not change unless the MPU-60X0 is power cycled.
majik 0:964eb6a2ef00 2478 * @return Current FIFO enabled status
majik 0:964eb6a2ef00 2479 * @see MPU6050_RA_USER_CTRL
majik 0:964eb6a2ef00 2480 * @see MPU6050_USERCTRL_FIFO_EN_BIT
majik 0:964eb6a2ef00 2481 */
majik 0:964eb6a2ef00 2482 bool MPU6051::getFIFOEnabled()
majik 0:964eb6a2ef00 2483 {
majik 0:964eb6a2ef00 2484 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
majik 0:964eb6a2ef00 2485 return buffer[0];
majik 0:964eb6a2ef00 2486 }
majik 0:964eb6a2ef00 2487 /** Set FIFO enabled status.
majik 0:964eb6a2ef00 2488 * @param enabled New FIFO enabled status
majik 0:964eb6a2ef00 2489 * @see getFIFOEnabled()
majik 0:964eb6a2ef00 2490 * @see MPU6050_RA_USER_CTRL
majik 0:964eb6a2ef00 2491 * @see MPU6050_USERCTRL_FIFO_EN_BIT
majik 0:964eb6a2ef00 2492 */
majik 0:964eb6a2ef00 2493 void MPU6051::setFIFOEnabled(bool enabled)
majik 0:964eb6a2ef00 2494 {
majik 0:964eb6a2ef00 2495 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
majik 0:964eb6a2ef00 2496 }
majik 0:964eb6a2ef00 2497 /** Get I2C Master Mode enabled status.
majik 0:964eb6a2ef00 2498 * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
majik 0:964eb6a2ef00 2499 * external sensor slave devices on the auxiliary I2C bus. When this bit is
majik 0:964eb6a2ef00 2500 * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
majik 0:964eb6a2ef00 2501 * driven by the primary I2C bus (SDA and SCL). This is a precondition to
majik 0:964eb6a2ef00 2502 * enabling Bypass Mode. For further information regarding Bypass Mode, please
majik 0:964eb6a2ef00 2503 * refer to Register 55.
majik 0:964eb6a2ef00 2504 * @return Current I2C Master Mode enabled status
majik 0:964eb6a2ef00 2505 * @see MPU6050_RA_USER_CTRL
majik 0:964eb6a2ef00 2506 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
majik 0:964eb6a2ef00 2507 */
majik 0:964eb6a2ef00 2508 bool MPU6051::getI2CMasterModeEnabled()
majik 0:964eb6a2ef00 2509 {
majik 0:964eb6a2ef00 2510 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
majik 0:964eb6a2ef00 2511 return buffer[0];
majik 0:964eb6a2ef00 2512 }
majik 0:964eb6a2ef00 2513 /** Set I2C Master Mode enabled status.
majik 0:964eb6a2ef00 2514 * @param enabled New I2C Master Mode enabled status
majik 0:964eb6a2ef00 2515 * @see getI2CMasterModeEnabled()
majik 0:964eb6a2ef00 2516 * @see MPU6050_RA_USER_CTRL
majik 0:964eb6a2ef00 2517 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
majik 0:964eb6a2ef00 2518 */
majik 0:964eb6a2ef00 2519 void MPU6051::setI2CMasterModeEnabled(bool enabled)
majik 0:964eb6a2ef00 2520 {
majik 0:964eb6a2ef00 2521 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
majik 0:964eb6a2ef00 2522 }
majik 0:964eb6a2ef00 2523 /** Switch from I2C to SPI mode (MPU-6000 only)
majik 0:964eb6a2ef00 2524 * If this is set, the primary SPI interface will be enabled in place of the
majik 0:964eb6a2ef00 2525 * disabled primary I2C interface.
majik 0:964eb6a2ef00 2526 */
majik 0:964eb6a2ef00 2527 void MPU6051::switchSPIEnabled(bool enabled)
majik 0:964eb6a2ef00 2528 {
majik 0:964eb6a2ef00 2529 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
majik 0:964eb6a2ef00 2530 }
majik 0:964eb6a2ef00 2531 /** Reset the FIFO.
majik 0:964eb6a2ef00 2532 * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
majik 0:964eb6a2ef00 2533 * bit automatically clears to 0 after the reset has been triggered.
majik 0:964eb6a2ef00 2534 * @see MPU6050_RA_USER_CTRL
majik 0:964eb6a2ef00 2535 * @see MPU6050_USERCTRL_FIFO_RESET_BIT
majik 0:964eb6a2ef00 2536 */
majik 0:964eb6a2ef00 2537 void MPU6051::resetFIFO()
majik 0:964eb6a2ef00 2538 {
majik 0:964eb6a2ef00 2539 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
majik 0:964eb6a2ef00 2540 }
majik 0:964eb6a2ef00 2541 /** Reset the I2C Master.
majik 0:964eb6a2ef00 2542 * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
majik 0:964eb6a2ef00 2543 * This bit automatically clears to 0 after the reset has been triggered.
majik 0:964eb6a2ef00 2544 * @see MPU6050_RA_USER_CTRL
majik 0:964eb6a2ef00 2545 * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
majik 0:964eb6a2ef00 2546 */
majik 0:964eb6a2ef00 2547 void MPU6051::resetI2CMaster()
majik 0:964eb6a2ef00 2548 {
majik 0:964eb6a2ef00 2549 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
majik 0:964eb6a2ef00 2550 }
majik 0:964eb6a2ef00 2551 /** Reset all sensor registers and signal paths.
majik 0:964eb6a2ef00 2552 * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
majik 0:964eb6a2ef00 2553 * accelerometers, and temperature sensor). This operation will also clear the
majik 0:964eb6a2ef00 2554 * sensor registers. This bit automatically clears to 0 after the reset has been
majik 0:964eb6a2ef00 2555 * triggered.
majik 0:964eb6a2ef00 2556 *
majik 0:964eb6a2ef00 2557 * When resetting only the signal path (and not the sensor registers), please
majik 0:964eb6a2ef00 2558 * use Register 104, SIGNAL_PATH_RESET.
majik 0:964eb6a2ef00 2559 *
majik 0:964eb6a2ef00 2560 * @see MPU6050_RA_USER_CTRL
majik 0:964eb6a2ef00 2561 * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
majik 0:964eb6a2ef00 2562 */
majik 0:964eb6a2ef00 2563 void MPU6051::resetSensors()
majik 0:964eb6a2ef00 2564 {
majik 0:964eb6a2ef00 2565 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
majik 0:964eb6a2ef00 2566 }
majik 0:964eb6a2ef00 2567
majik 0:964eb6a2ef00 2568 // PWR_MGMT_1 register
majik 0:964eb6a2ef00 2569
majik 0:964eb6a2ef00 2570 /** Trigger a full device reset.
majik 0:964eb6a2ef00 2571 * A small delay of ~50ms may be desirable after triggering a reset.
majik 0:964eb6a2ef00 2572 * @see MPU6050_RA_PWR_MGMT_1
majik 0:964eb6a2ef00 2573 * @see MPU6050_PWR1_DEVICE_RESET_BIT
majik 0:964eb6a2ef00 2574 */
majik 0:964eb6a2ef00 2575 void MPU6051::reset()
majik 0:964eb6a2ef00 2576 {
majik 0:964eb6a2ef00 2577 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
majik 0:964eb6a2ef00 2578 }
majik 0:964eb6a2ef00 2579 /** Get sleep mode status.
majik 0:964eb6a2ef00 2580 * Setting the SLEEP bit in the register puts the device into very low power
majik 0:964eb6a2ef00 2581 * sleep mode. In this mode, only the serial interface and internal registers
majik 0:964eb6a2ef00 2582 * remain active, allowing for a very low standby current. Clearing this bit
majik 0:964eb6a2ef00 2583 * puts the device back into normal mode. To save power, the individual standby
majik 0:964eb6a2ef00 2584 * selections for each of the gyros should be used if any gyro axis is not used
majik 0:964eb6a2ef00 2585 * by the application.
majik 0:964eb6a2ef00 2586 * @return Current sleep mode enabled status
majik 0:964eb6a2ef00 2587 * @see MPU6050_RA_PWR_MGMT_1
majik 0:964eb6a2ef00 2588 * @see MPU6050_PWR1_SLEEP_BIT
majik 0:964eb6a2ef00 2589 */
majik 0:964eb6a2ef00 2590 bool MPU6051::getSleepEnabled()
majik 0:964eb6a2ef00 2591 {
majik 0:964eb6a2ef00 2592 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
majik 0:964eb6a2ef00 2593 return buffer[0];
majik 0:964eb6a2ef00 2594 }
majik 0:964eb6a2ef00 2595 /** Set sleep mode status.
