NOT FINISHED YET!!! My first try to get a self built fully working Quadrocopter based on an mbed, a self built frame and some other more or less cheap parts.
main.cpp
- Committer:
- maetugr
- Date:
- 2013-06-24
- Revision:
- 38:ff95fd524c9e
- Parent:
- 37:34917f7c10ae
- Child:
- 39:9fd3f4439978
File content as of revision 38:ff95fd524c9e:
#include "mbed.h" // Standard Library #include "LED.h" // LEDs framework for blinking ;) #include "PC.h" // Serial Port via USB by Roland Elmiger for debugging with Terminal (driver needed: https://mbed.org/media/downloads/drivers/mbedWinSerial_16466.exe) #include "L3G4200D.h" // Gyro (Gyroscope) #include "ADXL345.h" // Acc (Accelerometer) #include "HMC5883.h" // Comp (Compass) #include "BMP085_old.h" // Alt (Altitude sensor) #include "RC_Channel.h" // RemoteControl Channels with PPM #include "Servo_PWM.h" // Motor PPM using PwmOut #include "PID.h" // PID Library by Aaron Berk #include "IMU_Filter.h" // Class to calculate position angles #include "Mixer.h" // Class to calculate motorspeeds from Angles, Regulation and RC-Signals #define RATE 0.002 // speed of the interrupt for Sensors and PID #define PPM_FREQU 495 // Hz Frequency of PPM Signal for ESCs (maximum <500Hz) #define RC_SENSITIVITY 30 // maximal angle from horizontal that the PID is aming for #define YAWSPEED 0.2 // maximal speed of yaw rotation in degree per Rate #define INTEGRAL_MAX 300 // RC #define AILERON 0 #define ELEVATOR 1 #define RUDDER 2 #define THROTTLE 3 // Axes #define ROLL 0 #define PITCH 1 #define YAW 2 #define PC_CONNECTED // decoment if you want to debug per USB/Bluetooth and your PC // Global variables bool armed = false; // this variable is for security (when false no motor rotates any more) bool RC_present = false; // this variable shows if an RC is present float dt = 0; float time_for_dt = 0; float dt_read_sensors = 0; float time_read_sensors = 0; float controller_value[] = {0,0,0}; // The calculated answer form the Controller float RC_angle[] = {0,0,0}; // Angle of the RC Sticks, to steer the QC float RC_yaw_adding; // temporary variable to take the desired yaw adjustment float P = 4.0; // PID values float I = 0; float D = 0.1; float PY = 0; // PID values for YAW float IY = 0; float DY = 0; Timer GlobalTimer; // global time to calculate processing speed Ticker Dutycycler; // timecontrolled interrupt for exact timed control loop // Initialisation of hardware (see includes for more info) LED LEDs; #ifdef PC_CONNECTED //PC pc(USBTX, USBRX, 115200); // USB PC pc(p9, p10, 115200); // Bluetooth #endif L3G4200D Gyro(p28, p27); ADXL345 Acc(p28, p27); HMC5883 Comp(p28, p27); BMP085_old Alt(p28, p27); RC_Channel RC[] = {RC_Channel(p5,1), RC_Channel(p6,2), RC_Channel(p8,4), RC_Channel(p7,3)}; // no p19/p20 ! Servo_PWM ESC[] = {Servo_PWM(p21,PPM_FREQU), Servo_PWM(p22,PPM_FREQU), Servo_PWM(p23,PPM_FREQU), Servo_PWM(p24,PPM_FREQU)}; // p21 - p26 only because PWM needed! IMU_Filter IMU; // (don't write () after constructor for no arguments!) Mixer MIX(1); // 0 for +-Formation, 1 for X-Formation PID Controller[] = {PID(P, I, D, INTEGRAL_MAX), PID(P, I, D, INTEGRAL_MAX), PID(PY, IY, DY, INTEGRAL_MAX)}; // 0:X:Roll 1:Y:Pitch 2:Z:Yaw void dutycycle() // method which is called