majik 0:964eb6a2ef00 2596 * @param enabled New sleep mode enabled status
majik 0:964eb6a2ef00 2597 * @see getSleepEnabled()
majik 0:964eb6a2ef00 2598 * @see MPU6050_RA_PWR_MGMT_1
majik 0:964eb6a2ef00 2599 * @see MPU6050_PWR1_SLEEP_BIT
majik 0:964eb6a2ef00 2600 */
majik 0:964eb6a2ef00 2601 void MPU6051::setSleepEnabled(bool enabled)
majik 0:964eb6a2ef00 2602 {
majik 0:964eb6a2ef00 2603 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
majik 0:964eb6a2ef00 2604 }
majik 0:964eb6a2ef00 2605 /** Get wake cycle enabled status.
majik 0:964eb6a2ef00 2606 * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
majik 0:964eb6a2ef00 2607 * between sleep mode and waking up to take a single sample of data from active
majik 0:964eb6a2ef00 2608 * sensors at a rate determined by LP_WAKE_CTRL (register 108).
majik 0:964eb6a2ef00 2609 * @return Current sleep mode enabled status
majik 0:964eb6a2ef00 2610 * @see MPU6050_RA_PWR_MGMT_1
majik 0:964eb6a2ef00 2611 * @see MPU6050_PWR1_CYCLE_BIT
majik 0:964eb6a2ef00 2612 */
majik 0:964eb6a2ef00 2613 bool MPU6051::getWakeCycleEnabled()
majik 0:964eb6a2ef00 2614 {
majik 0:964eb6a2ef00 2615 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
majik 0:964eb6a2ef00 2616 return buffer[0];
majik 0:964eb6a2ef00 2617 }
majik 0:964eb6a2ef00 2618 /** Set wake cycle enabled status.
majik 0:964eb6a2ef00 2619 * @param enabled New sleep mode enabled status
majik 0:964eb6a2ef00 2620 * @see getWakeCycleEnabled()
majik 0:964eb6a2ef00 2621 * @see MPU6050_RA_PWR_MGMT_1
majik 0:964eb6a2ef00 2622 * @see MPU6050_PWR1_CYCLE_BIT
majik 0:964eb6a2ef00 2623 */
majik 0:964eb6a2ef00 2624 void MPU6051::setWakeCycleEnabled(bool enabled)
majik 0:964eb6a2ef00 2625 {
majik 0:964eb6a2ef00 2626 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
majik 0:964eb6a2ef00 2627 }
majik 0:964eb6a2ef00 2628 /** Get temperature sensor enabled status.
majik 0:964eb6a2ef00 2629 * Control the usage of the internal temperature sensor.
majik 0:964eb6a2ef00 2630 *
majik 0:964eb6a2ef00 2631 * Note: this register stores the *disabled* value, but for consistency with the
majik 0:964eb6a2ef00 2632 * rest of the code, the function is named and used with standard true/false
majik 0:964eb6a2ef00 2633 * values to indicate whether the sensor is enabled or disabled, respectively.
majik 0:964eb6a2ef00 2634 *
majik 0:964eb6a2ef00 2635 * @return Current temperature sensor enabled status
majik 0:964eb6a2ef00 2636 * @see MPU6050_RA_PWR_MGMT_1
majik 0:964eb6a2ef00 2637 * @see MPU6050_PWR1_TEMP_DIS_BIT
majik 0:964eb6a2ef00 2638 */
majik 0:964eb6a2ef00 2639 bool MPU6051::getTempSensorEnabled()
majik 0:964eb6a2ef00 2640 {
majik 0:964eb6a2ef00 2641 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
majik 0:964eb6a2ef00 2642 return buffer[0] == 0; // 1 is actually disabled here
majik 0:964eb6a2ef00 2643 }
majik 0:964eb6a2ef00 2644 /** Set temperature sensor enabled status.
majik 0:964eb6a2ef00 2645 * Note: this register stores the *disabled* value, but for consistency with the
majik 0:964eb6a2ef00 2646 * rest of the code, the function is named and used with standard true/false
majik 0:964eb6a2ef00 2647 * values to indicate whether the sensor is enabled or disabled, respectively.
majik 0:964eb6a2ef00 2648 *
majik 0:964eb6a2ef00 2649 * @param enabled New temperature sensor enabled status
majik 0:964eb6a2ef00 2650 * @see getTempSensorEnabled()
majik 0:964eb6a2ef00 2651 * @see MPU6050_RA_PWR_MGMT_1
majik 0:964eb6a2ef00 2652 * @see MPU6050_PWR1_TEMP_DIS_BIT
majik 0:964eb6a2ef00 2653 */
majik 0:964eb6a2ef00 2654 void MPU6051::setTempSensorEnabled(bool enabled)
majik 0:964eb6a2ef00 2655 {
majik 0:964eb6a2ef00 2656 // 1 is actually disabled here
majik 0:964eb6a2ef00 2657 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
majik 0:964eb6a2ef00 2658 }
majik 0:964eb6a2ef00 2659 /** Get clock source setting.
majik 0:964eb6a2ef00 2660 * @return Current clock source setting
majik 0:964eb6a2ef00 2661 * @see MPU6050_RA_PWR_MGMT_1
majik 0:964eb6a2ef00 2662 * @see MPU6050_PWR1_CLKSEL_BIT
majik 0:964eb6a2ef00 2663 * @see MPU6050_PWR1_CLKSEL_LENGTH
majik 0:964eb6a2ef00 2664 */
majik 0:964eb6a2ef00 2665 uint8_t MPU6051::getClockSource()
majik 0:964eb6a2ef00 2666 {
majik 0:964eb6a2ef00 2667 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
majik 0:964eb6a2ef00 2668 return buffer[0];
majik 0:964eb6a2ef00 2669 }
majik 0:964eb6a2ef00 2670 /** Set clock source setting.
majik 0:964eb6a2ef00 2671 * An internal 8MHz oscillator, gyroscope based clock, or external sources can
majik 0:964eb6a2ef00 2672 * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
majik 0:964eb6a2ef00 2673 * or an external source is chosen as the clock source, the MPU-60X0 can operate
majik 0:964eb6a2ef00 2674 * in low power modes with the gyroscopes disabled.
majik 0:964eb6a2ef00 2675 *
majik 0:964eb6a2ef00 2676 * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
majik 0:964eb6a2ef00 2677 * However, it is highly recommended that the device be configured to use one of
majik 0:964eb6a2ef00 2678 * the gyroscopes (or an external clock source) as the clock reference for
majik 0:964eb6a2ef00 2679 * improved stability. The clock source can be selected according to the following table:
majik 0:964eb6a2ef00 2680 *
majik 0:964eb6a2ef00 2681 * <pre>
majik 0:964eb6a2ef00 2682 * CLK_SEL | Clock Source
majik 0:964eb6a2ef00 2683 * --------+--------------------------------------
majik 0:964eb6a2ef00 2684 * 0 | Internal oscillator
majik 0:964eb6a2ef00 2685 * 1 | PLL with X Gyro reference
majik 0:964eb6a2ef00 2686 * 2 | PLL with Y Gyro reference
majik 0:964eb6a2ef00 2687 * 3 | PLL with Z Gyro reference
majik 0:964eb6a2ef00 2688 * 4 | PLL with external 32.768kHz reference
majik 0:964eb6a2ef00 2689 * 5 | PLL with external 19.2MHz reference
majik 0:964eb6a2ef00 2690 * 6 | Reserved
majik 0:964eb6a2ef00 2691 * 7 | Stops the clock and keeps the timing generator in reset
majik 0:964eb6a2ef00 2692 * </pre>
majik 0:964eb6a2ef00 2693 *
majik 0:964eb6a2ef00 2694 * @param source New clock source setting
majik 0:964eb6a2ef00 2695 * @see getClockSource()
majik 0:964eb6a2ef00 2696 * @see MPU6050_RA_PWR_MGMT_1
majik 0:964eb6a2ef00 2697 * @see MPU6050_PWR1_CLKSEL_BIT
majik 0:964eb6a2ef00 2698 * @see MPU6050_PWR1_CLKSEL_LENGTH
majik 0:964eb6a2ef00 2699 */
majik 0:964eb6a2ef00 2700 void MPU6051::setClockSource(uint8_t source)
majik 0:964eb6a2ef00 2701 {
majik 0:964eb6a2ef00 2702 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
majik 0:964eb6a2ef00 2703 }
majik 0:964eb6a2ef00 2704
majik 0:964eb6a2ef00 2705 // PWR_MGMT_2 register
majik 0:964eb6a2ef00 2706
majik 0:964eb6a2ef00 2707 /** Get wake frequency in Accel-Only Low Power Mode.
majik 0:964eb6a2ef00 2708 * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
majik 0:964eb6a2ef00 2709 * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
majik 0:964eb6a2ef00 2710 * the device will power off all devices except for the primary I2C interface,
majik 0:964eb6a2ef00 2711 * waking only the accelerometer at fixed intervals to take a single
majik 0:964eb6a2ef00 2712 * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
majik 0:964eb6a2ef00 2713 * as shown below:
majik 0:964eb6a2ef00 2714 *
majik 0:964eb6a2ef00 2715 * <pre>
majik 0:964eb6a2ef00 2716 * LP_WAKE_CTRL | Wake-up Frequency
majik 0:964eb6a2ef00 2717 * -------------+------------------
majik 0:964eb6a2ef00 2718 * 0 | 1.25 Hz
majik 0:964eb6a2ef00 2719 * 1 | 2.5 Hz
majik 0:964eb6a2ef00 2720 * 2 | 5 Hz
majik 0:964eb6a2ef00 2721 * 3 | 10 Hz
majik 0:964eb6a2ef00 2722 * <pre>
majik 0:964eb6a2ef00 2723 *
majik 0:964eb6a2ef00 2724 * For further information regarding the MPU-60X0's power modes, please refer to
majik 0:964eb6a2ef00 2725 * Register 107.
majik 0:964eb6a2ef00 2726 *
majik 0:964eb6a2ef00 2727 * @return Current wake frequency
majik 0:964eb6a2ef00 2728 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2729 */
majik 0:964eb6a2ef00 2730 uint8_t MPU6051::getWakeFrequency()
majik 0:964eb6a2ef00 2731 {
majik 0:964eb6a2ef00 2732 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
majik 0:964eb6a2ef00 2733 return buffer[0];
majik 0:964eb6a2ef00 2734 }
majik 0:964eb6a2ef00 2735 /** Set wake frequency in Accel-Only Low Power Mode.
majik 0:964eb6a2ef00 2736 * @param frequency New wake frequency
majik 0:964eb6a2ef00 2737 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2738 */
majik 0:964eb6a2ef00 2739 void MPU6051::setWakeFrequency(uint8_t frequency)
majik 0:964eb6a2ef00 2740 {
majik 0:964eb6a2ef00 2741 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
majik 0:964eb6a2ef00 2742 }
majik 0:964eb6a2ef00 2743
majik 0:964eb6a2ef00 2744 /** Get X-axis accelerometer standby enabled status.
majik 0:964eb6a2ef00 2745 * If enabled, the X-axis will not gather or report data (or use power).
majik 0:964eb6a2ef00 2746 * @return Current X-axis standby enabled status
majik 0:964eb6a2ef00 2747 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2748 * @see MPU6050_PWR2_STBY_XA_BIT
majik 0:964eb6a2ef00 2749 */
majik 0:964eb6a2ef00 2750 bool MPU6051::getStandbyXAccelEnabled()
majik 0:964eb6a2ef00 2751 {
majik 0:964eb6a2ef00 2752 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
majik 0:964eb6a2ef00 2753 return buffer[0];
majik 0:964eb6a2ef00 2754 }
majik 0:964eb6a2ef00 2755 /** Set X-axis accelerometer standby enabled status.
majik 0:964eb6a2ef00 2756 * @param New X-axis standby enabled status
majik 0:964eb6a2ef00 2757 * @see getStandbyXAccelEnabled()
majik 0:964eb6a2ef00 2758 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2759 * @see MPU6050_PWR2_STBY_XA_BIT
majik 0:964eb6a2ef00 2760 */
majik 0:964eb6a2ef00 2761 void MPU6051::setStandbyXAccelEnabled(bool enabled)
majik 0:964eb6a2ef00 2762 {
majik 0:964eb6a2ef00 2763 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
majik 0:964eb6a2ef00 2764 }
majik 0:964eb6a2ef00 2765 /** Get Y-axis accelerometer standby enabled status.
majik 0:964eb6a2ef00 2766 * If enabled, the Y-axis will not gather or report data (or use power).
majik 0:964eb6a2ef00 2767 * @return Current Y-axis standby enabled status
majik 0:964eb6a2ef00 2768 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2769 * @see MPU6050_PWR2_STBY_YA_BIT
majik 0:964eb6a2ef00 2770 */
majik 0:964eb6a2ef00 2771 bool MPU6051::getStandbyYAccelEnabled()
majik 0:964eb6a2ef00 2772 {
majik 0:964eb6a2ef00 2773 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
majik 0:964eb6a2ef00 2774 return buffer[0];
majik 0:964eb6a2ef00 2775 }
majik 0:964eb6a2ef00 2776 /** Set Y-axis accelerometer standby enabled status.
majik 0:964eb6a2ef00 2777 * @param New Y-axis standby enabled status
majik 0:964eb6a2ef00 2778 * @see getStandbyYAccelEnabled()
majik 0:964eb6a2ef00 2779 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2780 * @see MPU6050_PWR2_STBY_YA_BIT
majik 0:964eb6a2ef00 2781 */
majik 0:964eb6a2ef00 2782 void MPU6051::setStandbyYAccelEnabled(bool enabled)
majik 0:964eb6a2ef00 2783 {
majik 0:964eb6a2ef00 2784 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
majik 0:964eb6a2ef00 2785 }
majik 0:964eb6a2ef00 2786 /** Get Z-axis accelerometer standby enabled status.
majik 0:964eb6a2ef00 2787 * If enabled, the Z-axis will not gather or report data (or use power).
majik 0:964eb6a2ef00 2788 * @return Current Z-axis standby enabled status
majik 0:964eb6a2ef00 2789 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2790 * @see MPU6050_PWR2_STBY_ZA_BIT
majik 0:964eb6a2ef00 2791 */
majik 0:964eb6a2ef00 2792 bool MPU6051::getStandbyZAccelEnabled()
majik 0:964eb6a2ef00 2793 {
majik 0:964eb6a2ef00 2794 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
majik 0:964eb6a2ef00 2795 return buffer[0];
majik 0:964eb6a2ef00 2796 }
majik 0:964eb6a2ef00 2797 /** Set Z-axis accelerometer standby enabled status.
majik 0:964eb6a2ef00 2798 * @param New Z-axis standby enabled status
majik 0:964eb6a2ef00 2799 * @see getStandbyZAccelEnabled()
majik 0:964eb6a2ef00 2800 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2801 * @see MPU6050_PWR2_STBY_ZA_BIT
majik 0:964eb6a2ef00 2802 */
majik 0:964eb6a2ef00 2803 void MPU6051::setStandbyZAccelEnabled(bool enabled)
majik 0:964eb6a2ef00 2804 {
majik 0:964eb6a2ef00 2805 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
majik 0:964eb6a2ef00 2806 }
majik 0:964eb6a2ef00 2807 /** Get X-axis gyroscope standby enabled status.
majik 0:964eb6a2ef00 2808 * If enabled, the X-axis will not gather or report data (or use power).
majik 0:964eb6a2ef00 2809 * @return Current X-axis standby enabled status
majik 0:964eb6a2ef00 2810 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2811 * @see MPU6050_PWR2_STBY_XG_BIT
majik 0:964eb6a2ef00 2812 */
majik 0:964eb6a2ef00 2813 bool MPU6051::getStandbyXGyroEnabled()
majik 0:964eb6a2ef00 2814 {
majik 0:964eb6a2ef00 2815 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
majik 0:964eb6a2ef00 2816 return buffer[0];
majik 0:964eb6a2ef00 2817 }
majik 0:964eb6a2ef00 2818 /** Set X-axis gyroscope standby enabled status.