by the Ticker Dutycycler every RATE seconds { time_read_sensors = GlobalTimer.read(); // start time measure for sensors // read data from sensors // ATTENTION! the I2C option repeated true is important because otherwise interrupts while bus communications cause crashes Gyro.read(); Acc.read(); //Comp.read(); // TODO: not every loop every sensor? altitude not that important //Alt.Update(); // TODO needs very long to read because of waits //pc.printf("%6.1f,%6.1f,%6.1f,%6.1f,%6.1f,%6.1f\r\n", Gyro.data[0], Gyro.data[1], Gyro.data[2], Acc.data[0], Acc.data[1], Acc.data[2]); // meassure dt for the filter dt = GlobalTimer.read() - time_for_dt; // time in us since last loop time_for_dt = GlobalTimer.read(); // set new time for next measurement IMU.compute(dt, Gyro.data, Acc.data); //pc.printf("%f,%f,%f,%3.5fs,%3.5fs\r\n", IMU.angle[0], IMU.angle[1], IMU.angle[2], dt, dt_read_sensors); if(RC[AILERON].read() == -100 || RC[ELEVATOR].read() == -100 || RC[RUDDER].read() == -100 || RC[THROTTLE].read() == -100) RC_present = false; else RC_present = true; // Arming / disarming if(RC[THROTTLE].read() < 20 && RC[RUDDER].read() > 850) { armed = true; RC_angle[YAW] = IMU.angle[YAW]; } if((RC[THROTTLE].read() < 30 && RC[RUDDER].read() < 30) || !RC_present) { armed = false; } // RC Angle ROLL-PITCH-Part for(int i=0;i<2;i++) { // calculate new angle we want the QC to have if (RC_present) RC_angle[i] = (RC[i].read()-500)*RC_SENSITIVITY/500.0; else RC_angle[i] = 0; } // RC Angle YAW-Part if (RC_present && RC[THROTTLE].read() > 20) RC_yaw_adding = (RC[RUDDER].read()-500)*YAWSPEED/500; else RC_yaw_adding = 0; while(RC_angle[YAW] + RC_yaw_adding < -180 || RC_angle[YAW] + RC_yaw_adding > 180) { // make shure it's in the cycle -180 to 180 if(RC_angle[YAW] + RC_yaw_adding < -180) RC_yaw_adding += 360; if(RC_angle[YAW] + RC_yaw_adding > 180) RC_yaw_adding -= 360; } RC_angle[YAW] += RC_yaw_adding; // for yaw angle it's integrated // PID controlling for(int i=0;i<2;i++) { Controller[i].setIntegrate(armed); // only integrate in controller when armed, so the value is not totally odd from not flying controller_value[i] = Controller[i].compute(RC_angle[i], IMU.angle[i]); // give the controller the actual angle and get his advice to correct } Controller[YAW].setIntegrate(armed); // same for YAW if (abs(RC_angle[YAW] - IMU.angle[YAW]) > 180) // for YAW a special calculation because of range -180 to 180 if (RC_angle[YAW] > IMU.angle[YAW]) controller_value[YAW] = Controller[YAW].compute(RC_angle[YAW] - 360, IMU.angle[YAW]); else controller_value[YAW] = Controller[YAW].compute(RC_angle[YAW] + 360, IMU.angle[YAW]); else controller_value[YAW] = Controller[YAW].compute(RC_angle[YAW], IMU.angle[YAW]); if (armed) // for SECURITY! { MIX.compute(RC[THROTTLE].read(), controller_value); // let the Mixer compute motorspeeds based on throttle and controller output for(int i=0;i<4;i++) // Set new motorspeeds ESC[i] = (int)MIX.Motor_speed[i]; } else { for(int i=0;i<4;i++) // for security reason, set every motor to zero speed ESC[i] = 0; } pc.printf("%d,%f,%f, %f,%f,%f, %f,%f,%f, %f,%f,%f, %f,%f,%f,%f\r\n", armed, dt, dt_read_sensors, IMU.angle[ROLL], IMU.angle[PITCH], IMU.angle[YAW], RC_angle[ROLL], RC_angle[PITCH], RC_angle[YAW], controller_value[ROLL], controller_value[PITCH], controller_value[YAW], MIX.Motor_speed[0], MIX.Motor_speed[1], MIX.Motor_speed[2], MIX.Motor_speed[3]); dt_read_sensors = GlobalTimer.read() - time_read_sensors; // stop time for loop } void commandexecuter(char* command) { // take new PID values on the fly if (command[0] == 'p') if (command[1] == 'y') PY = atof(&command[2]); else P = atof(&command[1]); if (command[0] == 'i') if (command[1] == 'y') IY = atof(&command[2]); else I = atof(&command[1]); if (command[0] == 'd') if (command[1] == 'y') DY = atof(&command[2]); else D = atof(&command[1]); for(int i=0;i<2;i++) { Controller[i].setPID(P,I,D); // give the controller the new PID values } Controller[YAW].setPID(PY,IY,DY); // give the controller the new PID values } int main() { // main programm for initialisation and debug output NVIC_SetPriority(TIMER3_IRQn, 1); // set priorty of tickers below hardware interrupts (standard priority is 0)(this is to prevent the RC interrupt from waiting until ticker is finished) #ifdef PC_CONNECTED // init screen pc.locate(10,5); pc.printf("Flybed v0.2"); #endif LEDs.roll(2); Gyro.calibrate(50, 0.02); Acc.calibrate(50, 0.02); // Start! GlobalTimer.start(); Dutycycler.attach(&dutycycle, RATE); // start to process all RATEms while(1) { #ifdef PC_CONNECTED if (pc.readable()) // Get Serial input (polled because interrupts disturb I2C) pc.readcommand(&commandexecuter); //pc.printf("%f %f %f %f %f %f\r\n", IMU.angle[0], IMU.angle[1], IMU.angle[2], controller_value[0], controller_value[1], controller_value[2]); // For live plot in MATLAB of IMU //pc.printf("%f,%f,%f,%f,%f,%f\r\n", IMU.angle[0], IMU.angle[1], IMU.angle[2], controller_value[0], controller_value[1], controller_value[2]); #if 0 //pc.cls(); pc.locate(20,0); // PC output pc.printf("dt:%3.5fs dt_sensors:%3.5fs Altitude:%6.1fm ", dt, dt_read_sensors, Alt.CalcAltitude(Alt.Pressure)); pc.locate(5,1); if(armed) pc.printf("ARMED!!!!!!!!!!!!!"); else pc.printf("DIS_ARMED "); pc.locate(5,3); pc.printf("Roll:%6.1f Pitch:%6.1f Yaw:%6.1f ", IMU.angle[0], IMU.angle[1], IMU.angle[2]); pc.locate(5,4); pc.printf("q0:%6.1f q1:%6.1f q2:%6.1f q3:%6.1f ", IMU.q0, IMU.q1, IMU.q2, IMU.q3); pc.locate(5,5); pc.printf("Gyro.data: X:%6.1f Y:%6.1f Z:%6.1f", Gyro.data[0], Gyro.data[1], Gyro.data[2]); pc.locate(5,6); pc.printf("Acc.data: X:%6.1f Y:%6.1f Z:%6.1f", Acc.data[0], Acc.data[1], Acc.data[2]); pc.locate(5,8); pc.printf("P :%6.1f I :%6.1f D :%6.1f ", P, I, D); pc.locate(5,9); pc.printf("PY:%6.1f IY:%6.1f DY:%6.1f ", PY, IY, DY); pc.locate(5,11); pc.printf("PID Result:"); for(int i=0;i<3;i++) pc.printf(" %d: %6.1f", i, controller_value[i]); pc.locate(5,14); pc.printf("RC angle: roll: %f pitch: %f yaw: %f ", RC_angle[0], RC_angle[1], RC_angle[2]); pc.locate(5,16); pc.printf("Motor: 0:%d 1:%d 2:%d 3:%d ", (int)MIX.Motor_speed[0], (int)MIX.Motor_speed[1], (int)MIX.Motor_speed[2], (int)MIX.Motor_speed[3]); // RC pc.locate(10,19); pc.printf("RC0: %4d RC1: %4d RC2: %4d RC3: %4d ", RC[0].read(), RC[1].read(), RC[2].read(), RC[3].read()); pc.locate(10,21); pc.printf("Commandline: %s ", pc.command); #endif #endif if(armed){ LEDs.rollnext(); } else { for(int i=1;i<=4;i++) LEDs.set(i); } wait(0.05); } }