majik 0:964eb6a2ef00 2819 * @param New X-axis standby enabled status
majik 0:964eb6a2ef00 2820 * @see getStandbyXGyroEnabled()
majik 0:964eb6a2ef00 2821 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2822 * @see MPU6050_PWR2_STBY_XG_BIT
majik 0:964eb6a2ef00 2823 */
majik 0:964eb6a2ef00 2824 void MPU6051::setStandbyXGyroEnabled(bool enabled)
majik 0:964eb6a2ef00 2825 {
majik 0:964eb6a2ef00 2826 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
majik 0:964eb6a2ef00 2827 }
majik 0:964eb6a2ef00 2828 /** Get Y-axis gyroscope standby enabled status.
majik 0:964eb6a2ef00 2829 * If enabled, the Y-axis will not gather or report data (or use power).
majik 0:964eb6a2ef00 2830 * @return Current Y-axis standby enabled status
majik 0:964eb6a2ef00 2831 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2832 * @see MPU6050_PWR2_STBY_YG_BIT
majik 0:964eb6a2ef00 2833 */
majik 0:964eb6a2ef00 2834 bool MPU6051::getStandbyYGyroEnabled()
majik 0:964eb6a2ef00 2835 {
majik 0:964eb6a2ef00 2836 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
majik 0:964eb6a2ef00 2837 return buffer[0];
majik 0:964eb6a2ef00 2838 }
majik 0:964eb6a2ef00 2839 /** Set Y-axis gyroscope standby enabled status.
majik 0:964eb6a2ef00 2840 * @param New Y-axis standby enabled status
majik 0:964eb6a2ef00 2841 * @see getStandbyYGyroEnabled()
majik 0:964eb6a2ef00 2842 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2843 * @see MPU6050_PWR2_STBY_YG_BIT
majik 0:964eb6a2ef00 2844 */
majik 0:964eb6a2ef00 2845 void MPU6051::setStandbyYGyroEnabled(bool enabled)
majik 0:964eb6a2ef00 2846 {
majik 0:964eb6a2ef00 2847 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
majik 0:964eb6a2ef00 2848 }
majik 0:964eb6a2ef00 2849 /** Get Z-axis gyroscope standby enabled status.
majik 0:964eb6a2ef00 2850 * If enabled, the Z-axis will not gather or report data (or use power).
majik 0:964eb6a2ef00 2851 * @return Current Z-axis standby enabled status
majik 0:964eb6a2ef00 2852 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2853 * @see MPU6050_PWR2_STBY_ZG_BIT
majik 0:964eb6a2ef00 2854 */
majik 0:964eb6a2ef00 2855 bool MPU6051::getStandbyZGyroEnabled()
majik 0:964eb6a2ef00 2856 {
majik 0:964eb6a2ef00 2857 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
majik 0:964eb6a2ef00 2858 return buffer[0];
majik 0:964eb6a2ef00 2859 }
majik 0:964eb6a2ef00 2860 /** Set Z-axis gyroscope standby enabled status.
majik 0:964eb6a2ef00 2861 * @param New Z-axis standby enabled status
majik 0:964eb6a2ef00 2862 * @see getStandbyZGyroEnabled()
majik 0:964eb6a2ef00 2863 * @see MPU6050_RA_PWR_MGMT_2
majik 0:964eb6a2ef00 2864 * @see MPU6050_PWR2_STBY_ZG_BIT
majik 0:964eb6a2ef00 2865 */
majik 0:964eb6a2ef00 2866 void MPU6051::setStandbyZGyroEnabled(bool enabled)
majik 0:964eb6a2ef00 2867 {
majik 0:964eb6a2ef00 2868 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
majik 0:964eb6a2ef00 2869 }
majik 0:964eb6a2ef00 2870
majik 0:964eb6a2ef00 2871 // FIFO_COUNT* registers
majik 0:964eb6a2ef00 2872
majik 0:964eb6a2ef00 2873 /** Get current FIFO buffer size.
majik 0:964eb6a2ef00 2874 * This value indicates the number of bytes stored in the FIFO buffer. This
majik 0:964eb6a2ef00 2875 * number is in turn the number of bytes that can be read from the FIFO buffer
majik 0:964eb6a2ef00 2876 * and it is directly proportional to the number of samples available given the
majik 0:964eb6a2ef00 2877 * set of sensor data bound to be stored in the FIFO (register 35 and 36).
majik 0:964eb6a2ef00 2878 * @return Current FIFO buffer size
majik 0:964eb6a2ef00 2879 */
majik 0:964eb6a2ef00 2880 uint16_t MPU6051::getFIFOCount()
majik 0:964eb6a2ef00 2881 {
majik 0:964eb6a2ef00 2882 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
majik 0:964eb6a2ef00 2883 return (((uint16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 2884 }
majik 0:964eb6a2ef00 2885
majik 0:964eb6a2ef00 2886 // FIFO_R_W register
majik 0:964eb6a2ef00 2887
majik 0:964eb6a2ef00 2888 /** Get byte from FIFO buffer.
majik 0:964eb6a2ef00 2889 * This register is used to read and write data from the FIFO buffer. Data is
majik 0:964eb6a2ef00 2890 * written to the FIFO in order of register number (from lowest to highest). If
majik 0:964eb6a2ef00 2891 * all the FIFO enable flags (see below) are enabled and all External Sensor
majik 0:964eb6a2ef00 2892 * Data registers (Registers 73 to 96) are associated with a Slave device, the
majik 0:964eb6a2ef00 2893 * contents of registers 59 through 96 will be written in order at the Sample
majik 0:964eb6a2ef00 2894 * Rate.
majik 0:964eb6a2ef00 2895 *
majik 0:964eb6a2ef00 2896 * The contents of the sensor data registers (Registers 59 to 96) are written
majik 0:964eb6a2ef00 2897 * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
majik 0:964eb6a2ef00 2898 * in FIFO_EN (Register 35). An additional flag for the sensor data registers
majik 0:964eb6a2ef00 2899 * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
majik 0:964eb6a2ef00 2900 *
majik 0:964eb6a2ef00 2901 * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
majik 0:964eb6a2ef00 2902 * automatically set to 1. This bit is located in INT_STATUS (Register 58).
majik 0:964eb6a2ef00 2903 * When the FIFO buffer has overflowed, the oldest data will be lost and new
majik 0:964eb6a2ef00 2904 * data will be written to the FIFO.
majik 0:964eb6a2ef00 2905 *
majik 0:964eb6a2ef00 2906 * If the FIFO buffer is empty, reading this register will return the last byte
majik 0:964eb6a2ef00 2907 * that was previously read from the FIFO until new data is available. The user
majik 0:964eb6a2ef00 2908 * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
majik 0:964eb6a2ef00 2909 * empty.
majik 0:964eb6a2ef00 2910 *
majik 0:964eb6a2ef00 2911 * @return Byte from FIFO buffer
majik 0:964eb6a2ef00 2912 */
majik 0:964eb6a2ef00 2913 uint8_t MPU6051::getFIFOByte()
majik 0:964eb6a2ef00 2914 {
majik 0:964eb6a2ef00 2915 i2Cdev.readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
majik 0:964eb6a2ef00 2916 return buffer[0];
majik 0:964eb6a2ef00 2917 }
majik 0:964eb6a2ef00 2918 void MPU6051::getFIFOBytes(uint8_t *data, uint8_t length)
majik 0:964eb6a2ef00 2919 {
majik 0:964eb6a2ef00 2920 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
majik 0:964eb6a2ef00 2921 }
majik 0:964eb6a2ef00 2922 /** Write byte to FIFO buffer.
majik 0:964eb6a2ef00 2923 * @see getFIFOByte()
majik 0:964eb6a2ef00 2924 * @see MPU6050_RA_FIFO_R_W
majik 0:964eb6a2ef00 2925 */
majik 0:964eb6a2ef00 2926 void MPU6051::setFIFOByte(uint8_t data)
majik 0:964eb6a2ef00 2927 {
majik 0:964eb6a2ef00 2928 i2Cdev.writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
majik 0:964eb6a2ef00 2929 }
majik 0:964eb6a2ef00 2930
majik 0:964eb6a2ef00 2931 // WHO_AM_I register
majik 0:964eb6a2ef00 2932
majik 0:964eb6a2ef00 2933 /** Get Device ID.
majik 0:964eb6a2ef00 2934 * This register is used to verify the identity of the device (0b110100, 0x34).
majik 0:964eb6a2ef00 2935 * @return Device ID (6 bits only! should be 0x34)
majik 0:964eb6a2ef00 2936 * @see MPU6050_RA_WHO_AM_I
majik 0:964eb6a2ef00 2937 * @see MPU6050_WHO_AM_I_BIT
majik 0:964eb6a2ef00 2938 * @see MPU6050_WHO_AM_I_LENGTH
majik 0:964eb6a2ef00 2939 */
majik 0:964eb6a2ef00 2940 uint8_t MPU6051::getDeviceID()
majik 0:964eb6a2ef00 2941 {
majik 0:964eb6a2ef00 2942 i2Cdev.readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
majik 0:964eb6a2ef00 2943 return buffer[0];
majik 0:964eb6a2ef00 2944 }
majik 0:964eb6a2ef00 2945 /** Set Device ID.
majik 0:964eb6a2ef00 2946 * Write a new ID into the WHO_AM_I register (no idea why this should ever be
majik 0:964eb6a2ef00 2947 * necessary though).
majik 0:964eb6a2ef00 2948 * @param id New device ID to set.
majik 0:964eb6a2ef00 2949 * @see getDeviceID()
majik 0:964eb6a2ef00 2950 * @see MPU6050_RA_WHO_AM_I
majik 0:964eb6a2ef00 2951 * @see MPU6050_WHO_AM_I_BIT
majik 0:964eb6a2ef00 2952 * @see MPU6050_WHO_AM_I_LENGTH
majik 0:964eb6a2ef00 2953 */
majik 0:964eb6a2ef00 2954 void MPU6051::setDeviceID(uint8_t id)
majik 0:964eb6a2ef00 2955 {
majik 0:964eb6a2ef00 2956 i2Cdev.writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
majik 0:964eb6a2ef00 2957 }
majik 0:964eb6a2ef00 2958
majik 0:964eb6a2ef00 2959 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
majik 0:964eb6a2ef00 2960
majik 0:964eb6a2ef00 2961 // XG_OFFS_TC register
majik 0:964eb6a2ef00 2962
majik 0:964eb6a2ef00 2963 uint8_t MPU6051::getOTPBankValid()
majik 0:964eb6a2ef00 2964 {
majik 0:964eb6a2ef00 2965 i2Cdev.readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
majik 0:964eb6a2ef00 2966 return buffer[0];
majik 0:964eb6a2ef00 2967 }
majik 0:964eb6a2ef00 2968 void MPU6051::setOTPBankValid(bool enabled)
majik 0:964eb6a2ef00 2969 {
majik 0:964eb6a2ef00 2970 i2Cdev.writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
majik 0:964eb6a2ef00 2971 }
majik 0:964eb6a2ef00 2972 int8_t MPU6051::getXGyroOffset()
majik 0:964eb6a2ef00 2973 {
majik 0:964eb6a2ef00 2974 i2Cdev.readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
majik 0:964eb6a2ef00 2975 return buffer[0];
majik 0:964eb6a2ef00 2976 }
majik 0:964eb6a2ef00 2977 void MPU6051::setXGyroOffset(int8_t offset)
majik 0:964eb6a2ef00 2978 {
majik 0:964eb6a2ef00 2979 i2Cdev.writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
majik 0:964eb6a2ef00 2980 }
majik 0:964eb6a2ef00 2981
majik 0:964eb6a2ef00 2982 // YG_OFFS_TC register
majik 0:964eb6a2ef00 2983
majik 0:964eb6a2ef00 2984 int8_t MPU6051::getYGyroOffset()
majik 0:964eb6a2ef00 2985 {
majik 0:964eb6a2ef00 2986 i2Cdev.readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
majik 0:964eb6a2ef00 2987 return buffer[0];
majik 0:964eb6a2ef00 2988 }
majik 0:964eb6a2ef00 2989 void MPU6051::setYGyroOffset(int8_t offset)
majik 0:964eb6a2ef00 2990 {
majik 0:964eb6a2ef00 2991 i2Cdev.writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
majik 0:964eb6a2ef00 2992 }
majik 0:964eb6a2ef00 2993
majik 0:964eb6a2ef00 2994 // ZG_OFFS_TC register
majik 0:964eb6a2ef00 2995
majik 0:964eb6a2ef00 2996 int8_t MPU6051::getZGyroOffset()
majik 0:964eb6a2ef00 2997 {
majik 0:964eb6a2ef00 2998 i2Cdev.readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
majik 0:964eb6a2ef00 2999 return buffer[0];
majik 0:964eb6a2ef00 3000 }
majik 0:964eb6a2ef00 3001 void MPU6051::setZGyroOffset(int8_t offset)
majik 0:964eb6a2ef00 3002 {
majik 0:964eb6a2ef00 3003 i2Cdev.writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
majik 0:964eb6a2ef00 3004 }
majik 0:964eb6a2ef00 3005
majik 0:964eb6a2ef00 3006 // X_FINE_GAIN register
majik 0:964eb6a2ef00 3007
majik 0:964eb6a2ef00 3008 int8_t MPU6051::getXFineGain()
majik 0:964eb6a2ef00 3009 {
majik 0:964eb6a2ef00 3010 i2Cdev.readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
majik 0:964eb6a2ef00 3011 return buffer[0];
majik 0:964eb6a2ef00 3012 }
majik 0:964eb6a2ef00 3013 void MPU6051::setXFineGain(int8_t gain)
majik 0:964eb6a2ef00 3014 {
majik 0:964eb6a2ef00 3015 i2Cdev.writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
majik 0:964eb6a2ef00 3016 }
majik 0:964eb6a2ef00 3017
majik 0:964eb6a2ef00 3018 // Y_FINE_GAIN register
majik 0:964eb6a2ef00 3019
majik 0:964eb6a2ef00 3020 int8_t MPU6051::getYFineGain()
majik 0:964eb6a2ef00 3021 {
majik 0:964eb6a2ef00 3022 i2Cdev.readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
majik 0:964eb6a2ef00 3023 return buffer[0];
majik 0:964eb6a2ef00 3024 }
majik 0:964eb6a2ef00 3025 void MPU6051::setYFineGain(int8_t gain)
majik 0:964eb6a2ef00 3026 {
majik 0:964eb6a2ef00 3027 i2Cdev.writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
majik 0:964eb6a2ef00 3028 }
majik 0:964eb6a2ef00 3029
majik 0:964eb6a2ef00 3030 // Z_FINE_GAIN register
majik 0:964eb6a2ef00 3031
majik 0:964eb6a2ef00 3032 int8_t MPU6051::getZFineGain()
majik 0:964eb6a2ef00 3033 {
majik 0:964eb6a2ef00 3034 i2Cdev.readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
majik 0:964eb6a2ef00 3035 return buffer[0];
majik 0:964eb6a2ef00 3036 }
majik 0:964eb6a2ef00 3037 void MPU6051::setZFineGain(int8_t gain)
majik 0:964eb6a2ef00 3038 {
majik 0:964eb6a2ef00 3039 i2Cdev.writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
majik 0:964eb6a2ef00 3040 }
majik 0:964eb6a2ef00 3041
majik 0:964eb6a2ef00 3042 // XA_OFFS_* registers
majik 0:964eb6a2ef00 3043
majik 0:964eb6a2ef00 3044 int16_t MPU6051::getXAccelOffset()
majik 0:964eb6a2ef00 3045 {
majik 0:964eb6a2ef00 3046 i2Cdev.readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
majik 0:964eb6a2ef00 3047 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 3048 }
majik 0:964eb6a2ef00 3049 void MPU6051::setXAccelOffset(int16_t offset)
majik 0:964eb6a2ef00 3050 {
majik 0:964eb6a2ef00 3051 i2Cdev.writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
majik 0:964eb6a2ef00 3052 }
majik 0:964eb6a2ef00 3053
majik 0:964eb6a2ef00 3054 // YA_OFFS_* register
majik 0:964eb6a2ef00 3055
majik 0:964eb6a2ef00 3056 int16_t MPU6051::getYAccelOffset()
majik 0:964eb6a2ef00 3057 {
majik 0:964eb6a2ef00 3058 i2Cdev.readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
majik 0:964eb6a2ef00 3059 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 3060 }
majik 0:964eb6a2ef00 3061 void MPU6051::setYAccelOffset(int16_t offset)
majik 0:964eb6a2ef00 3062 {
majik 0:964eb6a2ef00 3063 i2Cdev.writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
majik 0:964eb6a2ef00 3064 }
majik 0:964eb6a2ef00 3065
majik 0:964eb6a2ef00 3066 // ZA_OFFS_* register
majik 0:964eb6a2ef00 3067
majik 0:964eb6a2ef00 3068 int16_t MPU6051::getZAccelOffset()
majik 0:964eb6a2ef00 3069 {
majik 0:964eb6a2ef00 3070 i2Cdev.readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
majik 0:964eb6a2ef00 3071 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 3072 }
majik 0:964eb6a2ef00 3073 void MPU6051::setZAccelOffset(int16_t offset)
majik 0:964eb6a2ef00 3074 {
majik 0:964eb6a2ef00 3075 i2Cdev.writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
majik 0:964eb6a2ef00 3076 }
majik 0:964eb6a2ef00 3077
majik 0:964eb6a2ef00 3078 // XG_OFFS_USR* registers
majik 0:964eb6a2ef00 3079
majik 0:964eb6a2ef00 3080 int16_t MPU6051::getXGyroOffsetUser()
majik 0:964eb6a2ef00 3081 {
majik 0:964eb6a2ef00 3082 i2Cdev.readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
majik 0:964eb6a2ef00 3083 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 3084 }
majik 0:964eb6a2ef00 3085 void MPU6051::setXGyroOffsetUser(int16_t offset)
majik 0:964eb6a2ef00 3086 {
majik 0:964eb6a2ef00 3087 i2Cdev.writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
majik 0:964eb6a2ef00 3088 }
majik 0:964eb6a2ef00 3089
majik 0:964eb6a2ef00 3090 // YG_OFFS_USR* register
majik 0:964eb6a2ef00 3091
majik 0:964eb6a2ef00 3092 int16_t MPU6051::getYGyroOffsetUser()
majik 0:964eb6a2ef00 3093 {
majik 0:964eb6a2ef00 3094 i2Cdev.readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
majik 0:964eb6a2ef00 3095 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 3096 }
majik 0:964eb6a2ef00 3097 void MPU6051::setYGyroOffsetUser(int16_t offset)
majik 0:964eb6a2ef00 3098 {
majik 0:964eb6a2ef00 3099 i2Cdev.writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
majik 0:964eb6a2ef00 3100 }
majik 0:964eb6a2ef00 3101
majik 0:964eb6a2ef00 3102 // ZG_OFFS_USR* register
majik 0:964eb6a2ef00 3103
majik 0:964eb6a2ef00 3104 int16_t MPU6051::getZGyroOffsetUser()
majik 0:964eb6a2ef00 3105 {
majik 0:964eb6a2ef00 3106 i2Cdev.readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
majik 0:964eb6a2ef00 3107 return (((int16_t)buffer[0]) << 8) | buffer[1];
majik 0:964eb6a2ef00 3108 }
majik 0:964eb6a2ef00 3109 void MPU6051::setZGyroOffsetUser(int16_t offset)
majik 0:964eb6a2ef00 3110 {
majik 0:964eb6a2ef00 3111 i2Cdev.writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
majik 0:964eb6a2ef00 3112 }
majik 0:964eb6a2ef00 3113
majik 0:964eb6a2ef00 3114 // INT_ENABLE register (DMP functions)
majik 0:964eb6a2ef00 3115
majik 0:964eb6a2ef00 3116 bool MPU6051::getIntPLLReadyEnabled()
majik 0:964eb6a2ef00 3117 {
majik 0:964eb6a2ef00 3118 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
majik 0:964eb6a2ef00 3119 return buffer[0];
majik 0:964eb6a2ef00 3120 }
majik 0:964eb6a2ef00 3121 void MPU6051::setIntPLLReadyEnabled(bool enabled)
majik 0:964eb6a2ef00 3122 {
majik 0:964eb6a2ef00 3123 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
majik 0:964eb6a2ef00 3124 }
majik 0:964eb6a2ef00 3125 bool MPU6051::getIntDMPEnabled()
majik 0:964eb6a2ef00 3126 {
majik 0:964eb6a2ef00 3127 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
majik 0:964eb6a2ef00 3128 return buffer[0];
majik 0:964eb6a2ef00 3129 }
majik 0:964eb6a2ef00 3130 void MPU6051::setIntDMPEnabled(bool enabled)
majik 0:964eb6a2ef00 3131 {
majik 0:964eb6a2ef00 3132 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
majik 0:964eb6a2ef00 3133 }
majik 0:964eb6a2ef00 3134
majik 0:964eb6a2ef00 3135 // DMP_INT_STATUS
majik 0:964eb6a2ef00 3136
majik 0:964eb6a2ef00 3137 bool MPU6051::getDMPInt5Status()
majik 0:964eb6a2ef00 3138 {
majik 0:964eb6a2ef00 3139 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
majik 0:964eb6a2ef00 3140 return buffer[0];
majik 0:964eb6a2ef00 3141 }
majik 0:964eb6a2ef00 3142 bool MPU6051::getDMPInt4Status()
majik 0:964eb6a2ef00 3143 {
majik 0:964eb6a2ef00 3144 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
majik 0:964eb6a2ef00 3145 return buffer[0];
majik 0:964eb6a2ef00 3146 }
majik 0:964eb6a2ef00 3147 bool MPU6051::getDMPInt3Status()
majik 0:964eb6a2ef00 3148 {
majik 0:964eb6a2ef00 3149 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
majik 0:964eb6a2ef00 3150 return buffer[0];
majik 0:964eb6a2ef00 3151 }
majik 0:964eb6a2ef00 3152 bool MPU6051::getDMPInt2Status()
majik 0:964eb6a2ef00 3153 {
majik 0:964eb6a2ef00 3154 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
majik 0:964eb6a2ef00 3155 return buffer[0];
majik 0:964eb6a2ef00 3156 }
majik 0:964eb6a2ef00 3157 bool MPU6051::getDMPInt1Status()
majik 0:964eb6a2ef00 3158 {
majik 0:964eb6a2ef00 3159 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
majik 0:964eb6a2ef00 3160 return buffer[0];
majik 0:964eb6a2ef00 3161 }
majik 0:964eb6a2ef00 3162 bool MPU6051::getDMPInt0Status()
majik 0:964eb6a2ef00 3163 {
majik 0:964eb6a2ef00 3164 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
majik 0:964eb6a2ef00 3165 return buffer[0];
majik 0:964eb6a2ef00 3166 }
majik 0:964eb6a2ef00 3167
majik 0:964eb6a2ef00 3168 // INT_STATUS register (DMP functions)
majik 0:964eb6a2ef00 3169
majik 0:964eb6a2ef00 3170 bool MPU6051::getIntPLLReadyStatus()
majik 0:964eb6a2ef00 3171 {
majik 0:964eb6a2ef00 3172 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
majik 0:964eb6a2ef00 3173 return buffer[0];
majik 0:964eb6a2ef00 3174 }
majik 0:964eb6a2ef00 3175 bool MPU6051::getIntDMPStatus()
majik 0:964eb6a2ef00 3176 {
majik 0:964eb6a2ef00 3177 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
majik 0:964eb6a2ef00 3178 return buffer[0];
majik 0:964eb6a2ef00 3179 }
majik 0:964eb6a2ef00 3180
majik 0:964eb6a2ef00 3181 // USER_CTRL register (DMP functions)
majik 0:964eb6a2ef00 3182
majik 0:964eb6a2ef00 3183 bool MPU6051::getDMPEnabled()
majik 0:964eb6a2ef00 3184 {
majik 0:964eb6a2ef00 3185 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
majik 0:964eb6a2ef00 3186 return buffer[0];
majik 0:964eb6a2ef00 3187 }
majik 0:964eb6a2ef00 3188 void MPU6051::setDMPEnabled(bool enabled)
majik 0:964eb6a2ef00 3189 {
majik 0:964eb6a2ef00 3190 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
majik 0:964eb6a2ef00 3191 }
majik 0:964eb6a2ef00 3192 void MPU6051::resetDMP()
majik 0:964eb6a2ef00 3193 {
majik 0:964eb6a2ef00 3194 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
majik 0:964eb6a2ef00 3195 }
majik 0:964eb6a2ef00 3196
majik 0:964eb6a2ef00 3197 // BANK_SEL register
majik 0:964eb6a2ef00 3198
majik 0:964eb6a2ef00 3199 void MPU6051::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank)
majik 0:964eb6a2ef00 3200 {
majik 0:964eb6a2ef00 3201 bank &= 0x1F;
majik 0:964eb6a2ef00 3202 if (userBank) bank |= 0x20;
majik 0:964eb6a2ef00 3203 if (prefetchEnabled) bank |= 0x40;
majik 0:964eb6a2ef00 3204 i2Cdev.writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
majik 0:964eb6a2ef00 3205 }
majik 0:964eb6a2ef00 3206
majik 0:964eb6a2ef00 3207 // MEM_START_ADDR register
majik 0:964eb6a2ef00 3208
majik 0:964eb6a2ef00 3209 void MPU6051::setMemoryStartAddress(uint8_t address)
majik 0:964eb6a2ef00 3210 {
majik 0:964eb6a2ef00 3211 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
majik 0:964eb6a2ef00 3212 }
majik 0:964eb6a2ef00 3213
majik 0:964eb6a2ef00 3214 // MEM_R_W register
majik 0:964eb6a2ef00 3215
majik 0:964eb6a2ef00 3216 uint8_t MPU6051::readMemoryByte()
majik 0:964eb6a2ef00 3217 {
majik 0:964eb6a2ef00 3218 i2Cdev.readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
majik 0:964eb6a2ef00 3219 return buffer[0];
majik 0:964eb6a2ef00 3220 }
majik 0:964eb6a2ef00 3221 void MPU6051::writeMemoryByte(uint8_t data)
majik 0:964eb6a2ef00 3222 {
majik 0:964eb6a2ef00 3223 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
majik 0:964eb6a2ef00 3224 }
majik 0:964eb6a2ef00 3225 void MPU6051::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address)
majik 0:964eb6a2ef00 3226 {
majik 0:964eb6a2ef00 3227 setMemoryBank(bank);
majik 0:964eb6a2ef00 3228 setMemoryStartAddress(address);
majik 0:964eb6a2ef00 3229 uint8_t chunkSize;
majik 0:964eb6a2ef00 3230 for (uint16_t i = 0; i < dataSize;) {
majik 0:964eb6a2ef00 3231 // determine correct chunk size according to bank position and data size
majik 0:964eb6a2ef00 3232 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
majik 0:964eb6a2ef00 3233
majik 0:964eb6a2ef00 3234 // make sure we don't go past the data size
majik 0:964eb6a2ef00 3235 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
majik 0:964eb6a2ef00 3236
majik 0:964eb6a2ef00 3237 // make sure this chunk doesn't go past the bank boundary (256 bytes)
majik 0:964eb6a2ef00 3238 if (chunkSize > 256 - address) chunkSize = 256 - address;
majik 0:964eb6a2ef00 3239
majik 0:964eb6a2ef00 3240 // read the chunk of data as specified
majik 0:964eb6a2ef00 3241 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
majik 0:964eb6a2ef00 3242
majik 0:964eb6a2ef00 3243 // increase byte index by [chunkSize]
majik 0:964eb6a2ef00 3244 i += chunkSize;
majik 0:964eb6a2ef00 3245
majik 0:964eb6a2ef00 3246 // uint8_t automatically wraps to 0 at 256
majik 0:964eb6a2ef00 3247 address += chunkSize;
majik 0:964eb6a2ef00 3248
majik 0:964eb6a2ef00 3249 // if we aren't done, update bank (if necessary) and address
majik 0:964eb6a2ef00 3250 if (i < dataSize) {
majik 0:964eb6a2ef00 3251 if (address == 0) bank++;
majik 0:964eb6a2ef00 3252 setMemoryBank(bank);
majik 0:964eb6a2ef00 3253 setMemoryStartAddress(address);
majik 0:964eb6a2ef00 3254 }
majik 0:964eb6a2ef00 3255 }
majik 0:964eb6a2ef00 3256 }
majik 0:964eb6a2ef00 3257 bool MPU6051::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem)
majik 0:964eb6a2ef00 3258 {
majik 0:964eb6a2ef00 3259 setMemoryBank(bank);
majik 0:964eb6a2ef00 3260 setMemoryStartAddress(address);
majik 0:964eb6a2ef00 3261 uint8_t chunkSize;
majik 0:964eb6a2ef00 3262 uint8_t *verifyBuffer = NULL;
majik 0:964eb6a2ef00 3263 uint8_t *progBuffer = NULL;
majik 0:964eb6a2ef00 3264 uint16_t i;
majik 0:964eb6a2ef00 3265 uint8_t j;
majik 0:964eb6a2ef00 3266 if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
majik 0:964eb6a2ef00 3267 if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
majik 0:964eb6a2ef00 3268 for (i = 0; i < dataSize;) {
majik 0:964eb6a2ef00 3269 // determine correct chunk size according to bank position and data size
majik 0:964eb6a2ef00 3270 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
majik 0:964eb6a2ef00 3271
majik 0:964eb6a2ef00 3272 // make sure we don't go past the data size
majik 0:964eb6a2ef00 3273 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
majik 0:964eb6a2ef00 3274
majik 0:964eb6a2ef00 3275 // make sure this chunk doesn't go past the bank boundary (256 bytes)
majik 0:964eb6a2ef00 3276 if (chunkSize > 256 - address) chunkSize = 256 - address;
majik 0:964eb6a2ef00 3277
majik 0:964eb6a2ef00 3278 if (useProgMem) {
majik 0:964eb6a2ef00 3279 // write the chunk of data as specified
majik 0:964eb6a2ef00 3280 for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
majik 0:964eb6a2ef00 3281 } else {
majik 0:964eb6a2ef00 3282 // write the chunk of data as specified
majik 0:964eb6a2ef00 3283 progBuffer = (uint8_t *)data + i;
majik 0:964eb6a2ef00 3284 }
majik 0:964eb6a2ef00 3285
majik 0:964eb6a2ef00 3286 i2Cdev.writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
majik 0:964eb6a2ef00 3287
majik 0:964eb6a2ef00 3288 // verify data if needed
majik 0:964eb6a2ef00 3289 if (verify && verifyBuffer) {
majik 0:964eb6a2ef00 3290 setMemoryBank(bank);
majik 0:964eb6a2ef00 3291 setMemoryStartAddress(address);
majik 0:964eb6a2ef00 3292 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
majik 0:964eb6a2ef00 3293 if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
majik 0:964eb6a2ef00 3294 /*Serial.print("Block write verification error, bank ");
majik 0:964eb6a2ef00 3295 Serial.print(bank, DEC);
majik 0:964eb6a2ef00 3296 Serial.print(", address ");
majik 0:964eb6a2ef00 3297 Serial.print(address, DEC);
majik 0:964eb6a2ef00 3298 Serial.print("!\nExpected:");
majik 0:964eb6a2ef00 3299 for (j = 0; j < chunkSize; j++) {
majik 0:964eb6a2ef00 3300 Serial.print(" 0x");
majik 0:964eb6a2ef00 3301 if (progBuffer[j] < 16) Serial.print("0");
majik 0:964eb6a2ef00 3302 Serial.print(progBuffer[j], HEX);
majik 0:964eb6a2ef00 3303 }
majik 0:964eb6a2ef00 3304 Serial.print("\nReceived:");
majik 0:964eb6a2ef00 3305 for (uint8_t j = 0; j < chunkSize; j++) {
majik 0:964eb6a2ef00 3306 Serial.print(" 0x");
majik 0:964eb6a2ef00 3307 if (verifyBuffer[i + j] < 16) Serial.print("0");
majik 0:964eb6a2ef00 3308 Serial.print(verifyBuffer[i + j], HEX);
majik 0:964eb6a2ef00 3309 }
majik 0:964eb6a2ef00 3310 Serial.print("\n");*/
majik 0:964eb6a2ef00 3311 free(verifyBuffer);
majik 0:964eb6a2ef00 3312 if (useProgMem) free(progBuffer);
majik 0:964eb6a2ef00 3313 return false; // uh oh.
majik 0:964eb6a2ef00 3314 }
majik 0:964eb6a2ef00 3315 }
majik 0:964eb6a2ef00 3316
majik 0:964eb6a2ef00 3317 // increase byte index by [chunkSize]
majik 0:964eb6a2ef00 3318 i += chunkSize;
majik 0:964eb6a2ef00 3319
majik 0:964eb6a2ef00 3320 // uint8_t automatically wraps to 0 at 256
majik 0:964eb6a2ef00 3321 address += chunkSize;
majik 0:964eb6a2ef00 3322
majik 0:964eb6a2ef00 3323 // if we aren't done, update bank (if necessary) and address
majik 0:964eb6a2ef00 3324 if (i < dataSize) {
majik 0:964eb6a2ef00 3325 if (address == 0) bank++;
majik 0:964eb6a2ef00 3326 setMemoryBank(bank);
majik 0:964eb6a2ef00 3327 setMemoryStartAddress(address);
majik 0:964eb6a2ef00 3328 }
majik 0:964eb6a2ef00 3329 }
majik 0:964eb6a2ef00 3330 if (verify) free(verifyBuffer);
majik 0:964eb6a2ef00 3331 if (useProgMem) free(progBuffer);
majik 0:964eb6a2ef00 3332 return true;
majik 0:964eb6a2ef00 3333 }
majik 0:964eb6a2ef00 3334 bool MPU6051::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify)
majik 0:964eb6a2ef00 3335 {
majik 0:964eb6a2ef00 3336 return writeMemoryBlock(data, dataSize, bank, address, verify, true);
majik 0:964eb6a2ef00 3337 }
majik 0:964eb6a2ef00 3338 bool MPU6051::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem)
majik 0:964eb6a2ef00 3339 {
majik 0:964eb6a2ef00 3340 uint8_t success, special;
majik 0:964eb6a2ef00 3341 uint8_t *progBuffer = NULL;
majik 0:964eb6a2ef00 3342 uint16_t i, j;
majik 0:964eb6a2ef00 3343 if (useProgMem) {
majik 0:964eb6a2ef00 3344 progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
majik 0:964eb6a2ef00 3345 }
majik 0:964eb6a2ef00 3346
majik 0:964eb6a2ef00 3347 // config set data is a long string of blocks with the following structure:
majik 0:964eb6a2ef00 3348 // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
majik 0:964eb6a2ef00 3349 uint8_t bank, offset, length;
majik 0:964eb6a2ef00 3350 for (i = 0; i < dataSize;) {
majik 0:964eb6a2ef00 3351 if (useProgMem) {
majik 0:964eb6a2ef00 3352 bank = pgm_read_byte(data + i++);
majik 0:964eb6a2ef00 3353 offset = pgm_read_byte(data + i++);
majik 0:964eb6a2ef00 3354 length = pgm_read_byte(data + i++);
majik 0:964eb6a2ef00 3355 } else {
majik 0:964eb6a2ef00 3356 bank = data[i++];
majik 0:964eb6a2ef00 3357 offset = data[i++];
majik 0:964eb6a2ef00 3358 length = data[i++];
majik 0:964eb6a2ef00 3359 }
majik 0:964eb6a2ef00 3360
majik 0:964eb6a2ef00 3361 // write data or perform special action
majik 0:964eb6a2ef00 3362 if (length > 0) {
majik 0:964eb6a2ef00 3363 // regular block of data to write
majik 0:964eb6a2ef00 3364 /*Serial.print("Writing config block to bank ");
majik 0:964eb6a2ef00 3365 Serial.print(bank);
majik 0:964eb6a2ef00 3366 Serial.print(", offset ");
majik 0:964eb6a2ef00 3367 Serial.print(offset);
majik 0:964eb6a2ef00 3368 Serial.print(", length=");
majik 0:964eb6a2ef00 3369 Serial.println(length);*/
majik 0:964eb6a2ef00 3370 if (useProgMem) {
majik 0:964eb6a2ef00 3371 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
majik 0:964eb6a2ef00 3372 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
majik 0:964eb6a2ef00 3373 } else {
majik 0:964eb6a2ef00 3374 progBuffer = (uint8_t *)data + i;
majik 0:964eb6a2ef00 3375 }
majik 0:964eb6a2ef00 3376 success = writeMemoryBlock(progBuffer, length, bank, offset, true);
majik 0:964eb6a2ef00 3377 i += length;
majik 0:964eb6a2ef00 3378 } else {
majik 0:964eb6a2ef00 3379 // special instruction
majik 0:964eb6a2ef00 3380 // NOTE: this kind of behavior (what and when to do certain things)
majik 0:964eb6a2ef00 3381 // is totally undocumented. This code is in here based on observed
majik 0:964eb6a2ef00 3382 // behavior only, and exactly why (or even whether) it has to be here
majik 0:964eb6a2ef00 3383 // is anybody's guess for now.
majik 0:964eb6a2ef00 3384 if (useProgMem) {
majik 0:964eb6a2ef00 3385 special = pgm_read_byte(data + i++);
majik 0:964eb6a2ef00 3386 } else {
majik 0:964eb6a2ef00 3387 special = data[i++];
majik 0:964eb6a2ef00 3388 }
majik 0:964eb6a2ef00 3389 /*Serial.print("Special command code ");
majik 0:964eb6a2ef00 3390 Serial.print(special, HEX);
majik 0:964eb6a2ef00 3391 Serial.println(" found...");*/
majik 0:964eb6a2ef00 3392 if (special == 0x01) {
majik 0:964eb6a2ef00 3393 // enable DMP-related interrupts
majik 0:964eb6a2ef00 3394
majik 0:964eb6a2ef00 3395 //setIntZeroMotionEnabled(true);
majik 0:964eb6a2ef00 3396 //setIntFIFOBufferOverflowEnabled(true);
majik 0:964eb6a2ef00 3397 //setIntDMPEnabled(true);
majik 0:964eb6a2ef00 3398 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation
majik 0:964eb6a2ef00 3399
majik 0:964eb6a2ef00 3400 success = true;
majik 0:964eb6a2ef00 3401 } else {
majik 0:964eb6a2ef00 3402 // unknown special command
majik 0:964eb6a2ef00 3403 success = false;
majik 0:964eb6a2ef00 3404 }
majik 0:964eb6a2ef00 3405 }
majik 0:964eb6a2ef00 3406
majik 0:964eb6a2ef00 3407 if (!success) {
majik 0:964eb6a2ef00 3408 if (useProgMem) free(progBuffer);
majik 0:964eb6a2ef00 3409 return false; // uh oh
majik 0:964eb6a2ef00 3410 }
majik 0:964eb6a2ef00 3411 }
majik 0:964eb6a2ef00 3412 if (useProgMem) free(progBuffer);
majik 0:964eb6a2ef00 3413 return true;
majik 0:964eb6a2ef00 3414 }
majik 0:964eb6a2ef00 3415 bool MPU6051::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize)
majik 0:964eb6a2ef00 3416 {
majik 0:964eb6a2ef00 3417 return writeDMPConfigurationSet(data, dataSize, false);
majik 0:964eb6a2ef00 3418 }
majik 0:964eb6a2ef00 3419
majik 0:964eb6a2ef00 3420 // DMP_CFG_1 register
majik 0:964eb6a2ef00 3421
majik 0:964eb6a2ef00 3422 uint8_t MPU6051::getDMPConfig1()
majik 0:964eb6a2ef00 3423 {
majik 0:964eb6a2ef00 3424 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
majik 0:964eb6a2ef00 3425 return buffer[0];
majik 0:964eb6a2ef00 3426 }
majik 0:964eb6a2ef00 3427 void MPU6051::setDMPConfig1(uint8_t config)
majik 0:964eb6a2ef00 3428 {
majik 0:964eb6a2ef00 3429 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
majik 0:964eb6a2ef00 3430 }
majik 0:964eb6a2ef00 3431
majik 0:964eb6a2ef00 3432 // DMP_CFG_2 register
majik 0:964eb6a2ef00 3433
majik 0:964eb6a2ef00 3434 uint8_t MPU6051::getDMPConfig2()
majik 0:964eb6a2ef00 3435 {
majik 0:964eb6a2ef00 3436 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
majik 0:964eb6a2ef00 3437 return buffer[0];
majik 0:964eb6a2ef00 3438 }
majik 0:964eb6a2ef00 3439 void MPU6051::setDMPConfig2(uint8_t config)
majik 0:964eb6a2ef00 3440 {
majik 0:964eb6a2ef00 3441 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
majik 0:964eb6a2ef00 3442 }